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We introduce a positivity-preserving numerical scheme for a class of nonlinear stochastic heat equations driven by a purely time-dependent Brownian motion. The construction is inspired by a recent preprint by the authors where one-dimensional equations driven by space-time white noise are considered. The objective of this paper is to illustrate the properties of the proposed integrators in a different framework, by numerical experiments and by giving convergence results.

Introduction

Designing and studying numerical methods for stochastic partial differential equations (SPDEs) is an active field of research since the middle of the 1990's, we refer to the monograph [START_REF] Lord | An introduction to computational stochastic PDEs[END_REF] and to the recent preprint [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] for a review of the literature. Proving sharp strong and weak convergence rates is not the only matter of interest, it is also desirable to preserve qualitative properties of the solutions at the discrete level, see the classical reference [START_REF] Hairer | Geometric numerical integration[END_REF]. In order to illustrate this aspect we consider the following class of nonlinear heat equations driven by a multiplicative one-dimensional standard Brownian motion (using a formal notation for the noise 9 βptq)

$ ' &

' % B t upt, xq " ∆upt, xq `gpupt, xqq 9 βptq , t ą 0, x P D upt, xq " 0 , t ě 0, x P BD, up0, xq " u 0 pxq , x P D, for pt, xq P r0, T s ˆD, where D " p0, 1q d , see Section 2 for details on the notation and a rigorous formulation, see equation [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF]. The noise in ( 1) is purely time-dependent and is interpreted in the Itô sense. The nonlinearity g : R Ñ R is of class C 1 with bounded derivative, and is assumed to satisfy the condition gp0q " 0. The above SPDE has the following qualitative property which follows from a comparison principle argument (see also [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF]): if the initial condition u 0 ě 0 is continuous and nonnegative on r0, 1s d , then almost surely one has upt, xq ě 0 for all t ě 0 and x P r0, 1s d . Such property has also been proved for instance in [START_REF] Mueller | On the support of solutions to the heat equation with noise[END_REF][START_REF] Shiga | Two contrasting properties of solutions for one-dimensional stochastic partial differential equations[END_REF][START_REF] Moreno Flores | On the (strict) positivity of solutions of the stochastic heat equation[END_REF] for SPDEs driven by space-time white noise, and we refer to the preprint [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] for further references.

While classical time integrators, such as the Euler-Maruyama scheme, the semi-implicit Euler-Maruyama scheme, and the stochastic exponential Euler integrator do converge when applied to the SPDE (1), they do not satisfy the positivity-property of the exact solution to the SPDE (see below for a numerical illustration). In order to fix this issue, we propose a positivity-preserving explicit scheme [START_REF] Hairer | Geometric numerical integration[END_REF], based on a Lie-Trotter splitting strategy. The main idea of a splitting strategy is to decompose the vector field of the problem in such a way that the obtained subsystems are exactly (or easily) integrated, see the monographs [START_REF] Hairer | Geometric numerical integration[END_REF][START_REF] Blanes | A concise introduction to geometric numerical integration[END_REF]. In this work, we only deal with the temporal discretization. A fully-discrete scheme is easily obtained by combining the proposed time integrator with a standard finite difference method, which also preserves the positivity of the solution, see Section 4. Let us mention the recent works [START_REF] Yang | Stochastic heat equation: numerical positivity and almost surely exponential stability[END_REF] for the construction and analysis of positivity-preserving schemes for linear SPDEs driven by a finite number of Brownian motions. We refer to the preprint [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] for references on positivity-preserving schemes for stochastic differential equations.

In this short paper, we first briefly provide the necessary background to study (1) (Section 2). The construction and the properties of the proposed scheme are given in Section 3. We state without proof the following main results: the Lie-Trotter splitting scheme is positivity-preserving and it converges in the mean-square sense to the solution of (1) with strong rate of convergence 1{2. In future works, it may be interesting to identify the weak rate of convergence for the proposed scheme. Finally, Section 4 presents numerical experiments in order to illustrate the superiority of the proposed integrator compared with classical ones.

The construction of the proposed positivity-preserving scheme (5) follows the same strategy as in the recent preprint [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] written by the authors, where the case of one-dimensional nonlinear stochastic heat equations driven by space-time white noise interpreted in the Itô sense (using a formal notation for the noise 9

W pt, xq) [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF]. First, note that (2) needs to be considered on a one-dimensional domain since it is driven by space-time white noise, whereas (1) can be considered in arbitrary dimension. Another major difference is the regularity of solutions: the solutions of (2) are Hölder continuous with exponent 1{4í n time and 1{2´in space, whereas the solutions of (1) are Hölder continuous with exponent 1{2´in time and 1´in space. As a result, the order of convergence of the splitting scheme differs, this is why one obtains strong order of convergence 1{2 in this paper. Finally, in [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] it is necessary to deal with a fully-discrete scheme, and to impose CFL stability conditions to ensure boundedness of moments and convergence of the scheme, even if the linear part of the problem is solved exactly (by an exponential integrator). Both the analysis and the numerical experiments in [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] show the importance of the CFL conditions. On the contrary, in this paper the time-step size can be freely chosen and we are even able to study the scheme in a semi-discrete framework. The numerical experiments in Section 4 show that indeed CFL conditions are not needed for the discretization of (1) using the proposed time integrator.

Setting

In this work, we consider the following nonlinear stochastic heat equation driven by a purely timedependent Brownian motion, interpreted in the Itô sense:

(3)

$ ' & ' % dupt, xq " ∆upt, xq dt `gpupt, xqq dβptq , t ą 0, x P D, upt, xq " 0 , t ě 0, x P BD, up0, xq " u 0 pxq , x P D,
where the spatial domain is D " p0, 1q d and D " r0, 1s d , in arbitrary dimension d ě 1. Above ∆ " B 2 x1x1 `. . . `B2

x d x d is the Laplace operator and homogeneous Dirichlet boundary conditions are imposed on BD. The evolution is driven by a standard real-valued Brownian motion `βptq ˘tě0 defined on a probability space pΩ, F, Pq satisfying the usual conditions.

The initial value u 0 : D Ñ R is assumed to be a bounded and Lipschitz continuous mapping, and to satisfy the homogeneous Dirichlet boundary conditions: u 0 pxq " 0 for all x P BD. The initial value is assumed to be deterministic. For all α P p0, 1s, introduce the norms

}v} 0 " sup xPD |vpxq| , }v} α " }v} 0 `sup x1,x2PD |vpx 2 q ´vpx 1 q| |x 2 ´x1 | α
for any α-Hölder continuous mapping v.

The nonlinearity g : R Ñ R is a mapping of class C 1 , and is assumed to have a bounded derivative and to satisfy the condition gp0q " 0.

Under the conditions above, the stochastic partial differential equation ( 3) admits a unique mild solution, given by the integral formulation [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF] upt, xq "

ż D Gpt, x, yqu 0 pyq dy `ż t 0 ż D Gpt ´s, x, yqgpups, yqq dy dβpsq, t ě 0, x P D,
where pt, x, yq P p0, `8q ˆD2 Þ Ñ Gpt, x, yq denotes the fundamental solution of the heat equation with homogeneous boundary conditions on the domain D. We refer for instance to [START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF][START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] for standard references on the analysis of stochastic partial differential equations.

As seen in the introduction, the exact solution `upt, xq ˘tě0,xPD of the SPDE (3) satisfies the following property: if u 0 pxq ě 0 for all x P D, then almost surely, one has upt, xq ě 0 for all pt, xq P r0, T s ˆD.

See [START_REF] Cresson | On the positivity of solutions of systems of stochastic PDEs[END_REF] for a proof. For a sketch of an alternative proof using the consistent positivity-preserving scheme [START_REF] Hairer | Geometric numerical integration[END_REF], see the end of Section 3.

Note that it would be straightforward to generalize the results presented in this paper to SPDEs driven by noise of the type gpt, x, upt, xqq dβptq, for sufficiently regular functions g satisfying the condition gpt, x, 0q " 0 for all t ě 0, x P D. Furthermore, with appropriate minor modifications we could also consider SPDEs driven by a noise of the type ř K k"1 g k pupt, xqq dβ k ptq, where β 1 , . . . , β K are independent standard real-valued Brownian motions and the functions g k are of class C 1 , have bounded first order derivatives and satisfy the condition g k p0q " 0. One could also extend the analysis to systems of SPDEs, like in [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF]. In the sequel we only consider the SPDE (3) for ease of presentation.

Positivity-preserving integrator

Let us now describe the proposed time integrator for the approximation of the solution of (3). Let T P p0, 8q be given and define the time-step size τ " T {M where M P N is an integer. Set t m " mτ for all m P t0, . . . , M u and define the increments of the Brownian motion δβ m " βpt m`1 q ´βpt m q for all m P t0, . . . , M ´1u. Introduce the auxiliary bounded and continuous function f : R Ñ R defined by

f pvq " gpvq v 1 v‰0 `g1 p0q1 v"0 .
The numerical approximation u LT m p¨q of the solution upt m , ¨q at time t m is defined as follows: for all m P t0, . . . , M ´1u and x P D,

(5) u LT m`1 pxq " ż D Gpτ, x, yq ˆexp ´f pu LT m pyqqδβ m ´f pu LT m pyqq 2 τ 2 ¯˙dy,
with initial value u LT 0 " u 0 . The proposed scheme ( 5) is based on a Lie-Trotter splitting strategy: given u LT m for some m P t0, . . . , M ´1u, the numerical solution u LT m`1 is obtained by solving successively two subsystems on the time interval rt m , t m`1 s: ' first, the family of linear Itô stochastic differential equations [START_REF] Khoshnevisan | Analysis of stochastic partial differential equations[END_REF] dv with initial value v 2,m pt m , ¨q " v 1,m pt m`1 , ¨q. Indeed, the exact solutions of the subsystem ( 6) and ( 7) are given by the following expressions: for all t P rt m , t m`1 s and x P D, one has It is worth mentioning that the proposed scheme ( 5) is exact when applied to the linear stochastic heat equation (3) when gpvq " v: in that case u LT m " upt m , ¨q for all m P t0, . . . , M u. This can easily be seen by a change of unknown: if gpvq " v, then pt, xq Þ Ñ e ´βptq`t 2 upt, xq is the solution of the deterministic linear heat equation. In the general case, the nonlinearity f is frozen at the left-point of each subinterval rt m , t m`1 s, which results in the linear SDEs (6) which can then be solved exactly using [START_REF] Moreno Flores | On the (strict) positivity of solutions of the stochastic heat equation[END_REF].

The main benefit of introducing the explicit splitting scheme ( 5) is the following property: if u 0 pxq ě 0 for all x P D, then for any choice of the time-step size τ " T {M , one has u LT m pxq ě 0, for all m P t0, . . . , M u, almost surely. This means that the scheme is positivity-preserving. Proving this property is straightforward: by the interpretation as a splitting scheme, it suffices to check that the two subsystems ( 6) and ( 7) are positivity-preserving. This is easily seen in the expressions (8) of their solutions v 1,m pt, xq and v 2,m pt, xq.

The positivity-preserving property of the scheme ( 5) is ensured by a careful discretization of the stochastic perturbation term of (3), and is not satisfied for standard integrators. For instance, the stochastic exponential Euler integrator Let us now state properties of the numerical scheme (5) in order to justify that it is consistent with the SPDE (3) when the time-step size τ tends to zero. Recall that the initial value u 0 is Lipschitz continuous and that }u 0 } 0 and }u 0 } α are defined in Section 2.

First, moment bounds are satisfied: for all T P p0, 8q, there exists C 0 pT q P p0, `8q such that for any time-step size τ " T {M , one has [START_REF] Shiga | Two contrasting properties of solutions for one-dimensional stochastic partial differential equations[END_REF] sup

0ďmďM sup xPD Er|u LT m pxq| 2 s ď C 0 pT q}u 0 } 2 0 .
Second, one has the following strong convergence result: for all T P p0, 8q and all α P p0, 1q, there exists C α pT q P p0, `8q such that for any time-step size τ " T {M , one has

(11) sup 0ďmďM sup xPD Er|u LT m pxq ´upt m , xq| 2 s ď C α pT q}u 0 } 2 α τ α .
The strong error estimate [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] states that the proposed integrator converges in a mean-square sense with order 1{2. This order of convergence is expected to be optimal in general, as will be illustrated by the numerical experiments below. Providing detailed proofs of the moment bounds [START_REF] Shiga | Two contrasting properties of solutions for one-dimensional stochastic partial differential equations[END_REF] and of the strong error estimate ( 11) is out of the scope of this work. It is worth mentioning that combining the positivity-preserving property of the scheme (5) and the strong error estimate [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] provides a proof of the positivity of the exact solutions of the SPDE (3).

Numerical experiments

In this section we numerically illustrate the properties of the proposed scheme ( 5) and compare it with existing methods. We put emphasis on preservation of positivity and on mean-square error estimates in order to exhibit the strong rate of convergence 1{2 given in Section 3 above.

The one-dimensional stochastic nonlinear heat equation ( 3) is first discretized in space by a centered finite difference approximation on a uniform grid, see for instance [START_REF] Gyöngy | Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise[END_REF] (for problems driven by spacetime white noise). Let N P N, define the mesh size h " 1{N , and the grid points x n " nh for 0 ď n ď N . We use the convention that for any vector v " `vn ˘1ďnďN´1 P R N ´1, we append discrete homogeneous Dirichlet boundary conditions v 0 " 0 and v N " 0 when needed. The spatially discrete R N ´1-valued stochastic process u N ptq " `uN n ptq ˘1ďnďN´1 , for all t ě 0, is thus defined as the solution to the N ´1-dimensional stochastic differential equation [START_REF] Yang | Stochastic heat equation: numerical positivity and almost surely exponential stability[END_REF] du N ptq " N 2 D N u N ptq dt `gpu N ptqq dβptq, with initial value u N p0q " `uN 0 ˘1ďnďN´1 " `u0 px n q ˘1ďnďN´1 , and the pN ´1q ˆpN ´1q matrix D N is the standard matrix for the approximation of the Laplace operator with homogeneous Dirichlet boundary conditions. The solution u N ptq of ( 12) is nonnegative for nonnegative initial value u N p0q, since ´DN satisfies a monotonicity property.

The system of stochastic differential equations ( 12) is then discretized in time by the following integrators (we recall that τ " T {M denotes the time step size):

' the proposed Lie-Trotter splitting scheme (5) (denoted LT below)

(13) u LT m`1 " e τ N 2 D N ˆexp ´f pu LT m qδβ m ´f pu LT m q 2 τ 2

¯'

the Euler-Maruyama scheme (denoted EM below)

u EM m`1 " u EM m `τ N 2 D N u EM m `gpu EM m q∆ m β, ' the semi-implicit Euler-Maruyama scheme (denoted SEM below) u SEM m`1 " u SEM m `τ N 2 D N u SEM m`1 `gpu SEM m q∆ m β, ' the stochastic exponential Euler integrator (denoted SEXP below) u SEXP m`1 " e τ N 2 D N `uSEXP m `gpu SEXP m q∆ m β ˘.
In the first numerical experiment, we illustrate the positivity-preserving property of the Lie-Trotter scheme (LT) when applied to the time discretization of the stochastic heat equation (3) on the time interval r0, 2s with the following multiplicative terms: gpvq " λv, gpvq " λv{p1 `v2 q, λpsinpvq `vq, and gpvq " λ lnp1`vq, where the real parameter λ is introduced to modify the size of the noise. We consider the following parameters: u 0 pxq " sinpπxq, τ " 2 ´5, N " 2 8 , λ " 2.5 and compute 100 realizations of each time integrators. The results are presented in Table 1. The proposed scheme produces only nonnegative numerical solutions, which confirms the result stated in Section 3. On the contrary, the other integrators produce some solutions with negative values. This illustrates the superiority of the proposed scheme (5).

In the second numerical experiment, we investigate the mean-square errors of the above time integrators in order to confirm the convergence result stated in Section 3. We discretize the stochastic heat equation (3) on the time interval r0, 0.5s with gpvq " v and gpvq " v{p1 `v2 q and initial value u 0 pxq " sinpπxq. The spatial discretization is again performed by a centered finite difference method with mesh size h " 2 ´8. The temporal discretizations is done by the time integrators: LT, SEXP, and gpvq LT EM SEM SEXP 2.5v 100{100 2{100 47{100 47{100 2.5v{p1 `v2 q 100{100 2{100 49{100 49{100 2.5psinpvq `vq 100{100 0{100 2{100 2{100 2.5 lnp1 `vq 100{100 2{100 50{100 49{100 measured for the time interval r0, 0.5s. The time step sizes used for these experiments range from τ " 2 ´4 to τ " 2 ´16 . The reference solution u ref is computed using the Lie-Trotter splitting scheme with τ " 2 ´16 . We use 150 samples to approximate the expectations. We have experimentally checked that the Monte Carlo error is negligible to observe mean-square convergence. In the first plot of Figure 1, one observes that if gpvq " v then the Lie-Trotter splitting scheme produces the exact solution as explained in Section 3, while the other integrators have rate of convergence 1{2. In the second plot of Figure 1, one observes a rate of convergence 1{2 in the mean-square error estimates for the three integrators. This confirms the convergence result stated in Section 3. Mean-square errors of the splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), and the semi-implicit Euler-Maruyama scheme (SEM). Mesh size h " 2 ´8 and average over 150 samples.

Finally, we illustrate the fact that these error bounds are uniform in the spatial discretization. We compute the mean-square errors on the time interval r0, 0.5s of the Lie-Trotter splitting scheme when applied to the finite difference discretization of the stochastic heat equation with gpvq " 1.5v, resp. gpvq " 1.5v{p1 `v2 q, and mesh sizes h " 2 ´4, 2 ´6, 2 ´8, 2 ´10 . The time step sizes used for these experiments range from τ " 2 ´4 to τ " 2 ´16 . The reference solutions are computed using the Lie-Trotter splitting scheme with τ " 2 ´16 . As above 150 samples are used to approximate the expectations and the Monte Carlo error is negligible for the observation of the rates of convergence. These results are presented in Figure 2. One observes that the error does not depend on the mesh size h. This is in sharp contrast to the observations from the preprint [START_REF] Bréhier | Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations[END_REF] on the approximation of the equation (2) driven by space-time white noise, for which a CFL condition is required. We conclude this paper with some numerical experiments in dimension d " 2.

Let us first consider the stochastic heat equation (3) on the time interval r0, 2s with initial value u 0 px 1 , x 2 q " sinpπx 1 q sinpπx 2 q and with multiplicative terms: gpvq " 2.5v, gpvq " 2.5v{p1 `v2 q, 2.5psinpvq `vq, and gpvq " 2.5 lnp1 `vq. The discretization parameters are taken to be τ " 2 ´5 and h x1 " h x2 " 2 ´4. We compute 100 realizations of each time integrators. The proportion of samples containing only positive values is presented in Table 2. One can again observe the superiority of the proposed Lie-Trotter splitting scheme.

gpvq

LT EM SEM SEXP 2.5v 100{100 0{100 47{100 47{100 2.5v{p1 `v2 q 100{100 0{100 48{100 48{100 2.5psinpvq `vq 100{100 0{100 2{100 2{100 2.5 lnp1 `vq 100{100 0{100 46{100 53{100 Next, we compute the mean-square errors, measured for the time interval r0, 0.5s, of the LT, SEXP and SEM integrators when applied to the SPDE (3) with gpvq " v and gpvq " v{p1 `v2 q and initial value u 0 px 1 , x 2 q " sinpπx 1 q sinpπx 2 q. The discretization parameters are: h x1 " h x2 " 2 ´4 for the mesh sizes and the time-step size ranging from τ " 2 ´4 to τ " 2 ´14 . The reference solution u ref is computed using the Lie-Trotter splitting scheme with τ " 2 ´14 . We use 150 samples to approximate the expectations. The results are presented in Figure 3. Again one observes that the Lie-Trotter splitting scheme is exact for linear problems and has a rate of convergence 1{2 in the mean-square sense.

( 8 ) 2 ˙uLT m pxq, v 2 ,DD

 822 v 1,m pt, xq " exp ˆf pu LT m pxqq `βptq ´βpt m q ˘´f pu LT m pxqq 2 pt ´tm q m pt, xq " ż Gpt ´tm , x, yqv 2,m pt m , yq dy " ż Gpt ´tm , x, yqv 1,m pt m`1 , yq dy and the numerical approximation is set to u LT m`1 pxq " v 2,m pt m`1 , xq, as prescribed by the Lie-Trotter splitting strategy. Note that the scheme (5) is explicit.

  is not positivity-preserving since the support of the Gaussian random variables δβ m is the entire real line, see also the numerical experiments below.

Figure 1 .

 1 Figure1. Mean-square errors of the splitting scheme (LT), the stochastic exponential Euler integrator (SEXP), and the semi-implicit Euler-Maruyama scheme (SEM). Mesh size h " 2 ´8 and average over 150 samples.

Figure 2 .

 2 Figure 2. Mean-square errors of the splitting scheme for several values of the spatial mesh size h " 2 ´4, 2 ´6, 2 ´8, 2 ´10 . Average over 150 samples.

  #dv 2,m pt, xq " ∆v 2,m pt, xq dt , t P pt m , t m`1 q, x P D v 2,m pt, 0q " v 2,m pt, 1q " 0 , t P rt m , t m`1 s, x P BD,

	' second, the linear deterministic partial differential equation
	(7)

1,m pt, xq " v 1,m pt, xqf pu LT m pxqq dβptq , t P rt m , t m`1 s, x P D, with initial value v 1,m pt m , ¨q " u LT m p¨q;

Table 1 .

 1 Proportion of samples containing only positive values out of 100 simulated sample paths for the time integrators: Lie-Trotter scheme (LT), Euler-Maruyama scheme (EM), semi-implicit Euler-Maruyama (SEM), and stochastic exponential Euler scheme (SEXP). Time-step size: τ " 2 ´5. Mesh size: h " 2 ´8.

	SEM. In this experiment the explicit EM integrator is not tested. Figure 1 presents, in a loglog plot,
	the mean-square errors			
	sup 0ďmďM	sup 0ďnďN	`Er|u num m,n	´uref pt m , x n q| 2 s ˘1 2

Table 2 .

 2 SPDE in 2d: Proportion of samples containing only positive values out of 100 simulated sample paths for the time integrators: Lie-Trotter scheme (LT), Euler-Maruyama scheme (EM), semi-implicit Euler-Maruyama (SEM), and stochastic exponential Euler scheme (SEXP). Time-step size: τ " 2 ´5. Mesh sizes: h x 1 " h x 2 " 2 ´4.
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