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POSITIVITY-PRESERVING SCHEMES FOR SOME NONLINEAR

STOCHASTIC PDES

CHARLES-EDOUARD BRÉHIER, DAVID COHEN, AND JOHAN ULANDER

Abstract. We introduce a positivity-preserving numerical scheme for a class of nonlinear
stochastic heat equations driven by a purely time-dependent Brownian motion. The con-
struction is inspired by a recent preprint by the authors where one-dimensional equations
driven by space-time white noise are considered. The objective of this paper is to illustrate
the properties of the proposed integrators in a different framework, by numerical experiments
and by giving convergence results.

AMS Classification. 60H15, 60H35, 65C30, 65J08.

Keywords. Stochastic partial differential equations. Stochastic heat equation. Splitting scheme.
Positivity. Mean-square convergence.

1. Introduction

Designing and studying numerical methods for stochastic partial differential equations (SPDEs) is
an active field of research since the middle of the 1990’s, we refer to the monograph [7] and to the
recent preprint [2] for a review of the literature. Proving sharp strong and weak convergence rates is
not the only matter of interest, it is also desirable to preserve qualitative properties of the solutions
at the discrete level, see the classical reference [5]. In order to illustrate this aspect we consider
the following class of nonlinear heat equations driven by a multiplicative one-dimensional standard

Brownian motion (using a formal notation for the noise 9βptq)

(1)
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’

%

Btupt, xq “ ∆upt, xq ` gpupt, xqq 9βptq , t ą 0, x P D
upt, xq “ 0 , t ě 0, x P BD,
up0, xq “ u0pxq , x P D,

for pt, xq P r0, T s ˆ D, where D “ p0, 1qd, see Section 2 for details on the notation and a rigorous
formulation, see equation (3).

The noise in (1) is purely time-dependent and is interpreted in the Itô sense. The nonlinearity
g : R Ñ R is of class C1 with bounded derivative, and is assumed to satisfy the condition gp0q “ 0.
The above SPDE has the following qualitative property which follows from a comparison principle
argument (see also [3]): if the initial condition u0 ě 0 is continuous and nonnegative on r0, 1sd, then
almost surely one has upt, xq ě 0 for all t ě 0 and x P r0, 1sd. Such property has also been proved for
instance in [9, 10, 8] for SPDEs driven by space-time white noise, and we refer to the preprint [2] for
further references.

While classical time integrators, such as the Euler–Maruyama scheme, the semi-implicit Euler–
Maruyama scheme, and the stochastic exponential Euler integrator do converge when applied to the
SPDE (1), they do not satisfy the positivity-property of the exact solution to the SPDE (see below for a
numerical illustration). In order to fix this issue, we propose a positivity-preserving explicit scheme (5),
based on a Lie–Trotter splitting strategy. The main idea of a splitting strategy is to decompose the
vector field of the problem in such a way that the obtained subsystems are exactly (or easily) integrated,
see the monographs [5, 1]. In this work, we only deal with the temporal discretization. A fully-discrete
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scheme is easily obtained by combining the proposed time integrator with a standard finite difference
method, which also preserves the positivity of the solution, see Section 4. Let us mention the recent
works [12] for the construction and analysis of positivity-preserving schemes for linear SPDEs driven by
a finite number of Brownian motions. We refer to the preprint [2] for references on positivity-preserving
schemes for stochastic differential equations.

In this short paper, we first briefly provide the necessary background to study (1) (Section 2). The
construction and the properties of the proposed scheme are given in Section 3. We state without proof
the following main results: the Lie–Trotter splitting scheme is positivity-preserving and it converges
in the mean-square sense to the solution of (1) with strong rate of convergence 1{2. In future works,
it may be interesting to identify the weak rate of convergence for the proposed scheme. Finally,
Section 4 presents numerical experiments in order to illustrate the superiority of the proposed integrator
compared with classical ones.

The construction of the proposed positivity-preserving scheme (5) follows the same strategy as in
the recent preprint [2] written by the authors, where the case of one-dimensional nonlinear stochastic
heat equations driven by space-time white noise interpreted in the Itô sense (using a formal notation

for the noise 9W pt, xq)

(2)

$

’

&

’

%

Btupt, xq “ B
2
xxupt, xq ` gpupt, xqq

9W pt, xq,

upt, 0q “ upt, 1q “ 0,

up0, xq “ u0pxq,

for pt, xq P r0, T s ˆ p0, 1q is considered. Let us briefly compare the results of this short paper with
those of [2]. First, note that (2) needs to be considered on a one-dimensional domain since it is driven
by space-time white noise, whereas (1) can be considered in arbitrary dimension. Another major
difference is the regularity of solutions: the solutions of (2) are Hölder continuous with exponent 1{4´
in time and 1{2´ in space, whereas the solutions of (1) are Hölder continuous with exponent 1{2´ in
time and 1´ in space. As a result, the order of convergence of the splitting scheme differs, this is why
one obtains strong order of convergence 1{2 in this paper. Finally, in [2] it is necessary to deal with a
fully-discrete scheme, and to impose CFL stability conditions to ensure boundedness of moments and
convergence of the scheme, even if the linear part of the problem is solved exactly (by an exponential
integrator). Both the analysis and the numerical experiments in [2] show the importance of the CFL
conditions. On the contrary, in this paper the time-step size can be freely chosen and we are even able
to study the scheme in a semi-discrete framework. The numerical experiments in Section 4 show that
indeed CFL conditions are not needed for the discretization of (1) using the proposed time integrator.

2. Setting

In this work, we consider the following nonlinear stochastic heat equation driven by a purely time-
dependent Brownian motion, interpreted in the Itô sense:

(3)

$

’

&

’

%

dupt, xq “ ∆upt, xqdt` gpupt, xqqdβptq , t ą 0, x P D,
upt, xq “ 0 , t ě 0, x P BD,
up0, xq “ u0pxq , x P D,

where the spatial domain is D “ p0, 1qd and D “ r0, 1sd, in arbitrary dimension d ě 1. Above
∆ “ B2x1x1

` . . . ` B2xdxd
is the Laplace operator and homogeneous Dirichlet boundary conditions are

imposed on BD. The evolution is driven by a standard real-valued Brownian motion
`

βptq
˘

tě0
defined

on a probability space pΩ,F ,Pq satisfying the usual conditions.
The initial value u0 : D Ñ R is assumed to be a bounded and Lipschitz continuous mapping, and

to satisfy the homogeneous Dirichlet boundary conditions: u0pxq “ 0 for all x P BD. The initial value
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is assumed to be deterministic. For all α P p0, 1s, introduce the norms

}v}0 “ sup
xPD

|vpxq| , }v}α “ }v}0 ` sup
x1,x2PD

|vpx2q ´ vpx1q|

|x2 ´ x1|α

for any α-Hölder continuous mapping v.
The nonlinearity g : RÑ R is a mapping of class C1, and is assumed to have a bounded derivative

and to satisfy the condition gp0q “ 0.
Under the conditions above, the stochastic partial differential equation (3) admits a unique mild

solution, given by the integral formulation

(4) upt, xq “

ż

D
Gpt, x, yqu0pyqdy `

ż t

0

ż

D
Gpt´ s, x, yqgpups, yqqdy dβpsq, t ě 0, x P D,

where pt, x, yq P p0,`8qˆD2
ÞÑ Gpt, x, yq denotes the fundamental solution of the heat equation with

homogeneous boundary conditions on the domain D. We refer for instance to [6, 11] for standard
references on the analysis of stochastic partial differential equations.

As seen in the introduction, the exact solution
`

upt, xq
˘

tě0,xPD of the SPDE (3) satisfies the following

property: if u0pxq ě 0 for all x P D, then almost surely, one has upt, xq ě 0 for all pt, xq P r0, T s ˆD.
See [3] for a proof. For a sketch of an alternative proof using the consistent positivity-preserving
scheme (5), see the end of Section 3.

Note that it would be straightforward to generalize the results presented in this paper to SPDEs
driven by noise of the type gpt, x, upt, xqqdβptq, for sufficiently regular functions g satisfying the con-
dition gpt, x, 0q “ 0 for all t ě 0, x P D. Furthermore, with appropriate minor modifications we could

also consider SPDEs driven by a noise of the type
řK
k“1 gkpupt, xqqdβkptq, where β1, . . . , βK are inde-

pendent standard real-valued Brownian motions and the functions gk are of class C1, have bounded
first order derivatives and satisfy the condition gkp0q “ 0. One could also extend the analysis to
systems of SPDEs, like in [2]. In the sequel we only consider the SPDE (3) for ease of presentation.

3. Positivity-preserving integrator

Let us now describe the proposed time integrator for the approximation of the solution of (3). Let
T P p0,8q be given and define the time-step size τ “ T {M where M P N is an integer. Set tm “ mτ
for all m P t0, . . . ,Mu and define the increments of the Brownian motion δβm “ βptm`1q ´ βptmq for
all m P t0, . . . ,M ´ 1u. Introduce the auxiliary bounded and continuous function f : R Ñ R defined
by

fpvq “
gpvq

v
1v‰0 ` g

1p0q1v“0.

The numerical approximation uLTm p¨q of the solution uptm, ¨q at time tm is defined as follows: for all
m P t0, . . . ,M ´ 1u and x P D,

(5) uLTm`1pxq “

ż

D
Gpτ, x, yq

ˆ

exp
´

fpuLTm pyqqδβm ´
fpuLTm pyqq

2τ

2

¯

˙

dy,

with initial value uLT0 “ u0. The proposed scheme (5) is based on a Lie–Trotter splitting strategy:
given uLTm for some m P t0, . . . ,M´1u, the numerical solution uLTm`1 is obtained by solving successively
two subsystems on the time interval rtm, tm`1s:

‚ first, the family of linear Itô stochastic differential equations

(6) dv1,mpt, xq “ v1,mpt, xqfpu
LT
m pxqqdβptq , t P rtm, tm`1s, x P D,

with initial value v1,mptm, ¨q “ uLTm p¨q;
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‚ second, the linear deterministic partial differential equation

(7)

#

dv2,mpt, xq “ ∆v2,mpt, xqdt , t P ptm, tm`1q, x P D
v2,mpt, 0q “ v2,mpt, 1q “ 0 , t P rtm, tm`1s, x P BD,

with initial value v2,mptm, ¨q “ v1,mptm`1, ¨q.

Indeed, the exact solutions of the subsystem (6) and (7) are given by the following expressions: for all
t P rtm, tm`1s and x P D, one has

(8)

v1,mpt, xq “ exp

ˆ

fpuLTm pxqq
`

βptq ´ βptmq
˘

´
fpuLTm pxqq

2pt´ tmq

2

˙

uLTm pxq,

v2,mpt, xq “

ż

D
Gpt´ tm, x, yqv2,mptm, yqdy “

ż

D
Gpt´ tm, x, yqv1,mptm`1, yqdy

and the numerical approximation is set to uLTm`1pxq “ v2,mptm`1, xq, as prescribed by the Lie–Trotter
splitting strategy. Note that the scheme (5) is explicit.

It is worth mentioning that the proposed scheme (5) is exact when applied to the linear stochastic
heat equation (3) when gpvq “ v: in that case uLTm “ uptm, ¨q for all m P t0, . . . ,Mu. This can easily

be seen by a change of unknown: if gpvq “ v, then pt, xq ÞÑ e´βptq`
t
2upt, xq is the solution of the

deterministic linear heat equation. In the general case, the nonlinearity f is frozen at the left-point
of each subinterval rtm, tm`1s, which results in the linear SDEs (6) which can then be solved exactly
using (8).

The main benefit of introducing the explicit splitting scheme (5) is the following property: if
u0pxq ě 0 for all x P D, then for any choice of the time-step size τ “ T {M , one has uLTm pxq ě 0, for
all m P t0, . . . ,Mu, almost surely. This means that the scheme is positivity-preserving. Proving this
property is straightforward: by the interpretation as a splitting scheme, it suffices to check that the
two subsystems (6) and (7) are positivity-preserving. This is easily seen in the expressions (8) of their
solutions v1,mpt, xq and v2,mpt, xq.

The positivity-preserving property of the scheme (5) is ensured by a careful discretization of the
stochastic perturbation term of (3), and is not satisfied for standard integrators. For instance, the
stochastic exponential Euler integrator

(9) uSEXP
m`1 pxq “

ż

D
Gpτ, x, yq

´

uSEXP
m pyq ` gpuSEXP

m pyqqδβm

¯

dy

is not positivity-preserving since the support of the Gaussian random variables δβm is the entire real
line, see also the numerical experiments below.

Let us now state properties of the numerical scheme (5) in order to justify that it is consistent with
the SPDE (3) when the time-step size τ tends to zero. Recall that the initial value u0 is Lipschitz
continuous and that }u0}0 and }u0}α are defined in Section 2.

First, moment bounds are satisfied: for all T P p0,8q, there exists C0pT q P p0,`8q such that for
any time-step size τ “ T {M , one has

(10) sup
0ďmďM

sup
xPD

Er|uLTm pxq|2s ď C0pT q}u0}
2
0.

Second, one has the following strong convergence result: for all T P p0,8q and all α P p0, 1q, there
exists CαpT q P p0,`8q such that for any time-step size τ “ T {M , one has

(11) sup
0ďmďM

sup
xPD

Er|uLTm pxq ´ uptm, xq|2s ď CαpT q}u0}
2
α τ

α.

The strong error estimate (11) states that the proposed integrator converges in a mean-square sense
with order 1{2. This order of convergence is expected to be optimal in general, as will be illustrated
by the numerical experiments below.

Providing detailed proofs of the moment bounds (10) and of the strong error estimate (11) is out
of the scope of this work. It is worth mentioning that combining the positivity-preserving property
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of the scheme (5) and the strong error estimate (11) provides a proof of the positivity of the exact
solutions of the SPDE (3).

4. Numerical experiments

In this section we numerically illustrate the properties of the proposed scheme (5) and compare
it with existing methods. We put emphasis on preservation of positivity and on mean-square error
estimates in order to exhibit the strong rate of convergence 1{2 given in Section 3 above.

The one-dimensional stochastic nonlinear heat equation (3) is first discretized in space by a centered
finite difference approximation on a uniform grid, see for instance [4] (for problems driven by space-
time white noise). Let N P N, define the mesh size h “ 1{N , and the grid points xn “ nh for
0 ď n ď N . We use the convention that for any vector v “

`

vn
˘

1ďnďN´1
P RN´1, we append discrete

homogeneous Dirichlet boundary conditions v0 “ 0 and vN “ 0 when needed. The spatially discrete
RN´1-valued stochastic process uN ptq “

`

uNn ptq
˘

1ďnďN´1
, for all t ě 0, is thus defined as the solution

to the N ´ 1-dimensional stochastic differential equation

(12) duN ptq “ N2DNuN ptqdt` gpuN ptqqdβptq,

with initial value uN p0q “
`

uN0
˘

1ďnďN´1
“

`

u0pxnq
˘

1ďnďN´1
, and the pN ´ 1q ˆ pN ´ 1q matrix

DN is the standard matrix for the approximation of the Laplace operator with homogeneous Dirichlet
boundary conditions. The solution uN ptq of (12) is nonnegative for nonnegative initial value uN p0q,
since ´DN satisfies a monotonicity property.

The system of stochastic differential equations (12) is then discretized in time by the following
integrators (we recall that τ “ T {M denotes the time step size):

‚ the proposed Lie–Trotter splitting scheme (5) (denoted LT below)

(13) uLTm`1 “ eτN
2DN

ˆ

exp
´

fpuLTm qδβm ´
fpuLTm q

2τ

2

¯

˙

‚ the Euler–Maruyama scheme (denoted EM below)

uEM
m`1 “ uEM

m ` τN2DNuEM
m ` gpuEM

m q∆mβ,

‚ the semi-implicit Euler–Maruyama scheme (denoted SEM below)

uSEM
m`1 “ uSEM

m ` τN2DNuSEM
m`1 ` gpu

SEM
m q∆mβ,

‚ the stochastic exponential Euler integrator (denoted SEXP below)

uSEXP
m`1 “ eτN

2DN `

uSEXP
m ` gpuSEXP

m q∆mβ
˘

.

In the first numerical experiment, we illustrate the positivity-preserving property of the Lie–Trotter
scheme (LT) when applied to the time discretization of the stochastic heat equation (3) on the time
interval r0, 2s with the following multiplicative terms: gpvq “ λv, gpvq “ λv{p1`v2q, λpsinpvq`vq, and
gpvq “ λ lnp1`vq, where the real parameter λ is introduced to modify the size of the noise. We consider
the following parameters: u0pxq “ sinpπxq, τ “ 2´5, N “ 28, λ “ 2.5 and compute 100 realizations
of each time integrators. The results are presented in Table 1. The proposed scheme produces only
nonnegative numerical solutions, which confirms the result stated in Section 3. On the contrary, the
other integrators produce some solutions with negative values. This illustrates the superiority of the
proposed scheme (5).

In the second numerical experiment, we investigate the mean-square errors of the above time in-
tegrators in order to confirm the convergence result stated in Section 3. We discretize the stochastic
heat equation (3) on the time interval r0, 0.5s with gpvq “ v and gpvq “ v{p1 ` v2q and initial value
u0pxq “ sinpπxq. The spatial discretization is again performed by a centered finite difference method
with mesh size h “ 2´8. The temporal discretizations is done by the time integrators: LT, SEXP, and
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gpvq LT EM SEM SEXP

2.5v 100{100 2{100 47{100 47{100
2.5v{p1` v2q 100{100 2{100 49{100 49{100

2.5psinpvq ` vq 100{100 0{100 2{100 2{100
2.5 lnp1` vq 100{100 2{100 50{100 49{100

Table 1. Proportion of samples containing only positive values out of 100
simulated sample paths for the time integrators: Lie–Trotter scheme (LT),
Euler–Maruyama scheme (EM), semi-implicit Euler–Maruyama (SEM), and
stochastic exponential Euler scheme (SEXP). Time-step size: τ “ 2´5. Mesh
size: h “ 2´8.

SEM. In this experiment the explicit EM integrator is not tested. Figure 1 presents, in a loglog plot,
the mean-square errors

sup
0ďmďM

sup
0ďnďN

`

Er|unumm,n ´ u
refptm, xnq|

2s
˘

1
2

measured for the time interval r0, 0.5s. The time step sizes used for these experiments range from
τ “ 2´4 to τ “ 2´16. The reference solution uref is computed using the Lie–Trotter splitting scheme
with τ “ 2´16. We use 150 samples to approximate the expectations. We have experimentally checked
that the Monte Carlo error is negligible to observe mean-square convergence. In the first plot of
Figure 1, one observes that if gpvq “ v then the Lie–Trotter splitting scheme produces the exact
solution as explained in Section 3, while the other integrators have rate of convergence 1{2. In the
second plot of Figure 1, one observes a rate of convergence 1{2 in the mean-square error estimates for
the three integrators. This confirms the convergence result stated in Section 3.
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(b) gpvq “ v
p1`v2q

Figure 1. Mean-square errors of the splitting scheme (LT), the stochastic
exponential Euler integrator (SEXP), and the semi-implicit Euler–Maruyama
scheme (SEM). Mesh size h “ 2´8 and average over 150 samples.

Finally, we illustrate the fact that these error bounds are uniform in the spatial discretization.
We compute the mean-square errors on the time interval r0, 0.5s of the Lie–Trotter splitting scheme
when applied to the finite difference discretization of the stochastic heat equation with gpvq “ 1.5v,
resp. gpvq “ 1.5v{p1 ` v2q, and mesh sizes h “ 2´4, 2´6, 2´8, 2´10. The time step sizes used for
these experiments range from τ “ 2´4 to τ “ 2´16. The reference solutions are computed using
the Lie–Trotter splitting scheme with τ “ 2´16. As above 150 samples are used to approximate the
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expectations and the Monte Carlo error is negligible for the observation of the rates of convergence.
These results are presented in Figure 2. One observes that the error does not depend on the mesh
size h. This is in sharp contrast to the observations from the preprint [2] on the approximation of the
equation (2) driven by space-time white noise, for which a CFL condition is required.
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(b) gpvq “ 1.5 v
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Figure 2. Mean-square errors of the splitting scheme for several values of the
spatial mesh size h “ 2´4, 2´6, 2´8, 2´10. Average over 150 samples.

We conclude this paper with some numerical experiments in dimension d “ 2.
Let us first consider the stochastic heat equation (3) on the time interval r0, 2s with initial value

u0px1, x2q “ sinpπx1q sinpπx2q and with multiplicative terms: gpvq “ 2.5v, gpvq “ 2.5v{p1 ` v2q,
2.5psinpvq ` vq, and gpvq “ 2.5 lnp1 ` vq. The discretization parameters are taken to be τ “ 2´5 and
hx1 “ hx2 “ 2´4. We compute 100 realizations of each time integrators. The proportion of samples
containing only positive values is presented in Table 2. One can again observe the superiority of the
proposed Lie–Trotter splitting scheme.

gpvq LT EM SEM SEXP

2.5v 100{100 0{100 47{100 47{100
2.5v{p1` v2q 100{100 0{100 48{100 48{100

2.5psinpvq ` vq 100{100 0{100 2{100 2{100
2.5 lnp1` vq 100{100 0{100 46{100 53{100

Table 2. SPDE in 2d: Proportion of samples containing only positive values
out of 100 simulated sample paths for the time integrators: Lie–Trotter scheme
(LT), Euler–Maruyama scheme (EM), semi-implicit Euler–Maruyama (SEM),
and stochastic exponential Euler scheme (SEXP). Time-step size: τ “ 2´5.
Mesh sizes: hx1 “ hx2 “ 2´4.

Next, we compute the mean-square errors, measured for the time interval r0, 0.5s, of the LT, SEXP
and SEM integrators when applied to the SPDE (3) with gpvq “ v and gpvq “ v{p1 ` v2q and initial
value u0px1, x2q “ sinpπx1q sinpπx2q. The discretization parameters are: hx1 “ hx2 “ 2´4 for the
mesh sizes and the time-step size ranging from τ “ 2´4 to τ “ 2´14. The reference solution uref is
computed using the Lie–Trotter splitting scheme with τ “ 2´14. We use 150 samples to approximate
the expectations. The results are presented in Figure 3. Again one observes that the Lie–Trotter
splitting scheme is exact for linear problems and has a rate of convergence 1{2 in the mean-square
sense.
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Figure 3. SPDE in 2d: Mean-square errors of the splitting scheme (LT), the
stochastic exponential Euler integrator (SEXP), and the semi-implicit Euler–
Maruyama scheme (SEM). Mesh sizes hx1 “ hx2 “ 2´4 and average over 150
samples.
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