The RoPE Scale: a Measure of How Empathic a Robot is Perceived
Laurianne Charrier, Alisa Rieger, Alexandre Galdeano, Amélie Cordier, Mathieu Lefort, Salima Hassas

To cite this version:
Laurianne Charrier, Alisa Rieger, Alexandre Galdeano, Amélie Cordier, Mathieu Lefort, et al.. The RoPE Scale: a Measure of How Empathic a Robot is Perceived. 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar 2019, Daegu, South Korea. 10.1109/HRI.2019.8673082 . hal-04077844

HAL Id: hal-04077844
https://hal.science/hal-04077844
Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The RoPE Scale: a Measure of How Empathic a Robot is Perceived
Laurianne Charrier*,†, Alisa Rieger*, Alexandre Galdeano*,†, Amélie Cordier†, Mathieu Lefort*, and Salima Hassas*
*Univ Lyon, Université Lyon 1, CNRS, LIRIS, F-69621, Villeurbanne, France
Email: [lcharrier, agaldean, mlefort, shassas]@liris.cnrs.fr
†20 Boulevard Eugène Deruelle, 69003 Lyon
Email: [laurianne.charrier, alisa.rieger, alexandre.galdeano, amelie.cordier]@hoomano.com

Abstract—To be accepted in our everyday life and to be valuable interaction partners, robots should be able to display emotional and empathic behaviors. That is why there has been a great focus on developing empathy in robots in recent years. However, there is no consensus on how to measure how much a robot is considered to be empathic. In this context, we decided to construct a questionnaire which specifically measures the perception of a robot’s empathy in human-robot interaction (HRI). Therefore we conducted protests to generate items. These were validated by experts and will be further validated in an experimental setting.

Keywords—Human-Robot Interaction; Social Robots; Perceived Empathy; Psychometrics.

I. INTRODUCTION

According to [7], empathy “might have a crucial role in human communication” and “might serve as the origin of the motivation for altruistic behavior and cooperation”. Empathy—as defined in the cognitive psychology and HRI literature—is “a complex process whereby one understands and/or shares an entity’s frame of reference, and/or reacts appropriately without having doubts about which frame of reference belongs to whom” [4], and an essential component of interaction. Empathic capabilities can be separated into two analytic categories: (1) the capabilities that are emotional, with the ability to share the affective experience of someone else; (2) the capabilities that are cognitive, with the ability to represent and understand the mental states of someone else and their perspective [4]. Cognitive empathy has many subcategories, including empathic comprehension and empathic response. Empathic comprehension, sometimes called empathic understanding, describes the ability to become aware of and to understand another person’s unique experience and feelings [14]. Empathic response describes how one communicates their attempts at understanding someone else’s frame of reference, including their feelings and motives [2].

Being empathic seems to be a component of human interaction which is greatly linked to how positive we are perceived by our interlocutor. In order for social robots to accomplish what they are made for, i.e. to “perform social interactions in a Human-like way” [4], they need to know what humans feel and what their mental states are, so that they can adapt their behavior [12]. As said by [12], there is a need for means to assess how empathic a robot is perceived.

II. RELATED WORK

There are various ways of measuring human-human empathy in the literature. The Barrett-Lennart Relationship Inventory (BLRI) [1] is one of the “most widely used client-rated measure of empathy” [8]. It can also be a self-rated measure of empathic understanding. An other widely used self-rated measure of empathic concern and perspective taking is the Interpersonal Reactivity Index (IRI) [6]. Other questionnaires that measure the empathy quotient of a person can be found [11], [9].

Perceived empathy in human-human interaction can be measured with the Accurate Empathy Scale (AES) [15] which is, as an observer-rated measure, commonly used in context of therapy with the evaluation of the therapist’s empathy. Other questionnaires are used to measure perceived empathy [1], [13].

In search of applicable metrics for perceived empathy of robots in HRI, we found that in the HRI research community the concept of empathy in robots is measured mostly using homemade questionnaires and few self reported measures [3], [16] which have not been clearly evaluated in term of validity and reproducibility. Frequently, metrics for measuring human empathy were only slightly changed and applied without previous validation [12]. Moreover, these approaches come with various biases, as involving cognitive abilities that robots do not have (e.g., saying that it is playing a role), whereas human empathy and robot empathy are, although with similarities, still two different concepts that can not be measured in the same way [4], [12].

To promote the comparability of HRI empathy experiments and to get results as unbiased as possible, it is necessary to have standardized and validated methods of measuring the perceived empathy of robots [12]. From our literature review, we conclude that the HRI research community lacks attempts to find standardized metrics for perceived empathy in robots, and—for that reason—we propose such a metric.

III. GENERATION OF ITEMS

The Robot’s Perceived Empathy (RoPE) scale is composed of 18 items divided in two scales: empathic understanding and empathic response (see Tab. I) with four filler (i.e., catch) items. The scales are based on the results of a previous pilot study with an exploratory approach [4]. Items are based on
The robot knows what it is doing.
The robot appreciates exactly how the things I experience feel to me.
When I interact with the robot, I feel anxious.
The robot knows when I want to talk and lets me do so.
The robot knows me and my needs.
The robot comforts me when I am upset.
The robot cares about my feelings.
The robot seems to feel bad when I am sad or disappointed.
The robot encourages me.
The robot helps me when I need it.

Empathic Understanding subscale items (EU)

Empathic Response subscale items (ER)

The robot perceives and accepts my individual characteristics.

This interaction will be filmed twice. During both of them, medium-sized effects with a great statistical power [10]. Each video will be submitted with a questionnaire to a group. Forms will be sent twice, several weeks apart, to ensure with a test-retest task that the metric is reliable. Reliability, validity and sensibility of the measure will be tested in various statistical ways to validate the quality of the French version of the scale.

V. Conclusion

We proposed a new measure of perceived empathy in HRI and validated the items of the French version with experts from cognitive sciences and robotics. There are obviously still many things to do to get to the point of having a valid metric, such as reliability, sensibility, and generalizability tests. The purpose of this metric is to improve the reproducibility, validity, and comparability of robotic empathy research.

Acknowledgements

This research was supported by the French Association Nationale de la Recherche et de la Technologie (ANRT) contract 2017/0226 and the joint laboratory BEHAVIORS.AI funded by the French Agence Nationale de la Recherche (ANR) contract ANR-16-LCV2-0003-01.

References

The items composing the ROPE scale. To calculate the subscales’ score, sum the value of each items after having multiplied by −1 the value of the items marked by (−).

<table>
<thead>
<tr>
<th>id</th>
<th>Filler items (FI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>The way the robot acts feels natural.</td>
</tr>
<tr>
<td>F2</td>
<td>The robot knows what it is doing.</td>
</tr>
<tr>
<td>F3</td>
<td>The robot is responsible for its actions.</td>
</tr>
<tr>
<td>F4</td>
<td>When I interact with the robot, I feel anxious.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>Empathic Understanding subscale items (EU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU1</td>
<td>The robot appreciates exactly how the things I experience feel to me.</td>
</tr>
<tr>
<td>EU2</td>
<td>The robot knows me and my needs.</td>
</tr>
<tr>
<td>EU3</td>
<td>The robot cares about my feelings.</td>
</tr>
<tr>
<td>EU4</td>
<td>The robot does not understand me.</td>
</tr>
<tr>
<td>EU5</td>
<td>The robot perceives and accepts my individual characteristics.</td>
</tr>
<tr>
<td>EU6</td>
<td>The robot usually understands the whole of what I mean.</td>
</tr>
<tr>
<td>EU7</td>
<td>The robot reacts to my words but does not see the way I feel.</td>
</tr>
<tr>
<td>EU8</td>
<td>The robot seems to feel bad when I am sad or disappointed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id</th>
<th>Empathic Response subscale items (ER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER1</td>
<td>(−) Whether thoughts or feelings I express are “good” or “bad” makes no difference to the robot’s actions toward me.</td>
</tr>
<tr>
<td>ER2</td>
<td>(−) No matter what I tell about myself, the robot acts just the same.</td>
</tr>
<tr>
<td>ER3</td>
<td>The robot comforts me when I am upset.</td>
</tr>
<tr>
<td>ER4</td>
<td>The robot encourages me.</td>
</tr>
<tr>
<td>ER5</td>
<td>The robot prays me when I have done something well.</td>
</tr>
<tr>
<td>ER6</td>
<td>The robot helps me when I need it.</td>
</tr>
<tr>
<td>ER7</td>
<td>The robot knows when I want to talk and lets me do so.</td>
</tr>
<tr>
<td>ER8</td>
<td>(−) The robot’s response to me is so fixed and automatic that I do not get through to it.</td>
</tr>
</tbody>
</table>

IV. Future work

In a future experiment, we plan to evaluate the reliability and validity of the French version of our metric. For this experiment, we will use Anki’s Cozmo robot because it can display emotions easily and without the use of speech which could induce biases [5]. We will film an interaction between Cozmo and a person, who will tell Cozmo about their vacation. This interaction will be filmed twice. During both of them, Cozmo will display its emotions through its face and its behavior in a Wizard of Oz setup. In the first video, Cozmo will react empathically and display its understanding of the person’s state of mind and emotions. In the second one, Cozmo will only display neutral and emotionless reactions signalizing that it is following the conversation, merely nodding. We will select two groups of about 150 French-speaking participants within a broad age span and from diverse demographic backgrounds, following the French population quotas. This sample size has been calculated as the minimum to be sensitive to small to medium-sized effects with a great statistical power [10]. Each human empathy metrics [1], [6] adapted to robots, avoiding unexpected formulations that involve capacities that robots clearly do not have. We verified the relevance of each item of the French version according to the concept of the scale it represents by the valuation of 15 experts in cognitive sciences or other social sciences, and 10 experts in robotics or artificial intelligence. According to their advice, three items have been modified to stick as close as possible to the concepts of empathic understanding, and then confirmed by another group of experts. Expert validation of the English version? of the questionnaire has to be done to confirm the modifications in both languages.