
HAL Id: hal-04077798
https://hal.science/hal-04077798v1

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Method to Define Solver-Agnostic
Semantics of Domain Specific Languages for Software

Product Line Variability Models
Camilo Correa, Raul Mazo, Andres O. Lopez, Jacques Robin

To cite this version:
Camilo Correa, Raul Mazo, Andres O. Lopez, Jacques Robin. A Lightweight Method to Define
Solver-Agnostic Semantics of Domain Specific Languages for Software Product Line Variability Models.
SOFTENG 2023 - The 9th International Conference on Advances and Trends in Software Engineering,
IARIA: International Academy, Research and Industry Association, Apr 2023, Venise, Italy. �hal-
04077798�

https://hal.science/hal-04077798v1
https://hal.archives-ouvertes.fr


A Lightweight Method to Define Solver-Agnostic
Semantics of Domain Specific Languages for

Software Product Line Variability Models
Camilo Correa Restrepo

Centre de Recherche en Informatique (CRI)
University of Paris 1 Panthéon-Sorbonne

Paris, France
email: camilo.correa-restrepo@univ-paris1.fr

Raul Mazo
Lab STICC

ENSTA Bretagne
Brest, France

email: raul.mazo@ensta-bretagne.fr

Andres López
Investigación y desarrollo

SoftControlWeb
Medellin, Colombia

email: andresorlandolopez@gmail.com

Jacques Robin
Learning, Data and Robotics Laboratory, ESIEA, Paris, France

Center for Research in Informatics (CRI), University of Paris 1 Panthéon-Sorbonne, Paris, France
email: jacques.robin@esiea.fr

Abstract—We propose a method to address the current lack
of standards for both software product line variability modeling
languages and their formal semantics. It allows specifying, in an
agile, declarative, and solver-agnostic fashion the formal seman-
tics of a domain-specific variability modeling language through a
simple JSON based specification format. Our approach leverages
the Common Logic Interchange Format (CLIF) standard for
interoperability among logical inference engines. We demonstrate
our approach with two concrete examples of Variability Models,
and present the tooling and architecture that makes this possible.

Keywords—Variability Modeling; Formal Semantics; Modeling
Language Specification; Common Logic.

I. INTRODUCTION

Software Product Lines Engineering (SPLE) [1] is a
method to systematically coordinate and automate the en-
gineering and evolution of a large set of related software
products with overlapping functionalities and reusable soft-
ware assets over long life-cycles, whose products, put to-
gether, form a Software Product Line (SPL). In model-
driven SPLE, these assets are both models and code files
while, in code-driven SPLE, these assets are mostly code
files implementing services, components, classes, decorators,
aspects and functions. The key artifact that distinguishes an
SPL from a single software product is its Variability Model
(VM). It explicitly identifies sets of requirements, generally
called features, that are cohesive from a business or tech-
nical perspective and determines how they partially overlap
across the different products of the line. This VM generally
organizes those features into an abstraction and composition
hierarchy and associates the lowest level ones with reusable
and composable concrete software assets implementing them.
Developing an SPL VM and such composable assets requires
a large upfront investment. However, once done, it enables
the automated generation of a very large number of product
variants, which, in turn, supports the simultaneously low-cost

and rapid delivery of very many customized software products,
all maintained and evolved in coordination. It has provided
great returns on investment mostly within industries such as
transportation, healthcare and energy [2] where systems have
a long lifecycle and have a critical nature.

Initially, an SPL VM was a purely design-time artifact used
to interactively choose a valid set of features and attribute
value choices to then generate the source code of a product
variant (a.k.a. an SPL configuration) resulting from these
choices by composing and/or transforming the associated
SPL’s reusable assets. More recently, they have started to
be used as Models-at-Run-Time (M@RT) [3] artifacts for
context-aware self-adaptive systems that continuously monitor
their execution context for changes that might require a run-
time reconfiguration. In this approach, called dynamic SPLE
[4], an additional context model needs to be included into the
SPL VM and the whole SPL and its configuration tool are
embedded into each deployed product they generate. When
monitoring systems detect that in a new context, the current
configuration no longer satisfies some system requirements, it
triggers the SPL configuration tool to search the SPL VM for
alternative configurations better adapted to this new context
and then update the implementation with it. To contrast them
from dynamic SPLs, the original, purely design-time SPLs are
called static SPLs.

In the current state of the art, there is no accepted standard
for SPL VMs, so every SPLE tool uses its own Domain Spe-
cific Language (DSL) to model the VM. Nonetheless, almost
all of these languages used for VMs share four key expressive
capabilities. The first is to distinguish between mandatory
and optional elements. The second is to specify ranges of
alternative possible values for a given element parameter. The
third is to specify ranges of alternative possibilities for the
refinement of a higher-level elements into a set of lower-
level elements. The fourth is to specify complex business



and regulatory constraints concerning the co-occurrence of
various elements or values across the abstraction hierarchy,
that any product must satisfy, while also being implementable
by a subset of the reusable assets available in the SPL. The
existence of this common core results from the main purpose
of any VM: supporting semi- or fully-automated configuration
of a particular product out of the product line. Typically, this
configuration process is divided into two stages. The first
consists of choosing one valid point in the problem space
represented by alternatives in the VM. The second consists of
deriving a working implementation solution from the reusable
assets associated with the options selected during the first
stage.

As SPLs grow larger, VMs grow increasingly complex.
Real-life industrial SPLs routinely contain over 10K elements
and constraints. Since the problem and solution spaces are
subtly but sparsely constrained combinations of the optional
and alternative VM elements, their sizes are subject to a com-
binatorial explosion. This makes fully manual configuration
impractical. It also inevitably leads to the introduction of
inconsistent elements or constraints during the engineering and
evolution of the VM. Therefore, as with any software artifact,
the VM needs to be verified and validated with the help of
automation tools.

A wide variety of approaches have been proposed to im-
plement SPL VM verification and VM-guided SPL configu-
ration tools. Just like for SPL VM languages, there is also
currently no accepted standard API for such tools, though
the overwhelming majority of them share a key feature in
common: they rely on some form of logical knowledge
representation and automated reasoning. This allows them to
reuse practically scalable inference engines developed over
the last 50 years by two research communities, the formal
software engineering methods community and the artificial
intelligence community. Four main classes of such engines
have been extensively proposed and evaluated to automate SPL
VM verification and VM-guided configurations: SATisfiability
(SAT) solvers and their Satisfiability Modulo Theories (SMT)
successors, Constraint Satisfaction Problem (CSP) solvers,
Logic Programming (LP) engines and their Constraint LP
(CLP) successors and Description Logic (DL) engines and
their semantic web successors. No member of these engine
families is a silver bullet for all SPL VM verification or
VM-guided SPL configuration problems. They have subtle
differences in expressiveness and performance on different
kinds of problems, even if expressed in the same DSL VM
language.

In this paper we propose a novel, light weight approach to
bridge the gap between, on the one hand, the existing diversity
and lack of standardization in VM languages, and, on the other
hand, the existing diversity of logical languages that have been
proposed to provide VM languages with formal semantics and
are accepted as input by various classes of inference engines.
Our approach is based on two key ideas. The first is to use
a lightweight, declarative, textual syntax to specify both the
concrete and abstract syntax of a VM DSL. This textual syntax

is encoded both as Python objects from the Pydantic library [5]
and as JSON files in the Open API web service standard [6]. It
can be seen as a more agile alternative to the traditional Model-
Driven Engineering [7] based on diagrammatic models, meta-
models, and meta-meta-models. It is the subject of another
publication under preparation. The second key idea, which
is the focus of the present paper, is the proposal of the
Common Logic Interchange Format (CLIF) [8] standard
from the International Organization for Standardization
(ISO), originally put forward to support interoperability among
logical inference engines, to represent the formal semantics
of any VM DSL in a solver-agnostic fashion. It starts from
realizing that the four main classes of logical languages listed
above and commonly used for VM verification and VM-
guided SPL configuration are all essentially sub-languages of
CLIF in terms of their expressiveness. In addition, CLIF is
also the language used to define the formal semantics of the
fUML [9] standard, the formal core of the Unified Modeling
Language (UML) [10]. Therefore, any model-driven SPLE
approach using the UML to model assets, could leverage the
mapping from VM models to CLIF to provide a uniform
formal semantics for the whole SPL model comprising both
the VM and the asset model.

The main contribution of this paper is to propose a first step
towards a common formal semantics for SPL VM based on an
ISO standard. We show, with a couple of illustrative examples,
how the semantics of two very different SPL VM graphical
languages, Extended Feature Models for static SPL VMs and
Sawyer et al’s [11] extension of the Knowledge Acquisition
in autOmated Specification (KAOS) modeling language [12]
for context-aware dynamic SPL VMs, can both be uniformly
expressed in CLIF. We also describe the architecture of the
VariaMos tool that validates the approach by allowing one
to specify, in CLIF, the semantics of a SPL VM DSL and
then automatically generate the CLIF formula to logically
represent this semantics for a specific, graphically edited SPL
VM. Given that CLIF is expressive enough to capture the
restricted subsets of First Order Logic (FOL) accepted as
input by most constraint solvers (which will be touched upon
in the following section), this contribution will allow the
subsequent use of a variety of inference engines that can be
tailored to each VM language. We demonstrate our approach
within an open-source tool called VariaMos [13] that allows its
users to specify the concrete visual syntax, the abstract syntax
and the formal semantics in agile, declarative, textual and
uniform fashion as JSON files. The formal semantics JSON
specification then serves to associate abstract syntax elements
with CLIF elements formulas.

The rest of the paper is organized as follows: in Section II,
we present an overview of the background and work related to
our approach; in Section III, we present our proposal for the
use of CLIF as the standard formal semantics for Variability
Modeling; in Section IV, present our CLIF translation mecha-
nism by example, by examining the translation of two different
modeling languages; in Section V, we elaborate on our use of
CLIF and the specific dialect we have chosen; in Section VI,



we present the overall architecture of our prototype and its
implementation; in Section VII, we cover the limitations of
our approach and outline planned future work; and, finally, in
Section VIII, we present our conclusions.

II. BACKGROUND AND RELATED WORK

There have been many approaches to establishing for-
mal semantics for variability modeling languages; these have
generally always been defined in the context of performing
automated analyses of the constructed models. Since the
constructs for each language vary, the corresponding semantics
have always been defined as a function of the expressiveness
of each language. Some of the first exploratory works on
this topic proposed the use of first-order logic to provide
the semantics for Basic Feature Models (BFMs) [14] (the
simplest and original type of VM), though they essentially
remained within the propositional core of FOL and only
needed first order constructs to encode their semantics into
manually constructed Prolog programs. As BFMs evolved,
so too did their semantics, and, in particular, Benavides
et al. [15] provided a characterization of Cardinality-based
feature models as Satisfiability [16], Binary Decision Diagram
[17] and (Boolean) Constraint Satisfaction Problems [18], all
falling into the purview of first order theories.

There exist many variability modeling languages that are
used for SPLE and beyond. The models constructed with these
languages aim to capture the variability relations that exist
within a given domain with the aim of expressing the set
of allowable combinations of domain elements in products.
These domain elements are commonly modeled as “features”
that encode an end-user-facing piece of functionality [1].
The relations among these features make explicit the design
constraints imposed both by the domain itself and the tech-
nological choices involved. There has been a considerable
amount of work regarding the automated analysis of these
models during the past few decades [19], such as automated
configuration of products or finding errors in the models.
These efforts primarily focused on models of a particular type,
that is, feature models, which were originally proposed in
[20] and have been since extended with additional constructs
that increase their expressivity. A considerable amount of
alternative modeling languages, and even syntactic variations
of the aforementioned variability models have been proposed,
each aiming to improve upon the characteristics of these
feature models to support more expressive models that better
capture the nature of the domain.

It has been noted in the literature that (finite domain)
constraint solving approaches are those best suited to handle
the expressivity of features models extended with numerical
and symbolic constructs as surveyed by Benavides et al. [21].
This survey highlights several other semantic approaches that
have been proposed in the literature, like the use of Description
Logic [22] originally proposed by Wang et al. [23]. That being
said, the overwhelming majority of approaches fit squarely in
the realm of classical predicate (first order) logic.

In addition, most of the works here cited, and cited in
the above surveys [19] [21], demonstrate that the approaches,
whenever constructed to support tooling, transform the vari-
ability models directly into the representations amenable for
analysis by the underlying solver technologies. This makes
these formalizations difficult to reuse, compare, debug and
render them inflexible to changes in the input language. We
therefore diverge from these approaches and aim to construct
a representation that directly encodes first order formulas, i.e.,
Common Logic [8], and in particular its machine- and human-
interpretable syntax, the Common Logic Interchange Format
or CLIF.

III. CLIF AS STANDARD FORMAL SEMANTICS FOR
VARIABILITY MODELING

One of the main contributions of this article is the proposal
of the Common Logic [8] standard as the ideal target rep-
resentation of the logical semantics of variability models. In
particular, we propose the use of a fully conformant subset
of the Common Logic Interchange Format (CLIF) as the
preferred notation towards which transformation procedures
should aim to produce their results. While CLIF’s expressivity
surpasses that of First Order Logic (FOL) through some
additional constructs allowing for infinite expressions, we
consider that there is only need to support the constructs
effectively contained in FOL (c.f. Section 6.5 of [8] for a
deeper justification and discussion as to why this is admis-
sible and does not fundamentally limit our expressiveness).
The justifications for choosing Common Logic (and CLIF in
particular) are threefold: first, its capacity to be as expressive
as FOL means that it easily represents all constructs that
are handled by the most commonly used tools for analysis
[19] [21], namely Constraint Logic Programming over finite
domains [24], constraint programming [18], SAT solvers [16]
and SMT [25] solvers, among others; second, its status as
an international standard with a normative and fully defined
representation format (CLIF) makes it easily interoperable
with other systems and understandable by humans and ma-
chines alike; and, finally, the Lisp-like S-expression derived
syntax make parsing and managing models represented in
CLIF simple. In addition, this same structure facilitates the
generation of these expressions from model elements.

There is an additional angle to consider as to why CLIF
is particularly suitable for providing the semantics of models.
Real world SPL projects go beyond domain VMs, and model
the concrete software assets or artifacts that are to be used to
assemble software products. UML models model the structure
and behaviour of software systems, and are one possible type
of asset model. As highlighted in the introduction, there have
been ongoing efforts to provide formal semantics for UML
models for automated execution and analysis, which have been
defined in CLIF [9] for a subset of UML models. This opens
the door to a possible avenue for investigating the logical
integration between variability models and UML-derived asset
models within a single analysis framework. CLIF has also
found use in other domains, such as the basis for a large



Fig. 1. An extended feature model with an arbitrary cross tree constraint
depicted in VariaMos. Adapated from the example in Figure 2 in [29].

repository of formal ontologies [26], or as the input language
for a tool that brings together heterogenous theorem provers
[27].

IV. ILLUSTRATING VM LANGUAGE AGNOSTICISM BY
EXAMPLE

In this section, we aim to demonstrate the genericity of
our approach by examining the translation of two different
VM languages into CLIF. The key idea behind both of these
examples is that, by providing each VM language with a
specification for its semantics, we can transform any model
constructed with said language into its corresponding logical
semantics. These semantics could, in turn, be used as the
input for inference engines with which different analyses could
be performed. To achieve this, we make use of JSON [28]
specifications that act as sets of templates for each of the
elements present in each language’s abstract syntax. These
templates generate logic formulas with CLIF syntax, and,
when collected together (with an implicit conjunction of all
these formulas), form a complete CLIF model, that acts as the
logical theory one associates to a given model.

To capture as large a gammut as possible of VM languages,
we allow the semantics to be defined for all syntactic con-
structs that can be depicted in our modeling tool. In addition,
some languages include constructs that reify, for instance,
one-to-many relations that, to render their semantics, need
information from neighboring nodes in the graph; therefore,
we explicitly allow translation rules to capture information
about neighboring elements in the graph to generate the CLIF
formulas.

A. Feature Models

Figure 1 depicts an extended feature model for a product
line of accesible web browsers featuring cardinalities and
attributes. All the elements of the model have been annotated
and numbered according to their type: features are in green;
relations in blue; and elements that reify one to many relations
(with UML-like cardinality ranges), called bundles, are in
light orange. The logical semantics of the model in CLIF are

(model 1

(and (bool Web Browser) (= Web Browser 1)) 2

(bool Navigation) 3

(bool TextToSpeech) 4

(bool VoiceControl) 5

(int VoiceControl::Version) 6

(bool Tabbing) 7

(bool Spatial) 8

(and (=< (Navigation * 1) (Tabbing + Spatial)) 9

(=< (Tabbing + Spatial) (Navigation * 2)) ) 10

(and (int (0 5) CustomisedTabbing) (and 11

(=< (Tabbing * 1) CustomisedTabbing) 12

(=< CustomisedTabbing (Tabbing * 5)) )) 13

(= (Classic + Advanced) (TextToSpeech * 2)) 14

(bool Classic) 15

(bool Advanced) 16

(= Web Browser Navigation) 17

(>= Web Browser TextToSpeech) 18

(>= Web Browser VoiceControl) 19

(=< (Spatial + VoiceControl) 1) 20

(if (= Advanced 1) (>= VoiceControl::Version 2)) 21

) 22

Fig. 2. The logical semantics of the feature model from Figure 1 in CLIF.

portrayed in Figure 2. The correspondence between the model
and its semantics is as follows:

• Line 2 depicts the semantics of F1 as a boolean variable,
and, since it is a root feature, it also models a constraint
that obligates it to be present, i.e., set to 1.

• Lines 3–5, 7–8, and 15–16 represent features F2–5 and
F7–9 as boolean variables.

• Line 6 represents the Version attribute (not visible in the
figure) of F4 as an integer variable.

• Line 9 represents the semantics of the reified relation B1,
giving a range of 1 to 2 selected features if feature F2 is
present.

• Line 11 represents the semantics of F6, a feature that,
unlike the others, is not boolean, but can instead be
present as up to 5 instances (also called clones in the
literature).

• Line 14 represents the reified “and” relation B2, implying
that if the parent feature F3 is present both F8 and F9
must be present aswell.

• Line 17 represents the mandatory relation R1, i.e., the
two features must be bound to the same value.

• Lines 18 and 19 represent the optional relations from F1
to F3 and F4.

• Line 20 encodes the exclusion relation between F7 and
F4.

• Line 21 encodes a complex constraint between F9 and
the Version attribute of F4.

The transformation of the model and its elements is done
through the specification of the semantics of the VM lan-
guage’s syntax elements in a JSON format. This JSON serves
to provide a set of “templates” to turn these abstract syntax
elements of the model into CLIF expressions. Figure 3 presents
a fragment of the translation rules necessary to transform
a feature model into its corresponding CLIF model. These
templates form a bridge between the graph structure of the
model and the CLIF expressions that represent them:

• Lines 1–7 define the semantics of the (boolean) features



1 {
2 "elementTypes": ["ConcreteFeature", ...],
3 "elementTranslationRules": {
4 "ConcreteFeature": {
5 "param": "F", "constraint": "(bool F)", ...
6 }
7 },
8 "relationTypes": ["Excludes", ...],
9 "relationPropertySchema": {

10 "type": { "index": 0, "key": "value" }
11 },
12 "relationTranslationRules": { ...,
13 "Excludes": { "params": ["FA","FB"],
14 "constraint": "(=< (F1 + F2) 1)"
15 },
16 "Optional": { "params": ["FA","FB"],
17 "constraint": "(>= F1 F2)"
18 },
19 "Mandatory": { "params": ["F1","F2"],
20 "constraint": "(= F1 F2)"
21 }
22 },
23 "relationReificationTypes": ["Bundle"],
24 "relationReificationTranslationRules":{
25 "Bundle": { "param": ["F","Xs","min","max"],
26 "paramMapping": {
27 "inboundEdges": {"unique": true,"var": "F"},
28 "outboundEdges": {"unique": false,"var": "Xs"}
29 },
30 "constraint": { ..., "And": "(= (sum(Xs)) (F * len(Xs)))",
31 "Range": "(and (=< (F*min) (sum(Xs))) (=< (sum(Xs)) (F*max)))"
32 }
33 }
34 },
35 ...
36 }

Fig. 3. Fragment of Feature Model Semantic Translation specification JSON.

as boolean variables where where bool is a distinguished
unary predicate defining the domain of the variable F,
i.e., F ∈ {0, 1}.

• Lines 8–21 define the semantics of the relations between
features as CLIF expressions with arithmetic predicates
and the mechanism for determining their type according
to their properties.

• Lines 23–34 define the semantics of the bundles, and,
given their one-to-many nature, define which of the two
sides (ingoing or outgoing) contains multiple edges to
expand expressions like sum or use their length in the
CLIF expressions. In addition, depending on the type of
the bundle, additional properties of the node may play a
role, like the min/max properties for a range.

B. Sawyer et al.’s Variability Modeling Langauge

Figure 4 depicts a fragment of the principal model, using
a modified KAOS [12] language, proposed in [11]. It models
a flood early-warning system and how the system can modify
its operational configuration depending on the state of its
environment as reported through sensors. The language they
have defined is structured as follows:

• Goals, with labels in green, determine the functional
requirements of the system and are analogous to features
in feature models. Goals form a hierarchy wherein the
lower level goals imply how the goals they point to are
to be achieved.

• Soft Goals, depicted as clouds annotated in Blue, encode
the non-functional requirements of the system and can
be satisfied in a 0 to 4 scale, which is encoded as “--”,
“-”, “=”, “+”, “++” in the model. They themselves form
a hierarchy in a manner analogous to goals.

• Context Variables, annotated in light red, encode the state
of the system’s environment among a set possible choices
enconded as an enumeration of strings.

• Operationalizations, labeled in gray, specify the ways in
which a goal can be satisfied and correspond to concrete
modes of operation of the system. They are tied to a
goal through Bundles, in light orange, which behave
analogously to feature models (though with the edge
direction reversed).

• Claims, annotated in magenta, express the level to which
operationalizations satisfy the Soft Goals as a function of
which has been selected.

• Soft Influences, labeled in yellow, relate the context
variables to the Soft Goals, and determine the required
level of satisfaction when the given state is determined
by the context, e.g., if CV1 is “Low”, the required level
of satisfaction of SG5 is “++”.

The aim with this language is to construct an optimization
problem where the largest amount of claims can be satisfied in
terms of the selected operationalizations, and therefore ensure
that the Soft Goals are satisfied to a given level.

As before, we can interpret the semantics interpretation of
the CLIF model in Figure 5 as follows:

• Lines 2–4, 11–14 encode the the Goals G1–3 and the op-
erationalizations O1–4 as boolean variables. In addition,
lines 45 and 46 encode the relations of the subgoals to
the main goal.

• Lines 5–10 encode the value relations of the Softgoals
with those above them in the hierarchy as their average.

• Lines 15–18 encode the bundles B1–2 as the choices
between the operationalizations.

• Lines 19–30 encode the consequences of the claims C1–
4 on the Soft Goals, with the claims themselves being a
boolean variable that is true iff their claims are satisfied
in the resulting configuration.

• Lines 31–32, 35–40 encode the semantics of the Soft
Influences on the Soft Goals, and, just like the claims,
are boolean values that are true iff the requirements are
satisfied.

• Lines 33–34 encode the Context Variables CV1–2 as
enumerations in a fixed range.

• Lines 41–44 encode the Soft Goals as bounded integer
variables.

In Section V, we will continue with the analysis of this
example, its semantic specification and the implications for
representing VMs in CLIF.

V. DIFFERENCES BETWEEN THE DIALECT USED FOR
SEMANTIC SPECIFICATION AND (STANDARD) CLIF

As was hinted at in the previous section, while we target
CLIF as our representation, there are some practical consid-



Fig. 4. A fragment of the model for the run-time variability of a flood early-warning originally proposed in and using the language of Sawyer et al.’s [11].

1 (model
2 (bool PredictFlooding)
3 (bool TransmitData)
4 (bool CalculateFlowRate)
5 (and (int (0 4) EnergyEfficiency)
6 (= EnergyEfficiency ((CFREE + TDEE )/2)))
7 (and (int (0 4) FaultTolerance)
8 (= FaultTolerance ((TDFT)/1)))
9 (and (int (0 4) PredictionAccuracy)

10 (= PredictionAccuracy ((CFRPA)/1)))
11 (bool Bluetooth)
12 (bool WiFi)
13 (bool Distributed)
14 (bool SingleNode)
15 (and (=< (TransmitData * 1) (Bluetooth + WiFi))
16 (=< (Bluetooth + WiFi) (TransmitData * 1)))
17 (and (=< (CalculateFlowRate * 1) (SingleNode + Distributed))
18 (=< (SingleNode + Distributed) (CalculateFlowRate * 1)))
19 (and (bool C1) (iff (= C1 1) (and
20 (if (= Bluetooth 1) (=< TDEE 4))
21 (if (= WiFi 1) (=< TDEE 1)))))
22 (and (bool C2) (iff (= C2 1) (and
23 (if (= Bluetooth 1) (=< TDFT 1))
24 (if (= WiFi 1) (=< TDFT 4) ))))
25 (and (bool C3) (iff (= C3 1) (and
26 (if (= SingleNode 1) (=< CFREE 4))
27 (if (= Distributed 1) (=< CFREE 0)))))
28 (and (bool C4) (iff (= C4 1) (and
29 (if (= SingleNode 1) (=< CFRPA 1))
30 (if (= Distributed 1) (=< CFRPA 4)))))
31 (and (bool SI1) (iff (= SI1 1) (if (= BatteryHealth 0)
32 (and (= EnergyEfficiency 4)))))
33 (enum (0 1 2) BatteryHealth)
34 (enum (0 1) RiverState)
35 (and (bool SI2) (iff (= SI2 1)
36 (if (= RiverState 0) (and (= EnergyEfficiency 4)))))
37 (and (bool SI3) (iff (= SI3 1) (if (= RiverState 2)
38 (and (= FaultTolerance 4) (= PredictionAccuracy 4)) ) ) )
39 (and (bool SI4) (iff (= SI4 1)
40 (if (= RiverState 1) (and (= PredictionAccuracy 4)))))
41 (int (0 4) TDEE)
42 (int (0 4) CFREE)
43 (int (0 4) TDFT)
44 (int (0 4) CFRPA)
45 (= TransmitData PredictFlooding)
46 (= CalculateFlowRate PredictFlooding)
47 )

Fig. 5. The logical semantics of the feature model from Figure 1 in CLIF.

erations for its use that mean that we differ from CLIF as
presented in the standard. These deviations, though small, have
important consequences for the models produced through the
semantic specification mechanism. The first of these departures
is that we expressly recognize a set of distinguished predicates
beyond the sole equality recognized by CLIF, such as unary
or binary predicates like int and bool relating to the domains
of variables used in the program. This is motivated by a desire
to facilitate the construction of executable representations in
different solvers that generally cannot automatically infer do-
main membership or require it outright for every variable. The
other quite salient departure from the standard presentation
of CLIF relates to the treatment of quantifiers; in effect, to
enable complex arbitrary constraints, or even merely support
the conjunction of the sentences outlined in the example from
subsection IV-B, the reocurrence of the same variables must
imply that they refer to the same object. Therefore, variables
that occur free in the generated semantics are to be interpreted
as being implicitly universally quantified over the conjunction
of all the generated sentences; we do this following the
tradition set by the standard first-order semantics for (pure)
Prolog programs given by Clark’s completion [30] and that of
the Knowledge Interchange Format [31] language from which
CLIF itself was derived. For example, the full logical reading
of the exclusion relation in Figure 1 and therefore lines 5,8
and 20 from Figure 2 would be (using their annotated names
for brevity):

∀F4, F7

∧
{(F4 ∈ {0, 1}), (F7 ∈ {0, 1}), (F4 + F7 ≤ 1)}

This naturally leads to the question of handling quantifiers
within each of the sentences. We have not yet found it neces-
sary to introduce existential quantifiers for the semantics of the
models languages we have dealt with so far; however, we have
found very important applications of universal quantifiers, in
particular, as a construct allowing one to deal with sentences



that involve sets of incoming or outgoing edges to a given
node in the directed graph. We currently consider, then, that
the quantifiers range over finite sets that are defined precisely
by the multiplicity of possible connections. This, in turn,
leads to an important transformation that can be done directly
without any loss of expressivity, namely that one can transform
the universal quantification over a single variable and over a
sentence into the iterated conjunction of a set of sentences each
being the original sentence with the bound variable replaced by
a member of the set. This is due to the following equivalence:

Let S be a finite set and ϕ an arbitrary first order sentence
with only s unbound.

∀s ∈ Sϕ(s) ⇔
∧
s∈S

ϕ(s)

This greatly simplifies, and augments the power of, the
semantics we can express and in turn greatly simplifies the
translation from CLIF towards some solver paradigms where
there is no pure or declarative handling of classical universal
quantification, e.g., Prolog. To be clear, the quantifier expan-
sion draws its values from the graph’s elements and not from
the variable domains over which we are solving. This subtle
point means that we retain the intensive expression of the
semantics but are able to write more general rules that have
potentially varying amounts of appearances of certain elements
from neighboring elements.

To demonstrate these mechanisms and differences in prac-
tice, consider the example from Figure 4, and in particular
centered on the element SI3 and its relation with its neighbors
SG6, SG7 and CV2. We have defined the semantics of the
Soft Influence as shown in Figure 6. Within this semantic
specification, we “bind” the set over which the x variable
is quantified as the target nodes of the outbound edges,
corresponding to Xs in the translation rule and to SG6 and
SG7 in Figure 4. We also have distinguished functions relating
to intrinsic properties of the directed graph, such as edge(x)
whose value is the edge leading to the x node, and we also
allow references to arbitrary custom properties defined on
graph elements through the :: operator.

The corresponding logical reading of these semantics would
be as follows:

Let X be the set of nodes in the graph, Xs ⊂ X be the set
of nodes corresponding to the outgoing edges in the model,
E be the set of edges in the model, edge be a function edge :
X → E, V the set of attribute types and Vs the set of attribute
values, :: be an infix binary function (::) : E ∪X × V → Vs,
S be the variable corresponding to the id of the soft influence
node, and F ∈ {0, 1} the variable corresponding to the id
of the unique inbound node. It is to be understood that the
predicate imposing bounds on the F variable would also be
part of the semantics.

∀S, F
[
bool(S) ∧

(
(S = 1) ⇐⇒ (F = edge(F ) :: V alue

=⇒ ∀x ∈ Xs(x = edge(x) :: SatisfactionLevel))
)]

However, given the equivalence cited above, the rendered
semantics would be (lines 37–38):

{ ..., 1

"relationReificationTranslationRules": { 2

"SoftInfluence": { 3

"param": ["S", "F", "Xs"], 4

"paramMapping": { 5

"node": "S", 6

"inboundEdges": { "unique": true, "var": "F" }, 7

"outboundEdges": { "unique": false, "var": "Xs" } 8

}, 9

"constraint": { 10

"SoftInfluence": "\ 11

(and (bool S) (iff \ 12

(= S 1) (if \ 13

(= F edge(F)::Value) 14

(forall (x:Xs) \ 15

(= x edge(x)::SatisfactionLevel) \ 16

) \ 17

) \ 18

) )" 19

} 20

}, ... 21

}, ... 22

} 23

Fig. 6. Fragment of Sawyer et al.’s language’s Semantic Translation specifi-
cation JSON. The “\” indicates the split in the multiline string for readability
and formatting.

(and (bool SI3) (iff (= SI3 1)
(if (= CV2 edge(CV2)::Value) (and

(= SG6 edge(SG6)::Value) (= SG7 edge(SG7)::Value)))))

This removes the need to handle the internal quantifier, and
simplifies the reading of the rendered formula.

VI. VARIABILITY MODEL TO CLIF TRANSLATION
ARCHITECTURE AND IMPLEMENTATION

We propose a distributed architecture for CLIF semantic
translation, as depicted in Figure 7. The necessary tooling
for modeling is served from a cloud infrastructure avoiding
the need to perform any installation on the client beyond
browsing to the website, where the user is served the user
interface (shown in green) by the FrontEnd HTTP server.
Within the cloud infrastructure, all concerns relating to the
storage of the languages are handled, including their syntax
and semantics, with a database backing these operations and
providing a source of persistence between client interactions.
An additional service that can perform certain checks on graph
validity, such as allowed element amounts and connections
beyond what can be handled natively by the graphics library
used by the client is proposed in the architecture, to offload
some responsibilities from the client. All of these services are
deployed as containers, and are shown in white in our logical
architecture diagram.

When it comes to the semantic translator service (shown
in yellow), which is the core tool covered by this articles, it
has been developed as a Docker [32] container which will
expose a REST API endpoint over which the translation (and
eventual analysis) operations will be served. Since our Front
End is inherently configurable, this Back End can be deployed
anywhere. For our prototype we have deployed it locally
within a test cluster, but it will be made available within the



Fig. 7. High Level logical architecture of the VariaMos tool and the translation
tool.

VariaMos cloud infrastructure, where it will be the default
point of access for translation. Looking forward, however,
to the integration of the underlying solvers (which may also
require licenses and hence can only be run locally), it seems
clear that decoupling the translation mechanism allows for the
best use of the available computational resources by allowing
the user to choose where he desires the operations to be run,
either sharing a cloud resource with others or deploying a local
version of the container if he so wishes. This retains all the
benefits of a cloud-native solution, while also being flexible
when additional computational resources are required for a
particular project.

The high-level operating principles of the translation mech-
anism are described in Figure 8. The fundamental operations
carried out involve performing data validation on both the form
of the provided Model and the semantics. Then the serialized
model is reconstructed into a Graph; this, put together with the
semantics, are then put through the CLIF model generation
procedure which ultimately outputs the model’s semantics
which are the reported back to the user. This is all exposed
through the API endpoint served in the translator container.

In terms of the implementation of the translation Back End,
we have constructed the server in python with the following
software components: Flask [33] for the server code, pydantic
[5] for data schema validation, networkX [34] for graph
representation in python, and textX [35] for managing the
CLIF grammar. All of the code for the translator is open-
source and freely available on GitHub at [36]. Within this
repository are included the full grammar for our subset of
CLIF, and complete examples (including models, semantics
and syntax) for basic and extended feature models, as well as
for Sawyer et al.’s [11] modified version of KAOS.

VII. LIMITATIONS AND FUTURE WORK

In terms of our approach’s limitations, it must be noted that
we do not cover the entire CLIF standard, and we have not yet
found a need to construct a particular treatment of existential

Fig. 8. High-Level operation of the translation tool.

quantification within model’s semantics. There are also some
limitations tied to the translation mechanism for the generation
of the semantics, namely, we require that the elements that
participate in a given node’s or edge’s semantics be directly
connected, and thus we cannot yet perform the transitive
traversal of the graph for the generation of the semantics.
We also have no semantic treatment for elements that can be
nested. We also require the user to have some understanding
of the internal structure of the graph representation in the
front-end client in order to define rules for attribute lookup
to, for example, perform type disambiguation when a given
node or relation’s semantics depends on types defined by these
attributes. This means that while we believe our approach is
expressive enough to handle most VM languages that have
been covered in the literature, it is possible that some others
posses constructs that aren’t easily expressible or require the
aspects of CLIF we have not yet covered, such as deeply
nested negation. In addition, we are restricted to languages
that form directed graphs, so we are unable to treat languages
with more complex graph types like hypergraphs without some
measure of reification. We also do not handle the translation
of textual languages into CLIF.

As mentioned in Section VI, our principal aim is to con-
tinue expanding upon the already implemented aspects of the
proposal in order to complete the full end-to-end cycle of
model generation and subsequent automated analysis through
the use of several solvers. We will initially target constraint
solvers as these are the best attested in the literature [37] and
have the most straightforward translation from CLIF into their
respective representation, but we ultimately aim to support a



larger range of first order logic-based automated analysis tools.

VIII. CONCLUSIONS

In this article, we have presented a proposal for the use of
CLIF as the standard representation format for the semantics of
Variability models. We also present and demonstrate a mech-
anism to specify formal semantics for variability modeling
languages through a simple JSON based specification format.

Our mechanism leverages the user-friendliness of the JSON
format with the ability to quickly construct one’s needed
(and formally defined) modeling language semantics in such a
manner that it spares prospective users from the need to learn
the specifics of the programming involved. It also enables the
quick evolution of language’s semantics with no modifications
to the underlying tools.

We believe this will permit the transparent integration
of multiple analysis methods and especially solver families
through the construction of translation from CLIF into their
respective syntaxes.

ACKNOWLEDGMENT

We would like to thank Mauricio Agudelo for his work
on the architecture and development of VariaMos, Jairo Soto
for his work on the deployment of the VariaMos cloud
infrastructure, and Francisco Piedrahita for his work on an
initial version of these ideas.

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques, 1st ed. New
York, NY: Springer, 2005.

[2] Systems and Software Product Line Conference, “Product Line Hall Of
Fame,” https://splc.net/fame.html, n.d., accessed: 2023-03-27.

[3] B. H. Cheng et al., “Using models at runtime to address assurance for
self-adaptive systems,” Models@ run. time: foundations, applications,
and roadmaps, pp. 101–136, 2014.

[4] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[5] Pydantic Services Inc., “Pydantic,” https://pydantic.dev/, 2023, accessed:
2023-03-27.

[6] OpenAPI Initiative, “OpenAPI Specification,” https://spec.openapis.org/
oas/latest.html, 2021, accessed: 2023-03-27.

[7] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software en-
gineering in practice, ser. Synthesis lectures on software engineering.
Morgan and Claypool, 2017.

[8] “Information Technology – Common Logic (CL) – A framework for a
family of logic-based languages,” International Organization for Stan-
dardization, Geneva, CH, Tech. Rep., Jul. 2018.

[9] “Semantics of a Foundational Subset for Executable UML Models
(fUML), version 1.5,” Object Management Group, Tech. Rep., Apr.
2021.

[10] S. Cook et al., “Unified Modeling Language (UML), version 2.5.1,”
Object Management Group, Tech. Rep., Dec. 2017.

[11] P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes, “Using con-
straint programming to manage configurations in self-adaptive systems,”
Computer, vol. 45, no. 10, pp. 56–63, 2012.

[12] A. Van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software. John Wiley & Sons, 2009.

[13] VariaMos Team, “VariaMos Framework,” https://variamos.com/, 2023,
accessed: 2023-03-27.

[14] M. Mannion, “Using first-order logic for product line model validation,”
in Software Product Lines: Second International Conference, SPLC 2
San Diego, CA, USA, August 19–22, 2002 Proceedings. Springer, 2002,
pp. 176–187.

[15] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés, “A first step
towards a framework for the automated analysis of feature models,”
Proc. Managing Variability for Software Product Lines: Working With
Variability Mechanisms, pp. 39–47, 2006.

[16] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfiability
solvers,” Foundations of Artificial Intelligence, vol. 3, pp. 89–134, 2008.

[17] R. Drechsler and D. Sieling, “Binary decision diagrams in theory
and practice,” International Journal on Software Tools for Technology
Transfer, vol. 3, no. 2, pp. 112–136, May 2001.

[18] R. Dechter and D. Cohen, Constraint Processing. Morgan Kaufmann,
2003.

[19] D. Benavides, “Variability Modelling and Analysis During 30 Years,”
in From Software Engineering to Formal Methods and Tools, and
Back: Essays Dedicated to Stefania Gnesi on the Occasion of Her
65th Birthday, ser. Lecture Notes in Computer Science, M. H. ter
Beek, A. Fantechi, and L. Semini, Eds. Cham: Springer International
Publishing, 2019, pp. 365–373.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son, “Feature-Oriented Domain Analysis (FODA) Feasibility Study:,”
Defense Technical Information Center, Fort Belvoir, VA, Tech. Rep.,
Nov. 1990.

[21] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Information Systems,
vol. 35, no. 6, pp. 615–636, Sep. 2010.

[22] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and
D. Nardi, The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge university press, 2003.

[23] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, “A semantic web
approach to feature modeling and verification,” in Workshop on Semantic
Web Enabled Software Engineering (SWESE’05), 2005, p. 46.

[24] J. Jaffar and J.-L. Lassez, “Constraint logic programming,” in Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1987, pp. 111–119.

[25] C. Barrett and C. Tinelli, “Satisfiability Modulo Theories,” in Handbook
of Model Checking, E. M. Clarke, T. A. Henzinger, H. Veith, and
R. Bloem, Eds. Cham: Springer International Publishing, 2018, pp.
305–343.

[26] Semantic Technologies Laboratory, “COLORE,” http://stl.mie.utoronto.
ca/colore/, n.d., accessed: 2023-03-27.

[27] T. Mossakowski, M. Codescu, O. Kutz, C. Lange, and M. Grüninger,
“Proof support for common logic.” in ARQNL@ IJCAR, 2014, pp. 42–
58.

[28] D. Crockford, “The application/json Media Type for JavaScript Object
Notation (JSON),” Internet Engineering Task Force, Request for Com-
ments RFC 4627, Jul. 2006.

[29] J. Carbonnel, M. Huchard, and C. Nebut, “Towards complex product
line variability modelling: Mining relationships from non-boolean de-
scriptions,” Journal of Systems and Software, vol. 156, pp. 341–360,
Oct. 2019.

[30] J. W. Lloyd and J. W. Lloyd, Foundations of Logic Programming,
2nd ed., ser. Artificial Intelligence. Berlin Heidelberg: Springer, 1993.

[31] M. R. Genesereth and R. E. Fikes, “Knowledge interchange format-
version 3.0: Reference manual,” 1992.

[32] Docker Inc., “Docker Documentation,” https://docs.docker.com/, 2023,
accessed: 2023-03-27.

[33] The Pallets Projects, “Flask User’s Guide,” https://flask.palletsprojects.
com/en/2.2.x/, n.d., accessed: 2023-03-27.

[34] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[35] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković, “TextX:
A Python tool for Domain-Specific Languages implementation,”
Knowledge-Based Systems, vol. 115, pp. 1–4, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705116304178

[36] C. Correa Restrepo, “Semantic Translator,” https://github.com/ccr185/
semantic_translator, 2023, accessed: 2023-03-27.

[37] M. Pol’la, A. Buccella, and A. Cechich, “Analysis of variability models:
A systematic literature review,” Software and Systems Modeling, vol. 20,
no. 4, pp. 1043–1077, Aug. 2021.

https://splc.net/fame.html
https://pydantic.dev/
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://variamos.com/
http://stl.mie.utoronto.ca/colore/
http://stl.mie.utoronto.ca/colore/
https://docs.docker.com/
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
http://www.sciencedirect.com/science/article/pii/S0950705116304178
https://github.com/ccr185/semantic_translator
https://github.com/ccr185/semantic_translator

	Introduction
	Background and Related Work
	CLIF as standard formal semantics for Variability Modeling
	Illustrating VM language agnosticism by example
	Feature Models
	Sawyer et al.'s Variability Modeling Langauge

	Differences between the dialect used for semantic specification and (standard) CLIF
	Variability Model to CLIF Translation Architecture and Implementation 
	Limitations and Future Work
	Conclusions
	References

