
HAL Id: hal-04077782
https://hal.science/hal-04077782v1

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genetically-regulated Neuromodulation Facilitates
Multi-Task Reinforcement Learning

Sylvain Cussat-Blanc, Kyle Harrington

To cite this version:
Sylvain Cussat-Blanc, Kyle Harrington. Genetically-regulated Neuromodulation Facilitates Multi-
Task Reinforcement Learning. Genetic and Evolutionary Computation Conference (GECCO 2015),
Jul 2015, Madrid, Spain. pp.551-558, �10.1145/2739480.2754730�. �hal-04077782�

https://hal.science/hal-04077782v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15413

The contribution was presented at GECCO 2015:
 http://www.sigevo.org/gecco-2015/

To cite this version : Cussat-Blanc, Sylvain and Harrington, Kyle Genetically-
regulated Neuromodulation Facilitates Multi-Task Reinforcement Learning. (2015)
In: Genetic and Evolutionary Computation COnference (GECCO 2015), 11 July 2015
- 15 July 2015 (Madrid, Spain).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Genetically-regulated Neuromodulation
Facilitates Multi-Task Reinforcement Learning

Sylvain Cussat-Blanc
University of Toulouse
21 Allée de Brienne

31042 Toulouse, France
cussat@irit.fr

Kyle I. S. Harrington
Beth Israel Deaconess Medical Center

Harvard Medical School
02215 Boston, MA

kharrin3@bidmc.harvard.edu

ABSTRACT

In this paper, we use a gene regulatory network (GRN)
to regulate a reinforcement learning controller, the State-
Action-Reward-State-Action (SARSA) algorithm. The GRN
serves as a neuromodulator of SARSA’s learning parame-
ters: learning rate, discount factor, and memory depth. We
have optimized GRNs with an evolutionary algorithm to
regulate these parameters on specific problems but with no
knowledge of problem structure. We show that genetically-
regulated neuromodulation (GRNM) performs comparably
or better than SARSA with fixed parameters. We then ex-
tend the GRNM SARSA algorithm to multi-task problem
generalization, and show that GRNs optimized on multi-
ple problem domains can generalize to previously unknown
problems with no further optimization.

Keywords

Reinforcement learning; Gene regulatory network; Parame-
ter control; Multi-task Learning; Neuromodulation

1. INTRODUCTION
Transfer and multi-task learning has recently been receiv-

ing attention within the reinforcement and machine learn-
ing communities [18, 31]. The ability to generalize between
learnable tasks is a challenge that is far from fully solved,
but is achievable, as evidenced by biological organisms ca-
pable of generalizing across multiple tasks. In this work we
use an evolutionary algorithm to optimize gene-regulatory
networks (GRNs) that dynamically tune the parameters of
a reinforcement learning (RL) algorithm. This genetically-
regulated neuromodulation (GRNM) extends previous re-
sults that showed GRNM can enhance the learning of agents
beyond traditional fixed parameter RL [15]. We apply GRNM
to additional problem classes, and show that GRNs evolved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

on agents learning a subset of problems can facilitate learn-
ing on previously unencountered problems.

This paper is organized as follows. First, we briefly sum-
marize RL and explicate the SARSA algorithm used in this
study. Then, an introduction to gene regulatory networks is
given with the details of the computational model we use.
Section 4 shows how we use the regulatory network for neu-
romodulation. Section 5 presents the four problems we use
neuromodulation on followed by the results of GRNs trained
specifically on each problem and the capacity of the GRNs
to generalize their behavior to unknown problems.

2. REINFORCEMENT LEARNING
Reinforcement learning is a reward-based learning algo-

rithm that allows agents to learn from experience. More for-
mally, reinforcement learning (RL) is a mathematical frame-
work for learning from a reward signal that is derived from
Bellman’s equation for optimal control [30]. One of the most
important forms of RL is temporal-difference (TD) RL. TD-
RL is a method for learning optimal behavior from changes
in state and reinforcement by error prediction [28]. TD-RL
agents learn an expected return that will be received after
taking an action in any state. Strong correlations with this
type of error predictive behavior have been found in studies
of dopamine neurons [23].

TD-RL is used to solve Markov decision processes, which
are an extension of Markov chains to problems framed in
terms of state, action, and reward. Reward signals are en-
coded in a table which associates action preferences with
states. The basic TD(γ) algorithm updates one state-action
association at a timestep, which restricts sequence learning.
Eligibility traces are used to associate reward with sequences
of actions by reinforcing a weighted history of recent actions.
In this study an online version of TD-RL, SARSA (short for,
state-action-reward-state-action), is used. A review of rein-
forcement learning can be found in [30].

We include a few of the key equations from the SARSA
algorithm. If we are in state st at time t, then we will take
some action at which will bring us a reward rt. This action
will also cause us to transition to the state st+1. The SARSA
algorithm learns a Q-function, which maps a value to each
state-action pair (st, at). From each state multiple actions,
At, may be taken. Given an optimal Q-function the best
action to take is argminat∈AtQ(st, at).
The Q-function is approximated by SARSA with the follow-
ing update rule

Q(st, at) ← Q(st, at) +

α
[

rt+1 + γQ(st+1, at+1)−Q(st, at)
]

(1)

where α is the learning rate, and γ is the discounting factor.
Given only this update rule, it can be difficult to compute
the Q-value for state-action pairs which indirectly contribute
to obtaining a reward. This update method propagates in-
formation only to the preceding state-action pair, for those
that are very distant from the reward, such as in the case
of maze solving problems, this can require a large number
of repeated trials. However, reward propagation can be par-
tially alleviated by eligibility traces. Eligibility traces store
an accumulating trace of state-action pairs. The “memory”
of these state-action pairs can be tuned with the trace decay
parameter λ. Eligibility traces are updated with

et(s, a) =

{

γλet−1(s, a) if s #= st

γλet−1(s, a) + 1 if s = st
(2)

By combining the error predictive capabilities of SARSA
with the state-action sequence memory of eligibility traces
we can amplify the effects of our reward and speed up the
learning process. When performing on-policy learning it is
important to ensure that a sufficient amount of exploration
occurs. To this end the ǫ-greedy method is used, where a
random action is taken with p(ǫ), otherwise the agent’s most
preferred action is taken. However, the RL algorithm can
still fail to capitalize on rarely experienced rewards.

3. GENE REGULATORY NETWORK
Artificial gene regulatory networks (GRNs) are a class of

biologically-inspired algorithms. In living systems, GRNs
are used within the cell to control DNA transcription and,
correspondingly, the phenotypic gene expression. Although
the inner workings of the cell are governed by a large collec-
tion of complex machines, simplified models of cells as enti-
ties with protein sensors and actuators both exhibit complex
behavior and offer insights into natural systems [6]. These
protein sensors represent receptor molecules localized to the
cellular membrane which transduce external activity into ex-
citatory and/or inhibitory regulatory signals. Cells can use
external signals collected from protein sensors localized on
the membrane to activate or inhibit the transcription of the
genes. Computational models have been used in many de-
velopmental models of the literature [16, 9, 4] and to control
virtual and real robots [32, 21, 17, 5].
Our model is based on Banzhaf’s biologically-inspired model

[1], a gene regulatory network is defined as a set of abstract
proteins. Each protein has the following properties:

• The concentration is the quantity of each protein avail-
able in the network. This concentration influences the
regulation of other proteins: the higher the concentra-
tion, the greater the effect on other proteins.

• The protein tag coded as an integer between 0 and p.
The upper value p of the domain can be changed in
order to control the precision of the GRN.

• The enhancer tag coded as an integer between 0 and
p. The enhancer tag is used to calculate the enhancing
matching factor between two proteins.

• The inhibitor tag coded as an integer between 0 and
p. The inhibitor tag is used to calculate the inhibiting
matching factor between two proteins.

• The type determines if the protein is an input protein,
the concentration of which is given by the environment
of the GRN and which regulates other proteins but is

not regulated, an output protein, the concentration of
which is used as output of the network and which is
regulated but does not regulate other proteins, or a
regulatory protein, an internal protein that regulates
and is regulated by other proteins.

The dynamics of the GRN are calculated as follows. First,
the affinity of a protein a to another protein b is given by
the enhancing factor u+

ab and the inhibiting u−

ab:

u+
ab = p− |enha − idb| ; u−

ab = p− |inha − idb| (3)

where idx is the tag, enhx is the enhancer tag and inhx is
the inhibiting tag of protein x.

The GRN’s dynamics are calculated by comparing the
proteins two by two using the enhancing and the inhibit-
ing matching factors. For each protein in the network, the
global enhancing value is given by the following equation:

gi =
1

N

N
∑

j

cje
β(u+

ij
−u+

max) ; hi =
1

N

N
∑

j

cje
β(u−

ij
−u−

max)

(4)
where gi (or hi) is the enhancing (or inhibiting) value for
a protein i, N is the number of proteins in the network,
cj is the concentration of protein j and u+

max (or u−

max) is
the maximum enhancing (or inhibiting) matching factor ob-
served. β is a control parameter described hereafter.

The final modification of protein i concentration is given
by the following differential equation:

dci
dt

=
δ(gi − hi)

Φ
(5)

where Φ is a function that keeps the sum of all protein con-
centrations equal to 1.

β and δ are two constants that set up the speed of reac-
tion of the regulatory network. In other words, they modify
the dynamics of the network. β affects the importance of
the matching factor and δ affects the level of production of
the protein in the differential equation. The lower both val-
ues, the smoother the regulation. Similarly, the higher the
values, the more sudden the regulation.

4. NEUROMODULATION
In living organisms, neuromodulators are neuropeptides or

small molecules, such as dopamine and serotonin. The pro-
duction of these substances within the cell is controlled by
gene regulatory networks. Neuromodulators change the be-
havior of neural networks within individual neurons, amongst
neighboring neurons, or throughout the entire network. Neu-
romodulation has been found to be pervasive throughout the
brain, and can have drastic consequences on the behavior
of neurons and neuronal circuits [8, 19]. We have already
noted that the temporal difference learning algorithm for er-
ror prediction has been observed in neural substrates [24].
An extensive review of computational models of neuromod-
ulation can be found in [12], and some recent models are
reviewed in [19]. In this study we extend work on the evo-
lution of neuromodulation [15], focusing on the relationship
between evolved neuromodulatory GRNs and reinforcement
learning.

4.1 Regulating parameters
A number of algorithms have been introduced by the RL

community for dynamically tuning parameters during learn-

ing and their convergence properties have been investigated
[26]. However, in this study we study focus on a method
inspired by neuromodulation both because of biological evi-
dence linking reinforcement learning and neuromodulation,
as well as previous findings that have demonstrated the ro-
bustness of GRNs to noise and their extensive adaptive ca-
pacity [22]. With the intention of focusing on the optimiza-
tion of genetically-regulated neuromodulation, the physical
mechanisms underlying neuromodulation are used as inspi-
ration and the neuromodulation of reinforcement learning
was optimized. Neuromodulation has been considered in the
context of RL [10, 25, 11], but this previous work has not
focused on the implications of neuromodulation on problem
solving capacity. In this work we utilize the artificial gene
regulatory network presented in the previous section to regu-
late the learning parameters of the SARSA algorithm. Three
learning parameters are considered: the learning rate α, the
discount factor γ and the memory depth λ.

To do so, the GRN uses three inputs that describe the
current performance of the agent in the environment. They
have been chosen to be problem-independent as one of our
goals is to define a problem-independent neuromodulation
architecture to minimize problem-specific adjustments. The
first input describes the duration from the beginning of cur-
rent episode: the concentration of this first input protein
increases with the time spent in each learning episode. The
concentration CI1(t) of this input protein at time step t is
calculated as follows:

CI1(t) = e
−

t2

t2max (6)

where tmax is the expected duration of an episode. The
second output protein’s concentration CI2(t) describes the
quality of the current sequence of actions in term of re-
wards (smoothed over 25 steps to buffer the effect of sudden
changes in reward signal):

CI2(t) =

25
∑

s=1

(

(25− s)× qs(t− 1)
)

25
∑

s=1

s

(7)

with qs(t) =

{

1 + 1000 Q.e

Q.Q∗e.e
if Q.e

Q.Q∗e.e
> 0.4995

0 otherwise

where e is the eligibility trace and Q is the Q-function, both
described in Section 2. The aim of this input is to capture
the quality of the current state history relative to previous
experiences. Finally, the third input protein’s concentration
CI3(t) informs the GRN about the 25-step smoothed average
reward the agent can obtain in its current state:

CI3(t) =

24
∑

s=1

(

(25− s)× CI3(t− s)
)

+ 25×
∑

re∈e

re

∑

s=1

25s
(8)

where e is the eligibility trace. The formulae for GRN inputs
involve multiple constants that were empirically determined
to yield input values that are robust across multiple prob-
lems. This input encodes the frequency that the agent has
reentered the same state.
In addition to these inputs, the GRN uses four output

proteins to regulate the learning parameters:

Agent

State &
reward

Action

World

S

A

R

S

A

G

R

N

Time &
past rewards
Learning

parameters

Figure 1: At every time step, SARSA updates the
GRN inputs. The GRN returns updated learning
parameters that are used by the SARSA algorithm.

• the output protein On, which concentration Cn nor-
malizes the concentration of other outputs1,

• the output protein Oα of concentration Cα, which pro-
vides the value for α to the SARSA algorithm with
α = Cα/(Cα + Cn),

• the output protein Oγ of concentration Cγ , which pro-
vides the value for γ to the SARSA algorithm with
γ = Cγ/(Cγ + Cn),

• the output protein Oλ of concentration Cλ, which pro-
vides the value for λ to the SARSA algorithm with
λ = Cλ/(Cλ + Cn).

As depicted by figure 1, the GRN updates SARSA’s learn-
ing parameters at every time step, before SARSA updates
its internal variables and prediction. The GRN returns the
learning parameters SARSA uses for its own decision step.

4.2 GRN Optimization
Before a gene regulatory network can be used for success-

ful neuromodulation, the GRN is optimized for the ability
to regulate SARSA parameters on one or multiple problems.
In this paper, we use an evolutionary algorithm designed
specifically for the evolution of GRNs called GRNEAT [3].
GRNEAT incorporates three key features: initialize with
small networks, speciation of GRNs based upon a measure
of similarity between networks, and an aligned crossover that
preserves subnetwork architecture when recombining GRNs.
This modified algorithm has been shown to converge faster
and to better solutions than standard genetic algorithms.
More details on GRNEAT can be found in [3].

During optimization, each GRN is evaluated independently
on a given problem with 25 reruns in order to reduce the
effect of stochasticity on fitness. As fitness is problem de-
pendent, more detail is provided in the corresponding ex-
periment sections. To avoid any memory bias, SARSA is
completely reset before each evaluation. The parameters
used for GRNEAT in this work are given by Table 1, and
are consistent for all problems.

5. PROBLEMS
We have studied GRNM on four classic problems: Moun-

tain Car, Maze, Puddle World and Acrobat. These problems
are implemented within the RLPark software package [7].
These particular problems were chosen both because they
represent classic benchmarks for RL and they represent a
range of reward structures. Maze uses a discrete state-space,

1This is generally used in regulatory networks to obtain out-
put values in [0, 1].

OUT

IN

(a) Mountain Car (b) Maze
in

out

reward

(c) Puddle World (d) Acrobat

Figure 2: Schematics of test problems.

Parameter value
Population size 500

Initial duplicates 19
Speciation threshold 0.15

Species min size 15
Selection 3-player tournament

Crossover rate 0.2
Mutation rate 0.8

Table 1: GRNEAT parameters used for evolution.

and agents only receive a one-shot reward upon completion.
Mountain Car, Puddle World, and Acrobat problems all in-
volve continuous state spaces and continuous reward signals.
ǫ-greedy action selection with ǫ = 0.1 is used in all problems
for both fixed parameter SARSA and GRNM. In all cases
agents do not have prior information about the specific task.
Before detailing results obtained with GRNM, this section
presents each problem.

5.1 Mountain Car
The Mountain Car problem was introduced by Moore to

promote the broad applicability of dynamic programming
[20]. In the mountain car problem, depicted in Figure 2(a),
the agent is placed at the bottom of a valley with no initial
velocity and must drive to the top of the right hill. The
agent can take one of 3 actions: full thrust forward, full
thrust in reverse, or no thrust. The difficulty of the task lies
in the fact that the right hill is too steep to be climbed at
full thrust, and thus the agent must first reverse up the left
hill to gain sufficient momentum to climb the right hill. The
agent experiences a negative reward for all time steps that
it has not reached the top of the right hill, at which point

α γ λ

Mountain car 0.071429 1.0 0.928571
Maze 1.0 0.928571 0.928571

Puddle world 0.057142 0.928571 0.5
Acrobate 0.05 0.928571 0.785714

Table 2: Fixed learning parameters for the SARSA
algorithm obtained by parameter sampling.

the episode is completed. For evolution of GRNs, the fitness
of an evaluation is given by the number of step necessary to
complete a series of 25 episodes.

5.2 Maze
Depicted in figure 2(b), the maze task was originally intro-

duced by Sutton as an example problem for demonstrating
the capabilities of initial reinforcement learning algorithms
[27]. The maze is a 6 by 9 grid with 7 obstacles, a start,
and a goal position. From any position, the agent may take
any of 4 actions (right, left, up, and down); however, when
the action would move the agent out-of-bounds or onto an
obstacle, the agent remains in place. The only time a re-
ward is received is when the agent reaches the goal, at which
point the episode is completed. Although this problem and
its variants have been studied by a number of researchers,
of particular interest is Hanada’s study which applies evo-
lutionary programming to a multi-task version of Sutton’s
maze [14]. The fitness of a training run is given by the num-
ber of steps necessary to complete a series of 30 episodes.

5.3 Puddle World
The puddle world problem was introduced by Boyan and

Moore [2], but was later presented in greater detail by Sutton
[29]. As shown in figure 2(c), agents solving the puddle
world task exist in a 2D continuous space. Agents may take
4 actions as in the maze problem (left, right, up, and down),
but as opposed to the maze problem, actions in puddle world
are stochastic. For these experiments the world is 100 by
100, and an agents action moves a unit distance ± noise
taken uniformly from [-0.1,0.1]. The agent experiences a
reward of -1 for each timestep until the episode is complete,
and, if within either puddle, −400 ∗ d, where d is the closest
distance to a puddle’s edge. The fitness is given by the
average of rewards received during 40 episodes.

5.4 Acrobat
The acrobat problem has a long-standing history in robotics

and control, some references to which may be found in [30].
The agent controls 2 segments with 2 joints, where the first
joint represents attachment to the bar, and the second joint
represents the waist of the acrobat. The agent can only con-
trol the second joint, and the corresponding actions are: ap-
ply a fixed amount of positive torque, apply a fixed amount
of negative torque, or apply no torque. The agent is ini-
tialized in a downward vertical position and must reach an
upward vertical position. The agent receives a reward of -1
for each timestep until the episode is complete. This prob-
lem is schemetized by figure 2(d). The fitness is given by
the average of rewards received during 30 episodes.

6. GRNS FOR INDIVIDUAL PROBLEMS
In this first experiment, we have trained our GRNMmodel

independently on each problem. To evaluate the gain pro-
vided by neuromodulation, we first determine the best fixed
parameters to use with SARSA on each problem. We use
combinatorial parameter sampling on α, γ and λ in [0, 1]
with 0.0714 steps (15 evaluations). Each evaluation is aver-
aged on 10 replicates in order to average the randomness of
the problems. At the end of the parameter sampling stage,
we chose the best fixed learning parameters for a given prob-
lem by selecting the tuple with the highest fitness. These
parameters are given in Table 2.

6.1 Mountain Car
Figure 3(a) plots the behavior of the best GRN obtained

after 150 iterations. This figure plots the input proteins’
concentrations and the three learning parameters calculated
by the gene regulatory network. The GRN maintains almost
constant parameter values over each episode time, except at
the beginning where α and γ are increased. This reinforces
learned values for the initial part of the agent’s trajectory.
In this experiment, it should also to be noticed that λ is kept
at zero all over time, suggesting that on this simple problem
sequence learning may not be necessary.
This GRN is then compared to the SARSA algorithm

with fixed learning parameters on 100 independent reruns
of mountain car with different random seeds. Figure 3(b)
shows the results obtained for each episode averaged on the
100 runs. We can observe that GRNM trained on the moun-
tain car (in green) beats the SARSA algorithm with fixed
parameters (in red) on every episodes. More specifically, the
first episodes (from 1 to 3) show that GRNM learns faster
than the SARSA algorithm and later episodes (from 3 to 25)
show that neuromodulation leads to agents that solve the
problem faster than fixed-parameter SARSA. When com-
paring detailed results on Figure 5, the GRN-based neuro-
modulation gives better results on the mountain car problem
when averaged on 100 independent runs.

6.2 Maze
The same procedure has been used to evolve a gene regu-

latory network to regulate SARSA algorithm’s learning pa-
rameters on the Maze problem. Figure 3(c) presents the
behavior of the best GRN obtained after evolution. The
regulatory dynamics differ significantly from those obtained
on the Mountain Car problem. This GRN starts with very
high values for all learning parameters leading to a strong
memorization of initial experiences. Then, upon discover-
ing successful solutions, the learning rate α and the memory
depth λ decrease to exploit the learned behaviors. γ is kept
very high all along the simulation.
When compared to the fixed-parameter SARSA algorithm

(Figure 3(d)), we can observe that GRNM is learning faster
than the SARSA algorithm (episodes 2 to 5). However, the
advantage turns to the fixed-parameter SARSA algorithm
in the remaining episodes: the latter is doing slightly better
than GRNM from episode 6 to the end. In an unpaired t-
test fixed-parameter SARSA outperforms GRNM with p =
0.0001 on the Maze problem. Detailed results for the Maze
problem are given by Figure 5.

6.3 Puddle World
Figure 3(e) presents the behavior of the best GRN ob-

tained when neuromodulation is optimized on the puddle
world problem. Once again, the GRN chooses to use higher
learning parameters α and λ at the beginning of the sim-
ulation to learn from initial experiences faster. After this
initial phase, the GRN increases the discounting factor and
reduces the amount of memorization in order to better ex-
ploit learned experiences. This gives good results in compar-
ison to fixed-parameter SARSA: as depicted in Figure 3(f),
GRNM learns the value of states and actions faster and con-
verges to an equivalent solution to fixed-parameter SARSA.
When comparing the results in detail (Figure 5), neuromod-
ulation obtains equivalent results when averaged on 100 in-
dependent runs but the standard deviation and worst result

are better: the GRNM is capable of modulating the learning
parameters when harder scenarios are encountered.

6.4 Acrobat
Figure 3(g) shows the regulation obtained with the best

GRN evolved on the acrobat problem. The GRN finds learn-
ing parameters very close to the one obtained with param-
eter sampling for the fixed-parameter SARSA algorithm.
However, in addition to finding these parameters, the GRN
reduces these values all along the episodes, in particular α

which decreases down to zero. As in the puddle world prob-
lem, the aim is to exploit more the results when an appro-
priate behavior is found by the SARSA algorithm. When
compared to the fixed-parameter SARSA algorithm on this
problem (Figure 3(h)), GRN-based neuromodulation both
learns faster and finishes with a better behavior than the
fixed-parameter SARSA algorithm. This is confirmed by re-
sults shown in Figure 5 in which the reward averaged on 100
independent runs is largely over with neuromodulation than
with the fixed-parameter SARSA algorithm.

7. USING THE GRN EVOLVED ON MAZE
A powerful property of artificial gene regulatory networks

is their capacity to generalize to unknown situations [22]. In
the case of genetically-regulated neuromodulation, we con-
sidered the best GRN trained on the maze problem and
tested it on other problems. We noticed that it performs well
in comparison to the fixed-parameter SARSA algorithm:
as presented in Figure 5, GRNM trained on maze (noted
GRNmz) obtains better results than the fixed-parameter
SARSA algorithm on all other problems we have tested. In
our opinion, the regulatory dynamics of this GRN are very
generic: when the rewards start to increase, the learning
rate is lowered to preserve previously learned experiences.
This regulatory dynamic appears to be appropriate for most
problems. However, this generic regulatory network does
not beat GRNs trained on specific problems. This can be
explained by the fact that optimizing the GRN on an indi-
vidual problem allows the system to exploit problem-specific
features, improving the quality of the parameter regulation.

Figure 4(a-c) shows the behavior of the GRN trained on
the Maze problem and used on other problems. The behav-
iors are slightly different on each problem: the GRN is able
to adapt to problem specificities. In particular, when the
episodes are taking to much time, this GRN increases λ first
and then α. It is also interesting to notice that the stabilized
values of the learning parameters differ from a problem to
another. For example, λ is kept around 0.8 on the moun-
tain car problem, around 0.65 for the puddle world and the
acrobat problems whereas it is equal to 0.7 on the maze
problem. These values have to be compared to the best
values obtained for fixed parameters in Figure 5: it shows
the capacity of the GRN to approximate the best learning
parameters to a problem without further learning.

When comparing to the fixed-parameter SARSA algo-
rithm and GRNM optimized specifically on one problem
(Figure 5), the GRN evolved on Maze outperforms fixed-
parameter SARSA on Mountain Car and Acrobat but has
poorer results on Puddle World. However, the worst-case is
better than fixed-parameter SARSA on all problems, even
Puddle World where the average reward is lower. Once
again, this shows the capacity of GRNM to compensate
learning parameters in harder scenarios.

8. EVOLVING A GENERIC GRN
Based on this observation, we have trained a new GRN

on two problems instead of only one. The aim is to obtain
a generic GRN that has been optimized for multiple prob-
lems. We have chosen to train the GRN on the Maze and
the Mountain Car problems because of their differences in
reward structure (reward is received once in Maze, and con-
tinuously in Mountain Car), as well as state-space (Maze
uses a discrete state-space, while Mountain Car uses a con-
tinuous state-space). Figure 4(d-g) shows the behavior of
the best GRN obtained. Comparable regulatory behavior
can be observed on the different problems: at the beginning
of each episode, λ is set up to a high value and then reduces
until the end of the episode. However, the parameter values
are regulated to different levels for each problem. The GRN
might use the current step quality and the average state re-

ward inputs to regulate these levels. These inputs provide
the GRN with an estimation of the agent’s progression in
an episode. As the agent progresses further into an episode,
the number of sequences of actions that could have led to
any given state are almost always increasing, thus when the
agent is learning values of states and actions later in an
episode it appears to be useful to discount older actions and
favor shorter and more recent sequences of actions.

We have compared this generic GRN to specific GRNs
(optimized on each problem), to GRN trained on Maze and
the best of from 3375 randomly-generated GRNs2 (each ran-
dom GRN is evaluated on one problem with the fitness func-
tion used to optimize the GRN previously). The same pro-
cedure as with prior experiments is used to evaluate these

23375 corresponds to the number of evaluations we used to
obtain the fixed parameter for SARSA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Current step quality
Average state reward

alpha
gamma

 0

 0.2

 0.4

 0.6

 0.8

 1

 1700 1800 1900 2000 2100

Current step quality
Average state reward

time

Current step quality
Average state reward

time
alpha

rage state reward
time

alpha
gamma

time
alpha

gamma
lambda

alpha
gamma
lambda

gamma
lambda

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'" #" (" $")" %" *" &" +" '!" ''" '#" '(" '$" ')" '%" '*" '&" '+" #!" #'" ##" #(" #$" #)"

!"
#$
%
&&
'

()"&*+%&',-."/0123452647" 89-89" ,-."/4:;" ,-.",;2;75<"

(a) Dynamics of best GRN from Mountain Car (b) GRNM vs SARSA on Mountain Car

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

Current step quality
Average state reward

alpha
gamma

 0

 0.2

 0.4

 0.6

 0.8

 1

 650 700 750 800 850

Current step quality
Average state reward

time

Current step quality
Average state reward

time
alpha

rage state reward
time

alpha
gamma

time
alpha

gamma
lambda

alpha
gamma
lambda

gamma
lambda

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

#!!"

$" %" &" '" #" (")" *" +" $!" $$" $%" $&" $'" $#" $(" $)" $*" $+" %!" %$" %%" %&" %'" %#" %(" %)" %*" %+" &!"

!"
#$
%
&&
'

()"&*+%&',-." /0-/0" ,-.",121345"

(c) Dynamics of best GRN from Maze (d) GRNM vs SARSA on Maze

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000

Current step quality
Average state reward

alpha
gamma

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Current step quality
Average state reward

time

Current step quality
Average state reward

time
alpha

rage state reward
time

alpha
gamma

time
alpha

gamma
lambda

alpha
gamma
lambda

gamma
lambda

!"##$

#$

"##$

%##$

&##$

'##$

(##$

)##$

*##$

+##$

"$ '$ *$ "#$ "&$ ")$ ",$ %%$ %($ %+$ &"$ &'$ &*$ '#$

!"
#$
%
&&
'

()"&*+%&'-./$ 01.01$ -./2345 -./-565789

(e) Dynamics of best GRN from Puddle World (f) GRNM vs SARSA on Puddle World

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000

Current step quality
Average state reward

alpha
gamma

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Current step quality
Average state reward

time

Current step quality
Average state reward

time
alpha

rage state reward
time

alpha
gamma

time
alpha

gamma
lambda

alpha
gamma
lambda

gamma
lambda

!"##$

!%##$

!&##$

#$

&##$

%##$

"##$

'$ &$ ($ %$)$ "$ *$ +$,$ '#$ ''$ '&$ '($ '%$ ')$ '"$ '*$ '+$ ',$ &#$ &'$ &&$ &($ &%$ &)$ &"$ &*$ &+$ &,$ (#$!"
#$
%
&&
'

()"&*+%&'

-./$ 01.01$ -./2345 -./-565789

(g) Dynamics of best GRN from Acrobat (h) GRNM vs SARSA on Acrobat

Figure 3: GRNs evolved on individual problems: (a,c,e,g) Regulation of the learning parameters of the
best GRN obtained; (b,d,f,h) Comparison of the fitnesses per episode (abscissa) obtained by GRNM with
a GRN trained on problem (green), with a GRN trained on maze (blue) for non-Maze problems, and with
fixed-parameter SARSA algorithm (red). Results are averaged on 100 independent runs. Lower is better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

Current step quality
Average state reward

time
alpha

gamma
lambda

(a) GRNmz - Mountain Car (b) GRNmz - Puddle World (c) GRNmz - Acrobat

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

(d) GRNg - Mountain Car (e) GRNg - Maze (f) GRNg - Puddle World (g) GRNg - Acrobat

Figure 4: (a-c) Behavior of the GRN trained on the Maze problem when used on other problems; (d-g)
Behavior of the generic GRN when used on all problems.

GRNs on the different problems: the GRN is evaluated on
100 independent runs with different random seeds. Corre-
sponding results are shown in Figure 5 as GRNg for generic
GRNs, and GRNrnd for random GRNs. In all cases the
generic GRN performs at least as well, or better than ran-
dom GRNs. Interestingly, the generic GRN beats GRNmz

on the Puddle World and Acrobat problems but does not
beat the GRNs specifically trained on these problems. The
generic GRN and the GRN trained on Maze perform compa-
rably on the Mountain Car problem, but the GRN trained
on Maze is doing better on the Maze itself. This was ex-
pected since the GRN trained on Maze is specifically opti-
mized for this problem whereas the generic GRN has been
trained on two problems and thus its optimization was also
affected by training on Mountain Car. Just as the GRN
trained on Maze, the generic GRN beats the fixed-parameter
SARSA algorithm on the Mountain Car and Acrobat prob-
lems. Both the Maze and Puddle World problems favor
fixed-parameter SARSA. However, all GRNs do better in
the worst-case scenarios due to the ability of GRNs to react
to situations dynamically and avoid incorrect credit assign-
ment in sequences of actions (for example, by varying λ).

9. CONCLUSION
In this paper, we employ gene regulatory networks to serve

as neuromodulators of learning parameters for a reinforce-
ment learning algorithm on four benchmark problems. We
have evolved GRNs specifically on each task, which generally

produced better or equivalent results to the standard fixed-
parameter SARSA algorithm. In all cases, the worst-case
scenario is always handled better by GRNM due to its abil-
ity to perform on-the-fly parameter adaptations which re-
duces complications of learning with fixed parameters, such
as incorrect credit assignment in sequences of actions.

Additionally, the GRN evolved on the Maze problem as
well as a generic GRN have been tested on the problems and
offers encouraging results for multi-task learning in multiple
problem domains. Once again, the worst-case scenario is
consistently handled better by genetically-regulated neuro-
modulation with generic GRNs than with fixed-parameter
algorithms, and generic GRNs evolved on alternative combi-
nations of problems should be investigated. However, generic
GRNs are not as good as GRNs specifically optimized for
each task. Other inputs might be useful to the GRN for es-
timating the quality of the current neuromodulation and the
quality of the agent behavior. The pursuit a generic GRN
capable of generalizing the regulation of learning parame-
ters across multiple tasks and problem domains would not
only eliminate the need to search for additional GRNs, but
also the parameter sampling phase commonly required for
reinforcement learning applications.

As was noted in [25], neuromodulation is neither problem
nor RL-algorithm specific, thus future work may investigate
the application of genetically-regulated neuromodulation to
alternative RL algorithms, such as Q-learning, as well as
compare the performance and dynamics of GRNM to alter-

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

GRNmc SARSA GRNmz GRNg GRNrnd
 40

 60

 80

 100

 120

 140

 160

 180

GRNmz SARSA GRNg GRNrnd
-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

GRNpw SARSA GRNmz GRNg GRNrnd
 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

GRNacr SARSA GRNmz GRNg GRNrnd

(a) Mountain Car (b) Maze (c) Puddle World (d) Acrobat

Figure 5: Detailed results of the 100 runs from the four problems with the best GRN trained on the specific
problem, the SARSA algorithm with fixed parameters, the GRN trained on Maze (noted GRNmz in the box
plots), and a generic GRN trained both on the Maze and Mountain Car problems (noted GRNg). Notice
that, for the first two problems (Mountain Car and Maze), lower is better and for the two others (Puddle
World and Acrobat), higher is better.

native methods of varying RL parameters. We have shown
that a simple feedback controller can optimize community
features of agent-based swarm simulations, the use of GRN-
based neuromodulation is likely to further optimize these
environmental controllers [13].

Acknowledgements: Kyle Harrington is supported by
T32 HL07893 from the NHLBI of the NIH.

10. REFERENCES

[1] W. Banzhaf. Artificial regulatory networks and genetic
programming. Genetic Programming Theory and
Practice, pages 43–62, 2003.

[2] J. Boyan and A. Moore. Generalization in
reinforcement learning: Safely approximating the
value function. In Advances in neural information
processing systems, pages 369–376, 1995.

[3] S. Cussat-Blanc, K. Harrington, and J. Pollack. Gene
regulatory network evolution through augmenting
topologies. IEEE Transaction on Evolutionary
Computation, 2015, to be published.

[4] S. Cussat-Blanc, J. Pascalie, S. Mazac, H. Luga, and
Y. Duthen. A synthesis of the Cell2Organ
developmental model. Morphogenetic Engineering,
2012.

[5] S. Cussat-Blanc, S. Sanchez, and Y. Duthen.
Controlling cooperative and conflicting continuous
actions with a gene regulatory network. In Conf. on
Computational Intelligence in Games (CIG’12). IEEE,
2012.

[6] E. H. Davidson. The regulatory genome: gene
regulatory networks in development and evolution.
Academic Press, 2006.

[7] T. Degris. RLPark, 2014.

[8] A. Destexhe and E. Marder. Plasticity in single
neuron and circuit computations. Nature,
431(7010):789–795, 2004.

[9] R. Doursat. Facilitating evolutionary innovation by
developmental modularity and variability. In Proc. of
the 11th Conf. on Genetic and evolutionary
computation, pages 683–690. ACM, 2009.

[10] K. Doya. Metalearning and neuromodulation. Neural
Networks, 15(4):495–506, 2002.

[11] K. Doya. Modulators of decision making. Nature
neuroscience, 11(4):410–416, 2008.

[12] J. Fellous and C. Linster. Computational models of
neuromodulation. Neural computation, 10(4):771–805,
1998.

[13] J. Gold, A. Wang, and K. Harrington. Feedback
Control of Evolving Swarms. In Proceedings of
Artificial Life XIV, pages 884–891, 2014.

[14] H. Handa. Evolutionary Computation on Multitask
Reinforcement Learning Problems. In Networking,
Sensing and Control, 2007 IEEE Intl. Conf. on, pages
685–688, 2007.

[15] K. I. Harrington, E. Awa, S. Cussat-Blanc, and
J. Pollack. Robot Coverage Control by Evolved
Neuromodulation. In IJCNN 2013, pages 543–550,
2013.

[16] M. Joachimczak and B. Wróbel. Evo-devo in silico: a
model of a gene network regulating multicellular

development in 3d space with artificial physics. In
Proc. of the 11th Intl. Conf. on Artificial Life, pages
297–304, 2008.

[17] M. Joachimczak and B. Wróbel. Evolving Gene
Regulatory Networks for Real Time Control of
Foraging Behaviours. In Proc. of the 12th Intl. Con.
on Artificial Life, 2010.

[18] H. Li, X. Liao, and L. Carin. Multi-task reinforcement
learning in partially observable stochastic
environments. The Journal of Machine Learning
Research, 10:1131–1186, 2009.

[19] E. Marder. Neuromodulation of neuronal circuits:
back to the future. Neuron, 76(1):1–11, 2012.

[20] A. Moore. Variable resolution dynamic programming:
Efficiently learning action maps in multivariate
realvalued state-spaces. In Proc. of the Eighth Intl.
Conf. on Machine Learning, pages 333–337, 1991.

[21] M. Nicolau, M. Schoenauer, and W. Banzhaf.
Evolving genes to balance a pole. Genetic
Programming, pages 196–207, 2010.

[22] S. Sanchez and S. Cussat-Blanc. Gene regulated car
driving: using a gene regulatory network to drive a
virtual car. Genetic Programming and Evolvable
Machines, 15(4):477–511, 2014.

[23] W. Schultz, P. Apicella, and T. Ljungberg. Responses
of monkey dopamine neurons to reward and
conditioned stimuli during successive steps of learning
a delayed response task. The Journal of Neuroscience,
13(3):900–913, 1993.

[24] W. Schultz, P. Apicella, and T. Ljungberg. Responses
of monkey dopamine neurons to reward and
conditioned stimuli during successive steps of learning
a delayed response task. The Journal of Neuroscience,
13(3):900–913, 1993.

[25] N. Schweighofer and K. Doya. Meta-learning in
reinforcement learning. Neural Networks, 16(1):5–9,
2003.

[26] S. Singh, T. Jaakkola, M. Littman, and C. Szepesvári.
Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning,
38(3):287–308, 2000.

[27] R. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming. In Proc. of the Seventh Intl.
Conf. on Machine learning, pages 216–224, 1990.

[28] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44,
1988.

[29] R. S. Sutton. Generalization in reinforcement learning:
Successful examples using sparse coarse coding.
Advances in neural information processing systems,
pages 1038–1044, 1996.

[30] R. S. Sutton and A. G. Barto. Introduction to
reinforcement learning. MIT Press, 1998.

[31] M. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. The
Journal of Machine Learning Research, 10:1633–1685,
2009.

[32] J. Ziegler and W. Banzhaf. Evolving control
metabolisms for a robot. Artificial Life, 7(2):171–190,
2001.

