
HAL Id: hal-04077763
https://hal.science/hal-04077763

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Traceability Framework for Model
Composition Operation

Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Jean-Michel Bruel

To cite this version:
Youness Laghouaouta, Adil Anwar, Mahmoud Nassar, Jean-Michel Bruel. A Generic Traceability
Framework for Model Composition Operation. 16th International Conference on Business Process
Modeling, Development, and Support (BPMDS 2015) @ CAiSE 2015, Jun 2015, Stockholm, Sweden.
pp.461-475, �10.1007/978-3-319-19237-6_29�. �hal-04077763�

https://hal.science/hal-04077763
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15

The contribution was presented at BPMDS’15 :
http://caise2015.dsv.su.se/

Official URL: http://dx.doi.org/10.1007/978-3-319-19237-6_29

To cite this version : Laghouaouta, Youness and Anwar, Adil and Nassar, Mahmoud
and Bruel, Jean-Michel A Generic Traceability Framework for Model Composition
Operation. (2015) In: 16th International Conference on Business Process Modeling,
Development, and Support (BPMDS’15) held at CAiSE 2015, 8 June 2015 - 9 June
2015 (Stockholm, Sweden).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Generic Traceability Framework for Model

Composition Operation

Youness Laghouaouta1, Adil Anwar2 Mahmoud Nassar1, and Jean-Michel
Bruel3

1 IMS-SIME, ENSIAS, Mohammed V University, Rabat, Morocco
y.laghouaouta@um5s.net.ma,nassar@ensias.ma

2 Siweb, EMI, Mohammed V University, Rabat, Morocco
anwar@emi.ac.ma

3 IRIT/University of Toulouse, France
bruel@irit.fr

Abstract. In order to handle complexity, model driven engineering aims
at building systems by developing several models, where each model
represents a specific concern of the system. In this context, designers
need mechanisms to validate, synchronize and understand interactions
between those perspectives. Model composition deals with these issues
but remains a complex task. For these reasons, we believe that a strong
traceability mechanism is a key factor to handle relationships between
models and manage the complexity of the composition operation. This
paper describes a generic approach to keep track of the model composi-
tion operation. We also define a traces generation process to adapt our
proposal to any specific composition language. Finally, an example is
presented to illustrate our contributions.

Key words: model traceability, model composition, aspect-oriented
modeling, graph transformations

1 Introduction

Model Driven Engineering (MDE) proposes models to represent all artifacts han-
dled by a software development process. The principle is to raise the abstraction
level by using models as first class entities in dedicated model management
operations. Besides, systems are built based on various models that express par-
ticular viewpoints. This allows managing the system’s complexity, but requires
mechanisms to validate, synchronize and understand the interrelation between
contributing models. The generation of models that cross separate views tackles
these tasks.

Nevertheless, the composition of models remains a complex activity. We ad-
vocate that traceability mechanisms are key features to handle this complexity.
Indeed, traceability information exposes the effects of executing this operation
and helps to comprehend relationships existing among managed models. This
kind of information supports validation tasks and offers a way to optimize the
co-evolution of models and composition chains.

In previous papers [1][2], we treat the tracing of composition specifications
written in the Epsilon Merging Language EML [3] and the ATLAS Transfor-
mation Language ATL [4]. The current extends these works and focuses on the
generic nature of our proposal. Indeed, we aim to keep track of the composi-
tion effects regardless of its specification features. For this purpose, we specify
a generic traceability framework that allows tracing the model composition op-
eration, and provide a traces generation process for adapting our proposal to a
specific composition language.

The remainder of this paper is structured as follows. Section 2 presents an
example that motivates the need for tracing the model composition operation.
Section 3 provides an overview of the traces generation process. Section 4 details
the structuring and the generation of trace links. In Section 5, we demonstrate
the soundness of our approach using a specialization case with the dedicated
merging language EML [3]. In Section 6, we review the related approaches. Fi-
nally, Section 7 summaries this paper and presents future work.

2 Motivating example

We illustrate the necessity to automatically keep track of the model composition
operation using a Library Management System (LMS). The composition scenario
we have chosen is the merging of structural models that express an extract of
the librarian and head librarian activities. Fig. 1(a) shows an excerpt of the class
diagram related to the head librarian, while Fig. 1(b) depicts the class diagram
that models the specific librarian requirements. As a result of composing these
models, we obtained the class diagram depicted in Fig. 1(c). The composed
model contains two categories of elements: elements that originate from only
one input model (e.g., the class named Loan) and those that existed in both
of them (e.g., the class named Book). Therefore, two kinds of traceability links
have to be captured: merging links and translation links. Essentially, this kind of
information reveals the logical relation existing among the managed models and
specifies how source models contribute to the production of the composed one.
Fig. 1 depicts also extracts of traces that have to be captured. Trace links are
represented by nodes labeled with ’M’ for merging links and ’T’ for translation
links, while the dashed lines represent the left, right and target references. In
the context of model composition, such information has many possible reuses:

– Validation of the composition: trace links provide a detailed view of the flow of
execution. Indeed, they represent relationships between source model elements
and their target equivalents. Through these links, we can verify the consistency
and the completeness of the model composition.

– Support the co-evolution of models: those links are useful to analyze the impact
of changing sub-models during the evolution of the system. For instance, as
the class Loan is connected by a translation link with the class Loan in the
merged model, adding a new attribute to the source class will result in adding
this attribute to the target one without reestablishing matching links between
the source models elements.

Fig. 1. Motivating example

– Composition chain optimization: as a part of a model composition chain, the
restriction to source artifacts of a given stage of the overall chain confuses its
management. Hence, the use of the trace model can broaden its scope, through
the reuse of previous valuable links. As an example, the bookId and ISBN were
considered as describing the same concept. This design decision has been held
with the merging link that connects the ISBN and bookId attributes in the
source models with the ISBN attribute in the resulting one. Consequently,
exploiting this link in subsequent compositions will assist the matching step
by specifying that the ISBN and bookId attribute’s names are equivalent.

3 Overview of the traces generation process

In this section, we provide an overview of the way traces are captured and
structured. Drawing on the work presented by Jouault [5], we propose to gener-
ate the trace model as an additional target model of the specification to trace.
However, rather than using a higher-order transformation (HOT) to allow gener-
ating traces, we opted for aspect orientation and consider this concern as being
a cross-cutting concern. Indeed, the weaving of the traces generation patterns is
performed with an Aspect Oriented Modeling (AOM) [6] approach. Traces thus

generated will conform to a generic traceability metamodel presented in Section
4.1.

The weaving process has been defined in such a way that allows the insertion
of the traces generation patterns for any composition language while abstracting
the concrete specification nature (textual, model-based or graph-based). This
solution is organized around two parts (see Fig. 2): the bottom part which is
generic and reusable and the top part which is specific for a given composition
language. In dealing with the generation task, we simulate the aspect modeling
orientation with graph transformations [7]. For this reason, it is necessary to
implement a serialization service that provides language specific utilities to parse
the concrete specification into the corresponding model (M1).

Fig. 2. The traceability weaving process

Besides, in order to specify the graph transformations which implement the
weaving mechanism independently from a given composition language, we pro-
pose a generic composition language (c.f., Section 4.2). Essentially, this formal-
ization describes the core elements with respect to the traceability perspective
and does not take account of all the operational semantic of a composition frame-
work. Accordingly, we have to select the relevant elements from the correspond-
ing model (M1) and therefore we translate them to conform to our generic pro-
posal. This extraction is performed using a specific graph transformation called
selection transformation. Besides, the specific composition metamodel has to be
augmented with traceability capabilities to allow injecting the omitted elements
after performing the weaving. Indeed, we add the meta-class TracedElement that
generalizes all concepts described in the host language. TracedElement contains

two attributes: traceID to identify each element and status to precise whether
the element has been selected or omitted. Hence, the selection transformation

generates two models: the essential model (M2) containing the traceability rele-
vant elements and the model annotated with the aforementioned markers (M3).

Once the essential model is generated, we apply the weaving transformation

that inserts the traces generation patterns. Thereafter, the union transformation

transforms the resulting model (M4) to conform to the specific language. On the
other hand, it reuses the annotated model (M3) to weave the omitted elements
at their relevant containers with respect to the presented markers. Finally, we re-
produce the concrete specification which involves the traces generation patterns
by using a specific language printer.

4 A generic framework for model composition traceability

management

In this section, we detail each component of the generic part of the traces gen-
eration process. The traceability framework is based on a generic traceability
metamodel accounting for structuring traces. Whereas, the traces generation
concern is encapsulated on a traceability aspect which is defined around a generic
metamodel that formalizes the core elements of a composition language.

4.1 A generic metamodel for structuring traces

In the literature, several metamodels for the model transformation traceability
have been proposed [5][8][9]. The core concept in all of them is the trace link con-
struct, which represents a relationship between a set of source elements and the
targets ones. In our context, two categories of relationships have to be expressed:
merging links and translation links. However, metamodels addressing the model
transformation traceability do not support this case of categorization or poorly
express it through the assignment of additional information. In fact, the way
trace links are structured must take into account the composition mechanism.

Fig. 3 depicts our composition traceability metamodel [2]. It specifies two
types of trace links: merging links and translation links. On the one hand, this
categorization allows expressing the composition relationships kinds in a trivial
manner. On the other hand, it guides the reuse of traces (e.g., matching corre-
spondences can be deduced from merging links). A merging link connects the
source artifacts (belonging to the left and right models) to their target equiva-
lent. While a translation link represents a transition from a left or right element
to the target one.

We represent rule invocation by a nesting of trace links which is expressed
through parent-child relations among them. This structure provides a multi-
scales character to the generated traces and allows the final user to configure the
granularity level he desires. In addition, the Context concept brings another con-
figuration mechanism. It provides us with the support to represent semantically

rich traces by assigning further information to a subset of trace links. This con-
figuration can be achieved through the definition of relevant expressiveness data
(e.g., the composition rule name, the traceability intention . . .), where a context
attribute is tied to the additional information to be appended to a specific set
of traces, and a context is as a well thought out combination of attributes.

Fig. 3. The composition traceability metamodel

4.2 A generic model composition language

Several approaches addressing the model composition field have been proposed:
AMW [10], EML [3], Kompose [11]. In order to provide a generic traceability
solution, we have to abstract the composition operation from its syntax nature
(textual or graphical) or the language used to express it. A typical composi-
tion process involves two major steps: matching and merging [12]. During the
first step, correspondences between left and right model elements are calculated.
Matching elements are merged while other elements may be transformed into
target model elements. In addition, Bezivin et al. [12] set a list of requirements
for model composition frameworks. We consider these aspects to identify the
main elements that constitute the backbone of such an operation (see Fig. 4).

– Source and target models: the composition operator combines source models
in order to produce the target ones. Hence, the composition specification has
to be aware of the relevant information (models name, their metamodel. . .).

– Merging rules: they describe the behavior needed to combine two elements
that match with respect to some correspondences criteria. These rules have a
name, a statements block which specifies the merging mechanism, and a set
of parameters referencing the contributing elements.

– Translation rules: their structure is similar to merging rules. However, they
are applied to transform elements that have not been merged into the target
model, and therefore have at most one source parameter.

– Rule invocation: without an adequate mechanism to call rules, the target
model looks fragmented. This mechanism enables the weaving of structural
relations between target elements (e.g., an attribute belonging to its class) by
linking the result of a rule application to the elements previously created. We
encapsulate this behavior in an abstract operation named targetEquivalent. It
resolves the target element corresponding to a source one.

Fig. 4. Abstract syntax for a generic composition language

We formalize these requirements with the metamodel depicted in Fig. 4.
Note that this formalization includes a set of concepts defined in the rule based
languages EML [3] and ATL [4]. Furthermore, this metamodel does not structure
all the operational part of a composition language. It is just a formalization that
allows specifying the traceability aspect in a generic way. Essentially, it focuses on
the core concepts with regards to the traceability perspective (managed models,
merging rules, translation rules and rules invocation) and is restricted to elements
that are used to specify the traces generation weaving, such as:

– Types: the Type meta-class is the basis of all types. It generalizes the Mod-

elElementType meta-class which represents a meta-level classifier.
– Expressions: it provides expressions to navigate properties (PropertyCallExp)
and invoke operations (OperationCallExp). The VarExp expression allows ac-
cessing a declared variable.

– Statements : the AssignStatement elements are used to assign the right value
to the left expression, while an expression statement refers to one expression.

The section that follows is concerned implementing the weaving transforma-
tions, and clarifying the missing parts of this abstract syntax.

4.3 Graph transformations for traceability weaving

The AOM focuses on modularizing and composing crosscutting concerns during
the design phase of a software system. Indeed, both the aspects that encapsu-
late the crosscutting structure and the base model they crosscut are models [6].
Our objective is to build the trace model without manually encoding the gen-
eration patterns and regardless of the specification nature; this approach aligns
perfectly with these tasks. It allows encapsulating these patterns in an aspect
and abstracts the composition specification through the corresponding model.

Nevertheless, the AOM is a paradigm for conceptualizing aspects, which re-
quires an implementation mechanism. We use graph transformation rules to
simulate the aspect orientation. A graph rewriting rule consists of two parts: a
left-hand side (LHS) and a right-hand side (RHS). A rule is applied by substi-
tuting the objects of the LHS with the objects of the RHS, only if the pattern of
the LHS can be matched to a given graph [13]. Therefore, the LHS part is used
to determine where the aspect should be applied (the pointcuts); whereas the
RHS defines the crosscutting structure that replaces those points (the advice).

We employ a graph transformation unit to weave the traces generation pat-
terns. Its first rule declares the trace model to be an additional target model
of the composition to trace. Thereafter, it calls two loop sub-units to trace all
the merging and translation rules. Finally, trace links are nested by applying
a responsible rule. In what follows, we use the Henshin project [14] to express
these graph transformations. Note that the Henshin representation of a rule
does not explicit the description of the left and right hand sides. It is based on
stereotyping edges to depict the rule application semantic instead.

Trace model declaration We propose to generate the trace model like any
other target model. For this purpose, we create two Model instances. The first
is connected as a new target of the composition and references the trace model,
while the second node corresponds to our generic traceability metamodel.

Trace a merge rule Keeping track of merge rules consists of declaring the
traceability link, which captures the relationship between the matched source
elements and the target one, as being an extra output. For that, the rule de-
picted in Fig. 5 looks for a MergeRule node in the graph corresponding to the
specification we wish to trace; subsequently, it appends a new ParamDec node
of type MergingLink to the rule that have been matched as one its target param-
eters. The added parameter allows the generation of trace links while producing
the target elements. Furthermore, this rule creates three assign statements ref-
erenced by the AssignStatement nodes. Each affects the reference of the corre-
sponding element to the appropriate trace link property (left, right, and target).

Trace a translation rule The application of the rule shown in Fig. 6 inserts
the pattern that keeps track of the transition from a source element to its tar-
get equivalent. This rule searches for a TranslationRule node and declares a
new parameter of type TranslationLink. This link captures the correspondence

Fig. 5. Trace a merging rule

between the managed source and target elements that are matched with the
ParamDec nodes stereotyped with preserve. As with merging rules, we assign
the traceability data to the generated link using AssignStatement nodes.

Fig. 6. Trace a translation rule

Trace links nesting In Section 4.2, we discussed the use of rules invocation
to structure the composed model. The operation targetEquivalent encapsulates
this behavior by providing a mechanism for resolving the corresponding target
element of a source one. This target equivalent is produced by an anterior appli-
cation of a given composition rule. We propose to reuse a similar mechanism for

structuring trace links. Actually, it follows from the application of the preceding
graph transformations, the production of additional elements corresponding to
the traceability links. Therefore, the targetEquivalent operation resolves these
links as potential equivalents.

Accordingly, we have defined two other abstract operations: traceEquivalent
and defaultTargetEquivalent. They provide a filtering mechanism to select trace
links from other target elements. Hence, we can assign the resolved trace equiv-
alent to be a child of the link produced by the current rule (which calls the
targetEquivalent operation).

Fig. 7 depicts the rule that implements this nesting mechanism. It matches
a composition rule involving an invocation of the targetEquivalent operation
(referenced by the OperationCallExp node stereotyped with delete). Thereafter,
it copies the reference of the element to resolve its target equivalent (which
corresponds to the parameter of the targetEquivalent call) to the resolvedElt

variable. Finally, the two other Statement nodes allow copying the original call
of targetEquivalent (using the defaultTargetEquivalent operation) and binding
the traceability element as a parent of the trace equivalent.

Fig. 7. Trace links nesting rule

5 Specializing the generic framework for a dedicated

merging language

In this section, we illustrate the specialization of our generic framework by trac-
ing the merging scenario we have presented before as a motivating example (c.f.,
Section 2). The composition specification is specified by EML [3], which is a ded-
icated merging language. We aim through this language enforcing our generation
process to reveal the generic character of our traceability framework.

The specialization work consists of identifying the meaning of the main com-
position elements (managed models, merging rule, translation rule and rule invo-
cation) regarding a given composition approach (e.g., how the rule invocation is
performed in EML?). Thereafter, we establish correspondences between the spe-
cific representation of each concept and its equivalent conforming to our generic
composition language. Those correspondences underpin the selection and the
union transformations of the traces generation process (c.f., Section 3).

5.1 Perform the merging scenario with EML

An EML specification is defined using three types of rules: match rules, merge
rules, and transform rules. Match rules are applied on the source models to
calculate correspondences between their elements. Subsequently, merge rules are
used to combine elements that describe the same concept, while transformation
rules allow transforming elements that have no corresponding element.

In order to apply our traceability weaving process, we have implemented an
EMFText1 parser that transforms the textual representation of any EML speci-
fication into a corresponding model that conforms to the EML abstract syntax2.
Once the corresponding EML model is generated, the selection transformation
is applied to annotate it with the traceID and status markers and produce the
essential model. Table 1 summarizes the mapping between the main generic
composition elements and the relevant concept in EML.

Table 1. The EML relevant concepts of the main generic composition elements

Generic concept EML relevant concept

Composition module Composition module element
Merging rule Merge rule
Translation rule Transformation rule
Rule invocation A call of the equivalent operation

Fig. 8 depicts the graph transformation rule that allows selecting merging
rules. It looks for aMergeRule node (belonging to the EML abstract syntax) with
three ParameterDeclaration nodes which reference, respectively, the left, right
and target elements. Thereafter, it creates the corresponding MergeRule node
(belonging to our generic composition metamodel) with its connected elements.
Note that this rule has two other effects. It duplicates the traceID value of the
selected elements to the created ones. Also, it changes the value of the status

attribute into Selected in order to annotate the corresponding model.
The weaving transformation is applied on the essential model for weaving the

traces generation patterns. Subsequently, the union transformation reinserts the
omitted elements into their corresponding containers (i.e., each omitted assign

1 See http://www.emftext.org.
2 See http://www.eclipse.org/epsilon/doc/book/.

Fig. 8. Selection of merging rules in EML

statement must be nested on its corresponding statements block). The resolution
of the relevant container is based on the tracedID attribute. Listing 1 depicts
the EML rule that merges two matching classes, while Listing 2 represents the
resulting modifications over this rule that generate traces.

Listing 1. EML rule to merge two classes

1 rule MergeClassWithClass
2 merge l : left!Class
3 with r : right!Class
4 into t : target!Class
5 {
6 t.name = l.name;
7 t.ownedAttribute = l.ownedAttribute.includingAll(r.ownedAttribute).equivalent ();
8 }

As a result of applying the traces generation weaving process, the trace-
ability parameter is declared as another target parameter and the traceability
information is assigned to it (Listing 2: lines 8,11-13). In addition, the call of
the equivalent operation (Listing 1: line 7) has been captured and replaced with
the fragment that allows to nest traces (Listing 2: lines 14-16). Note that the
generic operations defaultTargetEquivalent and traceEquivalent was translated
into the host language using the EML select operation. Besides, the assignment
of the name property value (Listing 1: line 6) was marked as omitted and has
been injected in the resulting specification (Listing 2: line 10).

Listing 2. EML rule to merge two classes with traces generation

1 pre
2 {
3 var resolvedElt : new Any ;
4 }
5 rule MergeClassWithClass
6 merge l : left!Class
7 with r : right!Class
8 into t : target!Class , tr:trace!MergingLink
9 {

10 t.name = l.name;
11 tr.left=l;
12 tr.right=r;
13 tr.target=t;
14 resolvedElt = l.ownedAttribute.includingAll(r.ownedAttribute);
15 t.ownedAttribute = element.equivalent ().select(it | not it.isKindOf(trace!TraceLink));
16 tr.child.add(element.equivalent ().select(it | it.isKindOf(trace!TraceLink)));
17 }

5.2 Results

In Fig. 9 we provide an extract of the trace model generated with our frame-
work. Note that we have used the Emf2gv3 project to provide a user friendly
representation of traces. The trace model conforms to our composition traceabil-
ity metamodel and captures relationships between the contributing models and
the merged one. The dashed lines represent the left, right and target references;
while the trace links nesting is represented with solid lines.

The trace model contains two types of trace links that are generated with
respect to the composition relationships kinds. For instance, the first level merg-
ing link connects the composed model to the Librarian and Head Librarian class
diagrams. The contained merging link connects the Book classes corresponding,
respectively, to the librarian and head librarian concerns, and the composed
model. Fig. 9 depicts also a translation link that represents the transition from
the Loan class in the Librarian class diagram to its target equivalent. Further-
more, the nesting of traces is closely modeled on the rule invocation sequence.

6 Related work

In the literature, several works dealing the traceability of model driven develop-
ment operations are presented [5][8][9][15]. We focus here on two of them that
are distinguished by their generic nature:

Grammel and Kastenholz [9] have defined a generic approach to trace various
model transformation approaches. Their proposal is based on a generic interface
that offers two mechanisms for augmenting a transformation engine with trace-
ability. The first one consists of transforming the implicit trace model to conform
to their generic traceability metamodel. Besides, in the case of a lack of an im-
plicit traceability tool, they provide support to generate traces based on Aspect
Oriented Programming (AOP).

3 See http://sourceforge.net/projects/emf2gv.

Fig. 9. Extract of the generated trace model

In [15], Vara et al. propose a methodological framework that supports the
model-driven development of model transformations and allows generating traces
freely as a side effect. The extraction of traceability relationships is implemented
by a HOT operating on the high-level specification of transformation. This spec-
ification is augmented with the traces generation patterns and a set of trans-
formations are described for producing the lower-level transformation models.
Thus, the executable transformation generates the target models accompanied
by an additional model capturing traceability links. However, the applicability
of the approach is restricted to newly model transformations developed by this
framework, and no mechanism is defined to trace pre-existing transformations.

Our approach makes use of the benefits of the presented works while focusing
on model composition. As for the approach of Grammel and Kastenholz [9], we
adopt aspect orientation to generate traces. However, instead of using AOP, we
have chosen an AOM solution to abstract the composition specification through
the corresponding model. Thereby, we handle the plurality and diversity of the
composition approaches.

7 Conclusion and future work

In this paper, we proposed a generic approach to automatically build traces of
models composition. We consider the traceability management as a cross-cutting
concern. Actually, we designed some graph transformation rules that encapsu-
late the trace links generation concern. Those rules have been defined around a
generic composition metamodel which formalizes the core element of the com-
position operation. Moreover, a traces generation process, partly independent
of the composition language, is introduced to specialize the application of our
proposal.

We are currently exploring a pre-configuration support to provide the user
with the tool to configure the application of the traceability aspect depending
on its purpose. Besides, we intend to work on the traces reusability issue. We
have set three possible reuses: validation in model composition, co-evolution of
models and optimization of composition chain.

References

1. Laghouaouta, Y., Anwar, A., Nassar, M., Coulette, B.: A graph based approach
to trace models composition. JSW 9(11) (2014) 2813–2822

2. Laghouaouta, Y., Anwar, A., Nassar, M., Bruel, J.M.: On the use of graph trans-
formations for model composition traceability. In: IEEE International Conference
on Research Challenges in Information Science (RCIS 2014), IEEE (2014) 1–11

3. Kolovos, D.S., Paige, R.F., Polack, F.A.: Merging models with the epsilon merging
language (eml). In: Model Driven Engineering Languages and Systems. Springer
(2006) 215–229

4. Jouault, F., Kurtev, I.: Transforming models with atl. In: Satellite Events at the
MoDELS 2005 Conference, Springer (2006) 128–138

5. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany. Volume 91., Citeseer (2005)

6. France, R., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early design
modelling. IEE Proceedings-Software 151(4) (2004) 173–185

7. Ehrig, H., Engels, G., Rozenberg, G.: Handbook of graph grammars and computing
by graph transformation. Volume 2. world Scientific (1999)

8. Amar, B., Leblanc, H., Coulette, B.: A traceability engine dedicated to model trans-
formation for software engineering. In: ECMDA Traceability Workshop (ECMDA-
TW). (2008) 7–16

9. Grammel, B., Kastenholz, S.: A generic traceability framework for facet-based
traceability data extraction in model-driven software development. In: Proceedings
of the 6th ECMFA Traceability Workshop, ACM (2010) 7–14

10. Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: Amw: a generic
model weaver. Proceedings of IDM05 (2005)

11. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing support for
model composition in metamodels. In: Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International, IEEE (2007) 253–253

12. Bézivin, J., Bouzitouna, S., Del Fabro, M.D., Gervais, M.P., Jouault, F., Kolovos,
D., Kurtev, I., Paige, R.F.: A canonical scheme for model composition. In: Model
Driven Architecture–Foundations and Applications, Springer (2006) 346–360

13. Lambers, L., Ehrig, H., Orejas, F.: Conflict detection for graph transformation
with negative application conditions. In: Graph Transformations. Springer (2006)
61–76

14. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place emf model transformations. In: Model Driven En-
gineering Languages and Systems. Springer (2010) 121–135

15. Vara, J.M., Bollati, V.A., Jiménez, Á., Marcos, E.: Dealing with traceability in the
mddof model transformations. IEEE Trans. Software Eng. 40(6) (2014) 555–583

