N

N
N

HAL

open science

Pyc2Sound: a Python tool to convert images into sound

Vincent Bragard, Thomas Pellegrini, Julien Pinquier

» To cite this version:

Vincent Bragard, Thomas Pellegrini, Julien Pinquier. Pyc2Sound: a Python tool to convert images
into sound. Audio Mostly: Sound, Semantics and Social Interaction (AM 2015), Oct 2015, Thessa-

lonique, Greece. pp.1-4, 10.1145/2814895.2814912 . hal-04077756

HAL Id: hal-04077756
https://hal.science/hal-04077756

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04077756
https://hal.archives-ouvertes.fr

OATAQO

Open Archive Toulouse Archive Ouverte

Open Archive TOULOUSE Archive Ouverte (OATAQO)

OATAQO is an open access repository that collects the work of Toulouse researchers and
makesit freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toul ouse.fr/
Eprints D : 15438

The contribution was presented at :
http://audiomostly.com/

Official URL: http://dx.doi.org/10.1145/2814895.2814912

To citethisversion : Bragard, Vincent and Pellegrini, Thomas and Pinquier, Julien
Pyc2Sound: a Python tool to convert images into sound. (2015) In: Audio Mostly
2015, 7 October 2015 - 9 October 2015 (Thessaoniki, Greece).

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@listes-diff.inp-toulouse.fr

Pyc2Sound: a Python tool to convert images into sound

Vincent Bragard
Universite de Toulouse, IRIT
118 Route de Narbonne
31062 Toulouse, France

ABSTRACT

This article reports ongoing work on a user interface dedi-
cated to generate sound from pictures and hand drawings.
If we imagine what sound would correspond to a given im-
age, on what parameters of the image do we focus and what
would the result sound like? In this paper, we try to an-
swer this question by giving a model transforming images
into sound based on chosen parameters extracted from the
image. For this, an input image is first binarized, then its
skeleton is extracted and ’tracks’ are identified and used to
generate chirps in an additive synthesis approach.

Keywords

Additive synthesis, skeletonization

1. INTRODUCTION

A tool capable of transforming an image into sound could
have several possible applications. For example, it could
serve as an artistic tool, which artists use to draw sound;
it could also serve as a mean to teach children to correctly
form letters and numbers; as a last example, it could al-
low blind people to hear a sound metaphor of a painting.
Here, we propose a first prototype of such a tool. In the do-
main of sound synthesis, several pieces of software proposing
a way to transform images into sound already exist, each
with their own approach on the subject. For example, Au-
diosculpt, created by the IRCAM, filters white noise with an
input image [1]. Another software, Photosounder, considers
the input image as a magnitude spectrogram and applies an
inverse FFT on it to synthesize a sound [2, 6]. The limits
of these approaches are that we can only treat the image
as a whole instead of being able to treat different objects
in the image differently. Another problem is to determine

Thomas Pellegrini
Universite de Toulouse, IRIT
118 Route de Narbonne
[_ 31062 Toulouse, France
bragard.upssitech@gmail.com Thomas.Pellegrini@irit.fr

Julien Pinquier
Universite de Toulouse, IRIT
118 Route de Narbonne
/31062 Toulouse, France
julien.pinquier@irit.fr

Figure 1: Input image

the time domain of the resulting signal, different methods
exist, but choosing which one to use is difficult and depends
on the type of application we wish to make [5]. A solution
some softwares like VOSIS have adopted is to treat a video
instead of a still image [4]. The tool presented in this article
takes a different approach for which, instead of taking the
image directly to synthesize a sound, a mathematical model
is used to extract a skeleton of shapes contained in the im-
age with a Voronoi diagram [3]. A graphical user interface
will allow the user to generate the sound of an image. The
user can also draw on a canvas and the drawing will be the
basis for synthesis. In this paper, the three main steps (im-
age skeletonization, track identification and synthesis) will
be presented first, then the graphical user interface of the
tool will be shown. In order to describe all the processing
steps, we will consider the simple image depicted in figure 1.

2. IMAGE SKELETONIZATION

In an image, what we, as humans, perceive first, are the
general shapes of it. Moreover, we tend to read them from
left to right, and we also tend to correlate height in an image
to the pitch’s height in a sound. Since we want to imitate
this kind of perception, images are taken as time-frequency
representations, where time is represented on the x axis and
frequency on the y axis. In order to generate a sound from
these shapes (in our case a handwritten ’3’), the shapes’
skeleton contained in the image has to be extracted. To
do so, the size of the image is doubled so that even if the

.....

0.8[~ ‘

07t UL WY REReTE annaf

05,

0.4F W Jalntole ool <

0.2+ A RGUERR g

01l ": -...." "

0.2 03 0.4 0.5 0.6 0.7 0.8

Figure 2: Voronoi diagram

shapes in it were one-pixel wide lines, they become two-pixel
wide and have separated edges on each side. Then, the new
image is binarized with a threshold given by the user, in
order to precisely identify the shapes. Once it is done, the
shapes’ edges, i.e. shapes’ pixels directly neighboring the
background, are isolated and fed to a Voronoi algorithm. It
gives the result shown in figure 2.

The Voronoi diagram contains too much information since
it contains shapes’ skeleton, but also edges in the space be-
tween shapes. It needs to be cleaned up. Several steps are
needed in order to do so. Firstly, every edges that have one
or both of their extremities outside a shape are removed.
Secondly, all the vertical edges are 'rewired’; as they can
not be synthesized due to their infinitesimal time range. To
rewire them, the weights of both the extremities of a vertical
edge are calculated, the weight of a vertex being the sum of
the length of all the edges connected to it. The extremity
having the smallest weight is removed and every edge that
was connected to it is rerouted to the other extremity of the
vertical edge. At this point, there are still few unwanted
edges at some places. In order to remove them, successive
prunings are done on the skeleton, with a length threshold
and a number of successive prunings given by the user. Fi-
nally, all the vertices which are not connected to any edges
are removed and a clean skeleton is obtained as shown in
figure 3. Note that in figure 3, the values of the axes have
changed: the skeleton’s vertices are now spread from 0 to
5 seconds in the time axis and from 800 to 1600 Hz in the
frequency axis. These values are given by the user and were
arbitrarily chosen for this example.

3. SEGMENTATION IN TRACKS

Now that the skeleton is properly scaled in the frequency
and time domains, each edge can be considered as a linear
chirp that will be synthesized.

But first, the different 'tracks’ of the skeleton must be sep-
arated: since each edge is synthesized separately, we have to
be careful of phase alignments at each vertex. A track is
defined as a series of connected edges which only go forward
in time and with only one simultaneous edge at a time. Fig-
ure 4 shows how our example would be split.

To achieve this, all the skeleton’s edges are sorted in the

1600+

1400

1200

1000

800+

Figure 3: Final skeleton

time domain, so that the edges starting the soonest are ap-
pended first in the resulting list. Then, we apply the follow-
ing track segmentation algorithm:

L <— Sorted list of all the edges
initialize ListTracks as an empty list
while L isn’t empty:
initialize CurTrack as an empty list
take the first edge of L and put it in
CurTrack
while L contains an edge whose starting
point is the ending point of the last
edge in CurTrack:
take that edge from L and put it at the
end of CurTrack
save CurTrack in ListTracks

After that, ListTracks contains the lists of each isolated
track.

4. SYNTHESIS

Each track is now correctly isolated, and they are syn-
thesized separately so that the final sound can be gener-
ated by additive synthesis. We could have chosen a sample
based synthesis approach, where a sample sound is taken
then modified, but we have chosen the additive synthesis
approach so that we have more control over the synthesized
sound. By construction, the edge list of each track is still
sorted in the time domain, and the coordinates of its ex-
tremities give the starting/ending times and frequencies of
the chirp to be synthesized. For each edge, a linear sine
chirp is synthesized, then its ending phase is conveyed to
the next edge in order for them to be aligned. Once the
track is synthesized, a fade-in and a fade-out are applied to
it, so that it does not start/end abruptly. The length of the
fades are given by the user through the interface. The user
can also decide to add harmonics to the synthesized sound
and their strength.

1600+

1400

1200+

1000+

800

Figure 4: Track identification

74 Pyc2Sound = | = B

Harmonic melody Sound Drawing

Generating a melody frem the skeleton of an image (must be white on black):

Input file: Ei.mg_B.png] J
Binarization threshold (percentage of max intensity): 50
Lowest desired frequency (Hz): 800
Highest desired frequency (Hz): [1600
Duration (s): 5
Number of successive prunings: | 3

Pruning threshold (skeleton ridges' mean length percentage): | 300

Length of fade-ins and fade-outs {(number of samples): 441

Partials' relative strength:

1.000 j
0.000] U.Uﬂﬂj U.Uﬂﬂj [].[]Uﬂj U.E][]Uj 0.000/ U.Uﬂﬂj
3 i

o fl f2

Output file: [img_3.wav J

Save file

Figure 5: GUI: Harmonic Melody

5. USER INTERFACE

The user interface is a simple graphical interface. It con-
tains two utilization modes: Harmonic melody, shown in
figure 5, and Sound drawing, shown in figure 6. Harmonic
melody allows the user to load an image, and asks for dif-
ferent parameters to generate the corresponding sound, like
the binarization threshold, the desired frequency range, the
pruning parameters and the length of fades. The user can
also add harmonics to the generated sound thanks to slid-
ers. Each time the user generates a sound, the graph of the
clean skeleton is shown. It helps the user to tune parameters
to his needs. If he is satisfied with the audio result, it can
be saved as a file. An illustration of our example is avail-
able at https://goo.gl/QyMu02. The second mode, Sound
drawing is almost identical. However, instead of a text field
to generate a sound from an image on the disk, a canvas is
displayed, on which the user can draw with his mouse. This
canvas supports basic features like undoing/redoing actions
or drawing straight lines.

6. CONCLUSIONS

In this paper, a methodology has been proposed, allow-
ing to extract relevant information of objects’ shape in the
image in order to synthesize a sound representative of these
information. The sound itself is generated by additive syn-
thesis, and is composed of different linear sine chirps.

We plan to extend Pyc2Sound’s synthesis capabilities. To
do this, other pertinent parameters in images will be iden-
tified and extracted in order to enrich the complexity of the
generated sounds. For example, the signal amplitude will be
influenced by the thickness of the shape, and color will influ-
ence the harmonics’ power. We could also make the sound
richer by using the image’s spectra as a basis for synthesis.

In order to reach the possible applications we proposed in
the introduction, we plan to port the code on more mobile
devices, like touchscreen tablets, and improve the graphical
user interface, so that it becomes simple and more appealing
to use.

4 Pyc2Sound

Harmenic melody | Sound Drawing

Sound canvas (Shift+Click to draw a straight line):

Generating a melody from a drawing's skeleton:

£

20
800
1600

hold (percentage of max intensity):

pm——
Bl)
&=
8
2 = =
= R N
2
a5 g
i 8
5 = L=
g g
gﬁ 8
£ £ -5
I s g
z %]
e i =
U E ik
E 3 o
5 B =
B 5 o 4 g
&5 5 & 2
& 2 2
el g = 7
S = S 5 3 [Tl &
> 3 = [
z £ g 3 = £ g
I 8 3 3 8 g
ER-! = & 5 5 S
F F g 2 2 B
g i = =
£ = g E R 3 B
s 3 S £ & H H
z a ¥ B B 5
LR I O I -
¥ 3 I 5] =
z 5 E =4 £ 2
5 2 El 5 5 =
8 £ 2 3 g 3

Output file: |am_2015.wav

o
B
B
2
8
bl
7

L]

Figure

: GUI: Sound Drawing

References

[1]

Audiosculpt: a visual and 7sculptural” approach
to sound manipulation. http://forumnet.ircam.fr/
product/audiosculpt/.

Photosounder. http://photosounder.com/.

F. Aurenhammer. Voronoi diagrams: a survey of a fun-
damental geometric data structure. ACM Computing
Surveys, 23(3), 1991.

R. McGee. Vosis: a multi-touch image sonification inter-
face. In Proc. NIMFE, Daejeon, 2013.

W. Seung-Yeo and J. Berger. Application of image soni-
fication methods to music. In Proc. ICMC, Barcelona,
2005.

N. Sturmel and L. Daudet. Signal reconstruction from
stft magnitude: a state of the art. In Proc. DAFz, Paris,
2011.

