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Nous montrons que la série de Taylor de la fonction zêta, en un point z ∈ C dont la partie réelle est strictement supérieure à 1, a un rayon de convergence égal à |z -1|. Nous revenons également sur le prolongement analytique de la fonction zêta à C \ {1}.

Introduction

La fonction zêta de Rieman, notée ζ, est définie dans le demi-plan Π 1 = {z ∈ C ; Re z > 1} par l'égalité :

ζ(z) = +∞ n=1 1 n z •
Elle est bien définie, puisque la série au second membre est absolument convergente pour tout z ∈ Π 1 ; en effet, pour tout z = x + iy avec x, y ∈ R et x > 1, on a |n z | = |n x exp(iy ln n)| = n x . La fonction ζ est analytique dans Π 1 , c'est-à-dire développable en série entière en tout point de Π 1 , et on a : alors le rayon de convergence de la série entière a n (z) v n est égal au rayon du plus grand disque ouvert de centre z inclus dans C \ {1}, c'est-à-dire à |z -1|. Le résultat qui affirme qu'une fonction analytique dans un ouvert U de C est égale à sa série de Taylor en tout point z de U et ceci dans le plus grand disque ouvert de centre z inclus dans U, n'est nullement évident ; on le montre le plus souvent à l'aide des formules de Cauchy.

Dans ce qui suit, nous nous proposons de montrer directement (i.e. sans faire appel à un quelconque résultat de la théorie des fonctions analytiques) que le rayon de convergence de la série entière a n (z) v n est égal à |z -1|. Pour cela, à l'aide de la formule d'Euler-Maclaurin, nous allons montrer que, pour tout z ∈ Π 1 , on a :

S n (z) := +∞ k=1 (ln k) n k z ∼ n! (z -1) n+1 quand n → +∞,
ce qui donnera le résultat attendu. Les estimations utilisées pour obtenir cet équivalent vont aussi permettre d'écrire facilement une expression du prolongement analytique de la fonction ζ sur C \ {1}, que l'on reliera à celle donnée par Thomas Stieltjes à la fin du dix-neuvième siècle. 

B 0 = 1, B 1 = X -1 2 et B 2 = X 2 -X + 1 6 . Exercice 1 . -Montrer que B n = nB n-1 pour tout n 1 ; en déduire que B n (0) = B n (1) pour tout n 2.

Les formules d'Euler-Maclaurin

Soit m et q des entiers strictement positifs et ψ une fonction de classe C q sur [1, m] et à valeurs dans C. Pour cette fonction ψ, la formule d'Euler-Maclaurin d'ordre q s'écrit :

m k=1 ψ(k) = m 1 ψ(t) dt + 1 2 ψ(1) + ψ(m) + q p=2 (-1) p b p p! ψ (p-1) (m) -ψ (p-1) (1) + r q (ψ) (2) 
où b p est la valeur en 0 du polynôme de Bernoulli B p de degré p, et où le reste r q (ψ) est donné par l'égalité :

r q (ψ) = (-1) q-1 q! m 1 B q ({t}) ψ (q) (t) dt, (3) 
où {t} = t -t désigne la partie fractionnaire de t. La démonstration de la formule (2), bien qu'un peu calculatoire, n'est pas très difficile (on pourra, par exemple, consulter [START_REF] Demailly | Analyse numérique et équations différentielles[END_REF], chapitre III, paragraphe 4).

Exercice 2 . -Montrer que B n (1 -x) = (-1) n B n (x) pour tout n 0 et tout x ∈ R, puis que b 2j+1 = 0 pour tout j 1. En déduire une simplification de la somme au second membre de l'égalité (2) et une réécriture de cette égalité dans le cas où q = 2l + 1.

Remarque 1 . -Les nombres b p = B p (0), pour p 0, sont les nombres de Bernoulli.

Remarque 2 . -C'est au cours du dix-huitième siècle que Léonard Euler et Colin Maclaurin mettent au point, indépendamment l'un de l'autre, la formule qu'on appelle aujourd'hui formule d'Euler-Maclaurin ou formule sommatoire d'Euler-Maclaurin. Comme c'était souvent le cas à cette époque, ils la présentent sous la forme d'un développement en série, sans réellement se soucier de sa convergence. Lorsque Léonard Euler considère cette série pour du calcul numérique, il n'en prend que la somme des termes qui vont en décroissant, et à partir de l'indice où les termes commencent à croître, il les remplace par un reste dont il n'indique pas l'origine ; voir [START_REF] Nicolas | Eléments de Mathématique : Livre IV, Fonctions d'une variable réelle[END_REF], Note historique, page 157.

Dans un article de W. Wirtinger, datant de 1902, on trouve une démonstration moderne de la formule d'Euler-Maclaurin, obtenue par des intégrations par parties successives, avec une expression du reste semblable à (3) ; voir [START_REF] Wilhelm | Einige anwendungen der Euler-MacLaurin summenformel, insbesondere auf eine aufgabe von Abel[END_REF], paragraphe II.

Les applications de la formule d'Euler-Maclaurin sont nombreuses. La plus évidente concerne les polynômes, puisque le reste est nul dès que l'ordre dépasse le degré du polynôme ; en particulier, elle permet d'avoir une expression de la somme des puissances p-ièmes des n premiers entiers. La formule d'Euler-Maclaurin se révèle très efficace pour obtenir des développements asymptotiques ayant un nombre de termes arbitrairement grand ; à l'ordre q + 1 elle permet d'obtenir le prolongement méromorphe de la fonction zêta dans le demi-plan de C des nombres complexes dont la partie réelle est strictement supérieure à -q ; etc.

Nous l'appliquerons ici pour calculer des rayons de convergence et toute l'information dont nous aurons besoin proviendra du reste.

Premières remarques

Pour z ∈ C et n ∈ N, on note f z,n la fonction définie sur [1, +∞[ par : f z,n (t) = (ln t) n t z . Lemme 3 . -Pour tout z ∈ Π 1 et tout entier n 0, l'intégrale impropre I n (z) = +∞ 1 f z,n (t) dt est absolument convergente et on a : I n (z) = n! (z -1) n+1 . D ÉMONSTRATION. -Soit z = x + iy avec x > 1 et y ∈ R. Comme |t z | = t x pour tout t 1, et que l'intégrale impropre +∞ 1 (ln t) n t x dt
est une intégrale de Bertrand qui converge, la convergence absolue de I n (z) s'en déduit. L'égalité donnant I n (z) est évidente pour n = 0. Ensuite, pour tout n 1, à l'aide d'une intégration par parties, on a :

I n (z) = +∞ 1 (ln t) n t z dt = t 1-z (ln t) n 1 -z +∞ 1 - +∞ 1 t 1-z 1 -z × n(ln t) n-1 t dt = n z -1 I n-1 (z).
Par récurrence, on en déduit que l'égalité souhaitée a lieu pour tout n ∈ N.

Compte tenu du lemme 3, notre objectif consiste donc à montrer que S n (z) ∼ I n (z) quand n → +∞. Dans le cas particulier où z ∈ ]1, +∞[ la fonction f z,n est à valeurs réelles et, en étudiant ses variations, il n'est pas très difficile, par comparaison série-intégrale, d'obtenir cet équivalent.

Exercice 3 . -Montrer que si n ∈ N * et x ∈ ]1, +∞[, alors f x,n est croissante de 0 à un certain point t n et décroissante de t n à +∞. En déduire que |S n (x) -I n (x)| f x,n (t n ), puis que S n (x) ∼ I n (x) quand n → +∞. Si z ∈ Π 1 , on peut utiliser la formule d'Euler-Maclaurin d'ordre 1. Soit z = x + iy avec x > 1 et n 1. Ecrivons (2) avec ψ = f z,n et q = 1, puis faisons tendre m vers +∞, on obtient : S n (z) -I n (z) = +∞ 1 (n -z ln t)(ln t) n-1 t z+1 B 1 ({t}) dt.
Comme B 1 (s) = s -1 2 , on en déduit que :

|S n (z) -I n (z)| +∞ 1 (n + |z| ln t)(ln t) n-1 2t x+1 dt = nI n-1 (x + 1) + |z|I n (x + 1) 2 = n! 2x n+1 (x + |z|)
(la dernière égalité résultant du lemme 3). Par conséquent,

S n (z) I n (z) -1 x + |z| 2 |z -1| x n+1 et donc S n (z) ∼ I n (z) quand n → +∞ pour tout z = x + iy tel que |z -1| < x, i.e. tel que |y| < √ 2x -1.
En utilisant la formule d'Euler-Maclaurin d'ordre 2, on obtient un peu mieux, à savoir que S n (z) ∼ I n (z) quand n → +∞ pour tout z = x + iy tel que |y| < 2 √ x.

On pressent alors que, pour z fixé dans Π 1 , on doit pouvoir conclure en utilisant une formule d'Euler-Maclaurin d'ordre suffisamment élevé. Mais pour cela, il va nous falloir connaître suffisamment précisément les dérivées successives de f z,n . C'est l'objet lemme qui suit.

Lemme 4 . -Soit z ∈ C et n ∈ N. Posons g z,n = f -z,n . Pour tout p ∈ N tel que p < n et tout t > 0, on a : g (p) z,n (t) = t z-p p j=0 n j A (j) p (z)(ln t) n-j (4) 
où (A p ) p 0 est la suite de polynômes définie, par récurrence, par

A 0 = 1 et A p+1 = (X -p)A p si p 0. Autrement dit : A p = X(X -1) • • • (X -p + 1). D ÉMONSTRATION.
-On montre ce résultat par récurrence sur p. Il n'y a rien à montrer pour p = 0. Supposons ensuite que l'égalité donnant g (p) z,n est vraie pour un entier p 0 quelconque. Par conséquent, pour tout t > 0, on a :

g (p+1) z,n (t) = (z -p) t z-p-1 p j=0 n j A (j) p (z)(ln t) n-j + t z-p-1 p j=0 (n -j) n j A (j) p (z)(ln t) n-j-1 = t z-(p+1) p j=0 n j (z -p)A (j) p (z)(ln t) n-j + p j=0 (j + 1) n j + 1 A (j) p (z)(ln t) n-(j+1) = t z-(p+1) p j=0 n j (z -p)A (j) p (z)(ln t) n-j + p+1 j=1 j n j A (j-1) p (z)(ln t) n-j = t z-(p+1) (z -p)A p (z)(ln t) n + p j=1 n j (z -p)A (j) p (z) + jA (j-1) p (z) (ln t) n-j + (p + 1) n p + 1 A (p) p (z)(ln t) n-(p+1) . Or, on a (z -p)A p (z) = A p+1 (z) et (p + 1)A (p) p (z) = (p + 1)p! = (p + 1)! = A (p+1)
p+1 (z), et aussi :

A (j) p+1 = (X -p)A p (j) = (X -p)A (j) p + jA (j-1)
p pour tout j ∈ {1, . . . , p}.

L'égalité souhaitée pour g (p+1) z,n en résulte. D'où la conclusion.

Remarque 5 . -Si p = n, l'égalité (4) est encore vraie (en convenant, pour t = 1, que 0 0 = 1). Si p > n, elle est encore vraie pour t = 1.

Calcul du rayon de convergence

Soit z ∈ Π 1 et n ∈ N ; d'après le lemme 4, pour tout entier p tel que 0 p < n, on a :

∀t 1, f (p) z,n (t) = 1 t z+p p j=0 n j A (j) p (-z)(ln t) n-j et donc : f (p) z,n (1) = 0 et lim t→+∞ f (p) z,n (t) = 0.
Par conséquent, en écrivant la formule d'Euler-Maclaurin (2) pour ψ = f n,z et q n, puis en faisant tendre m vers +∞, on obtient :

I n (z) -S n (z) = (-1) q q! +∞ 1 B q ({t}) f (q) z,n (t) dt. (5) 
Le nombre complexe z = x + iy étant fixé dans Π 1 , considérons un entier q 1, que nous choisirons plus loin.

Pour tout n q, on a l'égalité (5) et donc :

|S n (z) -I n (z)| c q +∞ 1 |f (q) z,n (t)| dt où c q = 1 q! max s∈[0,1] |B q (s)|.
Par conséquent, compte tenu des lemmes 3 et 4, pour tout n q, il vient :

|S n (z) -I n (z)| c q q j=0 n j A (j) q (-z) +∞ 1 (ln t) n-j t x+q dt = n! c q q j=0 |A (j) q (-z)| j! (n -j)! I n-j (x + q) = n! c q q j=0 |A (j)
q (-z)| j! (x + q -1) n-j+1 puis :

S n (z) I n (z) -1 c q |z -1| n+1 q j=0 |A (j) q (-z)| j! (x + q -1) n-j+1 = c q q j=0 |A (j) q (-z)| j! (x + q -1) -j |z -1| x + q -1 n+1 (6) ce qui montre qu'en choisissant q > |z -1| -x + 1, on obtient finalement que S n (z) ∼ I n (z) quand n → +∞, autrement dit que S n (z) ∼ n! (z -1) n+1 quand n → +∞. Il s'ensuit que lim n→+∞ |a n (z)| 1/n = lim n→+∞ 1 |z -1| 1+ 1 n = 1 |z -1|
et donc que le rayon de convergence de la série entière a n (z) v n est égal à |z -1|. 

Prolongement méromorphe de la fonction ζ

Dans le paragraphe 4 ci-dessus, c'est grâce à l'estimation (6) que nous avons pu conclure. Cette estimation permet aussi de montrer que la fonction F définie sur Π 1 par :

F (u) = ζ(u) - 1 u -1
se prolonge analytiquement sur tout C. Avec les notations des paragraphes précédents, pour tout u ∈ D(2, 1), on a :

F (u) = +∞ n=0 a n (2)(u -2) n - +∞ n=0 (-1) n (u -2) n = +∞ n=0 (-1) n S n (2) n! -1 (u -2) n .
En utilisant l'inégalité (6) avec z = 2 et en notant que n! = I n (2), il vient :

∀q 1, ∀n q, S n (2) n! -1 K q (q + 1) n où K q = c q q j=0 |A (j) q (-2)| j! (q + 1) -j+1 .
Par conséquent, le rayon de convergence de la série entière

G(v) = +∞ n=0 (-1) n S n (2) n! -1 v n
est égal à +∞ (car plus grand que tout nombre réel q 1). Il en résulte que la fonction zêta admet un prolongement analytique sur C \ {1}, encore noté ζ et donné par :

ζ(u) = 1 u -1 + G(u -2). (7) 
Remarque 7 . -Dans nombre d'articles sur la fonction zêta, on trouve l'égalité suivante :

ζ(u) = 1 u -1 + +∞ k=0 (-1) k k! γ k (u -1) k avec γ k = lim m→+∞ m j=1 (ln j) k j - (ln m) k+1 k + 1 . (8) 
Il s'agit là du développement en série de Laurent au point 1 de la fonction ζ. Ce développement est déjà évoqué en 1885 par Thomas Stieltjes dans sa correspondance avec Charles Hermite ; cf. [START_REF]Correspondance d'Hermite et de Stieltjes[END_REF], lettres 71 (page 45) et suivantes. Pour faire le lien entre (7) et (8), il suffit de remarquer que, pour tout u ∈ C, on a :

G(u -2) = +∞ n=0 S n (2) n! -1 (2 -u) n = +∞ n=0 S n (2) n! -1 1 + (1 -u) n = +∞ n=0 S n (2) n! -1 n k=0 n k (1 -u) k = +∞ k=0 (-1) k +∞ n=k n k S n (2) n! -1 (u -1) k = +∞ k=0 (-1) k k! +∞ n=k S n (2) -n! (n -k)! (u -1) k ce qui montre que : γ k = +∞ n=k S n (2) -n! (n -k)! .
Ce que l'on a fait ci-dessus avec 2, on peut le faire avec n'importe quel autre point z ∈ Π 1 . En effet, si z = x + iy avec x > 1, alors pour tout u ∈ D(z, x -1), on a :

F (u) = G(u -z) avec G(v) = +∞ n=0 (-1) n S n (z) -I n (z) n! v n
et le rayon de convergence de cette série entière est égal à +∞ ; en écrivant le développement de F au point 1, on obtient alors :

∀k 0, γ k = +∞ n=k S n (z) -I n (z) (n -k)! (z -1) n-k et ceci pour tout z ∈ Π 1 .
Les nombres γ k sont les constantes de Stieltjes ou constantes généralisées d'Euler, cette dernière dénomination provenant (certainement) du fait que γ 0 est égal à la constante d'Euler γ ≈ 0.5772.

La littérature est abondante à propos de ces constantes. Le résultat le plus marquant a été obtenu par Y. Matsuoka en 1984 (voir [START_REF] Yasushi | Generalized Euler constants associated with the Riemann zeta function[END_REF], Theorem 6). Il s'agit de l'estimation suivante :

∀n 10, |γ k | 10 -4 (ln k) k (9)
qui, entre autre, assure que le rayon de convergence de la série entière présente dans (8) est égal à +∞. La démonstration de (9) est assez technique et l'appréhender dans tous ses détails nécessite quelques efforts1 .

6 Appendice 

= x + iy ∈ Π 1 et u ∈ D(z, x -1). Pour k ∈ N * et n ∈ N, posons : w k,n = (-1) n (ln k) n (u -z) n n! k z et
ζ(u) = +∞ k=1 1 k z+(u-z) = +∞ k=1 1 k z e -(u-z) ln k = +∞ k=1 1 k z +∞ n=0 (-1) n (ln k) n (u -z) n n! = +∞ n=0 (-1) n n! +∞ k=1 (ln k) n k z (u -z) n
(la dernière égalité s'obtenant en intervertissant les sommations, ce qui est possible grâce à la convergence absolue montrée plus haut). D'où (1).

Remarque 8 . -On peut aussi parler de famille sommable, mais on peut éviter ces notions (série double ou famille sommable) et obtenir l'analyticité de ζ sur Π 1 en montrant un peu moins que [START_REF]Correspondance d'Hermite et de Stieltjes[END_REF]. Précisément, pour Remarque 9 . -La preuve ci-dessus se généralise facilement si, à la place de C \ {1}, on considère un ouvert U dans lequel deux points quelconques sont joignables par une ligne brisée. On pourra, par exemple, consulter [START_REF] Jean | Calcul infinitésimal[END_REF], chapitre VI, paragraphe 7.

z = x+iy ∈ Π 1 , si u ∈ D(z, x-1 2 ) alors, en utilisant que S N (t) ∼ I N (t) quand N → +∞ avec t = x-|u-z|, on peut montrer que +∞ k=1 1 k z +∞ n=N (-1) n (ln k) n (u -z) n n! → 0 quand N → +∞.

∀z ∈ Π 1 ,( 1 )

 11 ∀u ∈ D(z, x -1), ζ(u) = ln k) n k z (u -z) n (où x = Re z). (Voir paragraphe 6.1 plus loin. Par ailleurs, on peut montrer de différentes fac ¸on que la fonction ζ se prolonge analytiquement sur C \ {1} et que le point 1 est un pôle simple de ζ. Par conséquent, si pour tout z ∈ Π 1 et tout n 0, on pose a n (z) = (-1) n n! +∞ k=1 (ln k) n k z

Remarque 6 .

 6 -Ce qui précède montre que les fonctions u → a n (z) (u -z) n pour z ∈ Π 1 , fournissent un prolongement analytique de ζ à C\ ] -∞, 1].

1 k

 1 montrons que la série double de terme général w k,n est absolument convergente. Pour tout entier N 1, x e (ln k)|u-z| = N k=1 1 k x-|u-z| ζ(x -|u -z|) puisque, pour tout u ∈ D(z, x -1), on a |u -z| < x -1 et donc x -|u -z| > 1 ; d'où la convergence absolue souhaitée. Par suite, pour tout u ∈ D(z, x -1), on a :

6. 2

 2 Unicité du prolongement analytique de ζIl s'agit de montrer que si ϕ est une fonction analytique sur C \ {1}, qui est nulle sur Π 1 , alors elle est identiquement nulle.Soit z ∈ C \ Π 1 ; il existe z 0 ∈ Π 1 tel que le segment [z 0 , z] est inclus dans C \ {1}. Comme ϕ est continue, la réunion de tous les segment [z 0 , v] inclus dans [z 0 , z] sur lesquels ϕ = 0 est un segment [z 0 , u] (c'est le plus grand segment d'origine z 0 inclus dans [z 0 , z] sur lequel ϕ = 0). Puisque Π 1 est ouvert, le segment [z 0 , u] n'est pas réduit à un point. Supposons que u = z. Comme ϕ est développable en série entière au voisinage de u, il existe r > 0 et des nombres complexes c n tels que, pour tout v ∈ D(u, r), on a :ϕ(v) = +∞ n=1 c n (v -u) n et comme ϕ(v) = 0 pour tout v ∈ D(u, r) ∩ [z 0 , u],tous les c n sont nuls ; en effet, dans le cas contraire, si p est le plus petit entier tel que c p = 0, alors, pour tout v ∈ D(u, r), on a ϕ(v) = (v -u) p ϕ 1 (v) où ϕ 1 est continue et vérifie ϕ 1 (u) = c p = 0, ce qui entraine qu'il existe un voisinage de u dans lequel ϕ ne s'annule qu'en u, d'où une contradiction (il s'agit là du principe des zéros isolés). Par suite, ϕ est identiquement nulle sur D(u, r), ce qui contredit la définition de u. D'où u = z et ϕ(z) = 0.

2

  Les polynômes de Bernoulli et les formules d'Euler-Maclaurin 2.1 Les polynômes de BernoulliNotons E l'espace vectoriel sur R des polynômes à coefficients réels. L'application L qui a tout polynôme P de E associe le polynôme L(P ) tel que

	∀x ∈ R,	L(P )(x) =

x+1

x P (t) dt est linéaire et préserve le degré ; il s'ensuit que L est un isomorphisme de E dans lui-même. On définit alors la famille {B n ; n 0} des polynômes de Bernoulli comme étant l'image de la base canonique de E par L -1 ; autrement dit, pour tout entier n 0, on a :

∀x ∈ R,

x+1 x B n (t) dt = x n et ceci caractérise B n . Pour tout n 0, le polynôme B n est de degré n et, si n 1, son intégrale sur [0, 1] est égale à 0. Les trois premiers polynômes de Bernoulli sont :

  Montrons que la fonction ζ est analytique sur Π 1 , c'est-à-dire qu'elle est développable en série entière en tout point z ∈ Π 1 . Pour cela, on va montrer que l'on a (1). Soit donc z

	6.1 Analyticité de la fonction ζ

L'article de Yasushi Matsuoka ne semble pas disponible en ligne, mais est consultable dans plusieurs bibliothèques universitaires.