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Topological expansion of unitary integrals and maps

Thomas Buc–d’Alché ∗

Abstract

In this article, we study integrals on the unitary group with respect to the Haar measure.
We give a combinatorial interpretation in terms of maps of the asymptotic topological expan-
sion, established previously by Guionnet and Novak. The maps we introduce – the maps of
unitary type – satisfy Tutte-like equations. It allows us to show that in the perturbative regime
they describe the different orders of the asymptotic topological expansion. Furthermore, they
generalize the monotone Hurwitz numbers.

1 Introduction
In the breakthrough article [BIPZ78], Brézin and al. used random matrix theory to address the
problem of enumeration of maps, graphs embedded in surfaces up to homeomorphisms. The topo-
logical properties of Feynman diagrams had previously been shown to be critical in the work of ’t
Hooft [Hoo74], thus relating the combinatorics of maps to field theory (see also the review article
[BIZ80]). For instance, the planar diagrams give the leading order in the expansion of physically
significant quantities.

The random matrix approach to the enumeration of maps pioneered by Brézin and al. subse-
quently found many applications. Harer and Zagier used the same approach to study the topological
properties of the moduli space of curves [HZ86]. In the celebrated article [Kon92], Kontsevitch used
matrix integrals to solve Witten’s conjecture. See also [DFGZJ95] for a review of the application of
random matrix theory to combinatorial problems appearing in 2D gravity. More generally, random
matrices provide a powerful tool to address hard combinatorial problems such as the problem of
the enumeration of Riemann surfaces, see the work of Eynard [Eyn16]. For another approach on
the enumeration of maps, see for instance [BDFG02].

In all the problems above, the matrix models used are related to the Gaussian Unitary Ensemble
(GUE). Let dM =

∏
i dMii

∏
i<j d Re(Mij)d Im(Mij) be the Lebesgue measure on the space of

Hermitian matrices HN and V be a polynomial called the potential. We consider the measure

µNGUE,V =
1

ZNGUE,V
e−N TrV (M)−N2 TrM2

dM,

where the normalization constant is the partition function

ZNGUE,V =

∫
HN

e−N TrV (M)−N2 TrM2

dM.
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Many relevant quantities, such as the partition function can be expressed as a formal series of
maps using Wick’s formula (see [Zvo97] for an introduction). For instance for V (M) = tM4, we get

lnZNGUE,tM4 =
∑
g≥0

N2−2g
∑
n≥0

(−t)n

n!
M(g)

GUE,n(x4) ,

where M(g)
GUE,n(x4) is the number of connected maps of genus g with n vertices, all of them of

degree 4. Notice that the term of order N2−2g in this expansion is a generating series of maps of
genus g. We call such an expansion a (formal) topological expansion.

In general, the above equality holds in the sense of formal power series, see [Eyn11] for instance.
By the above equality, we mean that the derivatives with respect to t at t = 0 of the left and right
sides of the equation above coincide. In fact, the series of maps on the right side may not converge
in general.

We can replace this divergent series with an asymptotic expansion asN →∞, where the equality
holds up to an error of order N−p, for some integer p. Ercolani and McLaughlin obtained such an
expansion in a one-matrix model, for a potential whose coefficients are close to zero [EM02]. The
case with several random matrices was studied by Guionnet and Maurel-Segala [GMS05, GMS07],
and Maurel-Segala [MS06]. More complicated models involving not only a matrix from the GUE
but also deterministic matrices, sometimes called models with external sources, have been studied,
see [BH16].

The multi-matrix models display much more variety. As for the one-matrix models, they were
first studied by physicists, see the reviews [GPW91, DFGZJ95]. From an analytical point of view,
they are harder to solve than one-matrix models, see for instance the works of Mehta [Meh81], and
from a combinatorial point of view, they allow to address a wealth of combinatorial problems as
they are related to the enumeration of colored maps, see for instance [GMS05].

In this article, we establish a similar link between integrals of unitary matrices and the com-
binatorics of some maps. More precisely, we introduce new maps, the maps of unitary type, that
describe the topological expansion. These maps allow us to relate the Weingarten calculus and the
Dyson-Schwinger equation – two important ways to study unitary integrals. In a particular case,
the maps of unitary type are related to the Hurwitz numbers. In this way, we generalize part of
the results obtained in [GGPN11], that relate a particular integral, the HCIZ integral, to Hurwitz
numbers.

We introduce some notation. We consider matrices of dimension N ∈ N∗ = {1, 2, 3, . . .}. We
denote by TrA =

∑N
i=1Aii the trace of a matrix A. Notice that Tr depends on the dimension N .

The conjugate transpose of a matrix M is denoted by M∗. Let p ∈ N∗. For all N ≥ 1, we fix p
deterministic matrices AN1 , . . . , ANp of size N ×N . The matrix UN will be a unitary matrix of size
N × N , i.e. an element of the unitary group U(N), and (UN )∗ = (UN )−1 will be its conjugate
transpose.

Let dUN be the Haar measure on the unitary group U(N), and V be a non-commutative
polynomial in several variables. The measure µNV is given by

dµNV (UN ) =
1

ZNV
exp

(
N TrV

(
UN , (UN )∗, AN1 , (A

N
1 )∗, . . . , ANp , (A

N
p )∗

))
dUN , (1)

where the partition function ZNV is

ZNV =

∫
U(N)

exp
(
N TrV

(
UN , (UN )∗, AN1 , (A

N
1 )∗, . . . , ANp , (A

N
p )∗

))
dUN . (2)
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We will evaluate all non-commutative polynomials at the matrices UN , (UN )∗, AN1 , (A
N
1 )∗, . . . , ANp , (A

N
p )∗

and will omit writing this explicitly in the sequel, e.g. writing Tr(V ) to mean Tr
(
V (UN , (UN )∗, AN1 , . . . , A

N
p )
)
.

In Section 5, we will consider measures of the form

1

ZNV
exp(N TrV )dUN1 · · · dUNn ,

where V is a noncommutative polynomial that depends on UN1 , . . . , UNn , all independent and Haar-
distributed.

We will assume the two following hypotheses.

Hypothesis 1.1. For all N ≥ 1 and for all U1, . . . , Un ∈ U(N)n, TrV is real.

Hypothesis 1.2. For all N ≥ 1 and for all 1 ≤ i ≤ p, ‖ANi ‖ ≤ 1, where ‖ · ‖ is the operator norm.

Hypothesis 1.1 implies that the measure µNV is a probability measure, and in particular that
ZNV ∈ (0,+∞).

We write the potential V as a sum of monomials qi with complex coefficients zi, V =
∑
i ziqi.

Thus, we will sometimes consider the partition functions, cumulants, etc. as functions of z =
(z1, z2, . . .). Notice that for generic qi’s, TrV might be real for only specific values of z.

Notice that when considering the partition function with potential V = tAUNB(UN )∗, where
t ∈ C and A,B are self-adjoint matrices, we recover the Harish-Chandra-Itzykson-Zuber (HCIZ)
integral

ZNV =

∫
U(N)

exp
(
tN Tr

(
AUNB(UN )∗

))
dUN ,

which was first studied by Harish-Chandra [Har57] and Itzykson and Zuber [IZ80], and whose
asymptotics have been since investigated, see [ZJZ03, GGPN14, GN15, Nov20].

We will compute joint moments and cumulants (see Definition 2.1) of the random variables
Tr(P1), . . . ,Tr(Pl) under µNV (for V small), where the Pi are non-commutative polynomials.

In [CGMS09], the first-order asymptotics of partition functions was studied. In [GN15], it
has been shown that the joint cumulants admit an asymptotic expansion as N → ∞, when the
coefficients of the potential V are small enough.

The goal of this article is to give a combinatorial interpretation of the coefficients of this ex-
pansion. We show that unitary matrix integrals enumerate a particular family of maps, which
we call maps of unitary type. They are introduced in Section 3.2. This interpretation links the
Dyson-Schwinger equation, which is satisfied by sums of maps of unitary type, and the Weingarten
calculus studied first by Weingarten [Wei78], and then by [Sam80], whose results were rediscovered
and expanded upon by Collins [Col03] and Collins and Śniady [CS06]. See [CMN22] for a review.

Expansions in terms of combinatorial objects have already been introduced for unitary matrices.
For instance, in the case of the HCIZ integral, expansions for the free energy using double Hurwitz
numbers are computed in [GGPN11]. In [CGMS09], the leading order of the expansion of unitary
integrals is expressed in terms of maps with “dotted edges”. However, to our knowledge, no interpre-
tation of these expansions using maps has been obtained at all orders for the unitary integrals we
consider. As an interesting particular case, when considering alternated polynomials (see Definition
3.39), the combinatorics of maps of unitary type is related to triple Hurwitz numbers.
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In the case of the GUE, integrals of random matrices and enumeration of maps are related by
the Wick formula. In the case of unitary matrices, the Wick formula is replaced by Weingarten’s
formula.

In Section 2, we express joint moments of random variables Tr(Pi), for non-commutative poly-
nomials Pi, using the Weingarten formula. In the case where the potential V = 0, we can express
such moments as weighted sums of permutations. In Section 3, we recall a few notions on maps
and introduce the maps of unitary type, which are our main combinatorial tools. This allows us to
deduce a topological expansion for the joint cumulants in the case of no potential (i.e. V = 0). To
address the general case V 6= 0, we introduce generating series of maps of unitary type of the form

M(g),N
V,l (P1, . . . , Pl) =

∑
n∈Nk

zn

n!
×
∑

wN (C,n, V, P1, . . . , Pl),

where the second sum is on a set of connected maps of unitary type C of genus g which depends
on V, P1, . . . , Pl,n. The term wN (C,n, V, P1, . . . , Pl) is a weight which depends on the size N , C, n
and on the polynomials V, P1, . . . , Pl. See Definition 3.38.

In Section 4, we describe a decomposition of maps of unitary type, which can be interpreted as
a cutting procedure. It allows us to deduce induction relations – similar to the topological recursion
of Eynard and Orantin, see [EO08] – on weighted sumsM(g),N

V,l of maps of unitary type of a given
genus g. This decomposition is reminiscent of a procedure introduced by Tutte [Tut68]. In Section
5, we extend the results obtained so far to the case of integrals over several independent random
unitary matrices UN1 , . . . , UNn .

It turns out that the induction relations obtained in Section 4 are related to the Dyson-Schwinger
lattice. The Dyson-Schwinger lattice (see [GN15]) is a family of equations relating cumulants
together, which generalize the Dyson-Schwinger equation (see Equation (25)). This equation admits
under some hypotheses a unique solution [CGMS09]. Furthermore, in [GN15], the Dyson-Schwinger
lattice has been used to establish the existence of an asymptotic expansion of the cumulants, when
N → ∞. Let us assume Hypotheses 1.1 and 1.2, and that the joint law of the matrices ANi ,
tr admits an asymptotic expansion as N → ∞. For all h, we have an asympotic expansion for
the renormalized joint cumulants N l−2WN

V,l(P1, . . . , Pl) (introduced in Definition 2.3) when the
coefficients of the potential V are small enough

N l−2WN
V,l(P1, . . . , Pl) =

h∑
g=0

τVl,g(P1, . . . , Pl)

N2g
+ o(N−2h), (3)

where the coefficients τVl,g(P1, . . . , Pl) are uniquely defined by some induction relations.
In Section 6, we use the same techniques to express the terms of this expansion in terms of maps

of unitary type. We thus obtain a topological expansion: the coefficient of 1
N2g in the expansion is

a generating series of weighted unitary type maps of genus g.
We thus improve on the result of [GN15, Theorem 25] by relaxing the hypotheses, showing

that the convergence is uniform in g and l, and by giving a combinatorial interpretation to the
coefficients τVl,g(P1, . . . , Pl).

Theorem 1.3 (Main theorem). Assume that for all N ≥ 1, Tr(V ) is real for all U1, . . . , Un ∈ U(N)n

and that ‖ANi ‖ ≤ 1 for all 1 ≤ i ≤ p.
There exists ε > 0 such that if

‖z‖∞ < ε,
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then for all l ≥ 1, g ≥ 0, and P = (P1, . . . , Pl), we have the asymptotic expansion as N →∞

N l−2WN
V,l(P1, . . . , Pl) =

g∑
h=0

1

N2h
M(h),N

V,l (P1, . . . , Pl) +O
(
N−2g−2

)
.

Notice that we do not require the trace Tr to have an asymptotic expansion as in [GN15,
Theorem 25].

An interesting particular case described in Section 3.6 is when all the polynomial involved are
alternated, see Definition 3.39, that is if they can be written as

P = BN1 U
NCN1 (UN )∗ · · ·BNmUNCNm (UN )∗,

where BNi and CNi for i = 1, . . . ,m are square N × N matrices. This is the case of the HCIZ
integral in particular.

In that case, our sums of maps are related to the triple Hurwitz numbers, which count ramified
coverings of the sphere with at most three nonsimple ramification points. We thus generalize the
link between the (double) Hurwitz numbers and the HCIZ integral, which had already been studied
in [GGPN14]. See also [CGL20] for a study of the HCIZ integral in the tensor setting.

In Section 2, we give definitions and recall important consequences of the Weingarten calculus.
In Section 3, we introduce the maps of unitary types and show that they describe the topological
expansion of cumulants with respect to the Haar mesure. When the polynomial are alternated, these
maps are related to the triple Hurwitz numbers. In Section 4, we give a decomposition of maps of
unitary type and deduce induction relations on sums of maps of a given genus and with prescribed
vertices, in the spirit of the work of Tutte [Tut68]. In Section 6, we study the Dyson-Schwinger
equation and give the proof of the main result.

Acknowledgement. I thank my PhD advisors, Alice Guionnet and Grégory Miermont for count-
less tips and advice during this project. This project was supported by ERC Project LDRAM :
ERC-2019-ADG Project 884584.

2 Weingarten calculus
In this section, we first give a few definitions and introduce notation pertaining to moments and
cumulants of traces of random matrices. Then, we give a short review of the Weingarten calculus.
This allows us to give expression for the expectation of a product of traces of monomials in the
matrices UN , (UN )∗, ANi , (A

∗)N .

2.1 Moments and cumulants
Let us consider l ≥ 1 non-commutative polynomials P1, P2, . . . , Pl in the variables u, u−1, and ai, a∗i
for 1 ≤ i ≤ p, with p ∈ N. We define the involution ∗ such that u∗ = u−1, for 1 ≤ i ≤ p,
(ai)

∗ = a∗i , and for any letters X1, . . . , Xk in {u, u∗, ai, a∗i : 1 ≤ i ≤ p} and z ∈ C, we have
(zX1 · · ·Xk)∗ = z∗X∗k · · ·X∗1 . We denote the unital ∗-algebra generated by such polynomials by

A = C〈u, u−1, ai, a
∗
i ; 1 ≤ i ≤ p〉.

5



The unital ∗-algebra generated by the non-commutative polynomials in a1, a
∗
1, . . . , ap, a

∗
p only is de-

noted by B. We will evaluate all polynomials Pi at the matrices UN , (UN )∗, AN1 , (A
N
1 )∗, . . . , ANp , (A

N
p )∗

and will omit writing this explicitly in the sequel, e.g. writing Tr(P ) to mean Tr
(
P (UN , (UN )∗, AN1 , . . . , A

N
p )
)
.

Notice that there is no relation between the formal variables u and u−1, or ai and a∗i for i ∈ N∗
(except for those involving ∗). We will denote by tr = 1

N Tr the normalized trace.
In this article, we study the random variables Tr(P1), . . . ,Tr(Pl), seen as functions of UN , under

the measure µNV (see (1)).
We will be interested in computing the joint moments and cumulants of these random variables

defined as follows.
To state the definition, we introduce some notation about partitions. We denote by P(I) the

set of partitions of a finite set I. In particular, for n ∈ N∗, we denote the set {1, 2, . . . , n} by [n].
We denote the cardinality of a finite set I by |I|. Given a partition π ∈ P(I), |π| is the number of
blocks of π.

Definition 2.1. Let k ∈ N∗. The joint moment of the complex random variables X1, . . . , Xk is

mk(X1, . . . , Xk) = E [X1X2 · · ·Xk] .

The joint cumulant of the complex random variables X1, . . . , Xk is ck(X1, . . . , Xk), defined
recursively by

ck(X1, . . . , Xk) = mk(X1, . . . , Xk)−
∑

π∈P([k])
|π|≥2

∏
B∈π

c|B|(Xi : i ∈ B) .

Notice that both the joint moments and cumulants are symmetric, multilinear functions. The
symmetry, which can be proven inductively, makes the expression c|B|(Xi : i ∈ B) above unambigu-
ous.

Remark 2.2. The cumulants can also be defined as the coefficients of the series of the logarithm of
the exponential generating series of the moments∑

n≥0

zn

n!
cn(X1, . . . , X1) = ln

∑
n≥0

zn

n!
mn(X1, . . . , X1) .

Definition 2.3. For P1, . . . , Pl ∈ A, we write the joint moments of the traces of Pi’s under µNV as

αNV,l(P1, . . . , Pl) = ml(Tr(P1), . . . ,Tr(Pl)) =

∫
U(N)

Tr(P1) · · ·Tr(Pl)dµ
N
V .

We write the joint cumulants under µVN as

WN
V,l(P1, . . . , Pl) = cl(Tr(P1), . . . ,Tr(Pl)) ,

and introduce the renormalized cumulants

W̃N
V,l(P1, . . . , Pl) = N l−2cl(Tr(P1), . . . ,Tr(Pl)) .
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In Section 6, we will discuss an asymptotic expansion (as N →∞) for the joint cumulants. For
now, we study the moments for N fixed.

When V = 0, we can compute directly the moments using Weingarten’s formula, see Subsection
2.2. When V 6= 0, we can compute the cumulants using the free energy FNV defined below.

To this end, we consider the partition function ZNV . Recall that V =
∑k
i=1 ziqi is the potential,

a sum of k polynomials q1, . . . , qk ∈ A with complex coefficients z1, . . . , zk. We have

ZNV =

∫
U(N)

exp(N Tr(V ))dUN ,

and we define the free energy as

FNV =
1

N2
lnZNV . (4)

The free energy is always well defined when TrV is real.
In the expression of the partition function, we can develop the exponential as a series and

exchange the sum and the integral:

ZNV =

∫
U(N)

∑
n1,...,nk≥0

k∏
i=1

(Nzi Tr(qi))
ni

ni!
dUN

=
∑

n1,...,nk≥0

k∏
i=1

(Nzi)
ni

ni!

∫
U(N)

Tr(q1)
n1 · · ·Tr(qk)

nkdUN ,

in the second line, we used that U(N) is compact so that the Tr qi are bounded. Notice that this
expression is valid for all z, even if TrV is not real.

We introduce the notation z = (z1, . . . , zk), and for n = (n1, . . . , nk) ∈ Nk, zn =
∏k
i=1 z

ni
i and

n! =
∏k
i=1 ni!. Then,

ZNV =
∑
n≥0

Nn
∑
n∈Nk

n1+···nk=n

zn

n!
αN0,n(q1, . . . , q1︸ ︷︷ ︸

n1times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nktimes

),

and therefore the partition function is a generating series of the moments with respect to the Haar
measure (i.e. with V = 0).

Similarly, the free energy is a generating series of the renormalized cumulants for V = 0 (see
[Bon15, Theorem 1.3.3, 4.])

FNV =
∑
n≥1

∑
n∈Nk

n1+···nk=n

(Nz)n

n!

1

N2
WN

0,n(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

)

=
∑
n≥1

∑
n∈Nk

n1+···nk=n

zn

n!
W̃N

0,n(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

)

Notice that the free energy a priori exists only for z sufficiently small. Indeed, ZNV is defined for
all z but is nonzero on a open neighborhood of 0 which depends on N . In particular, the radius of
convergence of FNV a priori depends on N .
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Notice that by modifying the potential V and differentiating, we have

∂

∂t

∣∣∣
t=0

FNV+tP =
1

N

∫
U(N)

Tr(P )dµNV (UN ) =
1

N
αNV,1(P ) = W̃N

V,1(P ).

In general, we can prove by induction the following lemma.

Lemma 2.4. The renormalized joint cumulants are given by

W̃N
V,l(P1, . . . , Pl) =

∂l

∂t1∂t2 · · · ∂tl

∣∣∣
t1=...=tl=0

FNV+
∑
i tiPi

.

Lemma 2.4 implies that for a fixed N , there exists a neighborhood U0 ∈ Ck of 0 such that for
z ∈ U0,

W̃N
V,l(P1, . . . , Pl) =

∑
n≥0

∑
n∈Nk

n1+···nk=n

zn

n!
W̃N

0,n(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl). (5)

In the next subsections, we compute the moments with respect to the Haar measure. From these
moments and Definition 2.1, we can compute the cumulants with respect to the Haar measure. The
expression (5) motivate the introduction in Section 3.5 of a formal sum. The first terms of this sum
are shown to give the asymptotic expansion of the cumulants in Theorem 1.3.

2.2 The Weingarten formula
To compute the moments with respect to the Haar measure, the key tool is Weingarten’s formula,
first obtained in [Wei78], which expresses the average of coefficients of a unitary matrix in terms of
the Weingarten function defined below (Definition 2.5). See [CMN22] for a review on the Weingarten
calculus.

The Weingarten formula involves a sum over permutations. Let us fix some notation pertaining
to permutations. For I a finite set, we denote by S(I) the set of permutations on this set. In
particular, Sn = S([n]) is the set of permutations on [n] = {1, 2, . . . , n}. A permutation σ admits
a cycle decomposition whose set of cycles is denoted by Cycles(σ) and whose number of cycles is
denoted by c(σ).

We also introduce the modified traces Trσ(M) and trσ(M) for σ ∈ S(I) and M = (Mi, i ∈ I)
a tuple of matrices, defined by

Trσ(M) =
∏

c∈Cycles(σ)

Tr

(−→∏
i∈cMi

)
,

trσ(M) =
∏

c∈Cycles(σ)

tr

(−→∏
i∈cMi

)
= N−c(σ) Trσ(M),

(6)

where, if c = (i1 . . . ik) is a cycle of the permutation σ, the notation
−→∏
i∈cMi, stands for the non-

commutative product Mi1Mi2 · · ·Mik . Notice that such a non-commutative product is defined up
to circular permutation. The trace property ensures that the quantity Trσ(M) is well defined.
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Definition 2.5. Let q ∈ N∗. The Weingarten function WgN : Sq → C is defined for all π ∈ Sq

by

WgN (π) =

∫
U(N)

(UN )11 · · · (UN )qq(UN )1π(1) · · · (UN )qπ(q)dU
N .

This function can also be defined using characters of the symmetric group (see [CS06]).
The invariance of the Haar measure by multiplication by permutation matrices implies that the

Weingarten function is invariant by conjugation, i.e. for all σ, π ∈ Sq we have

WgN (σπσ−1) = WgN (π).

Theorem 2.6. (Weingarten’s formula, see [Col03] and [CS06])
Let UN be a Haar-distributed unitary matrix of size N×N and i = (i1, i2, . . . , iq), j = (j1, j2, . . . , jq), i

′ =

(i′1, i
′
2, . . . , i

′
q′) and j = (j′1, j

′
2, . . . , j

′
q′) be elements of [N ]q or [N ]q

′
for q, q′ ≥ 1.∫

U(N)

(UN )i1j1 · · · (UN )iqjq (U
N )i′1j′1 · · · (UN )i′

q′ j
′
q′

dUN = δq,q′
∑

ρ,σ∈Sq

q∏
k=1

δik,σ(i′k)δjk,ρ(j′k)WgN (σρ−1).

(7)

Before giving the expression for the moments with respect to the Haar measure αN0,l(P1, . . . , Pl),
let us make a simplifying assumptions on our polynomials Pi.

We introduce the set Y of words in the letters a1, a
∗
1, . . . , ap, a

∗
p. We assume that for all i, Pi

can be written uniquely as

Mi,1u
εi,1Mi,2u

εi,2 · · ·Mi,diu
εi,di , (8)

where Mi,j is either the empty word or an element of Y, di ≥ 1, and εi = (εi,1, . . . , εi,di) ∈ {±1}di .
We write X the set of such monomials.

We have Y ⊂ X . Notice that A is generated by the elements of X up to cyclic permutation of
the factors in a monomial.

The integer di, that we will sometime write degPi, is the degree of the monomial Pi. Notice
that there is no relation between the formal variables, in particular between u and u−1 (except for
those involving ∗). Therefore, the degree of (8) is defined by counting the total number of letter u
or u∗ in a word. In particular, deg(uu−1) = 2.

Definition 2.7. With P1, . . . , Pl ∈ X , and with the notation (8), we set

• P = (P1, . . . , Pl),

• MP = (Mi)i∈[
∑
i degPi] = (M1,1, . . . ,M1,d1 , . . . ,Ml,1, . . . ,Ml,dl),

• εP = (ε(i))i∈[
∑
i degPi] = (ε1,1, . . . , ε1,d1 , . . . , εl,1, . . . , εl,dl).

Notice that we change the indices of the monomials Mi,j and of εi,j, by setting for all 1 ≤ i ≤ k, 1 ≤
j ≤ di, Md1+···+di−1+j = Mi,j and ε(d1 + · · · di−1 + j) = εi,j.

We set degP =
∑
i degPi.

Furthermore, we define the permutation

γP = (1 . . . d1)(d1 + 1 . . . d2) · · · (dl−1 + 1 . . . dl). (9)

9



Remark 2.8. Notice that by fixing the notation MP , εP , γP , we fix a labelling of the factors of the
polynomials of P .

For any permutation σ ∈ SdegP , we can replace γP ,MP = (Mi), εP = (ε(i)) by γ′ =
σ−1γP σ,M

′ = (M ′i) = (Mσ(i)), ε
′ = (ε′(i)) = (ε(σ(i))). This new data describes the same polyno-

mials.

We can assume all the polynomials are of the form (8) without loss of generality as αNV,l is
multilinear and satisfies the trace property

αNV,l(P1, . . . , Pi−1, PiQ,Pi+1, . . . , Pl) = αNV,l(P1, . . . , Pi−1, QPi, Pi+1, . . . , Pl) ,

as Tr(PiQ) = Tr(QPi).
Furthermore, if there exists i such that Pi contains no letter u nor u−1, we can factor the term

Tr(Pi) out of the moment.
The formula for the moments with respect to the Haar measure involves permutations belonging

to the set S(ε)(I) ⊂ S(I) of permutations (introduced in [MSS07]), for ε ∈ {±1}I .

Definition 2.9. Let ε ∈ {±1}I . The set S(ε)(I) ⊂ S(I) is the set of permutations π ∈ S(I) such
that

π
(
ε−1(+1)

)
= ε−1(−1) .

Furthermore, we define π(ε) = π2|ε−1(+1) ∈ S(ε−1(+1)).

Notice that the set S(ε)(I) is empty if |ε−1(+1)| 6= |ε−1(−1)|.

Example 2.10. For instance, if ε = (+1,+1,−1,+1,−1,−1), then π = (1 3 4 6)(2 5) ∈ S
(ε)
6 , and

π(ε) = (1 4)(2).

The notation of Definitions 2.7 and 2.9 allow us to express the moments in a compact way.

Proposition 2.11 ([MSS07, Proposition 3.4]). Let P = (P1, . . . , Pl) ∈ X l. We have

αN0,l(P ) = αN0,l(P1, . . . , Pl) =
∑

π∈S(εP )

degP

TrγP π−1(MP )WgN (π(εP )).
(10)

2.3 Expansion of the Weingarten function
We wish to express the moments and cumulants uniquely in terms of combinatorial objects and
traces. To this end, we now present a result of Novak [Nov10] expressing the Weingarten function
in terms of walks on the Cayley graph of Sn generated by the transpositions.

Definition 2.12. The value of a transposition τ = (i j) ∈ S(I), where I is a finite subset of N∗,
is val(τ) = max{i, j}.

Definition 2.13. Let ρ and σ be in S(I), with I a finite subset of N∗.
A (weakly) monotone walk with r steps on S(I) from ρ to σ is a tuple (τ1, . . . , τr) of

transpositions of S(I) such that

• τr · · · τ1ρ = σ, and

10



• val(τ1) ≤ · · · ≤ val(τr).

We denote the set of such walks by
−→
Wr(ρ, σ), and we define −→w r(ρ, σ) as the cardinality of the set

−→
Wr(ρ, σ).

Proposition 2.14 ([Nov10, Theorem 3.1]). Let π ∈ Sq with N ≥ q. We have

WgN (π) =
∑
r≥0

(−1)r

Nr+q
−→w r(Id, π),

and the series is absolutely convergent.

This allows to prove the following lemma about monotone walks. This Lemma will be useful to
prove Lemma 3.34.

Lemma 2.15. Let σ and ρ in Sq. We have for all r ≥ 0,

−→w r(Id, ρ) = −→w r(Id, σ−1ρσ).

Proof. Consider the generating series

G(z) =
∑
r≥0

−→w r(Id, ρ)zr,

H(z) =
∑
r≥0

−→w r(Id, σ−1ρσ)zr.

By Proposition 2.14, G and H are absolutely convergent and hence analytic functions of z, with
radius of convergence greater than 1/q. Furthermore, we have for N ≥ q that NqWgN (ρ) = G(−1

N )
and NqWgN (σ−1ρσ) = H(− 1

N ).
Weingarten’s function is invariant by conjugation, so H(− 1

N ) = G(− 1
N ) for all N ≥ q. Thus

G(z) = H(z) for all |z| < 1
q by analyticity since {1/N}N≥q has an accumulation point.

Proposition 2.14 and Proposition 2.11 imply the following Proposition (recall notation from
Definition 2.7).

Proposition 2.16. Let N ≥ 1 be an integer, P = (P1, . . . , Pl) ∈ (X )l with m = degP /2 ≤ N .
The moments admits the expansion

αN0,l(P1, . . . , Pl) =
∑
r≥0

(−1)r

Nr+m

∑
π∈S(εP )

2m

Trγ(P )π−1(MP )−→w r(Id, π(εP )).

Moreover, the series is absolutely convergent.

3 Maps and maps of unitary type
In this section, we introduce combinatorial objects, the so-called maps of unitary type, that will be
convenient to express the moments αN0,l, and then the cumulants WN

0,l. These maps generalize the
maps appearing in the Gaussian case.
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3.1 Maps
First, we give a few definitions regarding maps.

Definition 3.1. An embedded graph is a pair (Γ, S), where S is a compact topological surface
and Γ is a graph (with possibly loops and multiple edges) embedded in S, so that we write Γ ⊂ S,
such that

• the vertices of Γ are distinct points on the surface S,

• the edges of Γ are simple paths on S that can intersect only at their endpoints,

• the complement S \ Γ of the graph is a disjoint union of simply connected open sets. Each of
these connected components is called a face.

The genus of an embedded graph is the genus of the surface S.
An embedded graph will be said to be oriented if Γ is an oriented graph.

We shall sometimes refer to Γ and S as the underlying graph and surface of an embedded graph.

Remark 3.2. In this article, the embedded graphs are in general disconnected. We will specify it
when the maps we consider are connected.

Definition 3.3. Two (oriented or unoriented) embedded graphs (Γ1, S1) and (Γ2, S2) are said to
be isomorphic if there is a orientation-preserving homeomorphism h : S1 → S2 such that h|Γ is an
isomorphism of (oriented or unoriented) graphs.

Definition 3.4. A map (or oriented map) is an equivalence class of embedded graphs (or oriented
embedded graphs) up to isomorphism.

As the genus of a surface is a topological invariant, the genus of a map is the genus of any of its
representative.

Definition 3.5. A face will be said to be incident to a vertex or an edge if the vertex or the edge
belongs to the boundary of the face.

It will be convenient to regard each edge of a map as being made of two half-edges. As a part
of an embedded graph they can be described as follows. Each edge e = {v, v′} (with possibly
v = v′) can be parametrized by γe : [0, 1] → S, with γe(0) = v and γe(1) = v′. The two half-edges
that compose e are h = γe([0, 1/2]) and h′ = γe([1/2, 1]). We will say that h (respectively h′) is
connected to v (resp. v′). As we will be concerned only with combinatorial data, the choice of
parametrization γe will be unimportant. When going from the vertex of the half-edge to the other
end of the half-edge (connected to another half-edge), we can distinguish a left side and a right side
(see Figure 1).

left

right

left

right

Figure 1: The left and right side of a half-edge, and of an ingoing half-edge.
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We label the half-edges of a map C from 1 to 2m, where m is the number of edges of C. By
convention, we write each label at the left of its half-edge. See Figure 2.

In an oriented map with labelled half-edges, the edges can be represented as an ordered pair
of two half-edges. The first half-edge is connected to the first vertex of the edge and is said to be
outgoing. The second half-edge is connected to the second vertex of the edge and is said to be
ingoing.

1

2
3

4
5

6

7
8

9

10

11
12

Figure 2: A map with labelled half-edges.

These labels allow us to define three permutations that encode the labelled map, see [LZ04].

Definition 3.6. Let C be a map with 2m labelled half-edges. We define the three permutations
σC , αC , ϕC ∈ S2m as follows.

• Let i ∈ [2m]. The half-edge labelled by i is attached to a vertex vi. Starting from the half-edge
i and turning in the counterclockwise direction around vi, the next half-edge we encounter is
labelled j (possibly i = j). We set σC(i) = j.

• Let i ∈ [2m]. The half-edge labelled by i is attached to another half-edge labelled j. We set
αC(i) = j.

• Let i ∈ [2m]. The half-edge labelled i has a face fi to its left. Starting from the half-edge i,
we turn in the counterclockwise direction around the face fi. The next half-edge we encounter
with fi to its left is labelled j. We set ϕC(i) = j.

The three permutations σC , αC , ϕC constitute the permutational model of C.

The permutation σC describes how the half-edges are arranged around a vertex (we call this
data “the local structure of the map”), and αC describes how to attach them. The permutation αC
only depends on the underlying graph of the map.

Notice that αC belongs to the set of involutions without fixed points

I2m = {α ∈ S2m : α2 = Id,∀i ∈ [2m], α(i) 6= i}.

Example 3.7. The map C of Figure 2 is described by

σC = (1 2 3)(4 5)(6 7 8)(9)(10 11 12)

αC = (1 12)(2 11)(3 4)(5 6)(7 10)(8 9)

ϕC = (1 11)(2 10 6 4)(3 5 8 9 7 12).

For an oriented map, we must also describe the orientation of each half-edge.
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Definition 3.8. Let C be an oriented map with 2m labelled half-edges. We define εC = (ε1, . . . , ε2m) ∈
{±1}2m as follows. For all i ∈ [2m], we set εi = +1 if the half-edge labelled i is outgoing and εi = −1
if the half-edge labelled i is ingoing.

Such an ε belongs to the set E2m = {ε ∈ {±1}2m :
∑2m
i=1 εi = 0}.

In the case of an oriented map, α is in the set I(ε)
2m of the permutations of I2m such that for all

i ∈ [2m], ε(α(i)) = −ε(i).

Lemma 3.9. [LZ04, Proposition 1.3.16] Let C be a map with labelled half-edges. We have

ϕασ = Id .

Conversely, we can reconstruct a map from two permutations σ ∈ S2m, α ∈ I2m. The following
theorem is essentially a restatement of a result obtained in [Edm60].

Theorem 3.10. Let m ≥ 1, σ ∈ S2m and Cm,σ be the set of maps with labelled half-edges C such
that σC = σ. Then, the mapping

Cm,σ → I2m

C 7→ αC ,

is a bijection.

This theorem shows that once the local structure of the map (and a labelling of the half-edges)
is fixed, the map only depends on the underlying graph.

We have the corresponding result for oriented maps.

Theorem 3.11. Let m ≥ 1, σ ∈ S2m, ε ∈ E2m and Cm,ε,σ be the set of oriented maps with 2m
labelled half-edge C such that σC = σ and εC = ε. Then,

Cm,ε,σ → I(ε)
2m

C 7→ αC ,

is a bijection.

3.2 Maps of unitary type
We have just seen how to describe a map with permutations. We now define a particular type
of map, which we call map of unitary type, whose edge structure is described by a permutation
π ∈ S

(ε)
2m for some ε and m ≥ 1 and a monotone walk (τ1, . . . , τr) ∈

−→
Wr(Id, π(ε)).

Definition 3.12. A vertex in an oriented map will be said to be alternated if when going around
this vertex the half-edges connected to it are alternatively ingoing and outgoing.

Definition 3.13. Let I be a finite subset of N∗ and r ∈ N. A map of unitary type with labels
in I with r black vertices is an oriented map with vertices colored in white or black such that

1. there are r black vertices, which are alternated of degree 4 and numbered from 1 to r;

2. there are |I| half-edges that are connected to white vertices. We call these half-edges white
half-edges. Each element of I labels exactly one white half-edge;
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3. if an oriented edge connects the black vertex numbered k to the black vertex numbered l, with
the orientation from k to l, then k < l.

See Figure 3 for an example.

Remark 3.14. Notice that condition 3. in Definition 3.13 implies that each face is incident to at
least one white vertex. Indeed, if it were not the case, there would be a face incident to only black
vertices, numbered n1 < n2 < . . . < nk, with nk < n1, a contradiction.

1

2

34

5

6

7

8

1

2

Figure 3: A unitary type map. The numbers in red are the numbers of the black vertices, the
labels in black are the labels of the white half-edges.

Remark 3.15. The maps of unitary type are very similar to the maps introduced in [CGMS09] to
describe the leading term in the asymptotics of the cumulants when N →∞. In fact, the two kinds
of maps in genus 0 are related by a surgery that transforms black vertices of unitary maps into
“dotted edges” of the maps from [CGMS09]. Here, we consider the non-planar cases as well.

We denote by wk(C) the white vertex in the unitary type map C connected to the half-edge
labelled k. We will omit the notation C if there is no ambiguity.

Notice that in a map of unitary type, the half-edges connected to black vertices are not labelled.
We now explain how to label them. Consider, in a map of unitary type, an unlabelled half-edge
which we denote by h. This half-edge has a face f to its left (see Figure 1). Starting from h, we
turn around the face in the clockwise direction until we encounter a labeled half-edge connected to
a white vertex, which is labelled by i. We assign to h the label i. See Figures 3 and 4.

Notice that by Remark 3.14, all faces are incident to at least one white vertex, so all unlabelled
half-edges can be labelled by this procedure, in a unique way.

The following Lemma will be used to prove Lemma 3.22.
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1

2

34

5

6

7

8

2
2

4

1 7

7

8
6

1

2

Figure 4: Procedure to assign labels to half-edges
The newly labelled half-edges are in blue.

Lemma 3.16. Let h be a half-edge labelled by i. There exists a unique white half-edge h′ labelled
by i. If h is ingoing then h′ is ingoing. If h is outgoing then h′ is outgoing.

Proof. Consider an ingoing half-edge h. The existence and uniqueness of h′ is a consequence of the
definition. If h is a white half-edge, the statement is obvious. If not, then consider the face f to
its left. Starting from h we turn around f in the clockwise direction until we reach a white vertex
w. All the vertices we encounter before w are black. The black vertices are alternated so all the
half-edges such that f is at their left are ingoing as well, and so is the white half-edge h′ that we
reach, whose label is the same as the label of h.

We proceed similarly for outgoing half-edges.

The labels for the edges allow us to define the notion of value of a black vertex.

Definition 3.17. Consider a black vertex b. Let i and j be the labels of the two outgoing half-edges
at b.

The value of the black vertex b is val(b) = max(i, j).

Definition 3.18. A map of unitary type with r black vertices b1, . . . , br numbered respectively
1, . . . , r is nondecreasing if

val(b1) ≤ val(b2) ≤ · · · ≤ val(br).

Example 3.19. Figure 3 displays an example. The labels of the black vertices are in red. The values
of the black vertices s1 and s2 are val(s1) = 2, val(s2) = 6.
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3.3 Permutational model
Similarly as in Section 3.1, we define a permutational model for the maps of unitary type.

Definition 3.20. Let I ⊂ N∗ be finite and r ∈ N. Let C be a map of unitary type with labels in I
and r black vertices.

We define εC = (ε(i), i ∈ I) as follows. If the white half-edge labelled i ∈ I is outgoing, we set
ε(i) = +1, else we set ε(i) = −1.

We define ρC , πC , φC ∈ S(I) and τC = (τ1, . . . , τr) ∈ S(ε−1
C (+1))r as follows.

• Let i ∈ I. The white half-edge hi, labelled i, is connected to a white vertex wi. Starting from
hi, we turn in the counterclockwise direction around wi. Let j be the label of the next half-edge
connected to wi. We set ρC(i) = j.

• Let i ∈ I. The white half-edge hi labelled i is connected to another half-edge hj, which is
labelled by j. We set πC(i) = j.

• Let i ∈ I. The white half-edge labelled i has a face fi to its left. Starting from the half-edge
i, we turn in the counterclockwise direction around the face fi. The next white half-edge with
fi on its left we encounter is labelled j. We set φC(i) = j.

• Let bl be the black vertex numbered l. The outgoing half-edges that are connected to it are
labelled by i and j. We set τl = (i j).

The permutations ρC , πC , φC are the counterparts for maps of unitary type of the permutations
σC , αC , ϕC defined in Definition 3.6.

Example 3.21. For the map in Figure 3, we have r = 2 and

ρC = (1 4 3 7)(5 6)(2 8),

εC = (+1,+1,−1,−1,+1,+1,−1,−1),

τ1 = (1 2), τ2 = (2 6),

πC = (1 7 6 8 2 4)(3 5),

φC = (1)(2)(3 6)(4 8 5)(7).

Lemma 3.22. The permutation πC belongs to S(εC)(I).

Proof. An edge consists of an outgoing half-edge h attached to an ingoing half-edge h′. Assume
that h is white. Let i be the label of h and j be the label of h′. We have π(i) = j. By Lemma 3.16,
j is the label of a white ingoing half-edge. Thus, ε(i) = −1 and ε(j) = +1. We proceed similarly if
h′ is white.

We have the following counterpart of Lemma 3.9

Lemma 3.23. For a unitary type map C, we have ρ−1
C π−1

C = φC.

Proof. Let i ∈ I be the label of a white outgoing half-edge, and f the face at the left of the half-
edge. Starting from the half-edge labelled i, we follow the boundary of the face until we encounter a
white vertex. The last half-edge we traversed, which was ingoing, was labelled by j. This half-edge
is connected to a outgoing half-edge labelled i. By definition, we thus have πC(j) = i. The next
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f

i

i
i

i

j = π−1(i) ρ−1π−1(i)

Figure 5: Proof of Lemma 3.23.

labelled half-edge when going around f in the counterclockwise order is the half-edge following the
half-edge j when turning in the clockwise direction around the white vertex. This next half-edge is
thus labelled ρ−1

C (j) = ρ−1
C π−1

C (i), see Figure 5.
The proof is identical if i if the label of an ingoing half-edge.

Proposition 3.24. Let I be a finite subset of N∗, r ∈ N∗, ρ ∈ S(I), and ε ∈ {±1}I . Let C be a
unitary type map with set of labels I and with r black vertices such that ρC = ρ and εC = ε, and let
τC = (τ1, . . . , τr).

Then, τr · · · τ1 = π
(ε)
C .

Proof. Let k ∈ I be the label of a white outgoing half-edge connected to a vertex wk = u0. Let f
be the face at its right. We construct a path starting from the half-edge labelled k as follows, see
also Figure 6. Consider the edge e1 = (u0, u1) of which the half-edge labelled k is part. If u1 is
white then for all 1 ≤ j ≤ r, τj(k) = k = π

(ε)
C (k).

If u1 is black, we can find vertices u2, u3, . . . , up+1 such that u2, . . . , up are black and up+1 is
white, and (uj , uj+1) follows (uj−1, uj) when going around the vertex uj in the counterclockwise
order. Notice that these edges are all part of the boundary of f .

Let n1, n2, . . . , np be the labels of the black vertices u1, . . . , up, and kj , 1 ≤ j ≤ p + 1 be the
labels of the outgoing half-edges edges (connected to uj−1) in (uj−1, uj). By construction, we have
τnj (kj−1) = kj .

k1 = k

k2

k3

k4n1

n2 n3

l

l

ll

Figure 6: Chain of edges around the face f .

We have τnpτnp−1
· · · τn1

(k) = kp, and by construction of πC , we have πC(k) = π−1
C (kp). Thus

τnpτnp−1
· · · τn1

(k) = π(ε)(k).
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Assume now that τr · · · τ1(k) 6= τnpτnp−1 · · · τn1(k). Let j be the minimal index such that
τj · · · τ1(k) 6= τnp′ · · · τn1(k), with np′ ≤ j < np′+1 (with the convention np+1 = r+ 1). The index j
is minimal so j > np′ (else we would have a contradiction as τj−1 · · · τ1(k) = τnp′−1

· · · τn1
(k)). We

have kp′ = τj−1 · · · τ1(k) = τnp′ · · · τn1
(k). By construction, all the half-edges labelled by kp′ are on

the boundary of a same face f ′, and they follow each other. We have just seen that there is such
an half-edge in the edge between up′ and up′+1. The fact that τj(kp′) 6= kp′ implies that there is
an half-edge labelled kp′ that is connected to the j-th black vertex. However, this edge must be
before (when going around the face f ′) or after the edge (up′ , up′+1) in the boundary of f ′. This
contradicts the fact that if there is an edge going from a black vertex i to a black vertex labelled j
we have i < j, as np′ < j < np′+1.

Definition 3.25. We denote by CrI,ε,ρ the set of nondecreasing unitary type maps C with set of
labels I and with r black vertices such that ρC = ρ and εC = ε.

Similarly, we denote by Cg,I,ε,ρ the set of nondecreasing unitary type maps C with set of labels I
and with genus g such that ρC = ρ and εC = ε.

Theorem 3.26. Let I be a finite subset of the positive integers, r ∈ N∗, ε ∈ {±1}I and ρ ∈ S(I).
The mapping

CrI,ε,ρ →
⋃

π∈S(ε)(I)

{π} ×
−→
Wr(Id, π(ε))

C 7→ (πC , τC)

is a bijection.

Proof. Lemma 3.22 and Proposition 3.24 show that this map has values in
⋃
π∈S(ε)(I){π}×

−→
Wr(Id, π(ε)).

We now construct an inverse mapping. To do so, we explicitely construct a map corresponding
to permutations π and τ = (τ1, . . . , τr). By Theorem 3.10, it suffices to construct from π and τ the
incidence relation of the underlying graph.

To this end, we introduce the set whose elements represent the half-edges Ĩ = {hi : i ∈ I} ∪⋃r
j=1{hj,1, hj,2, hj,3, hj,4}. We can split this set into the set of ingoing and outgoing edges Ĩ =

Ĩin ∪ Ĩout. We have Ĩout = {hi : i ∈ I, ε(i) = +1}∪
⋃r
j=1{hj,2, hj,4}. The elements hj,k represent the

half-edges of the black vertices of the map we are going to construct, and the elements hi represent
the half-edges of the white vertices. We are going to define a labelling function L : Ĩ → I. We set
for all i ∈ I, L(hi) = i.

To construct a map, we use Theorem 3.10. We define two permutations σ, α ∈ S(Ĩ) as follows.
We define ρ̃ ∈ S(Ĩ) by ρ̃(hi) = hρ(i) and the identity otherwise. We set

σ = ρ̃(h1,1 h1,2 h1,3 h1,4) · · · (hr,1 hr,2 hr,3 hr,4) .

The permutation α is given by the following algorithm. Let π ∈ S(ε)(I), and τ = (τ1, . . . , τr) ∈−→
Wr(Id, π(ε)). We consider first the permutation τ1 = (i1, j1), with i1 < j1. We set α1 =
(hi1 h1,1)(hj1,h1,3). We set L(h1,2) = j1 and L(h1,4) = i1. In terms of maps, this procedure
corresponds to connecting two edges to a same black vertex, see Figure 7.

We proceed similarly to construct the black vertices labelled 2, 3, . . . , r from the transpositions
τ2, . . . , τr. At the k-th step, we consider the transposition τk = (ik jk), with ik < jk. There is
only one half-edge h (respectively h′) in Ĩout such that L(h) = ik and αk−1(h) = h (respectively
L(h′) = jk and αk−1(h′) = h′). We set αk = αk−1(hhk,1)(h′ hk,3).
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34
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L(h1,4) = 1

L(h1,2) = 3

h3

h1

h1,1

h1,2

h1,3

h1,4

h2

h6h4

h5

Figure 7: First step of the construction of the permutation α from one transposition τ1 = (1 3),
represented as a map.

The name of the half-edges are in red, and the labels are in black. Here, α1 = (h1 h1,1)(h3 h1,3).

Finally, we connect each remaining outgoing half-edge labelled i to the ingoing half-edge π−1(i).
For all i ∈ I, there is a unique h such that αr(h) = h and L(h) = i. We set αr+1,i = (hhπ−1(i))
and define α = αr

∏
i∈I αr+1,i.

We define ε̃ ∈ {±1}Ĩ by ε̃(i) = +1 if i ∈ Ĩout and ε̃(i) = −1 otherwise.
Theorem 3.10 implies that given σ, α and ε̃, we construct a unique map C̃.
By construction, the resulting map is of unitary type : the vertices attached to the half-edges

hi are the white vertices and the other are the black vertices. The black vertex attached to the
half-edges hj,k is numbered j. Furthermore, the map is constructed such that πC = πC̃ and τC = τC̃ .

We have constructed a right inverse, so the map C 7→ (πC , τC) is surjective.
This map is injective. Indeed, consider a map of unitary type described by π and τ = (τ1, . . . , τr),

and an outgoing half-edge hi labelled i. There are four cases.

• If hi is a white half-edge such that for all j we have τj(i) = i, then hi is necessarily attached
to the white half-edge labelled π−1(i).

• If hi is a white half-edge and there exists k, such that τk(i) 6= i, then hi is necessarily connected
to the k′-th black vertex, where k′ is the smallest such integer.

• If hi is a half-edge connected to the k-th black vertex and for all l > k τl(i) = i, then hi is
necessarily attached to a white half-edge labelled π−1(i)

• If hi is a half-edge connected to the k-th black vertex and l is the smallest integer such that
l > k and τl(i) 6= i, then hi is necessarily attached to the l-black vertex.

Thus two maps of unitary type in CrI,ε,ρ described by the same permutations π and τ have necessarily
the same edges, i.e. are identical.

We can associate to the triplet (ρC , πC , τC) the group

G(C) = 〈ρC , πC , τ1, . . . , τr〉, (11)

where τC = (τ1, . . . , τr).
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Proposition 3.27. A unitary type map C with set of labels I is connected if and only if the group
G(C) defined by Equation (11) acts transitively on I.

Proof. First, assume that C is connected. Let i, j ∈ I. There is a path ρ (made up by vertices and
edges) connecting the white vertices wi and wj . First, let us assume that ρ contains only black
vertices, except for its boundary which is made up of wi and wj . The path encounters the black
vertices n1, . . . , np, the labels on the left of the edges that constitute ρ are k1, . . . , kp+1. The first
and last edges are connected to wi and wj so k1 = ρm1(i) and kp+1 = ρm2πm3(j) for some integers
m1,m2,m3.

Let 1 ≤ i ≤ p. If ki = ki+1, we set σi = Id, and if τni(ki) = ki+1, we set σi = τni , see Figure 8.
Those are the only two possibilities as the half-edges connected to a black vertex labeled k, with
τk = (u v) can only be labeled by u or v.

n1
n2

n3

k1

k2

k3

k4

Figure 8: Three situations for σi.
We set σ1 = τn1 , σ2 = Id, and σ3 = τn3 .

Thus, we have proved that there is σρ = π−m3ρ−m2σp · · ·σ1ρ
−m1 ∈ G(C), such that σρ(i) = j.

In general, any path connecting wi and wj can be written as the concatenation of paths with
only black vertices in their interiors, we can thus construct by composition a permutation in G(C)
that sends i to j. Thus G(C) is transitive.

Conversely, if G(C) is transitive, for any k, l ∈ I, there exists σ ∈ G(C) such that σ(k) = l.
We can write σ = σp · · ·σ1, with for all i, σi is one of ρC , π−1

C , τ1, . . . , τr. We use this to construct
a path connecting vk to vl. For all i, we attach to σi a path ρi starting from a half-edge labelled
ki. We set k1 = k, and we will show that kp+1 = l.

• If σi = ρC , ρi is the empty path, and ki+1 = ρ(ki).

• If σi = π−1
C , ρi is the path connecting the half-edge ki to the half-edge π−1(ki). Such a path

exists by the propagation of labels procedure. We set ki+1 = π−1(ki).

• If σi = τni , for some ni, and τni(ki) = ki, then ρi is the empty path and ki+1 = ki.

• If σi = τni , for some ni, and τni(ki) 6= ki, then we set ki+1 = τni(ki). Both ki and ki+1

are labels of outgoing half-edges. We set ρi to be the path that starts from the half-edge ki,
follows the half-edges labelled ki until it reaches the black vertex ni, and then follows the
half-edges labelled ki+1 until the half-edge ki+1, and the vertex wki+1

.

We have constructed a path going from the half-edge i to the half-edge kp+1 = σ(i) = j, as
wanted.
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3.4 Expression of the moments in terms of maps of unitary type
Theorem 3.26 allows us to rewrite the expression for the moments given in Proposition 2.16 (see
Definition 2.7 for relevant notation).

Corollary 3.28. Let N ≥ 1 be an integer, P = (P1, . . . , Pl) ∈ X l be monomials with m =
1
2 degP ≤ N . The moments under the Haar measure µN0 (see Definition 2.3) admit the following
expansion

αN0,l(P1, . . . , Pl) =
∑
r≥0

(−1)r

Nr+m

∑
C∈Cr

[2m],εP ,γ
−1
P

TrφC (MP ).

Furthermore, the series is absolutely convergent.

The weights TrφC (MP ) can be interpreted as product of weights given by the faces of the map
C, see Figure 9.

1
2

3 4

5
6

78

Tr(M3M2M7M5)
Tr(M1M4) Tr(M6M8)

Figure 9: A map with its weights
This weighted map gives (up to a sign) a contribution from the sum

α
(0),N
0,4 (M1u

−1M2u
−1,M3uM4u,M5u

−1M6u,M7u
−1M8u).

Proof of Corollary 3.28. Recall that we proved in Proposition 2.16 that

αN0,l(P1, . . . , Pl) =
∑
r≥0

(−1)r

Nr+m

∑
π∈S(εP )

2m

TrγP π−1(MP )−→w r(Id, π(εP )).

By definition of −→w r(Id, π(εP )), we can rewrite this as

αN0,l(P1, . . . , Pl) =
∑
r≥0

(−1)r

Nr+m

∑
π∈S(εP )

2m

(τ1,...,τr)∈
−→
Wr(Id,π(εP ))

TrγP π−1(MP )

=
∑
r≥0

(−1)r

Nr+m

∑
C∈Cr

[2m],εP ,γ
−1
P

TrγP π−1
C

(MP ),

where we used Theorem 3.26 in the last line.
We get the result by using Lemma 3.23, which gives γP π−1

C = ρ−1
C π−1

C = φC .
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Definition 2.1 and Corollary 3.28 allow us to express the cumulants in terms of maps of unitary
types. We deduce the following Lemma.

Lemma 3.29. Let N ≥ 1 be an integer, P = (P1, . . . , Pl) ∈ X l be monomials with m = 1
2 degP .

The cumulants admit the expansion

WN
0,l(P1, . . . , Pl) =

∑
r≥0

(−1)r

Nr+m

∑
C∈Cr

[2m],εP ,γ
−1
P

C is connected

TrφC (MP ).

Furthermore, the series is absolutely convergent.

Proof. We show the formula by induction using Corollary 3.28. Notice first that when l = 1,
αN0,1(P1) =WN

0,1(P1) and the maps in Cr
[2m],εP ,γ

−1
P

are connected.
Then, we notice that a map can be decomposed into its connected components. This decompo-

sition gives a partition of the set of labels of half-edges. Each block contains the labels appearing
in one connected component. Using Definitions 2.1 and Definition 2.3, we obtain that

WN
0,l(P1, . . . , Pl) = αN0,l(P1, . . . , Pl)−

∑
Π∈P([l])
|Π|≥2

∏
B∈Π

WN
0,|B|(Pi, i ∈ B)

=
∑
r≥0

(−1)r

Nr+m

∑
C∈Cr

[2m],εP ,γ
−1
P

TrφC (MP )

−
∑
r≥0

(−1)r

Nr+m

∑
C∈Cr

[2m],εP ,γ
−1
P

C has at least 2 connected components

TrφC (MP ).

Hence the result.

Remark 3.30. The formulae imply that we can express moments and cumulants with respect to
the Haar measure as a weighted sum over maps. The maps are the nondecreasing maps of unitary
type whose local structure (i.e. how the half-edges are attached to the vertices, but not how the
half-edges are attached together) is determined by γ−1

P and εP . To each face is associated a weight,
which is the trace of a certain word in the matrices of MP , times a sign.

A topological expansion for the Haar measure. We now rewrite Lemma 3.29 as a sum over
the genus g of the maps rather than on the number of black vertices r. We will see that this gives
us an expansion in powers of 1

N2 . We first recall Euler’s formula

2− 2g(C) = V (C)− E(C) + F (C), (12)

where V (C), E(C) and F (C) are the number of vertices, edges and faces of a map C, and g(C) is
its genus. In the case of a map of unitary type labelled by a set of 2m integers, and with r black
vertices, we have

• c(γC) white and r black vertices,
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• 2m white half-edges and 4r half-edges out of black vertices, for a total of m+ 2r edges,

• c(φC) faces (see Definition 3.1).

Thus, we get

2− 2g(C) = (c(γC) + r)− (m+ 2r) + c(φC) = c(γC) + c(φC)−m− r. (13)

A change of variable in the sum of Lemma 3.29 gives the following Proposition.

Proposition 3.31. Let N ≥ 1 be an integer, P = (P1, . . . , Pl) ∈ X l be monomials with m =
1
2 degP . The cumulants admit the expansion

WN
0,l(P1, . . . , Pl) = N2−l(−1)m+l

∑
g≥0

1

N2g

∑
C∈C

g,[2m],εP ,γ
−1
P

C is connected

(−1)c(φC) trφC (MP ).

Furthermore, the series is absolutely convergent.

Notice that this expansion is in terms of the normalized trace tr = 1
N Tr. The factors with the

trace are bounded by 1 if we assume ‖ANi ‖ ≤ 1 for all 1 ≤ i ≤ N and N ≥ 1.
Remark 3.32. The sum in Proposition 3.31 is in general not finite. Indeed, even for l = 1 and
P1 = AUBU∗, the sum contains terms of arbitrary genus. They appear for instance because of the
factorization of the identity Id = (1 2)2k, for all k ≥ 0.

Definition 3.33. Let N ≥ 1 be an integer, P = (P1, . . . , Pl) ∈ X l be monomials with m = 1
2 degP .

The term of order 2g in the expansion of the cumulant is denoted by

M(g),N
0,l (P1, . . . , Pl) = (−1)m+l

∑
C∈C

g,[2m],εP ,γ
−1
P

C is connected

(−1)c(φC) trφC (MP ).

We extend this definition to all monomials in A by setting for P1, . . . , Pl ∈ X and M a word in
a1, a

∗
1, . . . , ap, a

∗
p,

M(g),N
0,l (P1, . . . , Pi−1, PiM,Pi+1, . . . , Pl) =M(g),N

0,l (P1, . . . , Pi−1,MPi, Pi+1, . . . , Pl),

for all 1 ≤ i ≤ l.
The following Lemma will be useful in Section 4.1.

Lemma 3.34. With the notation and hypotheses of Proposition 3.31, for any σ ∈ S2m, let Mσ =
(Mσ(i), i ∈ [2m])

M(g),N
0,l (P1, . . . , Pl) = (−1)m+l

∑
C∈C

g,[2m],εP ◦σ,σ−1γ
−1
P

σ

C is connected

(−1)c(φC) trφC (Mσ).

Proof. This is a consequence of the fact that the numbering of the elements of MP , εP , ... is
arbitrary (see Remark 2.8), and of the fact that the number of monotone walks is invariant by
conjugation, by Lemma 2.15.

Remark 3.35. This Lemma implies in particular that M(g),N
0,l is symmetric in its arguments and

that if, say, Pl = QR with Q,R ∈ X , we have

M(g),N
0,l (P1, . . . , Pl−1, QR) =M(g),N

0,l (P1, . . . , Pl−1, RQ).
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Stationnary distribution of the (ANi )1≤i≤p. Let us consider sequences of matrices (ANi )1≤i≤p
which have the same joint law as given matrices of fixed size M ×M , AMi for 1 ≤ i ≤ p. For
instance, we may consider the subsequence N = qM , with n ∈ N∗ and with ANi the block-diagonal
matrix whose blocks are AMi . In that case, the traces trφ(M) no longer depend on N for N = qM .

In the case of zero potential (V = 0), by Proposition 3.31, the renormalized cumulant W̃N
0,1

converges with limit

lim
N→∞

W̃N
0,1(P ) =M(0),M

0,1 (P ),

for P ∈ A.
This fact allows us to prove the following Lemma.

Lemma 3.36. Fix N ∈ N∗. Assume that ‖ANi ‖ ≤ 1 for all 1 ≤ i ≤ p. Let P ∈ X . We have for all
choices of (ANi )1≤i≤p that

|M(0),N
0,1 (P )| ≤ 1.

Proof. By the previous remark, we have for a choice of stationnary distribution as above

|M(0),M
0,1 (P )| = lim

N→∞
|W̃N

0,1(P )| = lim
N→∞

E [tr(P )] ≤ 1,

as ‖P‖ ≤ 1.

More generally, with the (ANi )1≤i≤p block diagonal as above, we have

W̃qM
0,l (P ) = (−1)m+l

∑
g≥0

1

(qM)2g

∑
C∈C

g,[2m],εP ,γ
−1
P

C is connected

(−1)c(φC) trφC (MP ) ,

where trφC (MP ) does not depend on q. This implies the following Lemma.

Lemma 3.37. For all N ≥ 1, g ≥ 0, l ≥ 1, and P ∈ X l, we have the following properties.

(i) (Traciality) For all Q ∈ X ,

M(g),N
0,l (P1, . . . , Pl−1, PlQ) =M(g),N

0,l (P1, . . . , Pl−1, QPl) .

(ii) (Symmetry) For all permutation σ ∈ Sl,

M(g),N
0,l (P1, . . . , Pl) =M(g),N

0,l (Pσ(1), . . . , Pσ(l)) .

(iii) (Simplification) We have

M(g),N
0,l (P1, . . . , Pl−1, u

∗Plu) =M(g),N
0,l (P1, . . . , Pl) .

(iv) (Conjugation) We have

M(g),N
0,l (P ∗1 , . . . , P

∗
l ) =M(g),N

0,l (P1, . . . , Pl) .
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Proof. Consider the series

G(~) = (−1)m+l
∑
g≥0

~2g
∑

C∈C
g,[2m],εP ,γ

−1
P

C is connected

(−1)c(φC) trφC (MP ) ,

where the polynomials in the tuple PP are evaluated at the matrices AM1 , (AM1 )∗, . . . , AM2m, (A
M
2m)∗.

Proposition 3.31 implies that G(1/qM) = W̃N
0,l(P ).

Thus, as the renormalized cumulant under the Haar measure W̃N
0,l = N l−2WN

0,l satisfies all four
properties, and the set {1/qM}q≥1 has an accumulation point, we get the result.

3.5 Formal topological expansion
When the potential V is not zero, we expect to have an expansion of the free energy as in Proposition
3.31. Let us now consider a potential of the form V =

∑k
i=1 ziqi, with z = (z1, . . . , zk) ∈ Ck and

q = (q1, . . . , qk) ∈ X k.
Proposition 3.31 motivates the introduction of the formal series

FN,fV =
∑
g≥0

1

N2g

∑
n∈Nk

zn

n!
(−1)deg qn

∑
C∈Cg,[2 deg qn],εqn ,γ(qn)−1

C is connected

(−1)c(φC) trφC (Mqn) ,
(14)

where we use the notation qn = (q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

) for n = (n1, . . . , nk), as well as zn =

∏k
i=1 z

ni
i and n! =

∏k
i=1 ni!.

Similarly, we introduce formal series corresponding to the cumulants.

Definition 3.38. Let N ∈ N∗, P = (P1, . . . , Pl) ∈ X l be monomials with m = 1
2 degP . The

formal cumulant of P is the formal series

MN
V,l(P1, . . . , Pl) =

∑
g≥0

1

N2g
M(g),N

V,l (P1, . . . , Pl),

where the g-th term is

M(g),N
V,l (P1, . . . , Pl)

=
∑
n∈Nk

zn

n!
(−1)deg qn+degP

∑
C∈Cg,[deg qn+degP ],εqnP

,γ(qnP )−1

C is connected

(−1)c(φC) trφC (MqnP ),

where qnP is the concatenation of the two tuples qn and P .

At this point, it is not clear whether the series M(g),N
V,l (P1, . . . , Pl) converge. It will be shown

in Section 4.3.
In Section 6, we will show that in the asymptotic regime, the cumulantWN

V,l(P1, . . . , Pl) coincides
with the formal cumulant up to an arbitrary order, for z small enough.
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3.6 Alternated polynomials and Hurwitz numbers
In this section, we consider a particular case, that is we assume that all polynomials are alternated
monomials (see Definition 3.39). In particular, this covers the case of a potential of the form
V = zAUNB(UN )∗ encountered in the HCIZ integral. In [GGPN14], the HCIZ integral had been
expressed in terms of monotone double Hurwitz numbers. In the multimatrix case, results relating
the more general tensor HCIZ integral to the Hurwitz numbers have been obtained in [CGL20].

Here we consider only the case where we have a single unitary matrix.

Definition 3.39. A monomial P ∈ A is said to be alternated if it can be written

P = B1uC1u
−1 · · ·BmuCmu−1,

with Bi, Ci, 1 ≤ i ≤ m words in a1, a
∗
1, . . . , ap, a

∗
p.

In this section, we will assume that all the polynomials involved (P1, . . . , Pl, q1, . . . , qk) are
alternated monomials. We write as before P = (P1, . . . , Pl)

In this case, ε = (+1,−1,+1,−1, . . .), and we have γP (ε−1(+1)) = ε−1(−1) and γP (ε−1(−1)) =

ε−1(+1). Thus, γP ∈ S
(ε)
2m. We define γ̃ = γ2

P |ε−1(+1).
In particular, this implies that for all C ∈ Cg,[2m],ε,γ−1

P
, we have φC(ε−1(+1)) = ε−1(+1) and

φC(ε
−1(−1)) = ε−1(−1). That is, we can write φC as a product of two permutations, one, ρC ,

having its support in ε−1(+1), and the other, σC , having its support in ε−1(−1).
Write τC = (τ1, . . . , τr). We thus notice that the group generated by γP , φC , τ1, . . . τr, satisfies

the following equations.

〈γP , πC , τ1, . . . , τr〉 = 〈γP , φC , τ1, . . . , τr〉
= 〈γP , σC , ρC , τ1, . . . , τr〉
= 〈γP , γ−1

P σCγP , ρC , τ1, . . . , τr〉.

Now, we remark that this subgroup ofS2m is transitive if and only if the subgroup 〈γ̃, γ−1
P σγP , ρ, τ1, . . . , τr〉

of S(ε−1(+1)) is transitive.
This remark allows us to rewrite the sum of Definition 3.33,

W(g),N
0,l (P1, . . . , Pl) = (−1)m

∑
C∈C

g,[2m],εP γ
−1
P

C connected

(−1)c(φC) trφC (MP )

= (−1)m
∑

σ,ρ∈Sm
τ∈
−→
Wg(Id,ρ−1γ̃σ)

〈γ̃,σ,ρ,τ1,...,τr〉 transitive

(−1)c(σ)+c(ρ) trρ(BP ) trσ(CP ) .

Definition 3.40. Let ρ, γ, σ ∈ Sm. The r-th monotone triple Hurwitz number associated to
ρ, γ, σ, denoted by

−→
h r(ρ, γ, σ), is the number of r-uple of transpositions (τ1, . . . , τr) ∈ Sr

m such that

• τr · · · τ1 = ργσ;

• val(τ1) ≤ val(τ2) ≤ · · · ≤ val(τr);

• the group 〈γ, ρ, σ, τ1, . . . , τr〉 ⊂ Sm is transitive.
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When g satisfies the Euler equation

2− 2g = c(γ) + c(ρ) + c(σ)− r −m,

we set
−→
h g(γ, σ, ρ) =

−→
h r(γ, σ, ρ).

This gives us the following Proposition.

Proposition 3.41. Let P = (P1, . . . , Pl) be alternated monomials. We have

W(g),N
0,l (P1, . . . , Pl) = (−1)m

∑
σ,ρ∈Sm

(−1)c(σ)+c(ρ) trρ(BP ) trσ(CP )
−→
h g(ρ

−1, γ̃, σ). (15)

Remark 3.42. In the case of the HCIZ integral, we have γ̃ = Id, thus the monotone triple Hurwitz
numbers reduce to the monotone double Hurwitz numbers.

Remark 3.43. Notice that when all the polynomials are alternated, all the white vertices in the
unitary type maps involved are alternated vertices (see Definition 3.12).

4 Tutte-like equations

We will now state induction relations that applies to the sums of mapsM(g),N
0,l defined in Definition

3.33. They are obtained by a procedure very similar to the one used by Tutte in [Tut68]. These
induction relations are the analog of the topological recursion for matrices of the GUE [EO08].

Similar induction relations have been obtained for maps related to the Gaussian case in [GMS07]
and [MS06], and for maps with “dotted edges” in the unitary case for g = 0 in [CGMS09].

More precisely, we will prove the following theorem.

Theorem 4.1. Let N ∈ N∗, P = (P1, . . . , Plu) ∈ X l be monomials. Then, for g ≥ 0 and
m = 1

2 degP ≥ 2, we have the induction relation

M(g),N
0,l (P1, . . . , Plu)

=−
∑

Pl=QuR

[
M(g−1),N

0,l+1 (P1, . . . , Pl−1, Qu,Ru) +
∑

g1+g2=g
I⊆[l−1]

M(g1),N
0,|I|+1(P |I , Qu)M(g2),N

0,l−|I|(P |Ic , Ru)
]

−
l−1∑
j=1

∑
Pj=QuR

M(g),N
0,l−1 (P1, . . . , Pj−1, Pj+1, . . . , Pl−1, RQuPlu)

+
∑

Pl=Qu∗R

[
M(g−1),N

0,l+1 (P1, . . . , Pl−1, Q,R) +
∑

g1+g2=g
Ij[l−1]

M(g1),N
0,|I|+1(P |I , Q)M(g2),N

0,l−|I|(P |Ic , R)
]

+

l−1∑
j=1

∑
Pj=Qu∗R

M(g),N
0,l−1 (P1, . . . , Pj−1, Pj+1, . . . , Pl−1, RQPl),

where we use the notation P |I = (Pi)i∈I and we set by convention,M(−1),N
0,l = 0 andM(g),N

0,0 = 0.
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With a similar proof, we can state a similar theorem for P = (P1, . . . , Plu
∗). Equivalently, this

is a consequence of the invariance by conjugation of the sums of maps, see Lemma 3.37.
In the Section 4.1, we will describe a procedure to cut maps of unitary type into one or more

maps of unitary types, or equivalently to decompose the permutations describing a particular map,
in order to prove Theorem 4.1.

First, we show how to rewrite these equation in a compact way. We extend by linearityM(g),N
0,l to

the tensor spaceA⊗l = A⊗C· · ·⊗CA. Recall thatA is the algebra of noncommutative polynomials in
the variables u, u∗, a1, a

∗
1, . . .. We can then rewrite Theorem 4.1 using the notion of non-commutative

derivative.
Let P = (P1, . . . , Pl) be a k-tuple of polynomials, and I = {i1 < i2 < · · · < ip} be a non-empty

subset of [l], then we define

PI = Pi1 ⊗ Pi2 ⊗ · · · ⊗ Pip .

We define the operation ] as follows. Let P ∈ Al, I ⊂ [l− 1], and Q = Q1⊗Q2 ∈ A⊗2, then we set

PI ⊗ PIc]Q = PI ⊗Q1 ⊗ PIc ⊗Q2.

We extend this definition by linearity to any tensor Q ∈ A⊗C A.

Definition 4.2. The non-commutative derivative ∂ : A → A⊗2 with respect to u of a monomial
P ∈ A is defined by

∂P =
∑

P=QuR

Qu⊗R−
∑

P=Qu−1R

Q⊗ u−1R ∈ A⊗2.

The definition extends by linearity to any polynomial in A.

Definition 4.3. The cyclic derivative D : A → A with respect to u of a monomial P ∈ A is
defined by

DP =
∑

P=QuR

RQu−
∑

P=Qu−1R

u−1RQ.

The definition extends by linearity to any polynomial in A.

Theorem 4.1 allows us to rewrite the induction relations as follows.

Corollary 4.4. For m ≥ 2, g ≥ 1, and P1, . . . , Pl ∈ A, we have the following equation∑
I⊂[l−1]

∑
g=g1+g2

M(g1),N
0,|I|+1 ⊗M

(g2),N
0,|Ic|+1(PI ⊗ PIc]∂Pl)

= −M(g−1),N
0,l+1 (P1 ⊗ · · · ⊗ Pl−1 ⊗ ∂Pl)−

l−1∑
i=1

M(g),N
0,l−1 (P1 ⊗ · · · ⊗ P̌j ⊗ · · · ⊗ (DPi)Pl),

(16)

where P̌j means that the factor Pj is omitted.
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4.1 How to cut maps
In this section, we fix two integers m ≥ 2 and g ≥ 0, a permutation ρ ∈ S2m and ε ∈ E2m = {ε =

(ε(i))i∈[2m] ∈ {±1}2m :
∑2m
i=1 ε(i) = 0}. By Lemma 3.34, we can assume that ε(2m) = +1. We

consider a map of unitary type C ∈ Cg,m,ρ,ε, with r black vertices. Let S denote the underlying
surface of the map C.

By Theorem 3.26, this map is described by the permutation π := πC and the tuple of transpo-
sitions τC = (τ1, . . . , τr) ∈

−→
Wr(π(ε)), with r related to g, π and ρ by Euler’s formula, see (13).

We will consider two ways of cutting this map, depending on whether τr(2m) = 2m or not.

Remark 4.5. We can also see vertices as “holes” in the surface, that is, we take the underlying
surface S to be a surface with boundaries. A vertex is then a boundary component (homeomorphic
to a circle) of the surface S. An edge is then a path connecting two boundary components. See
Figure 10 for an example.

(a) (b)

Figure 10: (a) An oriented map of genus 0 with two vertices (b) The corresponding map where
vertices are seen as boundary components. The underlying surface is a cylinder.

We will see white vertices as boundary components of the underlying surface, as explained in
Remark 4.5.

4.1.1 First case: τr(2m) = 2m

In this case, the half-edge 2m is connected to another white half-edge, say the j-th one. Note
that by our assumption that ε(2m) = +1, ε(j) = −1. Notice that because C is non-decreasing,
τr(2m) = 2m implies that for all i, τi(2m) = 2m.

We construct a map of unitary type C′ from C using the following procedure, depicted in Figure
11.

1. We choose a path η in the face f at the right of the half-edge 2m. This path is chosen to
start from the white vertex w2m, attached after the half-edge 2m, and end at wj , attached
after the half-edge j. As faces are homeomorphic to disks, there is only one way to choose η
up to homotopy.

2. We remove the edge containing the half-edges j and 2m.
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3. We cut the surface along η. Depending on the cases we connect two distinct boundary
components of S, or we connect one boundary component to itself.

Remark 4.6. Notice that if wj and w2m are distinct vertices, this surgery is the usual contraction
of an edge.

2m

j

η

1.

η

2. 3.

Figure 11: First way to cut the map.

Lemma 4.7. If C is a map of unitary type with label set I of size 2m, then C′ is a map of unitary
type, with label set I \ {j, 2m}, of size 2m− 2.

Furthermore, if C is non-decreasing, then so is C′.

Proof. We need to check that each face of C′ is homeomorphic to a disk. We only modify the faces
fleft and fright at the left and the right of the edge (w2m, wj). At step 2, when we remove the edge,
we connect fleft and fright. However, at step 3, we cut along a path homotopic to the edge, thus
separating the two faces. All the faces of C′ thus remain disks.

Furthermore, these two faces are incident to a white vertex, the one composed by the cut for
instance.

The map C′ has 2m − 2 labelled half-edges (maybe 0 if m = 1). The black vertices have not
been modified when transforming C into C′. As we have seen that all faces are incident to a white
vertex, C′ is of unitary type, with labelling set as in the statement of the Lemma.

As the black vertices are not modified, a non-decreasing map remain non-decreasing.

Let us now compute the permutations that represent C′.

Definition 4.8. The trace of a permutation σ ∈ S(A) on B ⊂ A, denoted by Tr(σ;B), is the
permutation in S(B) defined for each x ∈ B by

Tr(σ;B)(x) = σpx(x),

with px ≥ 1 the smallest integer so that σp(x) ∈ B.

Let Ij = [2m− 1] \ {j}.
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Lemma 4.9. Let π′ := Tr(π; Ij). We have πC′ = π′ = π|Ij .

Proof. We have assumed that the half-edges 2m and j are connected to form an edge. This imply
π(2m) = j and π(j) = 2m. Thus, π′ = π|Ij .

When removing the edge at step 2, it is clear that the map we obtain is still described by πC ,
with a cycle removed. When cutting the map at step 3, we do not modify the edges further.

Lemma 4.10. Let ρ′ := Tr(ρ(j 2m); Ij). We have ρC′ = ρ′.

Proof. Assume first that wj and w2m are two distinct vertices. Let c = (u1 . . . up j) and c′ =
(u′1 . . . u

′
p′ 2m) be the cycles that represent them. After cutting the map at step 3, the vertices are

replaced by a vertex with structure (u1 . . . up u
′
1 . . . u

′
p′) = Tr(cc′(j 2m); Ij).

If wj = w2m, this vertex is represented by a cycle c = (u1 . . . up j u
′
1 . . . u

′
p′ 2m), which we cut

using the transposition (j 2m). We obtain two vertices represented by the two cycles Tr(c(j 2m); Ij).

Lemma 4.11. We have φC′ = Tr(φC ; Ij).

Proof. By Lemmas 3.23, 4.9 and 4.10,

φC′ = ρ′−1π′−1 = Tr(ρ(j 2m); Ij)
−1
π|−1
Ij

= Tr
(
(j 2m)ρ−1; Ij

)−1
π|−1
Ij
.

Notice first that Tr
(
ρ−1π−1; Ij

)
= Tr

(
(j 2m)ρ−1π−1(j 2m); Ij

)
= Tr

(
(j 2m)ρ−1π′−1; Ij

)
.

Then, as π′(j) = j and π′(2m) = 2m, we have Tr
(
(j 2m)ρ−1π′−1; Ij

)
= Tr

(
(j 2m)ρ−1; Ij

)
π′−1 =

φC′ .

Lemma 4.12. If the map of unitary type C is connected, then the map C′ has one or two connected
components.

Furthermore, if j and 2m do not belong to the same cycle in ρ, C′ is connected.

Proof. Assume first that j and 2m belong to the same cycle in ρ. This means that wj = w2m. If we
erase the edge containing the half-edges 2m and j, C stays connected. However, when we cut the
map along the path η, we may separate the map into two connected components. More precisely,
we separate the map into two connected components if and only if η is homologically trivial, that
is, the boundary of a surface embedded in S.

If j and 2m belong to different cycles, that is wj 6= w2m, then when removing the edge we may
disconnect the two vertices but we then merge them. Consequently, the map C′ is connected.

Using the permutations ρ′ = ρC′ and φC , and Lemma 4.12, we can now compute the genus of
C′. We recall Euler’s formula for a map of genus gC with CC connected components

2CC − 2gC = c(ρC) + c(φC)−m− r.

Notice first that c(φC) = c(φC′) if and only if both j and 2m are not fixed points of φC . The
integer j (respectively 2m) is a fixed point of φC if and only if ρ(2m) = j (respectively ρ(j) = 2m).
In this case, (j 2m)ρ(j) = j (respectively (j 2m)ρ(2m) = 2m) and when taking the trace on Ij we
remove one (or two) cycles of (j 2m)ρ. Furthermore, C′ is connected.

In particular, if both j and 2m are fixed points of φC then it means that C is reduced to a vertex
with 2 half-edges. We will assume in what follows that m ≥ 2

It gives us one particular case:
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1. if j or 2m is a fixed point of φC , then c(φC′) = c(φC)− 1 and c(ρ′) = c(ρ). Thus, gC′ = gC .

If both j and 2m are not fixed points of φC , we have the three cases.

2. If j and 2m belong to the same cycle of ρ, and C′ is connected, then g′ = g − 1.

3. If j and 2m belong to the same cycle of ρ, and C′ has two connected components, then g′ = g.

4. If j and 2m belong to two different cycles of ρ, then g′ = g.

4.1.2 Second case: τr(2m) 6= 2m

In this case, the white half-edge labelled 2m is connected to a black vertex. Let j = τr(2m) ∈
ε−1(+1). In that case, the last black vertex has an ingoing edge labelled on the left by 2m.

We construct a unitary map C′ from C using the following procedure, depicted in Figure 12.

1. We choose two paths η1 and η2 contained respectively in the face f2m at the left of the
half-edge 2m, and fj at the left of the half-edge j. The path η1 (respectively η2) is chosen
to start from the white vertex w2m (respectively wj), attached just after the half-edge 2m
(respectively j), and end at the r-th black vertex, attached just after the ingoing edge labelled
2m (respectively j) on the left.

2. We remove the r-th black vertex, and attach each ingoing edge to the outgoing edge that
follows it in the counterclockwise order.

3. We cut the surface S along η = η1 ∪ η2.

2m

j

r

r − 1

η2

η1

1.

2m

j

r − 1

η2

η1

2.

2m

j

r − 1

3.

Figure 12: Second way to cut the map.
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Lemma 4.13. If C is a map of unitary type with labelling set I and with r black vertices, then C′
is a map of unitary type with labelling set I and with r − 1 black vertices.

Furthermore, if C is non-decreasing, then so is C′.

Proof. First, notice that when removing the black vertex, at step 2, we may have connected two
faces together, or may have connected a face to itself, thus creating a “face” homeomorphic to an
annulus. However, when we cut the map, at step 3, we recover one or two faces homeomorphic to
disks. Thus, C′ is a map.

Notice that C′ has r − 1 black vertices. We removed the last black vertex and did not create
any new edge linking two black vertices, furthermore the faces we modified are incident to a white
vertex (for instance the one corresponding to the cut η). Thus, C′ is of unitary type.

Let us now compute the permutations that represent C′.

Lemma 4.14. Let π′ = (j 2m)π = τrπ.
We have πC′ = π′.

Proof. We only modify the edges during step 2, when we remove the black vertex. The outgoing
half-edges of the r-th black vertex in C are labelled on the left by j and 2m. These half-edges are
part of edges connected at their other end to white vertices, because the black vertex we remove is
the last. These edges are connected respectively to the half edge π−1(j) and π−1(2m).

Consider the white half-edge labelled by π−1(j). After the surgery, it is connected to the half-
edge labelled 2m.

Similarly, the white half-edge labelled π−1(2m) is attached to the half-edge labelled j.
This corresponds to having πC′(π−1(j)) = 2m and πC′(π−1(2m)) = j, and πC′ = π for all other

values. We can write this πC′ = (j 2m)π.

Note that we have π′(ε) = (τrπτrπ)|ε−1(+1) = τrπ
(ε) = τr−1 · · · τ1. Thus, τC′ = (τ1, . . . , τr−1).

Lemma 4.15. Let ρ′ = ρ(j 2m) = ρτr.
We have ρC′ = ρ′

Proof. The white vertices are only modified when we cut the map, at step 3. The proof is similar
to the one of Lemma 4.10. We consider the two cases of j and 2m in the same cycle in ρ or not,
and we compute ρC = ρτr.

It follows from Lemmas 3.23, 4.14, and 4.15, that φC′ = τrφCτr. In particular, c(φC) = c(φC′).
We can now state the counterpart of Lemma 4.12.

Lemma 4.16. If the unitary type map C is connected, then the map C′ has one or two connected
components.

Furthermore, if j and 2m do not belong to the same cycle in ρ, C′ is connected.

Proof. The proof is almost the same as for Lemma 4.12. Alternatively, we can prove this lemma
using Proposition 3.27.

We assume that the action of G(ρ′, π′, τ ′) on [2m] has k ≥ 1 orbits. We notice that G(ρ, π, τC) =
〈ρ′, π′, τ1, . . . , τr〉. The transposition τr may connect two orbits of the action of G(ρ′, π′, τ ′) if j and
2m do not belong in the same orbit. Thus, G(ρ, π, τC) has k or k − 1 orbits.

In particular, if j and 2m belong to the same cycle of ρ′ (or different cycles of ρ), they belong
to the same orbit and the action of G(ρ, π, τC) has k orbits.
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As we assumed that C is connected, by Proposition 3.27, the action of G(γ, π, τC) has one orbit,
so k may be 1 or 2.

Using Lemmas 4.16, 4.15 and the remark on φC′ , we can compute the genus g′ of C′ using Euler’s
formula. There are three cases.

• If j and 2m belong to the same cycle in γ (i.e. c(γ′) = c(γ) + 1) and C′ has two connected
components, then g′ = g.

• If j and 2m belong to the same cycle in γ and C′ is connected, then g′ = g − 1.

• If j and 2m belong to two different cycles in γ (i.e. c(γ′) = c(γ)− 1), then g = g′.

4.2 Proof of Theorem 4.1
We can now turn to the proof of Theorem 4.1.

Proof. Fix γ = γP ∈ S2m, ε = εP , and M = MP . Assume first that m = 1
2 degP ≥ 2. We

decompose the sum

M(g),N
0,l (P1, . . . , Pl) = (−1)m

∑
C∈Cg,[2m],ε,γ−1

C connected

(−1)c(φC) trφC (M)

in two sums, each corresponding to one of the two cases of the previous construction.
We introduce the set W f

2m, of monotone walks whose last step τ satisfy τ(2m) = 2m, and the
set W c

2m of monotone walks whose last step τ satisfy τ(2m) 6= 2m.
The sum corresponding to the first case, is thus by the previous surgery of Section 4.1

(−1)m
∑

C∈Cg,m,γ,ε
C connected

(−1)c(φC) trφC (M)1W f
2m

(τC) = (−1)m
∑

π∈S(ε)
2m

τ∈
−→
Wr(g,m,γ,π)(π(ε))

G(γ,π,τ) is transitive

(−1)c(γπ
−1) trγπ−1(M)1W f

2m
(τ)

= (−1)m
∑

j∈ε−1(−1)

∑
π′∈S(ε)(Ij)

π=(j 2m)π′

τ∈
−→
Wr(g,m,γ,π)(π′(ε))

G(γ,π,τ) is transitive

(−1)c(γπ
−1) trγπ−1(M),

where r(g,m, γ, π) = c(γ) + c(γ−1π−1) −m + 2g − 2 according to (13), and we used the fact that
in the first case π can be rewritten π′(j 2m) for some j ∈ ε−1(−1).

We rewrite this as a sum of four terms, corresponding to the different ways of computing the
genus, as explained in the last section. We interpret the new sums as series MN

g′,l′,0(Q1, . . . , Ql′),
withQ1, . . . , Ql′ monomials either in X or of degree 0. We introduce the notationQ = (Q1, . . . , Ql′).
These monomials are chosen so that the combinatorial data γ′, and ε′ described in the last section,
and the tuple M ′ of appropriate monomials of degree 0 is such that γQ = γ′, εq = ε′, and
MQ = M ′. The tuple M ′ is chosen differently depending on the subcase, but always so that
trφC (M) = trC′(M

′) (except for subcase 1., see below).
There are four cases. Let us consider first the terms corresponding to subcases 1. and 3., which

are
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1. j or 2m is a fixed point of φC ;

3. j and 2m are not fixed points of φC , both belong to the same cycle of ηC = γ−1, and C′ has
two connected components.

In those two cases, the map C is cut into two maps, with total genus equal to g. The case 1.
corresponds to the degenerate case where one of the two maps has no edges, and is reduced to a
vertex. We associate to it the weigth tr(Mj) or tr(M2m).

Together, these cases account for the term

−
∑

Pl=Qu−1Ru

∑
g1+g2=g
I⊂[l−1]

M(g1),N
0,|I|+1(P |I , Q)M(g2),N

0,|Ic|+1(P |Ic , R).

The subcase 1. corresponds to the term for which Q or R in the sum is reduced to a monomial of
degree 0, and the subcase 3. to the other terms. When cutting the map, we obtain two connected
components, each containing a vertex corresponding to part of Pl. This correspond to the fact that
in the argument of the series, Pl is replaced by two monomials Q and R such that Qu−1Ru, and
one u and one u−1 are removed, corresponding to the two removed half-edges.

Similarly, the subcase

2. j and 2m are not fixed points of φC , both belong to the same cycle of ρC = γ−1, and C′ is
connected

corresponds to the term

−
∑

Pl=Qu−1Ru

M(g−1),N
0,l+1 (P1, . . . , Pl−1, Q,R).

The subcase

4. j and 2m are not fixed points of φC , and they belong to different cycles of ρC = γ−1,

corresponds to the term

−
l−1∑
i=1

∑
Pi=Qu

−1R
Pl=P

′
lu

M(g),N
0,l−1 (P1, . . . , Pi−1, Pi+1, . . . , Pl−1, RQP

′
l ).

Here, two vertices are glued together, corresponding to replacing two polynomials in the argument
of the series by one: RQP ′l .

We proceed similarly for the terms that correspond to the second case where τ(2m) = 2m. The
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corresponding sum is

(−1)m
∑

C∈Cg,[2m],ε,γ−1

C connected

(−1)c(φC) trφC (M)1W c
2m

(τC)

= (−1)m
∑

π∈S(ε)
2m

τ∈
−→
Wr(g,m,γ,π)(π(ε))

G(γ,π,τ ) is transitive

(−1)c(γπ
−1) trγπ−1(M)1W c

2m
(τ )

= (−1)m
∑

j∈ε−1(+1)
j 6=2m

∑
π′∈S(ε)

2m

(τ1,...,τr−1)∈
−→
Wr−1(π′(ε))

G(γ′,π′,τ ) is transitive

(−1)c(γ
′π′−1) trγ′π′−1(M(j 2m)),

where γ′ = (j 2m)γ, M(j 2m) = (M(j 2m)(1),M(j 2m)(2), . . . ,M(j 2m)(2m)), τ = (τ1, . . . , τr−1, (j 2m)),
and r = r(g,m, γ, (j 2m)π′). To go from the second to the third line, we replaced π by π′ = (j 2m)π.

Following the construction from last section, we get three kinds of terms corresponding to the
three subcases from last section.

The first subcase is

1. j and 2m belong to the same cycle in ρC = γ−1, and C′ has two connected components.

It corresponds to the sum∑
Pl=QuRu

∑
g1+g2=g
I⊂[2m]

M(g1),N
0,|I|+1(P |I , Qu)M(g2),N

0,|Ic|+1(P |Ic , Ru).

The second subcase

2. j and 2m belong to the same cycle in ρC = γ−1, and C′ is connected,

corresponds to ∑
Pl=QuRu

M(g−1),N
0,l+1 (P1, . . . , Pl−1, Qu,Ru).

Finally, the subcase

3. j and 2m belong to different cycles in ρC = γ−1,

corresponds to

l−1∑
i=1

∑
Pi=QuR

M(g),N
0,l−1 (P1, . . . , Pi−1, Pi+1, . . . , Pl−1, RQuPl).

Putting all the terms together, we get the induction relation of Theorem 4.1.
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4.3 Induction relation for the series M(g),N
V,l

We first prove that the series M(g),N
V,l (P ) exist with a radius of convergence that depend on g, l,

and V . To that end, we show bounds on the series of maps for V = 0 that are a consequence of
Theorem 4.1. Similar bounds have been obtained in the Gaussian case in [MS06, Lemma 4.3].

Proposition 4.17. Assume that for all N ≥ 1 and all 1 ≤ i ≤ p we have ‖ANi ‖ ≤ 1. Let
q = (q1, . . . , qk) ∈ X kn be monomials, and ν = max1≤i≤k deg qi. We introduce the n-th Catalan
number cn = 1

n+1

(
2n
n

)
.

There exists constants Ak > 1, Bk > 1, and Ck > 1 that depend on k, and Dk,ν > 1 that
depends on k and ν such that for all P = P1, . . . , Pl ∈ X ln, and all n = (n1, . . . , nk) ∈ Nk, we have
the bound

1

n!
|M(g),N

0,
∑
i ni+l

(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl)| ≤ Al(m+νn)
k B−lk Cg(m+νn)Dn

∏
i

cdegPi

k∏
j=1

cnj ,

(17)

where m = degP .
The constants can be chosen to be

Ak = Ck =
√

6π1/42k+3

Bk = 3 · 4k+1

Dk,ν = 4k(4e1/e)ν .

The proof is given in Appendix A. The value of the constants can be improved.
These bounds allow us to prove immediately that the series M(g),N

V,l (see Definition 3.38) con-
verge.

Corollary 4.18. Let P = (P1, . . . , Pl) ∈ X ln, q = (q1, . . . , qk) ∈ X kn and z = (z1, . . . , zk), and let
V =

∑k
i=1 ziqi be a potential.

As a series in z, M(g),N
V,l (P1, . . . , Pl) converges absolutely with radius of convergence Rl,g,V ≥

(4Al+gk Dk,ν)−1.

We can now turn to the induction relations. The induction relation from Theorem 4.1 translates
to an induction relation on the seriesM(g),N

V,l .

Proposition 4.19. Let P = (P1, . . . , Pl) ∈ (Xn)l, q = (q1, . . . , qk) ∈ (Xn)k and z = (z1, . . . , zk),
and let V =

∑k
i=1 ziqi be a potential. Assume that for all 1 ≤ i ≤ k, |zi| < Rl,g,V .

For all 1 ≤ i ≤ n, we have the equation∑
g1+g2=g
I⊂[l−1]

M(g1),N
V,|I|+1 ⊗M

(g2),N
V,|Ic|+1(PI ⊗ PIc]∂Pl) +M(g),N

V,l (P1 ⊗ · · · ⊗ Pl−1 ⊗ (DV )Pl)

=−M(g−1),N
V,l+1 (P1 ⊗ · · · ⊗ Pl−1 ⊗ ∂Pl)

−
l−1∑
j=1

M(g),N
V,l−1(P1 ⊗ · · · ⊗ Pj−1 ⊗ Pj+1 ⊗ · · · ⊗ Pl−1 ⊗ (DPj)Pl) .

(18)
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Proof. We sum on n ∈ Nk the induction relations of Proposition 5.9 for

M(g),N
0,
∑
i ni+l

(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl),

times z
n

n! .

5 The multimatrix case
Up to now, we have only considered integrals involving one Haar-distributed matrix UN . The
results obtained so far can be extended in a straightforward way to the case where we have n ≥ 1
independent Haar-distributed matrices UN1 , . . . , UNn .

The polynomials we consider in the sequel are the non-commutative polynomials in ui, u−1
i , for

1 ≤ i ≤ n and aj , a∗j for 1 ≤ j ≤ p. We denote this ∗-algebra by An. Notice that A = A1.

5.1 Weingarten calculus
As previously, we will consider a subset of monomials of An, as the quantity we consider are
multilinear functions which are tracial in each of their arguments.

We define Xn the set of monomials of An of the form

P = M1u
ε1
t1M2u

ε2
t2 · · ·Mdu

εd
td (19)

where ε : [d] → {+1,−1}, t : [d] → [n], and M = (M1, . . . ,Md) is a d-uple of monomials Mi ∈ An,
each of them being empty or a word in ai, a∗i .

We define for a tuple P = (P1, . . . , Pl) the tuples εP , tP , MP obtained by concatenating the
tuples corresponding to each polynomial Pi. We also define εP ,i = ε|t−1

P (i), i.e. the tuple which
encodes the exponents of the variables UNi only.

We define the degree with respect to ui of a monomial P , degi P as the number of occurrence of ui
or u−1

i in P . The total degree of a tuple is degiP =
∑l
j=1 degi Pj . We define degP =

∑n
i=1 degi P ,

and degP =
∑l
j=1 degPj .

Property 2.11 is generalized as follows.

Definition 5.1. Let P = (P1, . . . , Pl) ∈ (Xn)l. We define the permutation

γP = (1 . . . degP1) · · · (
l−1∑
i=1

degPi + 1 . . . degP ).

Definition 5.2. We introduce the moment with respect to the Haar measure in the multimatrix
case

αNU ,0,l(P1, . . . , Pl) = E [Tr(P1) · · ·Tr(Pl)] ,

where the expectation is under the product Haar measure dUN1 · · · dUNn .
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Proposition 5.3. Let P = (P1, . . . , Pl) ∈ (Xn)l and Ji = t−1
P (i).

We have

αNU ,0,l(P1, . . . , Pl) =
∑

π1∈S(εP ,1)(J1)

π2∈S(εP ,2)(J2)
···

πn∈S(εP ,n)(Jn)

(
k∏
i=1

WgN (π
(ε

(i)
P )

i )

)
TrγP π−1

1 ···π
−1
n

(MP ).

(20)

This Proposition is obtained by applying the following Lemma n times.

Lemma 5.4. Let MP = (M1, . . . ,MdegP ) Let M̃ = (M̃i, 1 ≤ i ≤ degP ), defined by M̃i = Mi if
ti = 1, and M̃i = Miu

εP (i)
ti otherwise. Then, we have the expectation with respect to UN1 only

EUN1 [Tr(P1) · · ·Tr(Pl)] =
∑

π1∈S(εP ,1)(J1)

WgN (π
(εP ,1)
1 ) TrγP π−1

1
(M̃).

Proof. of Lemma 5.4 We can assume that the last factor of each polynomial Pi is a u1 or a u∗1. Let
J1 = t−1(1) = {p1 < p2 < . . . < pq}. We let γ′ = Tr(γP ; J1). Proposition 2.11, shows that

EUN1 [Tr(P1) · · ·Tr(Pl)] =
∑

π1∈S(εP ,1)(J1)

WgN (π
(εP ,1)
1 ) Trγ′π−1

1
(M ′),

whereM ′ = (M ′i , i ∈ J1) defined byM ′i = Mpi−1+1u
εP (pi−1+1)
t(pi−1+1) Mpi−1+2u

εP (pi−1+2)
t(pi−1+2) · · ·Mpi−1u

εP (pi−1)
t(pi−1) Mpi

(with the convention p0 = 0).
This is equal to

EUN1 [Tr(P1) · · ·Tr(Pl)] =
∑

π1∈S(εP ,1)(J1)

WgN (π
(εP ,1)
1 ) TrγP π−1

1
(M̃).

5.2 Multicolored maps of unitary type
We now generalize the notion of a map of unitary type to address the multimatrix case.

Definition 5.5. Let I be a finite subset of N∗. A multicolored map of unitary type with n
colors, with labels in I, and with ri vertices of color i for 1 ≤ i ≤ n, is an oriented map with vertices
colored in white or in one of n colors, and colored half-edges which can be of any of the n colors
such that

• there are ri vertices of color i for 1 ≤ i ≤ n, which are alternated of degree 4 and numbered
from 1 to ri;

• the half-edges connected to a vertex of color i (which is not white) are of color i as well;

• there are |I| half-edges that are connected to white vertices. Each element of I labels exactly
one of these half-edges;
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• each half-edges connected to a white vertex is colored in one of the n colors;

• each edge is composed of two half-edges of the same color;

• if an oriented edge connects the vertex of color i numbered l1 to the vertex of color i numbered
l2 then l1 < l2.

1
2

3

4
5

6

7

8

9

10

1

2

1

Figure 13: A muticolored map of unitary type with two colors.

Notice that if we “erase” the colors of a multicolored unitary map, that is, if we turn each edge
and vertex of color i ∈ [n] into black, we obtain a (monocolored) map of unitary type. In particular,
we define similarly labels of all the half-edges.

As in Section 3.2, we define for a multicolored map of unitary type C, with n colors, the following
permutations.

We construct permutations ρC , πC , and φC , and the tuple εC , as for a monocolored map of unitary
type. If the i-th labelled half-edge is of color j, we set tC(i) = j. We then define JC,i = t−1

C (i). We
set εC,i = εC |JC,i for all 1 ≤ i ≤ k.

For each color i ∈ [n], we consider the edges of this color. We then define as previously a
permutation πC,i ∈ S(εC,i)(JC,i) describing these edges and the vertices of color i. Finally, if we
consider the vertices of color i, we can associate to the j-th vertex of color i the transposition τi,j
as previously. We set τC = (τi,j , i ∈ [n], j ∈ [ri]).

Notice that by construction, we have πC = πC,1πC,2 · · ·πC,n.

Definition 5.6. Let n ≥ 1 and g ≥ 0 be integers, and I be a finite subset of the positive integers.
Let r = (r1, . . . , rn) ∈ Nn, γ ∈ S(I), t : I → [n] and ε : I → {±1}.

We denote by CrI,ε,ρ,t the set of multicolored maps of unitary type C with n colors, with label set
I, and with ri vertices of color i, for 1 ≤ i ≤ n, such that ρC = ρ, εC = ε, and tC = t.

We denote by Cg,I,ε,ρ,t the set of multicolored maps of unitary type C with n colors, with label
set I, and of genus g, such that ρC = ρ, εC = ε, and tC = t.

We then have the analog of Theorem 3.26

Theorem 5.7. Let n ≥ 1 be an integer, and I be a finite subset of the positive integers. Let
r = (r1, . . . , rn) ∈ Nn, ρ ∈ S(I), t : I → [n] and ε : I → {±1}. Define Ji = t−1(i) and εi = ε|Ji for
1 ≤ i ≤ n.
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The previous construction gives a bijection between CrI,ε,ρ,t and⋃
π1∈S(ε1)(J1),...,πn∈S(εn)(Jn)

n∏
i=1

{πi} ×
−→
Wri(π

(εi)
i ).

Proof. The proof is very similar to the one of Theorem 3.26. By considering each color, we prove
that the construction does give a map CrI,ε,ρ,t →

⋃
π1∈S(ε1)(J1),...,πn∈S(εn)(Jn)

∏n
i=1{πi}×

−→
Wri(π

(εi)
i ).

We can construct its inverse exactly as in the proof for the case with one unitary matrix, by
constructing the edges for the color 1, then for the color 2, etc.

It follows directly by erasing the colors and Proposition 3.27 that we have the following propo-
sition.

Proposition 5.8. Let C be a multicolored map of unitary type with n colors. The map C is
connected if and only if the group 〈ρC , πC,1, . . . , πC,n, τi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ ri〉 is transitive, with
τC = (τi,j , i ∈ [n], j ∈ [ri]).

Using Proposition 2.14, 5.3, and 5.7, we can compute the moments with no potential (for
N ≥ m = 1

2 degP ). Let P = (P1, . . . , Pl) ∈ (Xn)l, we have

αNU ,0,l(P1, . . . , Pl) = N−m
∑

π1∈S(εP ,1)(J1)

π2∈S(εP ,2)(J2)
···

πn∈S(εP ,n)(Jn)

∑
r1,...,rn≥0

(
−1

N

)r n∏
i=1

−→w ri(π
(εi)
i ) TrγP π−1

1 ···π
−1
n

(MP )

= N−m
∑
r∈Nk

∑
C∈Cr

[2m],εP ,γ
−1
P

,t

(
−1

N

)r
Trγπ−1

1 ···π
−1
n

(MP ),

(21)

where we use the notation xr = x
∑
i ri , for any x ∈ R.

We then compute the cumulants for no potential, when N ≥ m,

WN
UN ,0,l(P1, . . . , Pl) = N−m

∑
r∈Nn

∑
C∈Cr

[2m],εP ,γ
−1
P

,t

C connected

(
−1

N

)r
TrφC (MP ).

(22)

We now rewrite this sum using the genus of the maps rather than the number of colored vertices.
In this context, the Euler formula becomes

2− 2gC = c(γC) + c(φC)−m−
k∑
i=1

ri.

We thus get the renormalized cumulant W̃N
UN ,0,l

W̃N
UN ,0,l(P1, . . . , Pl) = N l−2WN

UN ,0,l(P1, . . . , Pl)

= (−1)m+l
∑
g≥0

1

N2g

∑
C∈C

g,[2m],εP ,γ
−1
P

,t

C connected

(−1)c(φC) trφC (MP ). (23)
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The term of order 2g is then

M(g),N
0,l (P1, . . . , Pl) = (−1)m+l

∑
C∈C

g,[2m],εP ,γ
−1
P

,t

C connected

(−1)c(φC) trφC (MP ).

We then define the formal cumulant as

M(g),N
V,l (P1, . . . , Pl) =

∑
n∈Nk

zn

n!
W̃(g),N

0,l (q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl),

as previously.

5.3 Induction relation
We will now deduce from the relations obtained in Section 4 similar relations in the multimatrix
case.

Proposition 5.9. Let P = (P1, . . . , Pl) ∈ (Xn)l, i ∈ [n] and g ≥ 1.
If 1

2 degiP ≥ 2, then we have the equation∑
g1+g2=g
I⊂[l−1]

M(g1),N
V,|I|+1 ⊗M

(g2),N
V,|Ic|+1(PI ⊗ PIc#∂iPl) +M(g),N

0,l−1 (P1 ⊗ · · · ⊗ Pl−1 ⊗ (DiV )Pl)

=−M(g−1),N
0,l+1 (P1 ⊗ · · · ⊗ Pl−1 ⊗ ∂iPl)

−
l−1∑
j=1

M(g),N
0,l−1 (P1 ⊗ · · · ⊗ Pj−1 ⊗ Pj+1 ⊗ · · · ⊗ Pl−1 ⊗ (DiPj)Pl).

(24)

Here ∂i and Di are the non-commutative and cyclic derivative with respect to ui, for i ∈ [n].

This Proposition is proved as in Section 4. If no polynomial of P contains a ui then the equation
is trivial.

Thus we can assume by symmetry that degi Pl ≥ 1. We cut the maps from the sum W(g),N
0,l (P )

as in Section 4.1. Notice that in this construction, we only modify edges of the color i so we can
use the exact same arguments. We thus obtain the wanted equation.

6 The Dyson-Schwinger equation and the topological expan-
sion

The induction equations obtained in Section 4 are related to the Dyson-Schwinger equations for
unitary matrices. In this section, we introduce the Dyson-Schwinger lattice of equations for the
renormalzed cumulants W̃N

V,l = N l−2WN
V,l. Together with the induction relations derived in Section

4, they allow us to show that the renormalized cumulants W̃N
V,l admit an asymptotic topological

expansion as N →∞. The methods used in this section are heavily inspired from [GN15].
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6.1 Scalar product and parametric norms on An

Following [GN15], we introduce some useful notions.
The vector space A – the algebra of noncommutative polynomials – admits a countable basis,

which is the set of all monomials. Let 〈· , ·〉 be the scalar product that makes this basis orthonormal.
In particular, B⊥ is the algebra generated by the polynomials with no constant term, i.e. without
factors ui or u∗i .

Definition 6.1. Let ξ ≥ 1. The ξ-norm is ‖ · ‖ξ defined by

‖P‖ξ =
∑

Q∈A monomial

|〈P,Q〉|ξdegQ,

for P ∈ A.

Example 6.2. An important case is the 1-norm. For instance the 1-norm of the potential we consider
is

‖V ‖1 =

k∑
i=1

|zi|.

We write B⊥ξ the completion of the algebra B⊥ in the ξ-norm ‖ · ‖ξ.
This notion of norm allows us to define the parametric ξ-norm of a linear operator or form.

Definition 6.3. Let T be an operator on A and ξ, ξ′ ≥ 1. Its (ξ, ξ′)-norm is

‖T‖ξ,ξ′ = sup
P∈A

‖TP‖ξ′
‖P‖ξ

.

When ξ = ξ′ we write ‖T‖ξ = ‖T‖ξ,ξ.
Similarly, let τ : A → C be a linear form. Its ξ-norm is

‖τ‖ξ = sup
P∈A

|τ(P )|
‖P‖ξ

.

A particularly important sort of linear forms are tracial states.

Definition 6.4. Let C be a unital ∗-algebra. A tracial state on C is a linear form τ : C → C such
that for any P,Q ∈ C, we have

• τ(Id) = 1;

• τ(PQ) = τ(QP );

• τ(PP ∗) ≥ 0.

We say a tracial state on An or B is bounded if for any 1 ≤ i ≤ p, and any j ≥ 0, we have

τ
(
(aia

∗
i )
j
)
≤ 1.

Remark 6.5. The normalized trace tr is a tracial state on B. Under Hypothesis 1.2, it is bounded.
In that case, the Cauchy-Schwarz inequality implies that

‖ tr ‖1 = 1.

Assuming Hypothesis 1.1, we thus have that W̃N
V,1 is a tracial state on An, with ‖W̃N

V,1‖1 = 1.
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6.2 The Dyson-Schwinger equations for the unitary matrices
Let σ be a tracial state on B. A tracial state µ on A is a solution to the Dyson-Schwinger problem
with initial value σ if for all P ∈ A,{

µ⊗ µ(∂iP ) + µ(DiV · P ) = 0, for 1 ≤ i ≤ n
µ|B = σ.

(25)

It has been shown in [CGMS09] that there exists a solution to this problem when TrV = TrV ∗

(which implies that TrV is real), and that the solution is unique for a potential V small enough
(i.e.

∑k
i=1 |zi| < ε for some ε > 0). Notice that for all N ≥ 1, M(0),N

V,1 is a solution to (25) with
σ = trN .

In [GN15], a family of equations that generalize (25) was studied. The renormalized cumulants
W̃N
V,l are solution to these equations. We reproduce them here.

Proposition 6.6 ([GN15, Proposition 20]). Assume Hypothesis 1.1. The renormalized cumulants
{W̃N

V,l}l≥1 satisfy the equation∑
I⊂[l−1]

W̃N
V,|I|+1 ⊗ W̃

N
V,|Ic|+1(PI ⊗ PIc#∂Pl) + W̃N

V,l(P1, . . . , Pl−1,DiV · Pl)

= −
l−1∑
j=1

W̃N
V,l−1(P1, . . . , Pj−1, Pj+1, . . . , Pl−1,DiPj · Pl)−

1

N2
W̃N
V,l+1(P1, . . . , Pl−1, ∂iPl).

The series of mapsM(g),N
V,l satisfy similar equations (see (18)).

6.3 Radius of convergence of the series M(g),N
V,l

Before giving the proof of the main Theorem, we show that all the terms M(g),N
V,l have a radius

of convergence greater than some RV > 0. We can apply the gradient trick from [GN15] that we
explain in Appendix B to the equations from Proposition 5.9 and obtain for (g, l) 6= (0, 1),

M(g),N
V,l (P[l−1]⊗ΞV

M(0),N
V,1

Pl) = −M(g−1),N
V,l+1 (P[l−1] ⊗ ∆̄Pl)

−
g−1∑
h=1

M(g−h),N
V,l (P[l−1] ⊗M

(h),N
V,1 ⊗ Id)(∆̄Pl)

−
∑

∅(I([l−1]
g1+g2=g

M(g1),N
V,|I|+1 ⊗M

(g2),N
V,|Ic|+1(PI ⊗ PIc#∆̄Pl)

−
l−1∑
j=1

M(g),N
V,l−1(P1, . . . , P̌j , . . . , Pl−1, P̄PjPl).

(26)

Proposition 6.7. Fix a potential V =
∑k
i=1 ziqi, with q1, . . . , qk ∈ Xn. Let g ≥ 0, l ≥ 1, P ∈ Aln.

The radius of convergence of M(g),N
V,l (P ) depends only on k and q1, . . . , qk, and is greater than

RV = min( 1
2 (4AkDk,ν)−1, 1

2kν(4Ak+ 2k+2

Bk
)ν

), where ν = max1≤i≤k deg qi.
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Proof. Let P ∈ (Xn)l. The seriesM(0),N
V,1 (P ) can be bounded as follows

|M(0),N
V,1 (P )| ≤

∑
n∈Nk

zn

n!
|M(0),N

0,
∑
i ni+l

(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl)|

≤ (4Ak)degP

Bk

∑
n∈Nk

zn(4AkDk,ν)n

≤ (4Ak)degP

Bk

k∏
i=1

1

1− 4AkDk,νzi
.

Assuming that ‖z‖∞ < 1
2 (4AkDk,ν)−1, we get

‖M(0),N
V,1 ‖4Ak ≤

2k

Bk
.

Define

K(ξ, V ) =
2k+1

Bk

4Ak
ξ − 4Ak

+ ‖ΠV ‖1νξν ,

where as before ν = max1≤i≤k deg qi. Choose ξ = 4Ak + 2k+2

Bk
. Then, assuming than

‖ΠV ‖1 <
1

2νξν
,

we have K(ξ, V ) < 1 and ΞV
M(0),N

V,1

is an invertible operator B⊥ξ → B⊥ξ . Note that this is satisfied if

‖z‖∞ < 1
2kνξν . We thus set RV = min( 1

2 (4AkDk,ν)−1, 1
2kνξν ).

We then proceed by induction. Assume that for all (g′, l′) < (g, l) (with the lexicographic order),
and for all P ∈ X l′n , the seriesM(g′),N

V,l′ (P ) has a radius of convergence greater than RV .
Then, the right side of (26) is a holomorphic function that is defined on a polydisc of radius RV .

The left side is a holomorphic function defined on a polydisc of radius Rl,g,V which coincide with
the right side. Thus, it can be extended to a holomorphic function on a polydisc of radius RV .

The fact that ΞV
M(0),N

V,1

is invertible allows us to conclude.

6.4 The topological expansion: proof of Theorem 1.3
We introduce the truncated formal cumulant (cf. Definition 3.38)

S
(g),N
V,l =

g∑
h=0

1

N2h
M(g),N

V,l .

We will show that the cumulants W̃N
V,l admit a topological expansion by bounding the errors

δ
(g),N
V,l = W̃N

V,l − S
(g),N
V,l .
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When ‖z‖∞ < RV , the truncated formal cumulants satisfy the equation∑
I⊂[l−1]
0≤f≤g

1

2

(
1

N2f
M(f),N

V,|I|+1 ⊗ S
(g−f),N
V,|Ic|+1 +

1

N2f
S

(g−f),N
V,|I|+1 ⊗M

(f),N
V,|Ic|+1

)
(PI ⊗ PIc#∂iPl)

+ S
(g),N
l (P[l−1] ⊗ (DiV )Pl)

= − 1

N2
S

(g−1),N
V,l (P[l−1] ⊗ ∂iPl)−

l−1∑
j=1

S
(g),N
V,l−1(P1 ⊗ · · ·Pj−1 ⊗ Pj ⊗ Pl−1 ⊗ (DiPj)Pl),

(27)

that is a direct consequence of (18).
Together with Proposition 6.6, these equations imply the following equations on the errors.∑

I⊂[l−1]

1

2

(
δ

(g),N
V,|I|+1 ⊗ W̃

N
V,|Ic|+1 + W̃N

V,|I|+1 ⊗ δ
(g),N
V,|Ic|+1

)
(PI ⊗ PIc#∂iPl)

+
∑

I⊂[l−1]
0≤f≤g

1

2

(
1

N2f
M(f),N

V,|I|+1 ⊗ δ
(g−f),N
V,|Ic|+1 +

1

N2f
δ

(g−f),N
V,|I|+1 ⊗M

(f),N
V,|Ic|+1

)
(PI ⊗ PIc#∂iPl)

+ δ
(g),N
V,l (P[l−1] ⊗ (DiV )Pl)

= − 1

N2
δ

(g−1),N
V,l (P[l−1] ⊗ ∂iPl)−

l−1∑
j=1

δ
(g),N
V,l−1(P1 ⊗ · · ·Pj−1 ⊗ Pj ⊗ Pl−1 ⊗ (DiPj)Pl)

Using the gradient trick (see Section B), these equations can be rewritten as follows

δ
(g),N
V,l

(
P[l−1] ⊗ ΞV

W̃N
V,1/2+M(0),N

V,1 /2

)
(Pl)

=− 1

N2
δ

(g−1)
l+1 (P[l−1] ⊗ ∆̄Pl)

− 1

2

(
[W̃N

V,l +M(0),N
V,l ](P[l−1] ⊗ Id)⊗ δ(g),N

V,1 + δ
(g),N
1 ⊗ [W̃N

V,l +M(0),N
V,l ](P[l−1] ⊗ Id)

)
(∆̄Pl)

−
∑

∅(I([l−1]

1

2

(
[W̃N

V,l +M(0),N
V,l ]⊗ δ(g),N

V,|Ic|+1 + δ
(g),N
|I|+1 ⊗ [W̃N

V,l +M(0),N
V,l ]

)
(PI ⊗ PIc#∆̄Pl)

−
∑

I⊂[l−1]
1≤f≤g

1

2

(
1

N2f
M(f),N

V,|I|+1 ⊗ δ
(g−f),N
V,|Ic|+1 +

1

N2f
δ

(g−f),N
V,|I|+1 ⊗M

(f),N
V,|Ic|+1

)
(PI ⊗ PIc#Pl)

−
l−1∑
j=1

δ
(g)
l−1(P1 ⊗ · · · ⊗ Pj−1 ⊗ Pj+1 ⊗ · · · ⊗ Pl−1 ⊗ P̄PjPl).

The bounds derived in the previous subsections imply the following results.

Lemma 6.8. Assume that for all N ≥ 1, TrV is real and ‖ANi ‖ ≤ 1 for all i (Hypotheses 1.1 and
1.2). There exists ξ > 1 and ε > 0, such that if

‖z‖∞ < ε,
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then, that for all g ≥ 0 and l ≥ 1, we have

‖δ(0)
1 ‖ξ ≤

C

N2
.

Proof. Consider the secondary equations for the errors with g = 0, l = 1

δ
(0)
1

(
ΞV
W̃N
V,1/2+M(0),N

V,1 /2
P

)
= −δ(0)

1 ⊗ δ(0)
1 (∆̄P )− 1

N2
W̃N
V,2(∆̄P ).

First, notice that the series M(0),N
V,1 satisfy ‖M(0),N

V,1 ‖4Ak ≤
2k

Bk
, with Ak and Bk the constants

from Proposition 4.17. Proposition B.4 implies that

‖T̄M(0),N
V,1

‖ξ ≤
2k+1

Bk

4Ak
ξ + 4Ak

.

Let ξ ≥ 32Ak ≥ 12 and 0 < ε < RV , such that

K(ξ, V ) = 2
ξ + 1

ξ(ξ − 1)
+

2k

Bk

4Ak
ξ + 4Ak

+ ‖ΠV ‖1νξν < 1/2.

In that case, the operator ΞV
W̃N
V,1/2+M(0),N

V,1 /2
: B⊥ξ → B⊥ξ is invertible.

We get that

‖δ(0)
1 ‖ξ ≤ ‖δ

(0)
1 ‖ξ‖T̄δ(0)1

‖ξ‖(ΞVW̃N
V,1

)−1‖ξ +
C ′

N2
‖∆̄‖ξ,ξ/2‖(ΞVW̃N

V,1

)−1‖ξ,

where we used that there exists a constant C ′ > 0 such that ‖W̃N
V,2‖ξ/2 ≤ C ′ by [GN15, Theorem

22]. Note that for this Theorem 22 to be applicable, one must show that the sequence of cumulants
is ξ-uniformly bounded in the sense of [GN15, Definition 21]. This is shown assuming Assumption
1.1 in [GN15, Corollary 32] for all ξ ≥ 12.

The bound onM(0),N
V,1 implies that ‖δ(0)

1 ‖4Ak ≤ 1 + 2k

Bk
≤ 2. This fact and Proposition B.4 give

‖T̄
δ
(0)
1
‖ξ ≤ 2(1 +

2k

Bk
)

4Ak
ξ − 4Ak

< 1/2.

With this result and [GN15, Proposition 19], we finally get that

‖δ(0)
1 ‖ξ ≤

C ′

N2

‖(ΞVW̃N
V,1

)−1‖ξ

1− ‖T̄
δ
(0)
1
‖ξ‖(ΞVW̃N

V,1

)−1‖ξ
≤ C ′

N2

1

1/2−K(ξ, V )
.

Proposition 6.9. Assume that for all N ≥ 1, TrV is real and ‖ANi ‖ ≤ 1 for all i (Hypotheses 1.1
and 1.2). There exists ξ > 1 and ε > 0, such that if

‖z‖∞ < ε,

then for all g ≥ 0 and l ≥ 1, we have

‖δ(g)
l ‖2l−2ξ = O

(
N−2g−2

)
.
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Proof. We proceed by induction on (g, l), with lexicographic order. For l = 1, g = 0, the result is
given by Lemma 6.8.

Assume now that for all (g′, l′) < (g, l), we have

‖δ(g′)
l′ ‖ξ = O

(
N−2g′−2

)
.

Then, in the secondary equations for the errors, all the terms on the right side of the equation are
of order N−2g. Note that terms δ(−1)

l = W̃N
V,l are bounded using [GN15, Theorem 22]. This gives

the result.

Proposition 6.9 directly implies Theorem 1.3.

Remark 6.10. Notice that for N big enough, the series

g∑
h=0

1

N2h
M(h),N

V,l (P1, . . . , Pl)

is well defined for all V with z small enough, even if Hypothesis 1.1 is not satisfied.
In fact, for any V with z small, provided the cumulants exist, are bounded, and satisfy the

Dyson-Schwinger equations, the same method applies and the asymptotic topological expansion
holds.

The complex asymptotics of the HCIZ and BGW partition functions were studied with a different
method in [Nov20].

A Bounds for the sum of maps M(g),V
0,l

This appendix gives a detailed proof of Proposition 4.17.
We assume that ν ≥ 1 and that up to cyclic permutation of its factors we can write Pl as Pu.

If Pl has no term u, a similar argument holds with Pl = u∗P .
Furthermore, to make notation less cumbersome, we write

M(g),N
n,l (P1, . . . , Pl) =M(g),N

0,
∑
i ni+l

(q1, . . . , q1︸ ︷︷ ︸
n1 times

, . . . , qk, . . . , qk︸ ︷︷ ︸
nk times

, P1, . . . , Pl),

and omit the indices k and ν in the constants.
To prove the result, we do an induction on Nk+3, where we endow a tuple (g, l, n1, . . . , nk,m)

with the lexicographic order.
Notice that the result is obvious when n1 = . . . = nk = 0, g = 0, l = 1 when m = 1 (as

M(0),N
0,1 (MU±1) = 0 for all M ∈ Y), and when m = 2 (asM(0),N

0,1 (M1UM2U
−1) = trM1 trM2), as

soon as M ≥ 1. In fact, by Lemma 3.36, |M(0),N
0,1 (P )| ≤ 1 for all P ∈ X .
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Assuming that m ≥ 2 or n 6= 0, Theorem 4.1 yields

1

n!
M(g),N
n,l (P1, . . . , Pl−1, Pu) = − 1

n!
M(g−1),N
n,l+1 (P1, . . . , Pl−1, (∂P )× 1⊗ u)

−
∑

I⊂[l−1]
n1+n2=n

∑
g1+g2=g

1

n1!

1

n2!
M(g1),N
n1,|I|+1 ⊗M

(g2),N
n2,|Ic|+1(PI ⊗ PIc#(∂P )× 1⊗ u)

−
l−1∑
j=1

1

n!
M(g),N
n,l−1(P1, . . . , P̌j , . . . , Pl−1, (DPj)Pu)

−
k∑
j=1

1

(n− 1j)!
M(g),N
n−1j ,l

(P1, . . . , Pl−1, (Dqj)Pu),

where P̌j means that Pj is removed.
Now assuming that the bound holds for (g′, l′, n′1, . . . , n

′
k,m

′) < (g, l, n1, . . . , nk,m), we get four
terms.

1.

1

n!
|M(g−1),N

n,l+1 (P1, . . . , Pl−1, (∂P )× 1⊗ u)|

≤
degPu∑
m′=1

A(l+1)(m+νn)B−l−1C(g−1)(m+νn)Dncm′cdegPu−m′

l−1∏
i=1

cdegPi

k∏
j=1

cnj

≤ A(l+1)(m+νn)B−l−1C(g−1)(m+νn)Dn(cdegPu+1 − cdegPu)

l−1∏
i=1

cdegPi

k∏
j=1

cnj

≤ 3

B

(
A

C

)m
Al(m+νn)B−lCg(m+νn)Dn

l∏
i=1

cdegPi

k∏
j=1

cnj .

In the third line we used the recurrence formula for Catalan numbers cn+1 =
∑n
i=0 cicn−i and in

the fourth line we used that cn+1 ≤ 4cn for all n ∈ N. We choose A and C so that A/C ≤ 1 and
B ≥ 12.

2. ∑
I⊂[l−1]
n1+n2=n

∑
g1+g2=g

1

n1!

1

n2!
|M(g1),N

n1,|I|+1 ⊗M
(g2),N
n2,|Ic|+1|(PI ⊗ PIc#(∂P )× 1⊗ u)

≤
degPu∑
m′=1

∑
I⊂[l−1]

∑
g1+g2=g

Am1(|I|+1)+m2(|Ic|+1)B−l−1Cg1m1+g2m2cm′cdegPu−m′

×
∑

n1+n2=n

AlνnCgνnDn
l−1∏
i=1

cdegPi

k∏
i=1

cn1,icn2,i ,
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where we used the notation m1 =
∑
i∈I degPi + m′ and m2 =

∑
i∈Ic degPi + degPu −m′.

With this notation, we get∑
g1+g2=g

Cg1m1+g2m2 = Cgm
g∑

h=0

(
1

Cm2

)h(
1

Cm1

)g−h
= Cgm

C−m1(g+1) − C−m2(g+1)

C−m1 − C−m2

≤ Cgm.

Similarly, we have∑
I⊂[l−1]

Am1(|I|+1)+m2(|Ic|+1) = Aml
∑

I⊂[l−1]

A−m1|Ic|−m2|I|

≤ Aml
l−1∑
i=0

(
l − 1

i

)(
1

AdegPu−m′

)i(
1

Am′

)l−i−i
= Aml(

1

AdegPu−m′ +
1

Am′
)l−1

≤ Aml.

We finally get∑
I⊂[l−1]
n1+n2=n

∑
g1+g2=g

1

n1!

1

n2!
|M(g1),N

n1,|I|+1 ⊗M
(g2),N
n2,|Ic|+1|(PI ⊗ PIc#(∂P )× 1⊗ u)

≤ 3 · 4k

B
Al(m+νn)B−lCg(m+νn)Dn

l∏
i=1

cdegPi

k∏
i=1

cni

Thus, we choose B ≥ 3 · 4k+1.

3.
l−1∑
j=1

1

n!
|M(g),N

n,l−1(P1, . . . , P̌j , . . . , Pl−1, (DPj)Pu)|

≤
l−1∑
j=1

(degPj)A
(l−1)(m+νn)B−l+1Cg(m+νn)DncdegPj+degPu

l−1∏
i=1
i 6=j

cdegPi

k∏
j=1

cnj

≤ B

Am+νn

 l−1∑
j=1

(degPj)
cdegPj+degPu

cdegPjcdegPu

Al(m+νn)B−lCg(m+νn)Dn
l∏
i=1

cdegPi

k∏
j=1

cnj .

To bound this term, we use the following estimate for the Catalan numbers, a consequence of the
Stirling bound

4n

(n+ 1)
√
πn

exp

(
1

24n+ 1
− 1

24n

)
≤ cn ≤

4n

(n+ 1)
√
πn

exp

(
1

24n
− 1

24n+ 2

)
,
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which implies

4n√
π(n+ 1)3/2

≤ cn ≤
4n√
πn3/2

.

It implies that for p, q ∈ N∗,

cp+q
cpcq

≤ π1/2

(
(p+ 1)(q + 1)

p+ q

)3/2

≤ π1/2(p+ 1)3/2.

Thus,

B

Am+νn

 l−1∑
j=1

(degPj)
cdegPj+degPu

cdegPjcdegPu

 ≤ π1/2B

Am+νn
(degPu+ 1)3/2(m− degPu).

As we can assume that m ≥ 2 (else this term could be bounded by 0 as one of the Pi, 1 ≤ i ≤
l − 1 would be of degree 0), it suffices to choose A ≤ 2B1/2π1/423/2. Notice that for all n ≥ 1,
(n+ 1)3/2 ≤ 23n/2.

4.
k∑
j=1

1

(n− 1j)!
M(g),N
n−1j ,l

(P1, . . . , Pl−1, (Dqj)Pu)

≤ 1

D

k∑
j=1

(deg qk)Al(m+νn)B−lCg(m+νn)Dn
cdegPu+deg qjcnj−1

cdegPucnj

l∏
i=1

cdegPi

k∏
i=1

cni

≤ 1

D

k∑
j=1

4deg qk(deg qk)Al(m+νn)B−lCg(m+νn)Dn
l∏
i=1

cdegPi

k∏
i=1

cni

≤ 1

D

k∑
j=1

(4e1/e)deg qkAl(m+νn)B−lCg(m+νn)Dn
l∏
i=1

cdegPi

k∏
i=1

cni .

We choose D = 4k(4e1/e)ν to get the result.
Notice that we can thus choose

A = C = 2k+3
√

6π1/4

B = 3 · 4k+1

D = 4k(4e1/e)ν .

B The gradient trick
We use several times the gradient trick, previously introduced in [GN15].

The main idea of the gradient trick is to replace the polynomial P (or Pl) the equations of
Proposition 6.6 (or in the Dyson-Schwinger problem (25), see Section 6) by its cyclic derivative
DiP . An operator – the master operator introduced below – naturally appears in the equations.
When the potential V is small enough, this operator is invertible. The gradient trick was introduced
in [GN15] to study the Dyson-Schwinger lattice of equations.
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B.1 The trick
The gradient trick allows us to simplify quadratic terms. We take as an example the equation for
the sums of maps for g = 0, l = 2∑

I⊂[l−1]

M(0),N
0,|I|+1 ⊗M

(0),N
0,|Ic|+1(PI ⊗ PIc#∂iP2) = −M(g),N

0,1 ((DiP1)P2) .

We can rewrite it as

M(0),N
0,2 (P1 ⊗ Id⊗M(0),N

0,1 + P1 ⊗M(0),N
0,1 ⊗ Id)(∂iP2) = −M(g),N

0,1 ((DiP1)P2) .

We now replace P2 by its cyclic derivative DiP2, and obtain

M(0),N
0,2 (P1 ⊗ Id⊗M(0),N

0,1 + P1 ⊗M(0),N
0,1 ⊗ Id)(∂iDiP2) = −M(g),N

0,1 ((DiP1)(DiP2)) .

Lemma B.1. Let µ2 : An × An → C be a bilinear form, tracial in each of its variables. For a
monomial P ∈ Xn, write deg+

i (P ) for the number of factors ui in P and deg−i (P ) for the number
of factors u∗i in P . We have for any monomial P ∈ An,

µ2(∂iDiP ) = deg+
i (P )µ2(P ⊗ 1) + deg−i (P )µ2(1⊗ P ) + µ2(∆iP ),

with the operator ∆i defined by

∆iP =
∑

P=P1uiP2

 ∑
P2P1=Q1uiQ2

Q1ui ⊗Q2ui −
∑

P2P1=Q1u
−1
i Q2

Q1 ⊗Q2


−

∑
P=P1u

−1
i P2

 ∑
P2P1=Q1uiQ2

Q1 ⊗Q2 −
∑

P2P1=Q1u
−1
i Q2

u−1
i Q1 ⊗ u−1

i Q2

 .

In particular, if µ2 is symmetric, we get

µ2(∂iDiP ) = degi(P ) · µ2(1⊗ P ) + µ2(∆iP ).

This Lemma allows us to rewrite the above expression as

M(0),N
0,2

(
degi(P2)P1 ⊗ Id +(P1 ⊗ Id⊗M(0),N

0,1 + P1 ⊗M(0),N
0,1 ⊗ Id)(∆iP2)

)
= −M(g),N

0,1 ((DiP1)(DiP2)) .

Introducing the operator

Pqi P = (Diq)(DiP ),

for P,Q ∈ An, we get

M(0),N
0,2

(
degi(P2)P1 ⊗ Id +(P1 ⊗ Id⊗M(0),N

0,1 + P1 ⊗M(0),N
0,1 ⊗ Id)(∆iP2)

)
= −M(g),N

0,1 (PP1
i P2) .

for 1 ≤ i ≤ n.
We now introduce sums of operators on 1 ≤ i ≤ n.
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• Pq =
∑n
i=1 P

q
i ,

• ∆ =
∑n
i=1 ∆i, called the reduced Laplacian,

• D =
∑n
i=1Di, where the Di are defined by their action on a monomial P , DiP = degi(P )P .

Furthermore, for an operator T , we introduce its regularization T̄ = TD−1. The sum of maps
M(0),N

0,2 satisfies

M(0),N
0,2

(
P1 ⊗ Id +(P1 ⊗ Id⊗M(0),N

0,1 + P1 ⊗M(0),N
0,1 ⊗ Id)(∆̄P2)

)
= −M(g),N

0,1 (P̄P1P2)

for all P1, P2 ∈ An.
This computation justifies the introduction of two operators.

Definition B.2 ([GN15, Definition 13]). Let Π be the orthogonal projection of the polynomials
onto B⊥, the algebra of polynomials without a degree 0 term. Let Π′ = Id−Π be the complementary
projection of the polynomials onto B.

Let τ be a tracial state. We define

Tτ = (Id⊗τ + τ ⊗ Id)∆.

The master operator is

ΞVτ = Id +ΠT̄τ + P̄V .

Thus, we have

M(0),N
0,2

(
P1 ⊗ Ξ0

M(0),N
0,1

P2

)
= −M(g),N

0,1 (P̄P1P2)

for all P1, P2 ∈ An.
This will be called the secondary form of the equation (24). Notice that in this particular case

V = 0. In the sequel, we will derive secondary equation with a potential.

B.2 Operator norm estimates
We now give some bounds on the norms of the different operators. These bounds and more were
derived in [GN15, Section 3.2]. In particular, it was shown that under some hypotheses the master
operator is invertible.

Proposition B.3 ([GN15, Section 3.3]). Let ξ ≥ 1, V ∈ A and τ a tracial state satisfying ‖τ‖ ≤ 1.
Introduce

K(ξ, V ) = 4
ξ + 1

ξ(ξ − 1)
+ ‖V ‖1ξdeg V deg V,

and assume that K(ξ, V ) < 1. Then, the operator ΞVτ extends to an operator B⊥ξ → B⊥ξ which is
invertible, with inverse satisfying

‖
(
ΞVτ
)−1 ‖ξ ≤

1

1−K(ξ, V )
.
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We use a slightly modified version of [GN15, Proposition 17].

Proposition B.4. Let 1 ≤ ξ1 < ξ2, and τ a linear form An → C. We have

‖T̄τ‖ξ2 ≤ 2‖τ‖ξ1
ξ1

ξ2 − ξ1
.

Proof. We proceed as in [GN15]. Let P be a monomial of degree d ≥ 1. We have

TτP =

n∑
i=1

∑
P=P1uiP2

 ∑
P2P1ui=Q1uiQ2ui

(Q1uiτ(Q2ui) + τ(Q1ui)Q2ui)


−

n∑
i=1

∑
P=P1uiP2

 ∑
P2P1ui=Q1u

−1
i Q2ui

(Q1τ(Q2) + τ(Q1)Q2)


−

n∑
i=1

∑
P=P1u

−1
i P2

 ∑
u−1
i P2P1=u−1

i Q1uiQ2

(Q1τ(Q2) + τ(Q1)Q2)


+

n∑
i=1

∑
P=P1u

−1
i P2

 ∑
u−1
i P2P1=u−1

i Q1u
−1
i Q2

(u−1
i Q1τ(u−1

i Q2) + τ(u−1
i Q1)u−1

i Q2)

 .

Using the triangle inequality and |τ(P )| ≤ ‖τ‖ξ1ξ
degP
1 , we get

‖TτP‖ξ2
‖τ‖ξ1

≤
n∑
i=1

∑
P=P1uiP2

 ∑
P2P1ui=Q1uiQ2ui

(ξ
degiQ1ui
2 ξ

degiQ2ui
1 + ξ

degiQ1ui
1 ξ

degi q2ui
2 )


+

n∑
i=1

∑
P=P1uiP2

 ∑
P2P1ui=Q1u

−1
i Q2ui

(ξ
degiQ1

2 ξ
degiQ2

1 + ξ
degiQ1

1 ξ
degiQ2

2 )


+

n∑
i=1

∑
P=P1u

−1
i P2

 ∑
u−1
i P2P1=u−1

i Q1uiQ2

(ξ
degiQ1

2 ξ
degiQ2

1 + ξ
degiQ1

1 ξ
degiQ2

2 )


+

n∑
i=1

∑
P=P1u

−1
i P2

 ∑
u−1
i P2P1=u−1

i Q1u
−1
i Q2

(ξ
degi u

−1
i Q1

2 ξ
degi u

−1
i Q2

1 + ξ
degi u

−1
i Q1

1 ξ
degi u

−1
i q2

2 )


≤ 2

n∑
i=1

degi P

degi P−1∑
k=1

ξk2 ξ
degi P−k
1


≤ 2d

(
ξ1
ξ2

)degi P

‖P‖ξ2

≤ 2d
ξ1

ξ2 − ξ1
‖P‖ξ2 .
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