Elsi Ahmadieh
email: elsiahmadieh@gmail.com

Nour El Madhoun
email: nour.el-madhoun@isep.fr@lip6.fr

NFTs for Online Trading of Artworks

Keywords: Blockchain, NFT, Smart-Contract

Smart contracts are an important key component of blockchain technology. They allow the creation of unique digital assets (such as artwork, real estate, collectibles, etc.) by representing them as NFTs. These NFTs can then be sold and purchased transparently and securely on a decentralized NFT marketplace. In this paper, we develop a smart contracts application that allows the creation of an NFT, which represents an artwork, that can be sold on an NFT marketplace while transferring the ownership from the seller to the buyer.

I. INTRODUCTION

In the past, artists would go to art exhibitions to show their works so that people and businessmen would buy them. With blockchain technology, the same process can take place in an online marketplace specifically using NFTs (Non-Fungible Tokens). In this section, we present a basic smart-contracts application that we have developed with the solidity language on the Ethereum blockchain [1] [2]. This application allows to create, from a URI (Uniform Resource Identifier), an NFT that represents an artwork and sell this NFT on an NFT marketplace by transferring its ownership from the seller to the buyer. Before proceeding to create an NFT that represents a particular artwork, it is first required to generate the metadata file of that artwork as shown in Fig. 4. Subsequently, it is required to use the InterPlanetary File System (IPFS) to store the artwork's visual through a token URI. More details are presented in [START_REF] Jain | A Brief Introduction to Web3: Decentralized Web Fundamentals for App Development[END_REF] on this procedure. In the following paragraphs, we illustrate the role of the different functions we have developed in our smart-contacts application by dividing them into several steps: -First Step "Creating an NFT using the token URI": the function shown in Fig. 5 is developed in the contract NFTCreation. It takes as parameter the token URI in order to create the corresponding NFT and returns the NFT identifier (initialized to 0 at the beginning and incremented by 1 each time an NFT is created). As illustrated in Fig. 6, the returned identifier of the NFT is 1 because we have created only one NFT and the owner inventor is the artist who has the address 0x5B...ddC4. If the same artist or another artist will create another NFT for another artwork (and thus another token URI), the function will then return an identifier which is equal to 2.

-Second

Step "Adding the created NFT to the NFT marketplace": the data structure shown in Fig. 7 and the function shown in Fig. 8 are developed in the contract NFTMarketplace. The objective of the function shown in Fig. 8 and Fig. 9 is to add an NFT to the marketplace with a price proposed by the seller. This function uses the data structure MarketItem. The objective of the latter is to reference all NFTs added to the marketplace with item identifiers in the marketplace: "each NFT added to the marketplace for trading (selling and buying) will have its identifier itemMarketId in the marketplace". Moreover, this data structure indicates for each NFT added to the marketplace the address of the inventor owner and the address of the seller owner. Let's take an example (see Fig. 9) of a new NFT which was created by the artist 0x5B...ddC4 and was added (itemMarketId = 1) for the first time to the marketplace for trading by its inventor owner who is this artist 0x5B...ddC4. In this case, the address of the inventor owner and the address of the seller owner are the same and lastItemMarketId will be equal to 0. Let's suppose that this NFT has been bought by the buyer 0xAb....5cb2 (see Fig. 13) and that he later gave it to the marketplace (itemMarketId = 2) to sell it with a new price. In this case, the address of the inventor owner will always remain 0x5B...ddC4, the address of the seller owner will be 0xAb....5cb2 and the lastItemMarketId will be equal to 1 "the identifier of the NFT in the marketplace when it was added by the inventor owner" (see Fig. 10 for more details). 12 and Fig. 13 is to sell an NFT added to the marketplace to another participant (another address) by transferring the ownership of the NFT from the seller to the buyer. This function uses the data structure SoldItem. The objective of the latter is to reference all NFTs sold on the marketplace with identifiers of items sold on the marketplace: "each NFT sold on the marketplace will have its identifier itemSoldId on the marketplace". Moreover, this data structure indicates for each NFT sold on the marketplace the address of the inventor owner and the address of the buyer owner (see Fig. 13 for more details).

III. CONCLUSION

In this paper, we have developed a basic smart-contracts application that allows the creation of an NFT, which represents an artwork, that can then be sold on an NFT marketplace while transferring the ownership from the seller to the buyer.

Fig. 1 .

 1 Fig. 1. Code in solidity of NFTCreation Contract

Fig. 2 .

 2 Fig. 2. Code in solidity of NFTMarketplace Contract

Fig. 3 .

 3 Fig. 3. Smart-Contracts of the Application II. SMART-CONTRACTS APPLICATION FOR NFTS Our application is composed of two smart-contracts (see Fig. 1, Fig. 2 and Fig. 3): (1) the NFTCreation contract which allows the creation of one or more NFTs for the same artist or several artists, (2) the NFTMarketplace contract which

Fig. 4 .

 4 Fig. 4. Creation Token URI

Fig. 7 .

 7 Fig. 7. MarketItem Data Structure

Fig. 10 .

 10 Fig. 10. Function addTokenToMarket (3)