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only satellite sensor collecting multispectral thermal-infrared images, a capability allowing unprecedented surface temperature estimation accuracy for a variety of surface cover types. Availability of ASTER data to study surface energy fluxes allows direct comparisons against ground measurements and facilitates detection of modeling limitations, both possible because of ASTER's higher spatial resolution. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a special remote-sensing tool intended to help estimate the surface energy balance, a critical attribute for monitoring land surface climate, hydrological processes and vegetation health. Using ASTER observations with spatial resolutions ranging from 15 to 90 m, in combination with a model simulating energy transfer, detailed estimates of surface energy fluxes may potentially be retrieved over large portions of the Earth's landmass. Knowledge of energy fluxes is important, providing meteorological boundary conditions for convection within the atmospheric boundary layer, and evapotranspiration (ET) estimates for hydrological studies, including vegetation transpiration estimates for crop growth assessment. The required flux retrieval accuracy varies by application, but is typically ∼50 W m -2 , as suggested by Seguin et al. (1999).

The essential idea for energy flux estimation of ET is recognition that water vapor mass transport can equivalently be represented as energy transport.

Due to the large amount of heat represented by the evaporation process, water mass transport can be accurately estimated from known energy transport.

Since energy transport of water vapor is directly connected to thermal and water vapor gradients, one can estimate ET primarily from knowledge of four quantities: surface temperature, vegetation density, near surface air temperature and near surface humidity. The first two are readily estimated from remote-sensing, while the last two are obtainable from ground observations or possibly from remote-sensing contextual data.

Estimation of land surface ET is of course not new, and in recent years accurate point-based observations have been used to monitor ET variability at hourly time scales. Examples include experiments at Monsoon '90 [START_REF] Moran | Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland[END_REF], FIFE [START_REF] Kanemasu | Surface fluxes measurements in FIFE: an overview[END_REF]Shuttleworth et al., 1989), HAPEX-SAHEL [START_REF] Goutorbe | HAPEX-Sahel: a large scale study of land-atmosphere interactions in the semi-arid tropics[END_REF], EFEDA [START_REF] Pelgrum | An inter-comparison of techniques to determine the area-averaged latent heat flux from individual in situ observations : a remote sensing approach using the European Field Experiment in a Desertification-threatened Area data[END_REF], BOREAS (Sellers et al., 1997), NOPEX [START_REF] Halldin | Boreal forests and climate[END_REF], JORNEX [START_REF] Havstad | Jornada experimental range: a unique arid land location for experiments to validate satellite systems[END_REF] and ReSeDA (Olioso et al., 2002b). However, it has also been recognized that spatially variability of ET is large and that even the most advanced ways of measuring ET with tower-mounted Eddy Covariance (E-C) systems are often not representative of landscape scale ET [START_REF] Moran | Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland[END_REF][START_REF] Pelgrum | An inter-comparison of techniques to determine the area-averaged latent heat flux from individual in situ observations : a remote sensing approach using the European Field Experiment in a Desertification-threatened Area data[END_REF]. Consequently, incorporation of remote-sensing data is required, since this is the only way to simultaneously observe surface properties over large surface areas.

ET monitoring with remote sensing has yet to be proven as a reliable, robust approach. Recent experiments show promising results, with systematic agreement between estimates from ground and aircraft measurements over several test areas [START_REF] French | Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data[END_REF][START_REF] Kustas | Using satellite remote sensing to extrapolate evapotranspiration estimates in time and space over a semiarid rangeland basin[END_REF][START_REF] Moran | Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland[END_REF][START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF]Kustas et al., 1996;[START_REF] Zhan | An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature[END_REF][START_REF] Anderson | A twosource time-integrated model for estimating surface fluxes from thermal infrared satellite observations[END_REF][START_REF] Norman | Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors[END_REF][START_REF] Hasager | Land cover, surface temperature and leaf area index maps from satellites used for the aggregation of momentum and temperature roughnesses[END_REF][START_REF] Wassenaar | Estimation of evapotranspiration over heterogeneous pixels[END_REF]Jacob et al., 2002a;Olioso et al., 2002a). On the other hand, previous criticisms (e.g., [START_REF] Hall | Satellite remote sensing of surface energy balance: sucess, failures and unresolved issues in FIFE[END_REF] suggest that thermal infrared (TIR) satellite observations, particularly, are not sufficiently accurate to constrain flux models. Although such critiques have been refuted [START_REF] Kustas | Reply to comments about the basic equations of dual-source vegetation-atmosphere transfer models[END_REF]Bastiaanssen et al., 1998a,b), further examples are clearly needed before remote sensing can be used operationally for this purpose.

Accurate spatially distributed estimates of surface energy fluxes require physically based energy flux models driven by accurate remote-sensing observations. Such ideal models, which do not depend on empirical calibration, are unrealizable since complete consideration of processes at the local scale requires large amounts of unavailable information. Some models (e.g., SiB2, Sellers et al., 1986) estimate ET from the Penman-Monteith equation [START_REF] Penman | Natural evaporation from open water, bare soil and grass[END_REF][START_REF] Monteith | Principles of Environmental Physics[END_REF], which considers both the radiative flux and the water mass flux, and can use remote sensing to derive net radiation (R n ). This widely used approach, however, does not adequately model heterogeneous surfaces or water-stressed vegetation. Other approaches, such as the simplified method of [START_REF] Jackson | Wheat canopy temperature: a practical tool for evaluating water requirements[END_REF], can model some of these conditions by incorporating surface temperatures observed from thermal remote sensing, but do so in an empirical way, meaning that local calibration is required.

Recent versions of remote-sensing energy flux models have progressed to include treatment for a wide range of conditions including heterogeneous surfaces and variable meteorological constraints, thereby reducing problems encountered previously. These newer models are similar in some respects to pre-decessors such as Penman-Monteith models, but represent an advance to the state of the art because they incorporate higher spectral and spatial resolution remote-sensing data across the visible, near-infrared and thermal wavelengths.

Five examples are: the Two Source Energy Balance model (TSEB, Norman et al., 1995), DisAlexi [START_REF] Norman | Remote sensing of surface energy fluxes at 10 1 -m pixel resolutions[END_REF], the Surface Energy Balance Algorithm for Land model (SEBAL, Bastiaanssen et al., 1998a), the Surface Energy Balance System (SEBS, Su, 2002), and the NDVI/Temperature triangle method [START_REF] Gillies | A verification of the triangle method for obstaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index NDVI and surface radiant temperature[END_REF]. Although these models rely upon different assumptions and interpret remote-sensing data in different ways, they have all been tested and verified under local conditions. This means that any one of them ought to return accurate surface flux estimates given accurate input observations. However the question remains whether or not these models are generally applicable and can do what previous models could not, namely reliably estimate spatially distributed surface energy fluxes.

One way to answer this question is to assemble multispectral remote-sensing observations of high quality and high spatial resolution over various landscapes and to compare model results with each other and with independently measured ground flux measurements. In this respect, ASTER should be wellsuited to the task since it can accurately retrieve vegetation density, spectral reflectances over visible and near-infrared (VNIR) wavelengths (Jacob et al., 2002b), and surface temperatures potentially accurate to ∼0.5 • C [START_REF] Hook | Land surface temperature measured by ASTER-first results[END_REF]. In recent work by [START_REF] Jacob | Comparison of land surface emissivity and radiometric temperature from MODIS and ASTER sensors[END_REF], land surface temperature retrieval agreement between ASTER and MODIS sensors was ∼0.9 • C , indicating consistent data quality.

In this paper we demonstrate estimation of surface energy fluxes using ASTER data by examining first results from a model intercomparison study based on observations over a 2002 experimental study in Iowa, USA. The approach is to first discuss basic observational requirements for landscape-scale surface energy balance modeling and how ASTER data meet those requirements. Next we briefly describe implementations of the TSEB and SEBAL models. Third, these flux models are compared with each other and ground-level measurements.

Observational Requirements

Regardless of spatial scale, estimation of surface energy fluxes [START_REF] Brutsaert | Evaporation into the atmosphere: theory, history and applications[END_REF][START_REF] Mcnaughton | An evaluation of the Priestley-Taylor equation and the complementary relationship using results from a mixedlayer model of the convective boundary layer[END_REF]) can be represented by the balance of turbulent fluxes against available energy:

H + LE = R n -G ( 1 )
where H, sensible heat and LE, latent heat, are turbulence terms, G is conducted soil heat and R n is net radiation. These terms, all in W m -2 , respectively represent energy conducted away from the surface and energy delivered to the Earth's surface. Neglected are storage and photosynthesis terms. These latter two terms are usually thought unimportant for short-term estimates over non-forested areas. However, recent work by [START_REF] Meyers | An assessment of storage terms in the surface energy balance of maize and soybean[END_REF] suggests that storage in corn fields can be significant. Spatial implementation of Eq.1 requires an underlying energy balance model and boundary condition constraints from remote sensing data observations. Terms in Eq.1 constrained by remote sensing depend upon spatial and spectral resolutions. , 1996).

For this paper we examine ASTER's suitability by evaluating results from an experimental site in central Iowa known as the Soil Moisture Atmosphere

Coupling Experiment 2002 (SMACEX). The site consisted of intensive soil, vegetation and meteorological observations over the Walnut Creek Watershed, an area just south of Ames, Iowa, USA [START_REF] Kustas | Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa[END_REF]. Two observational factors we consider are spatial and spectral resolution.

Spatial Resolution

For surface energy balance modeling the chief requirement for spatial resolution is the ability to distinguish land cover types that have distinctly different heat flux properties and resolve spatial variability of the considered processes within a land-class type. Over agricultural regions, these cover types include grazinglands, managed crops, riparian zones, water bodies and fields of bare soil. Each of these types differs significantly in surface roughness, potential heat capacity, moisture content, and spectral reflectance. Spatial variability of energy fluxes at local scales is strongly controlled by soil and micro-meteorological conditions.

ASTER images are potentially able to make these distinctions over all three band groups, with 15-m resolution for VNIR bands 1,2 and 3; 30-m resolution for SWIR bands 4-9; and 90-m resolution for TIR bands 10-14 [START_REF] Yamaguchi | Overview of Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER)[END_REF]. Considering the context of currently available images (e.g., Ikonos, Quickbird, TM7 and MODIS), ASTER data may be considered high-to moderate-resolution because they match TM7's capabilities in visible and near infrared wavelengths and have a significantly higher resolution than MODIS' best resolution (250 m).

An example of ASTER's spatial capability can be demonstrated using SMACEX imagery from 1 July 2002. Using 15-m NDVI images (Fig. 1), land-use patterns and highways are clearly defined at the landscape scale. NDVI was derived from Level 2 ASTER processing of band 2 and 3N reflectances [START_REF] Abrams | The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform[END_REF]).

In the Iowa example above, the adequacy of remote-sensing resolution was determined qualitatively, where imagery was checked against expected land cover patterns at the section and quarter section levels. Knowing that adequate resolution must be about half the distance of the dominant land-surface scale to avoid dominance of mixed pixels (e.g., [START_REF] Woodcock | The factor of scale in remote sensing[END_REF], minimal resolution over SMACEX is ∼1/8 mile (400 m). A more quantitative way to evaluate land-surface scales and required resolution, is to generate histograms at successively coarser resolutions and assess where the distributional pattern changes. Using ASTER 15-m NDVI images, landscape scale is identified from a series of histograms generated from image reflectance aggregations. In the SMACEX NDVI example (Fig. 3), source red and near-infrared A critical spatial issue for energy balance modeling is the ability to distinguish land-use patterns in the TIR. Surface temperature, rather than vegetation density, is the most influential parameter for instantaneous energy fluxes. ASTER surface temperature data collected over SMACEX with a 90-m spatial resolution resolves dominant land-use patterns discerned with VNIR data (Fig. 2). Surface temperatures, derived from the Temperature Emissivity Separation (TES) algorithm [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF] and atmospherically corrected with radiosonde data and MODTRAN [START_REF] Berk | MODTRAN cloud and multiple scattering upgrade with application to AVIRIS[END_REF], range between 25 and 40 (Fig. 4).

ASTER's multispectral TIR imaging capability is its most distinguishing characteristic and is important for retrieving surface temperatures, potentially accurate to 0.5 • C . Reasons for this potential are its low NE∆T (noise-equivalent change in temperature, a measure of the signal-to-noise ratio for thermal detectors), <0.3 K, and its multiband placement within the TIR window Five TIR bands allow better estimation of spectral variability of surface brightness temperatures and surface emissivities [START_REF] Gillespie | A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images[END_REF] 

than otherwise 3 Energy Flux Modeling

To show how ASTER can be used to model the surface energy fluxes, we combine ASTER imagery over the SMACEX site with implementations of two well-known energy balance models, the Two Source Energy Balance approach (TSEB, [START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF], and the Surface Energy Balance Algorithm for Land approach (SEBAL Bastiaanssen et al., 1998a). By showing results from two models, rather than one, model performance can be seen for the same landscape, and allows identification of model strengths and weaknesses.

TSEB

TSEB is a remote-sensing two-source approach based upon land surface separability into two distinct, but linked components: soil surfaces and vegetation canopies. By combining remote observations of surface temperature, vegetation data, land cover class, and near-surface meteorological data, surface resistance characteristics can be modeled in a more physically meaningful way (Kustas andNorman, 2000, 1999) than a more typical one-source approach based on the kB -1 parameter [START_REF] Garratt | Momentum, heat and water vapour transfer to and from natural and artificial surfaces[END_REF]. TSEB derives energy flux estimates from modeling the land as a resistance network, between energy sources from soil, vegetation, and the overlying atmosphere. Two main variants of TSEB exist, one applicable strictly at local scales (as described in [START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF], while the other, known as DisAlexi [START_REF] Anderson | A twosource time-integrated model for estimating surface fluxes from thermal infrared satellite observations[END_REF][START_REF] Mecikalski | Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model[END_REF] is also useful at regional scales since it also models energy exchange at the atmospheric boundary layer. The model outputs used here are from the DisAlexi implementation of TSEB, but we note that results from the local implementation are similar due to the local scale of SMACEX. R n , computed from a multiple scattering model [START_REF] Monteith | Principles of Environmental Physics[END_REF][START_REF] Goudriaan | Crop micrometeorology: a simulation study[END_REF] is partitioned for each of the considered spectral ranges: visible, near-infrared and TIR wavelengths [START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF]. This partitioning allows discrimination between energy available at the soil surface and energy delivered to the vegetation canopy. TSEB has three key assumptions: turbulent fluxes are constant within the near surface layer (Monin-Obukhov similarity is used for stability correction), radiometric temperature can be repartitioned into soil and vegetation components, and Priestley-Taylor transpiration [START_REF] Priestley | On the assessment of surface heat flux and evaporation using large-scale parameters[END_REF] applies for unstressed vegetation. More complete details are described in [START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF] and in [START_REF] French | Surface energy fluxes over El Reno, Oklahoma, using high-resolution remotely sensed data[END_REF].

SEBAL

The SEBAL model, in contrast to TSEB, is a one-source modeling approach which does not discriminate soil and vegetation components. This model is based upon the estimation of surface energy fluxes with minimal ancillary information by considering spatial variability within the images themselves.

This design principal has great practical value since instantaneous evapotranspiration estimates can potentially be retrieved worldwide without the need to collect ground-based data. SEBAL does this by contextual separation of the land-surface images into 'wet' and 'dry' areas. Distinction is achieved using the 'evaporative controlled' and 'radiative controlled' branches of a surface temperature-versus-albedo diagram. If both areas are included within the images, the diagram commonly shows a characteristic parabolic pattern. The vertex marks the maximum observed radiometric temperature and separates the lower albedo wet areas from the higher-albedo dry areas.

An aggregation scheme of the dry area properties is used along with air temperature at an estimated blending height in order to compute a regional layer aerodynamic resistance, and then wind speed at a standard reference level

(2 m). Blending height is the height above the ground where the influence of local-scale surface heterogeneity upon atmospheric turbulence is relatively unimportant (e.g., [START_REF] Mahrt | Surface heterogeneity and vertical structure of the boundary layer[END_REF]. Air temperature is assumed to be a linear function of surface temperature. The slope and offset of this function are derived considering both wet and dry areas. Over the driest areas, LE flux is zero, allowing retrieval of H as a residual of R n -G. Over the wettest areas, H is negligible, with surface temperature equal to near surface air temperature.

Key assumptions for SEBAL are the simultaneous presence of wet and dry areas within the remote-sensing scene and the ability to parameterize landsurface resistance with a factor called kB -1 [START_REF] Garratt | Momentum, heat and water vapour transfer to and from natural and artificial surfaces[END_REF]. This factor is a means for obtaining thermal heat roughness from momentum roughness. Further details of SEBAL can be found in Bastiaanssen et al. (1998a), Su et al. (1999),and Jacob et al. (2002a). 

Model Validation Results

To are from E-C flux observations, nominally 2 m above the ground in soybean fields, and 4 m above the ground in corn fields [START_REF] Kustas | Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa[END_REF]. In rough terms, E-C measurements are represented by no more than ∼4 ASTER pixels in the upwind direction. Energy budgets at all stations were closed by the Bowen ratio approach (Twine et al., 2000), then adjusted for wind speed, wind direction and fetch effects using a flux footprint model from [START_REF] Schuepp | Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation[END_REF].

Comparisons 

Discussion

In light of the excellent retrieval capabilities of ASTER and the reasonably good agreement between modeled estimates over the SMACEX study site we can say that ASTER is performing consistently. ASTER data provide one of the few avenues to evaluate and test remote sensing-based surface energy flux models at higher resolutions. Spatially varying surface temperatures closely correspond to observed variations in vegetation densities and surface fluxes.

Spatial resolution of ASTER resolves physically distinct land-cover types that in the Iowa study have a dominant length scale of 250 m. Without the 15-to 90-m resolution capabilities, flux modeling would have necessitated more empiricism, and therefore more calibration than currently used in the TSEB and SEBAL models. Furthermore, without the higher-resolution images, model comparisons against ground observation sites would not be very meaningful.

Energy flux model intercomparison shows functional relationships exist between the SEBAL and TSEB, indicating both are responding similarly to ASTER temperature, NDVI and albedo input data. However, in general terms, SEBAL predicted fluxes are more sensitive to input changes than are TSEB predicted fluxes. For example, over low H regions, SEBAL and TSEB commonly agree within 20 W m -2 , but over high H regions, SEBAL predicts values up to 200 W m -2 greater than TSEB values. Spatial representation of this sensitivity difference is also strongly expressed with LE estimates (Fig. 5).

Distributional patterns are similar for both models, but in the SEBAL case, estimated LE areal values are much less than TSEB estimates.

General results from the tabular data shows cross-comparison results seen previously. Agreement between R n ground observations, and model estimates from TSEB and SEBAL are acceptable with mean deviations of 31 W m -2

or less, indicating realistic model estimation of both short-and long-wave radiation components. We note, however, that poor agreement would have been surprising because modeled estimates had the benefit of calibrated spatial albedo data and measured incoming solar radiation. Agreement between G observations and modeled estimates was also good, with average deviation of 15 W m -2 . This good agreement indicates that fractional estimation of net radiation based upon NDVI-derived fractional cover works well for the SMACEX area at satellite overpass time.

Agreement for turbulent fluxes H and LE was more problematic to assess.

In some cases, (e.g., dense corn field sites 6 and 151), SEBAL LE model results agreed very closely with ground observations (< 10 W m -2 ), while TSEB results showed differences on the order of 50 W m -2 . But in other cases (e.g., sparse soybean field sites 3 and 23), TSEB model results were in much better agreement with E-C observations. TSEB differences for H estimates were typically within 35 W m -2 of E-C values, while SEBAL estimates were highly discrepant (up to 150 W m -2 ).

Because these flux estimate discrepancies arise from identical input data, their causes have to be explained by TSEB/SEBAL model differences and assumptions. One important model difference lies with model representation of land and near surface air temperatures. In TSEB, H was determined by the gradient between observed land surface radiometric temperatures and an observed air temperature. At SMACEX a constant near surface air temperature was used with TSEB, meaning that modeled H values were directly related to observed radiometric surface temperatures. Based on the 7 W m -2 average deviation between E-C and TSEB H fluxes, this gradient estimation approach seems accurate within E-C measurement error. By contrast, the SEBAL model, returned comparatively less accurate H estimates, with an average deviation of 89 W m -2 . SEBAL does not use near surface air temperatures because of its temperature normalization using wet and dry areas. Though known to work well elsewhere, the application of this approach did not work well at SMACEX due to an inability to fully distinguish wet and dry areas. As noted previously, SEBAL anticipates a parabolic relationship between surface temperature and albedo, thus distinguishing evaporative and radiative controlled domains. At SMACEX this parabolic relationship did not exist (Fig. 7), despite known existence of sparsely vegetated and riparian zones. This means successful retrieval by SEBAL of meteorological and resistance parameters is questionable because no distinction between minimum and maximum temperatures within the radiative and evaporative domains is possible for this 1 July scene.

Current validation results at SMACEX suggest more accurate flux estimation from TSEB than from SEBAL (Table 1). As noted, typical H estimates from TSEB were within 7 W m -2 of ground observations, while typical LE estimates from TSEB deviated significantly less from observations than did SEBAL estimates. Most of the disagreements between TSEB and SEBAL estimates occurred over sparsely vegetated sites, suggesting that the soil-vegetation differentiation accommodated by TSEB is a significant model benefit.

Nevertheless, some caution is required with these results. especially considering the preliminary nature of surface flux observations. Issues such as energy budget closure and flux footprint estimates need more thorough investigation.

Such investigation is underway, which will also consider flux estimates from the SEBS and the NDVI/Temperature triangle approaches. 

  Surface energy flux retrieval from ASTER is demonstrated using data collected over an experimental site in central Iowa, USA, in the framework of the Soil Moisture Atmosphere Coupling Experiment (SMACEX). This experiment took place during the summer of 2002 in a study of heterogeneous agricultural croplands. Two different flux estimation approaches, designed to account for the spatial variability, are considered: the Two-Source Energy Balance model (TSEB) and the Surface Energy Balance Algorithm for Land model (SEBAL). ASTER data are shown to have spatial and spectral resolution sufficient to derive surface variables required as inputs for physically based energy balance modeling. Comparison of flux model 1 Introduction

  Using VNIR to TIR detectors, constraints on three of four terms are directly possible: H, R n and G. H is constrained by surface temperatures derived from TIR data, while both R n and G fluxes are constrained by both VNIR reflectances and emitted TIR radiances. The remaining component, LE can be constrained indirectly by residuals. The useful role of VNIR-TIR remote-sensing in energy flux modeling is therefore determined by a sensor's ability to accurately determine the three flux terms from observed reflected and emitted radiances. Without sufficient accuracy, errors from estimates of H, R n and G accumulate in LE flux estimates and could overwhelm results by 100's of W m -2 (Kustas and Norman

  reflectance data were aggregated by spatial averaging to 90 m (ASTER TIR nominal resolution) and 240 m (close to 250 m, the best MODIS nominal resolution), then combined to yield NDVI. Since NDVI is closely coupled to energy balance model results, knowing the minimum resolution needed to represent relatively homogeneous areas of vegetation, rather than as clumped mixtures is important. Histograms shown in Fig. 3 indicate that the minimum required resolution is somewhere between 90-m and 240-m resolutions due to a significant distributional change. At 15-to 90-m spatial resolutions, vegetation cover is bimodally distributed. At 240-m resolution, the bimodal distribution is mostly lost, meaning that distinctive sparse vegetation values are mixed with dense vegetation ones.

4

  Intercomparison Results at SMACEX 2002 Results from the ASTER-based model intercomparison between TSEB and SEBAL model estimates are summarized as cross-plot comparisons on a pixelby-pixel basis (Fig. 6). These plots help identify how model estimates relate to each other by flux component and represent frequency counts of the components R n (upper left), G (upper right), H (lower left) and LE (lower right).The plotted distributions represent spatially comparative SEBAL vs. TSEB fluxes for corn and soybean fields over an area approximately 13 km x 8 km over the Walnut Creek watershed. This subset corresponds to ∼13,000 ASTER pixels. The pixel frequency counts in Fig.6were binned according to range of observed fluxes with highest occurrence frequencies coded dark gray.In aggregate, R n estimates by SEBAL and TSEB show moderate systematic agreement (R 2 = 0.68), but show a bias of 13 W m -2 . For soil heat flux G, TSEB and SEBAL calculations are strongly correlated (R 2 = 0.95), moderate bias of 11 W m -2 , but have differing sensitivities. Where G values are less than ∼100 W m -2 , SEBAL and TSEB values agree within standard error of mean values of 8 W m -2 , but with G greater than 100 W m -2 , SEBAL estimates are on the order of 50 W m -2 greater than TSEB estimates. The relationships between turbulent fluxes H and LE are similarly systematic, but with greater differences between low flux values and high flux values. For H estimates, the two models showed good correlation (R 2 = 0.80), and bias of 33 W m -2 . However, SEBAL model sensitivity was greater than that of TSEB, where the crossplot slope is 1.46, yielding flux estimates differing by over 100 W m -2 . The LE comparison results complement the H results, also with good correlation (R 2 = 0.89), overall bias of 8 W m -2 , and greater SEBAL model sensitivity (crossplot slope of 1.25).

  distributed surface energy fluxes over agricultural areas requires high-quality remote sensing, a need mostly fulfilled by ASTER. With spatial resolution capabilities ranging between 15 and 90 m, ASTER can detect and discriminate variations in surface temperature, emissivity, vegetation densities and albedo corresponding to distinct land use types and thus reduce problems from mixed-pixels. In this study we have combined consistent ASTER observations with physically based surface energy flux models to retrieve reasonable estimates of instantaneous surface energy fluxes. Using model intercomparison results showed systematic agreement between all flux components, indicating that the two models tested, TSEB and SEBAL, operate similarly when provided identical remote-sensing inputs. These first results from the multi-model intercomparison study also showed significantly different model sensitivities, indicating a need for further, in-depth analysis of each of model. Such investigations are possible because of multispectral, high spatial resolution over VNIR-TIR bands observed by ASTER. 8 Acknowledgments This work would not have been possible without support from the U.S. Water Conservation Lab, NASA EOS Grant 03-OES-02, and the Department of Research, Development, and International Relations of the Purpan Graduate School of Agriculture. We especially thank John Eaton for Octave (www.octave.org) and the many contributors to the R project (www.r-project.org) for providing superb open-source software. ASTER NDVI over SMACEX site on 1 July 2002. NDVI values range from 0.3 (white) to 0.9 (black), respectively sparse vegetation and thick vegetation. E-C tower locations are indicated by white circles. Nested squares at upper right indicate sizes of 250-m and 1-km pixels. This scene and subsequent ones are projected to UTM zone 15 coordinates. The white area at the left denotes the edge of the ASTER scene. 33 2 ASTER surface temperature over SMACEX site on 1 July 2002. Temperatures range from 25 • C (dark gray) to 40 • C (white). Numbered points indicate field campaign E-C station locations. 34 3 NDVI histograms of SMACEX at 15-, 90-and 240-m resolutions. Bi-modal distributions for 15-m and 90-m images reflect the known land cover patterns of relatively sparse soybean fields and dense corn fields.
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 12 Fig. 1. ASTER NDVI over SMACEX site on 1 July 2002. NDVI values range from 0.3 (white) to 0.9 (black), respectively sparse vegetation and thick vegetation. E-C tower locations are indicated by white circles. Nested squares at upper right indicate sizes of 250-m and 1-km pixels. This scene and subsequent ones are projected to UTM zone 15 coordinates. The white area at the left denotes the edge of the ASTER scene.
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 45 Fig.4. Spectral properties within longer wavelengths of the TIR window. Lines represent, from top to bottom: example dry silt-loam soil emissivity (Emis.), from central Oklahoma, example atmospheric transmissivity (Trans.), from a SMACEX radiosonde, filter response (Resp.) functions for ASTER bands 13 and 14 (solid) and TM7 band 6 (dashed). Response functions have been scaled by 1 3 to aid display.
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 7 Fig. 7. Temperature vs. albedo distribution plot over SMACEX, 1 July 2002 showing mostly constant albedo values for temperatures between 30 and 40 • C . This distribution falls within the radiative controlled domain.
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  evaluate model flux estimates independently of each other, comparisons with ground measured fluxes are needed. Using remote-sensing derived model fluxes and footprint-weighted ground based E-C measurements, flux compo-

	nents are compared for 8 ground locations within the SMACEX experimental
	area (Table 1, see locations in Fig. 2). The table is divided into four groups,
	one for each flux component (H, LE, G and R n ). Within each group are 1/2
	hourly averaged ground flux values (O) and TSEB (T) and SEBAL (S) flux
	values. The leftmost column contains the ground station identifier, appended
	by crop cover (C=corn, S=soybean). The bottom row contains mean flux es-
	timate deviations from E-C measurements when considering all 8 stations.

Ground observations for R n are from tower-mounted net radiometers. G values are from soil heat flux plates. Preliminary turbulent fluxes, H and LE,
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