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Abstract

The first releases of porousMultiphaseFoam proposed an open-source software suite to solve the equations
for multiphase flow (generalized Darcy’s law) in porous media or groundwater flows (Richards’ equation) by
taking advantage of OpenFOAM, a finite volume platform with automatic discretization on three-dimensional
unstructured grids and good parallel efficiency. Recently, the porousMultiphaseFoam toolbox has been
confronted with complex cases of fast water flows and solute transfers in realistic hydrological configurations
with variable forcing conditions (heterogeneous infiltration and local tracer injection). Several developments
have been carried out to make it possible to simulate those cases, which extend the toolbox with: (i)
a set of solvers dedicated to groundwater flows, including coupled water flow and solute transport and
simplified 2D approaches, (ii) improved numerical techniques for problems with strong non-linearities, (iii)
libraries/executables for pre-processing of input data (geographical information and time-variable forcing
terms) and (iv) passive or coupled scalar transport (tracer) with groundwater solvers that support any
number of species. New solvers are validated on several (un-)saturated configurations by a direct comparison
with a well validated finite element code.

Keywords: Porous media, Unsaturated flow, Richards’ equation, Newton’s algorithm, OpenFOAM

1. Introduction

The modeling of saturated/unsaturated flow in soils is of importance in a wide range of scientific fields such
as environmental monitoring, waste management or hydrogeology. Multiphase flow through porous media
can be modeled by solving mass conservation for each phase expressing velocities using the Generalized
Darcy’s law [21]. However, a classical approach for the air-water flow modeling (for hydrology for example)
consists in neglecting the air pressure gradients to reduce the problem to the resolution of the water mass
conservation, via the so-called Richardson [25] or Richards’ equation [24].

Despite its apparent simplicity, the Richards’ equation remains challenging to be accurately solved due
to its highly non-linear terms which require iterative procedures such as Picard’s or Newton’s methods.
Moreover, the modeling of hydro-geological events may involve a wide range of time and space scales, inducing
strong requirements on space grids or time steps. To reduce the computational cost, it is then necessary to use
advanced numerical techniques for time step management and/or adaptive mesh refinement. Main difficulties
and recent works related to the numerical solution of the Richards’ equation, as well as an inventory of the
techniques that have been developed, can be found in two recent reviews [9] and [31]. Over the last two
decades, several open-source tools dedicated to the 3D modeling of Richards’ equation have been developed,
such as ParFlow [1], PFLOTRAN [15], Dumux [10] and RichardsFOAM [22], with special attention brought
to the parallel efficiency of the different solvers since the three-dimensional modeling of groundwater at the
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watershed scale can be particularly expensive. The open-source tools listed previously exhibit parallel linear
behavior up to at least one thousand processors, such as the porousMultiphaseFoam (PMF) used in this
work [16, 17].

The groundwater modeling is often simplified by neglecting the unsaturated upper part and using the
Dupuit–Forchheimer assumption to consider that the vertical component of the velocity is zero [2]. This
groundwater free surface approximation allows then to simulate groundwater flow as a two-dimensional flow
by solving the water height without capillary effects. The strong assumptions required by the 2D approach
are counterbalanced by the drastic reduction of the computational costs which is particularly effective under
specific conditions. A more accurate simplified approach consists in coupling 1D (for the unsaturated part)
and 2D (for the saturated part) models to simulate unsaturated and saturated groundwater flow at the
watershed scale while keeping low computational costs [28, 19, 23].

Simultaneously to the fluid flow, the solute transport through porous media has also been widely studied
with some specific effects such as the dispersion [14, 29] (velocity fluctuations at the micro-scale which
increase the spreading of the tracer) or the retardation factor [7] (linked to the sorption coefficients). Where
the precise characterization of the parameters remains difficult to establish [12], some usual formulations are
commonly accepted in the community and generally implemented in the available numerical tools.

A general open-source toolbox based on OpenFOAM was initially developed for generic two-phase flow
[16], including the commonly used soil water retention models (for relative permeability and capillary pres-
sure). The PMF toolbox was first extended to Richards’ equation [17], using existing libraries and functions,
and providing an efficient tool dedicated to air-water flows. The toolbox has also served as the basis for other
codes such as the hybridPorousInterFoam [5] or for two-phase flow with adaptative mesh refinement [27].
However, it has become apparent that multiple features were missing in order to offer a complete modeling
suite such as:

(i) A fast two-dimensional free-surface modeling tool,
(ii) Passive/coupled tracer solvers for 2D-saturated/unsaturated flows,
(iii) Pre-processing tools for realistic configuration with Geographical Information System (GIS),
(iv) Improved numerical techniques to allow the modeling of unsaturated complex cases.

The work presented in this paper intends to validate the multiple developments which have been made during
the last years. Due to the good parallel efficiency observed for OpenFOAM executables, one will be able to
simulate flows and transfers in three-dimensions at the watershed scale.

2. Mathematical model and governing equations

2.1. Mathematical model for saturated flow (2D modeling)

The groundwater flow modeling of the saturated zone can be simplified to a two-dimensional problem
by considering a constant head-over-depth assumption (called Dupuit-Forchheimer’s assumption). In this
configuration, the momentum equation reduces to the Darcy’s law and the continuity equation reads :

ε
∂ψ

∂t
−∇ ·

(
Hwater

Kρ∥g∥2
µ

∇ψ
)

= Vsource, (1)

where ψ [m] is the groundwater head, ε [−] the porosity, K [m2] the permeability, ρ [kg.m−3] the density
of the fluid, µ [Pa.s] the dynamic viscosity of the fluid and g [m.s−2] the gravity. The water depth Hwater [m]
is defined as:

Hwater = ψ − z0, (2)

where z0 [m] is the height of the impermeable bottom of the aquifer. The flow velocity Vsource [m.s−1] is
used for rainwater infiltrations or other inflow sources.

The boundary conditions available for 2D-saturated flows are:

– Dirichlet condition to impose potential : ψboundary = ψfixed,
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– Neumann condition on the potential gradient to impose flow velocity ufixed. Fixed gradient value is
computed as :

∇ψboundary · −→n =
µ

HwaterKρ∥g∥2
ufixed · −→n (3)

Seepage condition
During medium and high intensity infiltrations, it happens that the local capacity of the aquifer is reached

and that any additional infiltration results in a surface runoff which does not further affect the groundwater
flow. This physical feature needs to be handled to correctly model the behavior of a watershed over a long
period. Each computation cell i gets a maximal value zmax,i relative to the local thickness of the aquifer.
This additional geometric information is obtained using bilinear interpolation from Digital Elevation Model
(DEM) files and represents the local maximum value for the potential ψi. At any linear iteration k, the
potential ψk

i and the flow balance ϕki for each cell i can be used to determine if the cell is overflowing and
therefore if a fixed potential value should be applied:

if ψk
i ⩾ zmax,i and ϕki ⩾ 0 then ψk+1

i = zmax,i (4)

The dynamic forcing is applied after each time-step (transient simulation) or solver iteration (steady
simulation).

2.2. Mathematical model for unsaturated flow (vadose zone)
Modeling variably saturated flow in the vadose zone generally requires solving Richards’ equation, a

physics-based equation where air pressure gradient has been neglected to keep only the liquid phase con-
servation equation. Several forms of the Richards’ equation can be found in the literature such as the
pressure-head form, the saturation-based form and the mixed form proposed by Celia et al. [6], the latter
of which has been implemented in the software. This modified version consists of using the water content θ
for the accumulation term and pressure head h for the other terms, which reads:

∂θ

∂t
+
θSs

ε

∂h

∂t
−∇ ·

(
Kρ∥g∥2

µ
kr,h∇h

)
+∇ ·

(
Kρ

µ
kr,hg

)
= Qsource, (5)

where θSs

ε
∂h
∂t is the aquifer specific storage term (Ss [−] is the specific storage coefficient) and kr(h) [−]

is the relative permeability and Qsource [m
3.s−1] is a volumic source term. The mixed-formulation has

the advantages of being mass conservative (like the θ−based form) as well as being able to handle locally
saturated areas (as the h−based form).

This two dependent variables (θ, h) equation cannot be directly linearized, and water content θ has to
be expressed as a function of head pressure h by considering the capillary capacity Ch defined as:

Ch =
∂θ

∂h
(6)

The capillary capacity Ch [m
−1] and the relative permeability kr,h [−] can be computed using usual

relationships such as Brooks and Corey [4], Van Genuchten [30] or Ippisch et al. [18].
Boundary conditions available for unsaturated flows are :

– Dirichlet condition to impose pressure head value: hboundary = hfixed

– Neumann condition on the pressure-head gradient to impose flow velocity ufixed. Fixed value is
computed as :

∇hboundary · −→n =
µ

Kρ∥g∥2kr,h
ufixed · −→n (7)

Note that the Richards’ equation (5) must be solved using an iterative procedure to handle the (possibly
strong) non-linearities of the relative permeability kr,h and θ−h relationships (Picard or Newton’s algorithm
for example, see Section 3.2).
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2.3. Mathematical model for tracer transport

The general conservation equation for the transport of a tracer with concentration C [−] reads [3, 2] :

R
∂ΘC

∂t
+∇ · UwC −Θ∇ · (Deff∇C) = −QC −ΘRλC, (8)

where λ [s−1] is the decay coefficient, Uw the water flux equals to:

Uw =

{
U [m.s−1] for unsaturated solvers
U ×Hwater [m

2.s−1] for 2D-saturated solvers
, (9)

Θ equals to:

Θ =

{
θ [−] for unsaturated solvers
εHwater [m] for 2D-saturated solvers

, (10)

and R[−] the retardation factor :

R =

{
1 + (1−εtotal)ρsKd

θ [−] for unsaturated solvers
1 + (1−εtotal)ρsKd

ε [−] for 2D-saturated solvers
, (11)

where εtotal [−] is the total porosity (larger than kinematic porosity ε), ρs [kg.m−3] is the solid ma-
trix density and Kd [m

3.kg−1] the volumetric partitioning coefficient. The effective dispersion coefficient
Deff [m

2.s−1] is computed using local values of velocity U [m.s−1] field as [11, 2]:

Deff =
Dm

τ
+
α|U |
ε

(12)

where Dm [m2.s−1] is the molecular diffusion coefficient, τ [−] the tortuosity and α [m] the dispersion
tensor constructed using velocity direction and αL/αT [m] longitudinal and transversal dispersion coefficients.
An equation taking the form of (8) has to be solved for each tracer species transported by the fluid. Qc

stands for source term whose dimension depends on the solver considered: [s−1] for unsaturated and [m.s−1]
for 2D-saturated solvers.

3. Numerical methods

3.1. Equation discretization

The toolbox has been developed using the OpenFOAM environment which is a development framework for
solving equations using the finite volume method. The OpenFOAM native functions allow one to automati-
cally discretize classical operators ( ∂

∂t , ∇, ∆) on unstructured three-dimensional meshes using a wide range
of numerical schemes. In the validation cases studied in this work, a classical second order centered scheme
is used for spatial discretization of convective and diffusive terms. A second order backward scheme is used
for time discretization of tracer transport and saturated flow equations. The time discretization of Richards’
equation (unsaturated flow) is carried out using a backward Euler scheme to simplify the implementation of
non-linear Picard and Newton’s methods (cf Section 3.2).

3.2. Non-linear methods for Richards’ equation

To linearize the Richards’ equation (5), it is necessary to express the implicit water content θ at iteration
k + 1 as a function of pressure head h using capillary capacity Ch (cf eq. 6) as:

θk+1 = θk + Ck
h

(
hk+1 − hk

)
, (13)
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where θk and hk are the current iteration values (Ck
h computed using hk). The derivative ∂θ

∂t can then
be discretized using a backward Euler scheme:

∂θ

∂t
≈ θk+1 − θ

∆t
=

1

∆t

(
Ck

h

(
hk+1 − hk

)
+ θk − θ

)
(14)

where θ is the water content at the previous time step. This makes possible to express the linearized
form of conservative equation 5 as a function of solved variable hk+1 and current iteration values hk and θk:

1

∆t

(
Ck

h

(
hk+1 − hk

)
+ θk − θ

)
−∇ · Kρ∥g∥2

µ
kr,hk∇hk+1 +∇ · Kρ

µ
kr,hkg = Qsource (15)

This linearized mixed form of the Richards’ equation (15) can be rewritten as:

Ck h
k+1 − h

∆t
−Mkhk+1 + Lk = Sk (16)

with the diagonal matrix Ck containing the accumulative terms, h the old-time pressure head vector,
Mk head-pressure gradient–related terms, Lk gravity-related terms and Sk the source-term vector. Picard’s
algorithm consists of solving the equation 16 iteratively while updating the matrix coefficients using the
pressure-head vector hk at iteration k. Letting Rk be the equation residual at iteration k:

Rk = Ck h
k − h

∆t
−Mkhk − Lk − Sk (17)

This method converges linearly to the solution when:

|Rk| < rtol (18)

with rtol the user-defined residual tolerance. This method was the one initially implemented in PMF,
yet it may converge slowly for highly non-linear configurations and/or low tolerance values. It is particularly
unsuitable for the modeling of high flow rates in the vadose zone (see test case in section 5.1.4) where the
time-steps required for the convergence of this algorithm imply a prohibitive computational cost. However,
the method is robust and has a wide range of convergence.

To improve the convergence rate and reduce the computational cost, one can use Newton’s method, which
consists of solving the equation:

Jk
(
hk+1 − hk

)
= −Rk (19)

where Jk is the Jacobian matrix of the residual function R which is equal (row i, column j):

Jij =
∂Ri

∂hj
(20)

This method converges to the solution quadratically and thus allows solving highly non-linear problems,
as shown in section 5.1.4.

Both methods are used sequentially in unsaturated solvers (groundwaterFoam and groundwaterTrans-
portFoam), by solving the equation first using Picard’s method until |Rk| < rtol,P icard and then refining the
solution with Newton’s method until |Rk| < rtol,Newton. This approach used by several numerical codes,
including METIS, takes the advantage of the wide convergence range of Picard’s algorithm to approach the
solution roughly and then converges quadratically with Newton’s method.
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3.3. Time step management
An efficient time step management is required for modeling transient saturated/unsaturated water flow

because the characteristic time scales can vary by several orders of magnitude. A short-time and high
amplitude water injection rate into an unsaturated column for example would require small time-steps at
the beginning (∆t ≈ 10 seconds for several hours of physical time) while the following capillary drainage
should be simulated over a long period of several months (∆t ≈ 1 day or more). Because of the non-linearity
of Richards’ equation, a general CFL condition cannot be directly derived. Two methods for time step
management are generally used:

(i) the heuristic one is based on the number of linear iterations (Picard or Newton) required at each time
step,

(ii) the adaptive one is based on the time truncation error estimates (related to the numerical scheme used
for time discretization).

D’Haese et al. [8] have proposed a comparison study of these two methods and their variants by analyzing
the advantages and limitations of both approaches which are case-dependent. In this work, time stepping is
based on a rigorous mathematical analysis performed on the numerical scheme used for time discretization
which can be applied to all implemented solvers (2D-saturated, unsaturated, passive transport or coupled).
The time step is computed to maintain a relative time truncation error (estimated using Taylor series) below
a user-defined value ϵerror. The time-step computations for the available time schemes in the presented code
are :

1. backward Euler: ∆t =
√

2ϵerrorxmax

(∂2x/∂t2)
max

2. 2nd order backward scheme:∆t = 3

√
4ϵerrorxmax

(∂3x/∂t3)
max

3. Crank-Nicolson: ∆t = 3

√
12ϵerrorxmax

(∂3x/∂t3)
max

where xmax is the value of the variable at the cell where the maximal derivative has been computed. A
third order time scheme had to be implemented in the toolbox to allow adaptive time step for available time
schemes.

4. Accessory numerical tools

4.1. Toolbox file structure
The file structure of the toolbox is depicted in Figure 1. One can see old libraries or solvers developed

for PMF in 2015 and the features added in the new version.

4.2. eventFile structure
To help the set up of realistic cases with time-varying conditions, a generic OpenFOAM class eventFile

has been developed with three major concrete subclasses available :

– eventFileInfiltration for homogeneous or heterogeneous infiltration (2D-saturated solvers),

– patchEventFile for solute/water injection on boundaries (unsaturated solvers),

– sourceEventFile for local water or solute injection (all solvers).

For each time iteration, forcing terms are automatically computed from linear interpolation between the two
closest dates. An example of sourceEventFile is given in Figure 2.

An additional concrete class outputEventFile allows specifying output writing times while avoiding any
constraints on the time step, with the solutions being constructed by time interpolation. Extension .evt has
been chosen to identify the files.
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Figure 1: File structure

date Date1
X1 Y1 Z1 Value11
X2 Y2 Z2 Value12
...
XM YM ZM Value1M
date Date2
X1 Y1 Z1 Value21
...
date DateN
...
XM YM ZM ValueNM

Figure 2: sourceEventFile example with N dates and M injections points

4.3. Pre-processing tools
OpenFOAM executables have been developed to convert GIS data into informations for OpenFOAM

simulations:

– setFieldsFromDEM: a variant of the official OpenFOAM setFields tool which performs bilinear inter-
polation from DEM file in ASCII format (.xyz). This tool is generally used to set up the local height
of the aquifer (zmin and zmax).

– setFieldsFromXY: similar to setFieldsFromDEM with an interpolation performed using the three clos-
est points of any list of points. This tool is used in this work to set up a permeability field with
non-uniform values.

– setBoundaryHeadPressure: utility to set up boundary conditions for unsaturated (h) or 2D-saturated
(ψ) solvers using a uniform water height or using a DEM or STL input file.

A simple Darcy utility has also been added (darcyFoam) to obtain an initial single-phase velocity field which
can be used for initialization and/or passive scalar transport.

4.4. Multi-species transport
The transport properties of species (dispersion coefficients, retardation, decay and other parameters) have

been developed inside a new class multiScalarMixture derived from the OpenFOAM class basicMixture.
This makes easy to manage the transport of a N-component mixture with homogeneous or heterogeneous
properties.
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5. Validation of new developments

To validate the development presented in the previous sections, each solver is tested independently in
a configuration adapted to the studied mathematical model. The validation of the code is performed by
comparing results with those obtained using METIS [13], a finite-element solver for saturated/unsaturated
flow that can handle multiple features such as solute transport or reactions. This code, developed during the
last 30 years and still in development, has been used in several studies [23, 26, 20] and is considered here as
our reference solution. Numerical schemes for the finite-element validation code METIS are similar to those
used by the PMF toolbox (i.e., second order in time and space).

The validation cases presented in the following are inspired by real cases and the physical values (time,
flux, concentration) are representative of realistic configurations. The differences in orders of magnitude
between output variables can thus be different and to improve the readability of this section, the choice is
made (i) to present the real quantities in the configuration description of each test and (ii) to plot numerical
comparisons with dimensionless variables. Quantities are systematically made dimensionless using the largest
value from the reference solution, i.e. the METIS simulation.

5.1. Unsaturated flow solvers
The development of new solvers in OpenFOAM is independent of dimensionality of the domain (1D/2D/3D)

thanks to the automatic discretization of the equations. Nevertheless, this is not the case for the reference
code (METIS) and therefore validation is performed on a one-dimensional case even though the solvers in
PMF can be used in two or three dimensions.

The physical configuration for the validation of unsaturated solvers consists of a 1D column 34.50 m
in height discretized with 5009 computational cells (each with height ∆z = 0.0249 m). We consider the
bottom of the column to be in contact with the saturated area by imposing a Dirichlet boundary condition
(Hbottom = 0 m) while an infiltration velocity (steady or transient) is imposed on the top. The model and
physical properties are summarized in Table 1.

viscosity µ 1.10−3 [Pa.s]

density ρ 100 [kg.m-3]

Van Genuchten coefficients
m 0.3007 [-]
α 13.0 [m-1]

Permeability K 7.10−12 [m2]
Kinematic porosity ε 0.27 [-]

Specific storage SS 0.001 [-]

(a) Flow properties

Total porosity εtotal 0.30 [-]
Tortuosity τ 1 [-]

Molecular diffusivity Dm 1.10−9 [m2.s-1]

Dispersivity coefficient
αL 1.0 [m]
αT 0.2 [m]

Volume partitioning coefficient Kd 5.10−5 [m3.kg-1]

Radioactive decay coefficient λ 1.10−9 [s-1]

(b) Transport properties

Table 1: Properties for unsaturated validation cases

5.1.1. Steady flow (steadyGroundwaterFoam)
The first case consists in solving a steady flow with a constant infiltration velocity on the top of the

column (Vtop = 4.753 · 10−9m/s). The convergence residual for the pressure head equation is set to 10−10

8



and the numerical results are presented in Figure 3 (H is scaled using the height of the column). Although
the agreement is excellent between the two codes, a slight difference can be seen close to the bottom where
the height tends to 0. Due to the relatively large α value in the Van Genuchten model, the saturation
variation occurs over a small height ( H

Hcolumn
< 0.01) with the presence of a strong pressure head gradient on

few cells. Even if the size of the elements is similar between the two codes, METIS solves mass conservation
at the nodes while OpenFOAM (with its finite volume method) solves conservation at the cell centers, so
that boundary conditions are imposed slightly differently. This fact explains the small differences in the
gradient computation near the boundaries.
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Figure 3: Saturation distribution with PMF and METIS in the steady case.

5.1.2. Transient flow (groundwaterFoam)
Starting from the steady solution of the previous case, the infiltration velocity at the top takes the form

of a piecewise linear function, with values varying between 0 and 1000 times the reference injection value
(Vtop = 4.753 · 10−9m/s) over 2.108 seconds (∼ 2315 days). This variation of infiltration was chosen to verify
robustness and stability in the case of a high amplitude and sudden injection in an unsaturated zone. The
results over time are compared in terms of water flow rate out of the column (cf Fig 4) and show good
agreement. Some small temporary differences are observed during the drainage phase (second half of the
simulation), when flow dynamic is driven by the local pressure head gradients which may slightly differ
between the discretization methods (as for the steady configuration).

5.1.3. Passive transport (porousScalarTransportFoam)
Using the pre-computed saturation and velocity field of the steady case, a passive tracer is injected from

the top (Q = 1.374.10−8 kg.m-2.s-1) for a period of 6622 seconds. The physical time of the simulation is
1.262.109 seconds (∼ 40 years) and solute flux going out the column for both codes are presented in Figure 5.
The good agreement observed allows to validate the good implementation of multiple elements influencing
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Figure 4: Comparison of water outflow with PMF and METIS, transient flow case

the solute transport, namely: the heterogeneous saturation, the dispersion, the decay and the retardation
factor.

5.1.4. Coupled water/tracer simulation (groundwaterTransportFoam)
Starting from the steady configuration, water is injected inside the column (at z = 24 m) at fixed flow

rate Qin = 3.82 ·10−5 m3/s (i.e. 0.135 m3/h) with an imposed solute concentration Cin = 6.12 ·10−11 kg.m-3

from tstart = 0 to tstop = 91 days; the injection is then stopped and the simulation continues until tend = 730
days. This configuration is challenging because it implies successively: (i) an abrupt variation of local water
content, (ii) the displacement of a water front close to the saturated point (h ≈ −0.0033 and θ

θmax
≈ 0.997)

followed by a quasi-steady case, (iii) an abrupt change related to the end of injection and (iv) a capillary
drainage over a long time period. Water and solute fluxes going out the column are presented in Figure 6

This configuration highlights the efficiency of the time step management method based on the time-step
truncation error. This case presents various time scales which can be seen by observing the simulation
time-steps reported in Figure 7. At the early beginning (t < 1 h), small time steps (0.1 < ∆t < 20 s)
are required to correctly capture the local and rapid increase of saturation at the injection point. Then,
the front displacement inside the column implies sharp local saturation and pressure head changes from
(t ≈ 1 to t ≈ 21 h) with ∆t ≈ 9 s. Finally, the quasi-steady flow is established when the front reaches the
bottom, which allows time step management to greatly increase the time step size to reach the maximal
value ∆tmax = 90 hours (user-defined value corresponding to the solver outputs). The abrupt changes of
saturation can be visualized at t = 2160 h (90 days) when the injection is stopped. However, the capillary
drainage that follows this event is slow and allows the solver to quickly restore the large time step.

Moreover, this configuration highlights the convergence issues of the Picard’s algorithm compared to
Newton’s algorithm. Due to the strong non-linearities of the Van Genuchten function, particularly close to the
saturation point (the derivative of the capillary function tends to infinity when saturation tends to 1), Picard’s
algorithm does not converge easily and requires both many linear iterations and small time steps. This results
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Figure 5: Tracer flux when solving for passive transport with PMF and METIS

in a prohibitive computational cost which makes it impossible to simulate this configuration in a reasonable
time (actual execution times range from fewer than 4 minutes when using the newly implemented Newton’s
algorithm to several hours with Picard’s algorithm on a standard CPU). The direct comparison between the
two codes on a single-core simulation highlights computation times of the same order of magnitudes with an
increased efficiency of PMF, more or less important depending on the case.

5.2. 2D-saturated flow solver (2D watershed modeling)

In the same way as for the validation of unsaturated solvers, the 2D-saturated solvers are tested on a
realistic watershed. The same unstructured mesh presented in Figure 8a is used for both codes. However,
it must be noted that due to the different numerical methods used, METIS (Finite Element) computes the
solution on the mesh nodes while OpenFOAM (Finite Volume) computes the solution on mesh cells. Figure
8 shows the permeability field (figure 8b) and Digital Elevation Models (DEM) for the upper (figure 8c)
and the lower (figure 8d) limits of the aquifer. As for the unsaturated simulations, METIS is considered our
reference solution for the validation of PMF and comparisons are carried out on probes placed in the domain
and visible in Figure 8d. All probes are used for the validation of the steady case but only the marked probes
(probe A, shown in green , and B, marked in orange) are used for transient comparison.

5.2.1. Steady flow (steadyGroundwater2DFoam)
The first case consists of solving a steady flow with a constant and homogeneous infiltration velocity on

the whole watershed (Vinfiltration = 5.59 · 10−9m/s). The convergence residual for the potential equation is
set to 10−10. Figure 9a shows the potentials and velocity fields in the steady configuration with the watershed
outlet located in the lower right corner. Figure 9b shows the good agreement in terms of potentials between
METIS and PMF at each probe.
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Figure 6: Fluxes on the bottom of the column as a function of time: (a) water flux, (b) solute flux

5.2.2. Transient flow (groundwater2DFoam)
Starting from the steady solution of the previous case, the infiltration velocity on the top varies in time

linearly and disorderly between 0 and 4 times the reference injection value (Vinf,ref = 5.59 · 10−9 m/s, the
amplitude of variation corresponds to realistic values at the level of the saturated zone) over 4.2.108 seconds
(∼ 4861 days). Temporal variation of dimensionless infiltration value ( Vinf

Vinf,ref
) are visible in Figure 10 as

well as the potential variations of probes A and B. Comparisons show good agreement with a slight difference
between codes that occur during the event. This difference may be due to several factors related to numerical
methods used such as the seepage condition which occurs in cells for PMF and in nodes for METIS or the
post-processing operations (PMF results in mesh cells are interpolated to get probes value placed on mesh
nodes).

5.2.3. Passive transport (porousScalarTransport2DFoam)
Using the pre-computed saturation and velocity field, a passive tracer is injected (Q = 5.10−6 kg.m-2.s-1)

for a period of 4.108 seconds while the physical final time of the simulation is tend = 4.73.109 seconds (∼ 40
years). Concentrations fields at t = 0.2 × tend and t = tend are presented in Figure 11. To validate both
transversal and longitudinal dispersion, probes A and B have been placed respectively in the direction of and
perpendicular to the main flow. The good agreement between the observed probes (c.f. Figure 12) allows to
validate the correct implementation of the multiple elements influencing the solute transport, namely: the
heterogeneous potential and water height fields, the dispersion related to the velocity field, the decay and
the retention coefficient.

5.2.4. Coupled simulation (groundwaterTransport2DFoam)
Starting from the steady 2D simulation, a passive tracer is injected in a similar manner to the previous

case (Q = 5.10−6 kg.m-2.s-1) for a period of 4.108 seconds with the final physical time of the simulation
equal to tend = 4.73.109 seconds (∼ 40 years). A transient and variable infiltration is applied during the
simulation inducing slight concentration variations related to water height changes as can be seen in Figure
13. As for previous 2D validation cases, the specificities of numerical codes induce slight differences with
smaller transient variations in the case of METIS but with a globally similar dynamic behavior.
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Figure 7: Evolution of (automatically adjusted) time steps during the simulation

5.3. Parallel Efficiency
To ensure that the good parallel efficiency of PMF is preserved within the new developments, we per-

formed a weak scaling test consisting in solving the same problem with the discretized domain splitted among
an increasing number of processors. Test is performed on the two-dimensional steady case (cf 5.2.1) using
a much finer mesh with a mesh resolution of ∆x = ∆y = 3 m and a total of 2.05 M cells. Simulations are
performed using between 18 and 576 cores on the CALMIP Olympe cluster (Intel® Skylake 6140). Results
are reported in Table 2 with CPU time tCPU computed as:

tCPU = tSIM × ncores, (21)

where tSIM is the total physical time of the simulation and ncores the number of cores used for compu-
tation. The CPU time per linear iteration tCPU,iter is obtained as:

tCPU,iter =
tCPU

niter
(22)

with niter the number of linear iterations which may vary according to the domain decomposition. The
results are plotted in Figure 14 and compared to linear behavior expected from the reference, i.e. one
computation node composed of 36 cores (the 18-cores simulation occurs on a half node and can be shared
with other tasks). The results highlight a super-linear behavior until 144 cores, as was previously observed
with the OpenFOAM platform [16, 17]. The parallel efficiency measured as CPU time per linear iteration
remains lower than the reference (tCPU,iter = 86ms) up to 288 cores before showing a deterioration. This
deterioration has been observed previously with an efficiency decrease occurring when the number of cells
per processor becomes lower than 5000 (around 3500 in this case). Poor results observed for 576 cores
(with a large number of linear iterations inducing large physical time), are mainly due to the increase of the
under-relaxation (0.1 vs. 0.5 for other configurations). This modification is mandated by the decomposition
in small subdomains that makes the solving process unstable in the standard configuration.
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(a) (b)

(c) (d)

Figure 8: Watershed for the 2D validation cases: (a) mesh (b) permeability field (c) DEM for upper limit (d) DEM for lower
limit. Probes used for METIS/PMF comparison are visible on (a)

6. Conclusion

The porousMultiphaseFoam toolbox, initially designed as a generic tool for the efficient parallel solution
of multiphase flow through porous media, had shortcomings in hydrological modeling, with some missing pre-
processing and solver features. The tool has now been improved and offers a very complete hydrogeological
modeling suite with advanced numerical methods (such as automatic time step management and nonlinear
algorithms), fast modeling methods (including simplified 2D approaches), passive/coupled transport model-
ing, and preprocessing tools essential to the setup of realistic cases. Every part of the new developments has
been validated by a dedicated test case and a comparison with an existing reference code.

Main perspective of this work concerns the 3D modeling of water and solute transfers of a real configura-
tion. The cases studied in this work are 1D or 2D to reduce computational cost and allow direct comparison
with an well 1D/2D validated code. However, the developments made in the OpenFOAM environment can
be directly used for 3D simulations and its good parallel efficiency make possible to compare simplified
approach (1D+2D) with full modeling (3D) on real cases. Moreover, some improvements are planned in
term of features and ergonomics. The development of a simple reactions module is in the implementation
stage, as well as a coupling with a chemical modeling code as has been done by analogous packages based
on OpenFOAM. In terms of ergonomics, an interface between the simulation code and a GIS management
tool will be set up to allow use of the toolbox by a larger community.
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Figure 9: Steady flow: (a) visualization of velocity and potential fields, (b) comparison of potential values between METIS and
PMF at each probe.

ncores ncells/core niter tSIM [s] tCPU [s] tCPU,iter [ms]
18 113.6× 103 45.2× 103 279.9 5037 111
36 56.8× 103 46.5× 103 111.6 4018 86
72 28.4× 103 43.1× 103 39.2 2818 65
144 14.2× 103 43.3× 103 19.7 2837 66
288 7.1× 103 46.4× 103 12.9 3712 80
576 3.5× 103 118.6× 103 20.1 11600 98

Table 2: Simulation costs for parallel efficiency evaluation
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Figure 11: Concentration visualization at (a) t = 0.2× tend (b) t = tend
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Figure 12: Comparison of tracer concentrations at probes A and B

0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless Time

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
le

ss
C

on
ce

nt
ra

ti
on

s

PMFv2107 Probe A

METIS Probe A

PMFv2107 Probe B

METIS Probe B

Figure 13: Comparison of tracer concentrations at probes A and B
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