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Abstract

Neuronal excitability manifests itself through a number of key markers of the dynamics
and it allows to classify neurons into different groups with identifiable voltage responses
to input currents. In particular, two main types of excitability can be defined based on ex-
perimental observations, and their underlying mathematical models can be distinguished
through separate bifurcation scenarios. Related to these two main types of excitable neu-
ral membranes, and associated models, is the distinction between integrator and resonator
neurons. One important difference between integrator and resonator neurons, and their
associated model representations, is the presence in resonators, as opposed to integrators,
of subthreshold oscillations following spikes. Switches between one neural category and the
other can be observed and/or created experimentally, and reproduced in models mostly
through changes of the bifurcation structure. In the present work, we propose a new sce-
nario of switch between integrator and resonator neurons based upon multiple-timescale
dynamics and the possibility to force an integrator neuron with a specific time-dependent
slowly-varying current. The key dynamical object organising this switch is a so-called
folded-saddle singularity. We also showcase the reverse switch via a folded-node singular-
ity and propose an experimental protocol to test our theoretical predictions.

Keywords: neuronal dynamics, excitability, multiple timescales, integrator neuron, res-
onator neuron, folded singularities, canards.

1 Introduction
Excitable systems, in particular neurons, can be classified according to the various criteria,
one of them being the existence of sub-threshold oscillations [15, 27]. This feature allows
to distinguish between two types of neurons: integrator and resonator . Integrator neurons
are defined by : a) the ability to get excited under high frequency pulses, b) the existence
of a precise threshold, and c) the fact that they do not have a sub-threshold oscillations.
They belong to what is usually referred to as type-I neuronal excitability, which means
that their firing frequency starts from 0 at the transition between the stationary and
the periodic regime. In contrast, resonator are neurons that : a) respond only to input
with well-defined frequencies (they “resonate” with these special frequencies), b) do not
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have a well-defined threshold, and c) have sub-threshold oscillations. Therefore they
display type-II neuronal excitability, which means that their firing frequency is bounded
away from 0 at the transition between the stationary and the periodic regimes. In an
experimental framework, neurons behave either as integrators or as resonators, and this
feature is observed neither simultaneously nor in the same physiological conditions.

From a dynamical systems standpoint, the underlying models of these two types of
neurons differ by their bifurcation structure upon variation of an applied current I as main
parameter. Namely, in integrator-type models a saddle-node on invariant circle (SNIC)
bifurcation organises the transition from rest to spiking, and their excitability threshold
is defined by the stable manifold of the saddle equilibrium that disappears through the
SNIC bifurcation. In contrast, in resonator-type neuron models this transition occurs via
a Hopf bifurcation (HB), which is often subcritical and followed, in parameter space, by
a saddle-node bifurcation of limit cycles [30]. The threshold is not well-defined however it
can be approximated by a family of so-called canard cycles [3, 17, 8, 34].

In in vitro experiments, it is currently possible to make an integrator-type neuron be-
have like a resonator neuron by means of pharmacological intervention. Indeed, the notion
of behavioural switch between integrator and resonator neuron has long been described
in the experimental and computational neuroscience literature, however using different
approaches. At the experimental level, the environment of the neuron can be controlled
in order to obtain this change of excitable behaviour. In particular, this has been achieved
pharmacologically, to control the opening of ion channels [27, 19], by current injection [11],
using an electric field [35] or even by means of an excitation laser in neuromorphic exper-
iments [10].

In mathematical and computational studies, these methods have also been demon-
strated as viable [27, 10, 31, 1, 19, 35, 13], together with other approaches: to name a few,
by adding terms taking into account new neuronal structures [20, 36], by varying some
of the model’s parameters [14, 22], or by varying the input forcing frequency [11, 25].
However, all these methods have in common that they result in changes of the system’s
bifurcation structure in order to allow this transition from integrator to resonator be-
haviour. In the present case, we want to keep the same bifurcation structure, that is, a
SNIC bifurcation associated with integrator-type behaviour, and act differently upon the
system so that it can be made to display the characteristic subthreshold oscillations of a
resonator.

The main objective of the present work is to demonstrate mathematically that an
integrator neuron – namely, a type-I neuron model– can be made to behave like a resonator
neuron once an adequate slowly-varying current is applied to it with real-time feedback
from the membrane potential; hence, we aim to obtain subthreshold oscillations in an
integrator neuron model. Crucially, we want to achieve this apparent excitability switch
without modifying the underlying bifurcation structure of the model.

To do so, we will exploit the multiple-timescale structure of the slowly-forced integrator
model and show that subthreshold oscillations are possible in a specific parameter range,
no matter which integrator model we are starting from, provided it has a SNIC bifurcation
upon constant applied current and provided we apply to it a specific slowly-varying time-
dependent current.

In a nutshell, we will show that the forcing requires to consider two additional slow
variables and that the extended (minimally 4D) model possesses a so-called folded-saddle
singularity [4, 5]. It was recently discovered [23] that subthreshold oscillations can appear
near a folded saddle provided a certain algebraic condition is satisfied in the singular limit,
that is, when the (explicit) timescale separation parameter ε tends to 0; see also [6]. It
turns out that this condition cannot be obtained in a slowly-forced integrator system if
the forcing is too simple, that is, harmonic; see Section 2. As we will show in Section 3,
one needs a feedback term from the voltage in the forcing equation in order to obtain
the subthreshold oscillations, which suggests in the context of real neurons, an autaptic
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behaviour, and can be tested experimentally using a dynamic-clamp protocol.
We will showcase our strategy with a simple biophysical example of 2D type-I neuron

model, namely the INa/IK model proposed by Izhikevich in [17]; however our approach will
work with any type-I neuron model. Noteworthy, it does not require to alter the underlying
bifurcation structure of the model, which is customary in studies reporting a switch from
integrator to resonator. [27, 35, 13] The excitability switch that we propose here is purely
due to timescale separation between the model and the forcing. We also showcase the
reverse scenario, namely a switch from resonator to integrator. This requires to have a
folded node instead of a folded saddle, therefore a different slow forcing structure, however
here again we obtain the switch from one neuronal type to the other by staying within
the same bifurcation scenario, only playing with the slow-fast structure of the model and
of its folded singularity. The folded-node scenario indeed induces a particular geometry
for the trajectories passing near such a folded singularity. Namely, they make transient
small-amplitude oscillations, which correspond to subthreshold oscillations in the neuronal
context [4, 34] and their number can be controlled, e.g., by varying initial conditions.
Indeed, families of initial conditions giving rise to the same number of oscillations form
so-called rotation sectors in phase space. Furthermore, by controlling the trajectory to flow
into the first rotation sector, one can suppress these subthreshold oscillations and hence,
turn the behaviour into an integrator, hence obtaining the reverse switch. However, we
will argue that the folded-saddle scenario is more appropriate for this switch between
integrator and resonator neuron in order to obtain a behaviour as close as possible to
experiments.

This article is organised as follows. In Section 2, we present the INa/IK model and
analyse numerically its integrator structure. Then, we apply to it a first slow harmonic
forcing and show that it is sufficient to create a folded-saddle singularity but insufficient
to obtain subthreshold oscillations, which require a more elaborate forcing. This is why,
Section 3, we adapt the forced current in order to obtain the singular-limit algebraic
condition giving rise to subthreshold oscillations in the full model, and hence the resonator
behaviour. In Section 4, we present the reverse scenario, whereby a resonator neuron can
behave like an integrator, and show that this is due to another type of folded singularity,
namely a folded-node singularity. Finally, we conclude in Section 5 and propose a strategy
to verify experimentally our theoretical predictions.

2 Izhikevich’s INa/IK model.

2.1 Under constant external current
We consider a two-dimensional conductance-based neuron model with minimal compo-
nents for excitability. This model was proposed by Izhikevich in [17] and it was referred
to as the INa/IK model, since it only assumes basic persistent sodium with instantaneous
activation, potassium and leak currents; this is the name we shall use throughout this
article. The model’s equations are:

CV ′ = I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK),

n′ =
n∞(V )− n
τn(V )

,
(1)

with steady-state functions: x∞(V ) = (1 + exp((Vx,1/2 − V )/kx))
−1, x = {m,n}. For

simplicity, we take the time constant τn(V ) to be independent of V and we shall fix its
value to 1. System (1) is based on a simplification of the two-dimensional reduction of the
Hodgkin-Huxley model proposed by Krinskii & Kokoz [21], independently by Rinzel [29],
and further studied, e.g., by Moehlis [24]. Thus, the variable V represents the membrane
potential of the neuron, and n, the activation of potassium channels. The constants gx
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Figure 1: Bifurcation diagram of the system (1) with respect to parameter I. Red (resp.
black) segments of the S-shaped curve of equilibria denote stable (resp. unstable) branches.
As the applied current I is increased, oscillations (spikes) appear through a SNIC bifurcation
(red dot) and then disappear through a supercritical Hopf bifurcation (blue dot denoted HB).
Parameter values are: C = 1, EL = −80, ENa = 60, EK = −90, gL = 8, gNa = 20, gK = 10,
Vm,1/2 = −20, Km = 15, Vn,1/2 = −25, Kn = 5, τn(V ) = 1.

(where x corresponds to L, Na, or K) are the maximal conductances of the ionic currents
considered, Ex are the Nernst potentials of the ionic species and C is the capacitance of
the neural membrane; I denotes an externally applied current.

The bifurcation diagram of system (1) with respect to I, shown in Fig. 1, is typical
of a neuron with type-I excitability [9]. Namely, a family of low-voltage equilibria (rest
states of the neuron) destabilise and give way to a family of stable limit cycles (spiking
states of the neuron) via a SNIC bifurcation, which occurs at an input current value
I ≈ 4.51. The SNIC bifurcation being a homoclinic-type bifurcation, the emerging stable
cycle has a very large period (tending to infinity at the bifurcation), hence a very small
frequency, which is a key hallmark of type-I excitability. At a much higher value of the
input current, the branch of stable cycles disappears via a supercritical Hopf bifurcation
at I ≈ 200. Therefore, system (1) is considered to be in an integrator regime here.

2.2 Applying a slow sinusoidal external current
We now consider a periodic forcing to system (1) in the form of a slow externally-applied
sinusoidal current. This can be done by replacing the constant term I in the V -equation
of (1) by a time-dependent function I(t) = I0+sin(εt), with ε > 0 a small constant. How-
ever, to further analyse the resulting periodically forced system using geometric singular
perturbation theoretic tools [12], it is more appropriate to write it in autonomous form
and obtain the slow sinusoidal forcing I(t) as the solution of a harmonic oscillator. Hence,
we consider system (1) forced by the following slow differential equations:

I ′ = −εJ,
J ′ = ε(I − I0).

(2)
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We are therefore considering the following extended 4D system:

CV ′ = I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK),

n′ =
n∞(V )− n
τn(V )

,

I ′ = −εJ,
J ′ = ε(I − I0),

(3)

where the prime denotes differentiation with respect to the fast time τ . Hence, (3) is a
slow-fast dynamical system with two fast variables V and n, and two slow variables I and
J . As customary in multiple-timescale dynamics, we can rescale time by a factor ε and
introduce the slow time t = ετ , which brings the system in a different time parametrisation
that will be helpful when styding its slow singular (ε = 0) limit, namely:

εCV̇ = I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK),

εṅ =
n∞(V )− n
τn(V )

,

İ = −J,
J̇ = I − I0,

(4)

where the over-dot denotes differentiation with respect to t.
As long as ε 6= 0, the systems (3) and (4) are equivalent, they have the same phase

portraits, but the solution trajectories are parameterized differently. Furthermore, their
respective singular limits are different and highlight different aspects of the original sys-
tem’s dynamics: the fast components in the case of system (3), and the slow components
for (4).

The fast singular limit (i.e., system (3) with ε = 0) corresponds to the original inte-
grator INa/IK model (1), which is logical since the extended system (3) was obtained by
slowly forcing this integrator model. Recall that its bifurcation structure, shown on Fig. 1,
is characterised by the presence of a SNIC bifurcation. The S-shaped curve of equilibria
of this fast subsystem (1) is called critical manifold of the full system and we label it as
S0 in Fig. 1 and subsequent figures. Its algebraic expression is given by

S0 :=

{
I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn∞(V )(V − EK) = 0

}
(5)

Hence, the critical manifold, which in the present case is a surface in R4 (since it has the
dimension of the slow variables), can be seen as a graph over V and its equation can be
written S0 = {I = f(V )}. Figure 2 shows a trajectory of the slowly forced system (3)
superimposed onto the critical manifold S0 and displayed only in the vicinity of the fast
subsystem SNIC bifurcation point, for specific initial conditions of the forcing I(0) = I0
and J(0). The trajectory (in black, with arrows representing the direction of motion)
follows the stable branch of equilibria of the fast subsystem (red branch of the parabolic-
shaped bifurcation curve), which is the behaviour predicted by slow-fast theory. However,
near the SNIC point – also labelled FS for reasons related to the slow subsystem (see
below) – the trajectory turns around the point, instead of being repelled away, before
flowing backwards as the forcing changes direction. This behaviour is counter-intuitive, it
has to do with certain types of canards, and it is best explained by considering the other
singular limit, namely the slow limit, of the forced integrator system (3), as we do next.

Similar to the fast subsystem, we take the ε = 0 limit of system (4), which provides
a good approximation of the slow dynamics of the forced integrator system. However,
the slow singular limit is very different from the fast one and it is given by the following
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Figure 2: Folded-saddle canard trajectory (black curve with arrows) from (3) superimposed
on the fast subsystem’s bifurcation diagram already shown in Fig. 1. The red dot corresponds
to a SNIC bifurcation point of the fast subsystem, as well as the folded-saddle singularity
(FS) found in the slow subsystem; see the end of section 2.2. Black curve: unstable stationary
points, red curve: stable stationary points. Parameter values are as in Fig. 1 except: I0 = 4,
ε = 0.001.

differential-algebraic system:

0 = I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK),

0 =
n∞(V )− n
τn(V )

,

İ = −J,
J̇ = I − I0.

(6)

The first two equations of (6) express the fact that in the slow singular limit, the dynamics
is constrained to evolve only on S0. In passing, this shows the importance of the critical
manifold in both singular limits. The other two equations are the slow differential equa-
tions written in the slow-time parametrisation. The resulting system (6) is complicated
to study as such, in particular because of the algebraic constraint which hides the limit-
ing fast dynamics. However, one can rescue it by differentiating this algebraic constraint
with respect to time which, after projecting the dynamics onto the (V, J) plane (because
the slow singular dynamics is essentially 2D) and rearranging terms, yields the following
version of the slow subsystem:

fV (V )V̇ = −J,
J̇ = I − I0,

(7)

with I = f(V ) due to the constraint to evolve on S0 and where fV denotes the derivative
of f with respect to V , namely,

fV (V ) = gL + gNa(m∞,V (V )(V − ENa) +m∞(V )) + . . .

. . . gK(n∞,V (V )(V − EK) + n∞(V )),
(8)

with:

x∞,V (V ) =
dx∞(V )

dV
=

exp
(
(Vx,1/2 − V )/kx

)
kx

x∞(V )2.

System (7) is the more practical form of the slow subsystem or reduced system (RS).
This limiting system is singular along the zero set of fV , which geometrically corresponds
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Figure 3: Phase portraits in the (J, V ) plane. A: DRS system (9), B: RS system (1). In
both panels, the orange lines are the components of the V -nullcline, while the green curve is
the J-nullcline. A: the DRS has 3 equilibria, 2 centers (blue dots) and 1 saddle (red dot);
the red curves are the stable and unstable manifolds of the saddle, they coincide and form a
double homoclinic connection, each loop surrounding one of the centers. B: there are 2 center
equilibria (blue dots) and one folded saddle (red dot). The red curves are the singular true
and singular faux canards, they coincide to form a double folded homoclinic connection [5, 7].
Parameter values are as in Fig. 1.

to the fold set F := {fV (V ) = 0} of the critical manifold. The critical manifold of
system (4) is a cubic surface and its fold set F has two connected components; see, e.g.,
Fig. 4 for an illustration of the lower fold curve F of S0. Noteworthy, the fold curve
locally separates each of the two attracting sheets of S0, along which fV (V ) > 0, from
the repelling sheet defined by fV (V ) < 0. The attractiveness and repulsiveness of S0 is
inherited from the stability and instability of equilibria of the fast subsystem (1), given
that its set of equilibria precisely corresponds to S0. For a similar reason, the fold set F
corresponds to the set of saddle-node bifurcations of the fast subsystem, hence the lower
fold curve F corresponds to a family of SNIC bifurcation points of the fast subsystem.
Namely, the SNIC point shown in Fig. 1 and detected when varying parameter I in (1)
does not depend on J , hence we obtain a line of such point in the forced system (4).

In order to understand the flow of the RS near the fold curve F , one classical approach
is to desingularise system (7) by rescaling time by a factor fV (V ), which brings forth the
so-called desingularized reduced system (DRS)

V ′ = −J,
J ′ = fV (V )(f(V )− I0),

(9)

where the prime denotes differentiation with respect to the new time, i.e., after desin-
gularization. System (9) is now defined everywhere on R2 including along the fold set
F .

Two points are worth noting about the DRS. First, the change of time by a factor fV (V )
artificially creates in (9) the possibility for equilibria on the fold set F , in particular on
the lower fold curve F . Such equilibria satisfy the algebraic conditions

J = 0, fV (V ) = 0,

whereas the other equilibria of (9) satisfy the algebraic conditions

J = 0, f(V ) = I0,
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Figure 4: Phase portrait of system (3) projected onto the (I, J, V ) space. Also shown is the
critical manifold S0 (blue surface), the lower fold curve F (dotted line), the singular true and
faux canards (red curves), the folded-saddle singularity (red dot), labelled FS, and a trajectory
making one spike without subthreshold oscillations (black curve). Parameter values are as in
Fig. 1 except: V (0) = −76, n(0) = 3 · 10−05, I(0) = I0 = −5.48 and J(0) = 10.

and these are also equilibria of the RS system (7). Second, the same change of time,
because of the V -dependent factor, makes the orientation of trajectories of the DRS be
opposite to that of the RS whenever fV (V ) < 0, that is, along the repelling (middle) sheet
of S0. Hence, the DRS is a standard planar dynamical system, which can for instance have
a saddle equilibrium on F , and the RS has the same geometrical orbits but the reversal of
orientation along the repelling sheet of S0 implies that the saddle equilibrium of the DRS
is not an equilibrium anymore in the RS. Rather, it is a special point called folded saddle,
which two special trajectories reach in finite time and cross. One trajectory crosses it from
the attracting side of S0 upwards, continuing along the repelling side, and it corresponds
to the stable manifold of the saddle equilibrium of the DRS. The other trajectory crosses
it in the opposite direction and it corresponds to the unstable manifold of the saddle of
the DRS. Both trajectories are related to canards in that they cross from one side to the
other of the critical manifold via a folded singularity. In the folded-saddle case, they are
called true singular canard and faux singular canard, respectively [4].

Figure 3 shows the phase portrait of the DRS of system (4) on panel A, and of the
corresponding RS’s phase portrait on panel B. A saddle equilibrium of the DRS is located
on F , therefore it corresponds to a folded saddle in the RS. The DRS has two other
equilibria, both of center type, they are still (true) equilibria of the RS and, hence, they
will also influence the dynamics of the full system. Figure 4 shows the RS’s phase portrait
in a 3D (I, J, V ) projection, where the critical manifold S0 is indeed a surface and F a
curve; in fact, F is a straight line here since it does not depend on J . The figure illustrates
well the geometry of such problems and the role of folded-saddle singularities in shaping
the dynamics of slowly periodically-forced type-I neuron models. Indeed, such systems
effectively correspond to parabolic bursters and folded saddles organise the appearance of
spikes in such bursters along solution branches in parameter space; see [5] for details.

On Fig. 4, a spiking solution of system (4) is shown on top of S0 and it clearly appears
that, as it reaches the (lower) fold curve F of S0 and comes close to the folded-saddle point
FS, the trajectory follows the true singular canard, then it makes a spike and, as the voltage
is going down back to baseline, the trajectory follows the faux singular canard. Therefore
in this context of type-I membrane model with slow periodic forcing, the spike-adding
threshold is organised by folded-saddle canards [5]. Therefore, with a slow harmonic
forcing, an integrator neuron like system (1) displays a folded-saddle singularity and still
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behaves as an integrator. In particular, it cannot generate subthreshold oscillations. This
is essentially due to the eigenvalue ratio of the saddle equilibrium of the DRS, as we will
see next.

3 Integrator neuron with resonator behaviour

3.1 The eigenvalue ratio of the DRS’s saddle equilibrium
We have just seen that the slowly forced integrator neuron model has trajectories with
no subthreshold oscillations. Our aim is now to create these subthreshold oscillations in
order to effectively obtain a switch from integrator to resonator behaviour.

Recent results by Mitry and Wechselberger [23], also confirmed in the context of
piecewise-linear slow-fast systems in [6], show that it is possible to obtain subthreshold
oscillations near a folded saddle. More precisely, near the faux canard of a folded saddle,
which is the perturbation for ε > 0 small enough of the singular faux canard described
in the previous section and shown in Fig. 4. As proven in [23], the algebraic condition to
obtain these subthreshold small-amplitude oscillations is on the ratio µ of the eigenvalues
of the saddle equilibrium of the DRS, the ratio being of the unstable eigenvalue over the
stable one. Necessarily µ is negative, however if it is strictly contained between −1 and
0, then such oscillations appear around the folded saddle’s faux canard; see already Fig. 5
for an illustration.

As explained in the previous section, spiking trajectories of the forced system (4) follow
the singular faux canard – hence, they also stay close to its ε-perturbation, the faux canard
– right after making a spike, as the voltage goes down towards baseline. Hence, provided
we can obtain subthreshold oscillations near the faux canard, then these will adequately
resemble those obtained in resonator neurons, which will provide us with our objective of
turning an integrator neuron into a resonator one purely based on a slow-fast effect.

Now, a rapid glance at the DRS (9) makes us conclude that its Jacobian matrix has
zero trace, whatever the equilibrium solution around which one linearises. Hence, the
saddle equilibrium of the DRS, which corresponds to the folded-saddle of system (4), is
a neutral saddle, implying that the ratio of its eigenvalues is necessarily equal to −1.
This will always be the case when slowly forcing an integrator model if the forcing is
harmonic. Therefore, to obtain subthreshold oscillations one needs to consider a more
elaborate forcing, namely one that includes a feedback term from the voltage.

3.2 Slow forcing with feedback from the voltage
We now consider a more general forcing, with a feedback term in V in the I equation
in order to obtain a non-zero trace in the Jacobian matrix of the new DRS evaluated at
the saddle equilibrium of interest. We will keep the J equation only dependent on I as
we simply need one non-zero diagonal element in the Jacobian matrix evaluated at this
saddle equilibrium in order to ensure that its eigenvalue ratio will be different than −1.
For simplicity, we will keep the dependence in V in the I equation linear and show that
it suffices to obtain the expected behaviour both at the level of the eigenvalue ratio and
in the full system’s solutions. Specifically, we define the new slow forcing (written in fast
time) as

I ′ = ε (−J + αV ) ,

J ′ = ε (I − I0),
(10)

which then yields the new DRS (after rescaling to the slow time)

V ′ = −J + αV,

J ′ = fV (V )(f(V )− I0).
(11)
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Note that the voltage equation of the DRS is obtained from the slow differential equa-
tion for I in the forcing system, and that I must be kept equal to f(V ) in the slow singular
limit. For these reasons, it would suffice that the I equation of the forcing depends on
I and not on V , on top of its J dependence, in order to obtain a non-zero trace in the
Jacobian matrix of the DRS corresponding to this new forcing. This would amount to
replacing V by I in the first equation of (11). As a consequence, this in particular would
avoid to use a feedback term in V in the full system (10). However, it turns out that the
full dynamics would not be able to exploit within its spiking regime the eigenvalue ratio
of the slow singular limit, as additional unwanted equilibria would arise.

Therefore we keep the new slow forcing system (10) to obtain the resonator behaviour.
This new forcing may appear for now as the result of some ad hoc reverse engineering
process, however we shall propose in the discussion section an explanation for its form
and a possible experimental implementation of it.

We can now verify that the new DRS (11) does possess a saddle equilibrium on F and
that one can take a value of parameter α so that its eigenvalue ratio is strictly between −1
and 0. At an equilibrium (V ∗, J∗) located on the lower fold curve F of S0, the Jacobian
matrix of (11) reads

J =

(
α −1

fV V (V
∗)(f(V ∗)− I0)) 0

)
,

where fV V (V ) is the second derivative of f with respect to V . Given that α contributes to
the trace of J and not to its determinant, it is clear that we still have a saddle equilibrium
on F , and hence a folded saddle in the full system with the new forcing. Therefore, the
eigenvalue ratio µ is given by

µ =
α+

√
α2 − 4fV V (V ∗)(f(V ∗)− I0)

α−
√
α2 − 4fV V (V ∗)(f(V ∗)− I0)

. (12)

We then verify numerically that, for α negative and sufficiently large in absolute value, µ
is indeed strictly between −1 and 0. For instance, by fixing α = −4 one can observe the
expect subthreshold oscillations when simulating the full system, as illustrated in Fig. 5
where we also show the critical manifold S0 (blue surface), its lower fold curve F (dotted
line), the folded-saddle singularity, labelled FS (red dot), and the two singular canards

Figure 5: Phase portrait of system (4) projected onto the (I, J, V ) space. Also shown at the
critical manifold S0 (blue surface), the lower fold curve F (dotted line), the singular true and
faux canards (red curves), the folded-saddle singularity (red dot), labelled FS, and a trajectory
making subthreshold oscillations (black curve). Parameter values are as in Fig. 1 except for
the new parameter α: α = −4.
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Figure 6: Integrator neuron (1) acting as a resonator with the slow forced current (10). Pa-
rameter values are as in Fig. 5 except : ε = 0.02, α = −8, V (0) = −113.11, n(0) = 3 · 10−05,
J0 = 546, and I(0) = I0 ranging between −4 and −7.

(red curves traced on S0). Any values of α such that µ in expression (12) is between
−1 and 0 will work equally well. The plotted trajectory is entirely subthreshold, however
it comes close to the folded saddle and then turns back; as the voltage is going down
towards baseline, it oscillates around the singular faux canard. Hence we have obtained
a key feature of a resonator neuron by simply modifying the slow forcing received by
an a priori integrator neuron without modifying its bifurcation structure obtained with
constant forcing. Resonator models have also other features which we can as well recover
here.

In Figure 6, we highlight this resonator effect in the time series of the full system
with the new forcing, obtained by taking an ensemble of initial conditions for the forcing,
namely varying I0. What we observe is a transition in the voltage response from no spike,
to one spike and then two spikes, depending on the value of I0. Every trajectory with at
least one spike has clear subthreshold oscillations after the spike, or after the second spike
for trajectories that have two spikes. What is more, the values of I0 at which we observe
a first spike in the voltage response, and then a second spike, are quite specific. This
confirms that the forced system resonates with specific inputs. Consequently, we have
obtained the main features of a resonator neuron. Again, the main mechanism behind
this switch of behaviour is purely due to the slow forcing received by the integrator model,
and based upon multiple-timescale dynamical phenomena.

4 A multiple-timescale scenario for the reverse switch:
from resonator to integrator
So far, we have mostly focused on the switch from an integrator to a resonator while
retaining the characteristics of the integrator in absence of forcing. It is also possible
to obtain the reverse switch, that is, to have a resonator neuron that behaves like an
integrator. To do so, we keep system (1) but now consider yet another slow forcing,
namely:

I ′ = ε (−βJ + α(V − V0)) ,
J ′ = ε (I − I0),

(13)

where β is a new parameter that allows us to regulate the applied current; β was implicitly
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Figure 7: A: Resonator neuron model (1) with the slow forced current (13) for J(0) = −370.
The folded node is labelled FN. B: Same model acting as an integrator for J(0) = −380,
I(0) = −6.0. Parameter values are as in Fig. 5 except for the new parameter β: β = −1, and
V (0) = −65.933.

equal to 1 in the previous slow forcing (10). We also add V0 as new parameter as it helps
controlling the amplitude of the feedback term from the voltage; V0 was implicitly equal
to 0 in the previous slow forcing. The new parameter β also enables to change the type
of folded singularity by changing the topological type of the DRS equilibrium located
on the fold curve F . In particular, varying β may turn the saddle into a node, hence
giving a folded node in the full system. The non-singular (ε > 0 small) dynamics near
a folded node is well known to produce small oscillations, which in the neuronal context
correspond to subthreshold oscillations [4]. Also known is the fact that, near a folded node,
the phase space is locally partitioned into rotation sectors in which trajectories make a
fixed number of subthreshold oscillations. Hence, it suffices to take initial conditions into
the first rotation sector in order to obtain that the dynamics of this resonator system
appears to behave like an integrator; Fig. 7 illustrates this effect.

Therefore, it is interesting to showcase this effect of a resonator that behaves like an
integrator without changing anything to its structure. However, the observed behaviour
has a notable discrepancy with standard resonator neurons, whereby the subthreshold
oscillations occur before the spike and not after; see Fig. 7 A. Yet, this type of scenario can
be related to experimental observations since there are neurons with this kind of electrical
behaviour recorded in vitro; see [2] for an example in dorsal root ganglion neurons of rats.

5 Conclusion
In this work, we have studied a novel mechanism for excitability switch, from integrator to
resonator and vice versa, within the framework of multiple-timescale dynamical systems.
As a proof-of-concept, we considered the simple yet biophysical 2D example of the INa/IK
model by Izhikevich, but it would work just as well in any type-I model. Starting from
a parameter set in which the model behaves as an integrator in the classical sense, that
is, where the spiking regime occurs through a SNIC bifurcation, we first applied a slow
periodic forcing in order to create a multiple-timescale structure in the forced model,
and to show that the resulting 4D model possesses a folded-saddle singularity. Following
standard geometric singular perturbation theory (GSPT), we derived the desingularized
reduced system (DRS) and showed that it had a saddle equilibrium on the fold curve
of the critical manifold of the original system. This slow periodic forcing preserved the
integrator behaviour. However, modifying the forcing by including a feedback term from
the membrane potential, we managed to affect the eigenvalues of the saddle equilibrium
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of the DRS. This, according to recent results from GSPT [23], has the effect to allow for
small-amplitude oscillations in trajectories that pass near the folded saddle. In turn, this
provided us with a mechanism to obtain subthreshold oscillations in a neuron model that
was a priori an integrator, hence making it behave like a resonator. The feedback term in
V in the slow current forcing can be seen as a simple form of autaptic connection, which
is physiologically plausible.

Therefore, we can see these results as theoretical predictions that we would like to
verify experimentally. From the standpoint of electrophysiological measurements on real
neurons, the possibility to apply a current that depends in real time on the readout
potential from the neuron can be obtained through a dynamic-clamp protocol [26, 32].
The experimental setup allows to inject currents to a cell that depends upon the measured
voltage in real time. It can be used in conjunction with pharmacological blockade of e.g.
one ionic channel of the cell and injecting back the corresponding current as a result of a
computer simulation using the measured voltage. We are current working on validating
our theoretical prediction using dynamic-clamp experiments.

From the modeling’s point of view, adding this term αV in the slow differential equation
of the forcing current was a way to modulate the determinant of the Jacobian matrix of the
DRS, and therefore obtain subthreshold oscillations after a spike as well as modulate their
number. Thus, it is possible to keep the bifurcation structure and the characteristics of an
integrator neuron model while forcing it to display the specific behaviour of a resonator
neuron.

This difference with the classical scenario of integrator neuron models can potentially
have interesting fallouts in the study of information transmission between neurons. Indeed,
by definition, an integrator neuron integrates the message and returns to the rest electrical
potential without subthreshold oscillation. The fact that an integrator neuron can resonate
like a resonator neuron shows that the transmission of information is more complex than a
simple integration of a message given upstream. This is an interesting avenue for follow-up
research on this topic.

We have also shown that the inverse scenario of switch from a resonator towards an
integrator is also possible, by using a folded-node scenario in place of a folded-saddle
one. However, the subthreshold oscillations obtained with a folded-node scenario occur
before the spike rather than after, which is uncommon for resonator neurons. This may
be associated with certain types of neurons (as reported in e.g. [2]) and to the dynamical
phenomenon of mixed-mode oscillations (MMOs) [4]. The most important aspect of this
numerical experiment is that the resonance phenomenon does occur and it can be related
to known properties of folded-node canards, in response to specific forcing inputs [33]. Yet,
one can control the trajectories in such a scenario so that no subthreshold oscillation occurs
as the solution flows past the folded node, which effectively makes the resonator behave
like an integrator. We plan to verify experimentally this theoretical and computational
prediction, first in neuromorphic analog circuits and then, using dynamic clamp, in real
neurons.
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