
HAL Id: hal-04077300
https://hal.science/hal-04077300

Submitted on 21 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the use of the Homomorphic Algorithm on
Computational Offloading

Francisco Gomes, Filipe Matos, Paulo Rego, Fernando Trinta, José de Souza

To cite this version:
Francisco Gomes, Filipe Matos, Paulo Rego, Fernando Trinta, José de Souza. Evaluating the use of the
Homomorphic Algorithm on Computational Offloading. 10th International Workshop on ADVANCEs
in ICT Infrastructures and Services (ADVANCE 2023), Federal University of Ceara, University of
Evry, Feb 2023, Fortaleza-Jerricoacoara, Brésil. 12p, �10.48545/advance2023-fullpapers-1_1�. �hal-
04077300�

https://hal.science/hal-04077300
https://hal.archives-ouvertes.fr


Evaluating the use of the Homomorphic Algorithm on

Computational Offloading

Francisco A. A. Gomes1, Filipe Fernandes S. B. de Matos1, Paulo A. L. Rego2,
Fernando A. M. Trinta2, and José N. de Souza2

1 Federal University of Ceará (UFC), Crateús, CE, Brazil
almada@crateus.ufc.br, and filipe.fernandes@crateus.ufc.br

2 Group of Computer Networks, Software Engineering and Systems (GREat)
Federal University of Ceará (UFC), Fortaleza, CE, Brazil

pauloalr@ufc.br, fernando.trinta@dc.ufc.br, and neuman@ufc.br

Abstract

Mobile accounts for almost half of the web traffic worldwide. However, these devices
still have computational and energy limitations. Mobile Cloud Computing (MCC) tackles
problems like this by migrating tasks and data to remote cloud environments. This tech-
nique is known as offloading. However, during this procedure, data is transmitted on the
network without protection, which is unfeasible for applications with confidential data that
cannot be exposed without security. This work propose a module to ensure the security of
data transmitted during computational offloading and that it is easily expandable to any
cryptographic algorithms. This work evaluates the performance of computational offload-
ing when adopting Homomorphic cryptography during data migration. The results showed
that depending on the operation performed, the time in the offloading process increases
up to 900 times.

1 Introduction

The last few years have shown great popularization and growth in the use of mobile devices in
society (e.g., smartphones, tablets, and smartwatches). These devices have more and more pro-
cessing capacity and an increasing number of embedded sensors (e.g., temperature, luminosity,
accelerometer, gyroscope), which enable the sensing of environmental data so that they can be
interpreted and processed by various applications. However, the mobility provided by mobile
devices brings limitations to their use. Furthermore, while using applications like these, users
often enter sensitive information that could be exposed to various types of cyber attacks.

To get around the issue of limited resources on mobile devices, research has promoted the
integration of mobile devices and cloud resources, creating the research area known today as
Mobile Cloud Computing (MCC) [8]. Among the topics addressed in MCC, the most prominent
is the use of the offloading technique to mitigate processing and storage problems on mobile
devices by migrating tasks and data to remote cloud environments [3, 18]. As it is a shared
medium, it is essential that any data transmitted during offloading be protected, especially
those containing sensitive user information, such as bank details and medical exam results.

One of the methods adopted for data protection in these environments is encryption. En-
cryption makes the data unreadable at the sender, sends it across the network, and from that
nonsense data retrieves the original data at the receiver. Usually, this is performed by encryp-
tion algorithms, which are basically programs that implement the idea of a chosen encryption
method [4]. In addition to the classic techniques, such as symmetric (AES) and asymmetric
(RSA) encryption, homomorphic encryption also guarantees data privacy[1][10]. Furthermore,



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

this kind of encryption allows operating directly on the encrypted data, while other techniques
require decrypting the data before operating on it.

Using homomorphic encryption during the offloading can benefit the client, as it allows
tasks or submitted data to be processed by the server without access to the original content.
On the other hand, adopting homomorphic encryption requires a computational effort from the
transmitter, which can be a problem for mobile devices and their limited resources.

Thus, this paper evaluates the impact of using homomorphic cryptography during the com-
putational offloading performed by mobile applications. For this, we developed an extensible
security module to add encryption algorithms to assist the developer in building secure ap-
plications. The results showed that depending on the operation performed, the time in the
offloading process increases up to 900 times when using homomorphic encryption. The most
significant contribution of this work is to present to developers the cost-benefit of using this
type of encryption and, in this way, help them decide when to adopt it.

The rest of this article is organized as follows: Section 2 deals with the theoretical founda-
tion and presents the fundamental concepts of the research. Section 3 presents related works.
Section 4 presents an overview of the proposal, architecture, established definitions, and an
application developed from the proposed solution. Section 5 presents the results of experi-
ments carried out to show the solution’s performance in terms of total time, communication,
encryption, and execution. Finally, Section 6 concludes the article and exposes possible future
works.

2 Background

This Section presents the main concepts, definitions, and characteristics related to the areas
on which base this research. Thus, we discuss Mobile Cloud Computing, Offloading, and
Homomorphic Encryption concepts.

2.1 Mobile Cloud Computing

MCC’s main objective is to mitigate the problems of mobile computing (e.g., energy, processing,
and storage limitations). There are many definitions for this paradigm. According to [21], MCC
is a computational paradigm that exploits the advantages of Cloud Computing to mitigate the
problems of mobile computing and integrates these two areas. According to [15], MCC was
created based on the concepts of Cloud and Mobile Computing and aimed to allow applications
that require more sophisticated computing resources to run on different mobile devices, provid-
ing a good experience for users. Among the various techniques associated with MCC, the most
cited in the literature is offloading [17]

2.2 Offloading

According to a research conducted by [8], mobile devices use the offloading technique to reduce
energy consumption and improve computational performance by migrating processing and data
to equipment with greater computational power and storage. The offloading operation differs
from traditional Client-Server architecture’s Request/Response mechanism. In the Request/Re-
sponse mechanism, the servers are always responsible for processing tasks transmitted by the
client. In the offloading operation, the client can process tasks if there is no Internet connection
or if the mobile device does not benefit from delegating the task computation to the server [22].

2



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

Lin et al.[18] indicate two types of offloading operations: computational and data. Com-
putational offloading is an operation that delegates the processing performed on the mobile
device to another execution environment (Cloud), aiming to prolong battery life and increase
computational capacity. Data offloading aims to extend the mobile device’s storage capacity,
sending the data to a machine with greater storage capacity.

In addition to the Cloud, mobile devices use other remote devices as offloading targets, such
as cloudlets and other mobile devices. According to [24], cloudlets are server instances allocated
on the same network as the clients and can handle offloading requests. Thus, when cloudlets
are used, offloading remains close to client devices and generates advantages such as higher
speed rates and lower latency rates [5].

2.3 Security Techniques

Due to the data migration required when offloading a mobile device to a remote environment,
this data can travel on the network without any protection. Thus, there must be security in this
migration. Traditional symmetric or asymmetric encryption methods are adopted to provide
security in cloud environments. However, processing the data related to offloading must be
decrypted on the server that has access to the original data, leaving it vulnerable [11].

2.3.1 Homomorphic Encryption

The homomorphic encryption method allows data to be encrypted and sent to the server. Even
so, operations can be performed on that data without needing to decrypt it until it returns
to the sender. It is not necessary to have access to the original text to manipulate it [2]. In
addition to the operations of encrypting and decrypting data, this technique uses addition and
multiplication operations.

Homomorphic encryption systems can be divided into fully homomorphic and partially ho-
momorphic. Drozdowski et al. [7] state that a completely homomorphic system is a system that
supports any number of addition and multiplication operations on the data. This first type of
system was proposed in [12], but it proved inefficient in terms of processing time. Therefore,
most systems with homomorphic properties are partially homomorphic systems [25]. Unlike
the one mentioned above, this type of system is computationally practical but comes with the
cost of supporting only limited mathematical operations on encrypted data. A partial solution
mainly contains two operations: additive or multiplicative homomorphic encryption schemes.
In partial, Paillier cryptosystems support addition, and ElGamal cryptosystems support mul-
tiplication.

3 Related Works

This Section presents the works related to the present proposal. These works consist of security
solutions in the computer offloading the mobile device to a remote environment.

Gomes et al.[14] presented an analytical study on the impact of encryption algorithms on the
performance of computational offloading performed by mobile applications. The work developed
a security module that guarantees the confidentiality and integrity of data trafficked in offloading
and added a framework that supports offloading [13]. Such a module has two components:
one on the mobile side and one on the cloud. Such components adopt a hybrid encryption
approach, using symmetric and asymmetric encryption algorithms to transmit information over
the network. Therefore, the data object being transferred during offloading is encrypted; thus,

3



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

the privacy of the mobile device’s data and, consequently, of its user is preserved. A notable
weakness of this work is security in the offloading process because when the data arrives at the
server, it needs to decrypt to operate on it. At this point, the server has access to the plain
data, which can often be personal information that should not be visible.

Liu et al.[19] presented an implementation that adopts Steganography techniques in the
computational offloading of images from mobile devices to remote servers. The main objective
of this work is to provide data security and examine the energy consumption spent in this
process. Through these techniques, offloading hides the data to be sent in an image and, on
the server side, processes it in this hidden format. In addition, the authors propose an image
recovery method based on the block data hiding method. Unfortunately, the authors did not
evaluate the performance of the Steganography technique in offloading in terms of the total
time of the operation.

Ren et al.[23] claim that data privacy concerns are increasingly affecting the Internet of
things (IoT) and artificial intelligence (AI) applications, in which it is very challenging to
protect the privacy of the underlying data. In recent, the advancements in the performances of
homomorphic encryption have made it possible to help protect sensitive and personal data in IoT
applications using homomorphic encryption-based schemes. This paper proposed a practical
homomorphic encryption scheme that can enable data users in IoT systems to securely operate
data over encrypted data, which can effectively protect the privacy of key data in the system.
Furthermore, experiments were carried out to verify the encryption and decryption time and
homomorphic operations, presenting a result that has little impact on offloading but does not
show the amount of data in which these experiments were carried out. Thus, it is noted that
a more detailed analysis was not carried out on the impact of this type of encryption at the
processing level for the various scenarios with a large amount of data, which is what happens
in a mobile cloud computing scenario.

4 Proposal

Previous sections have pointed out relevant issues in the areas of mobile computing (e.g., limited
power, storage, and processing) and Mobile Cloud Computing (e.g., lack of security during
offloading). Thus, a solution was created that helps develop applications that use computational
offloading to mitigate the problem of scarce resources on mobile devices. In addition, such a
solution implements security techniques for the privacy of the data transferred during the
procedure. Paillier’s algorithm was adopted for the homomorphic cryptography process, the
main public-key algorithm in which homomorphism is applied to its encryption and addition
operations are performed.

4.1 Architecture

Figure 1 presents the proposed architecture. A security module was implemented to have
encryption algorithms available to the application developer. The idea is that this module is
used to ensure the security of data transmitted during computational offloading and that it is
easily expandable to other cryptographic algorithms. The module is composed of two parts:
a client and a server. At the beginning of computational offloading, the application invokes
the client module to encrypt the data. Next, the encrypted data is sent to the server, which
performs the desired computation directly on them in the case of homomorphic encryption.
The result is returned to the client once processing is complete. Finally, upon receiving the
encrypted result, the client module decrypts it and delivers the raw result to the application.

4



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

Figure 1: Proposed Architecture

The modules were developed using the Java programming language. To use homomorphic
cryptography, we adopted the external library Javallier1, which provides a set of methods that
encrypt data and compute operations of addition and multiplication of numbers. When the
server receives the encrypted data from the client, it can perform different procedures depending
on the technique used for data security (in principle, it has the implementation of homomorphic
encryption), and the server performs the necessary processing on the encrypted data itself. The
result of the operation, of course, will also be encrypted data that will be promptly sent to the
mobile application.

4.2 LoadBench

LoadBench2 is a mobile application developed from the proposed solution that adopts the con-
cept of benchmarking, where it is possible to measure the processing time of the requested/per-
formed operation. The application is divided into a client and a server (allocated, respectively,
on a mobile device and a Cloudlet). LoadBench supports the offloading of tasks using the
homomorphic encryption technique. The tasks computed by LoadBench are three mathemat-
ical operations: 1) factorial of an integer (from 50 to 200) chosen by the user; 2) sum and 3)
multiplication of square matrices, with dimensions of 50x50, 100x100, ..., 1000x1000 (defined
by the user) and composed of random values of type Integer generated by the application.

The operation of the application and the communication between its components occurs
as follows: once the mobile application is started (Figure 2.a), the user chooses the applica-
tion’s input data (matrix dimensions or operand factorial), the desired operation (factorial of
a number, addition or multiplication of matrices) and whether to use the homomorphic data

1https://github.com/n1analytics/javallier
2https://github.com/henrique010/tcc-implementation

5

https://github.com/henrique010/tcc-implementation


Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

protection method or not (unsafe mode). After, the user requests the execution of the oper-
ation by clicking the Execute button. If the mobile device establishes a connection with the
remote server, offloading is performed according to the previously chosen mode. Otherwise, the
application processes the task on the device. At the end of the computation, the application
displays the time required to compute, locally or remotely, the task (Figure 2.b).

Figure 2: Application Screens of LoadBench

6



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

5 Experiments and Results

To evaluate the impacts caused by the adoption of homomorphic encryption techniques during
the computational offloading of mobile devices, the application LoadBench and a server were
used to perform the processing requested by the mobile application. This application was used
to perform tests, evaluating the total time of offloading, communication, and execution of the
operation by the server.

5.1 Execution Environment Description

For the experiment, a smartphone and a laptop were used. The smartphone has the following
features: Xiaomi Redmi Note 10; Qualcomm Snapdragon 678 2.2Ghz Octa-Core 64-bit proces-
sor; 4GB of main memory; 64GB of internal memory; and Android 11.0.0 (Google API 30).
The laptop, which acts as a cloudlet, has the following settings: Acer Aspire A31542G; AMD
Ryzen 5 3500u processor; 8GB DDR4 RAM; 256 SSD; Video Card Radeon 540x 2GB; and
Ubuntu 20.04 LTS.

5.2 Description of the experiment

For the present research, the application LoadBench was adopted, and the following metrics
were evaluated: 1) the processing time of offloading (total); 2) communication time (consists of
upload and download time of data), and 3) execution time (time taken by the server to compute
the task). For the experiment, 5 ranges of dimensions of rows and columns were empirically
chosen for the matrices. Initially, starting with dimensions that always vary by fifty in the dif-
ference of rows and columns, such as 50x50, 100x100, 150x150, 200x200, and 250x250. Due to
homomorphic encryption presenting RAM memory limitations when encrypting matrices with
dimensions greater than 500x500, dimensions of this type were disregarded in the test. Re-
garding the mathematical operation, we have chosen matrix sum and multiplication operations
because of their high computational complexity (θ(n2) and θ(n3), respectively). We run each
scenario thirty times because, according to the Central Limit Theorem (TCL), when you have a
sufficiently large sample, the probability distribution of the sample mean can be approximated
by a normal distribution [9].

5.3 Results Obtained

Figure 3 presents the average processing time spent with offloading for the Homomorphic en-
cryption algorithm used in the solution. Thus, in the following paragraphs, the results of using
this encryption will be compared with the non-use. When comparing the results, we noted
that the processing time is higher when adopting homomorphic encryption for all scenarios
evaluated. We already expected this behavior, as the application’s security layer was added,
and it consumed more time to encrypt data before transmission. Notably, when performing
the matrix multiplication operation, we noted that the increase in offloading time was 147.3
times for 50x50 matrices and 984.56 times for 250x250 matrices. We observed a similar result
to the matrix addition operation, where the offloading using homomorphic encryption was 107
times (50x50) and 154.25 (250x250) slower than without encryption. These results indicate
that, even for small arrays, this type of encryption is not suitable for using offloading for mobile
applications.

Figure 4 presents the results related to the communication time, execution and encryption
in the offloading processing. In this case, the No Encryption case (Figures 4(a) and (c)) has the

7



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

(c) Sum of Matrices

(d) Multiplication of Matrices

Figure 3: Results related to processing time metric (on logarithmic scale)

processing time divided only between communication and execution since no type of encryption
is performed. As we observed in previous results when the Homomorphic encryption technique
was adopted, most of the total offloading was dedicated to computing the operation on the
server (Figure 4(b) and (d)). In addition, regardless of the technique used, as the matrix
entries increase, the time spent to compute the operation significantly influences the total time
spent in the process. It is also possible to notice that the inverse happens for the encryption time
because, as the entries increase, the time spent with encryption proves less influential. From
all that has been exposed, it is possible to conclude that using the homomorphic encryption
technique will bring benefits related to data security. However, if the problem to be solved
has a high complexity (multiplication), it will be a very inefficient process as that the data
object to be trafficked has an increasing size. Suppose the problem to be solved is less complex
(addition of matrices). In that case, the process takes 43 times more time, which confirms the
inefficiency of this type of encryption for mobile devices, but that depending on the method to
be performed, this impact it becomes smaller.

5.4 Statistical Data Analysis

Until now, we based our processing time analysis on the average values of the thirty repetitions
performed in each scenario. However, there is no guarantee that these average values represent
the results related to them well. Thus, we decided to apply a statistical test to assess whether
the mean values are good representations of the results and, consequently, to reinforce the obser-
vations presented so far. Initially, we divided the results obtained into five groups. Each group
contained the results of the two types of offloading performed (with homomorphic encryption

8



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

(a) No encryption - Multi (b) Homomorfic - Multi

(c) No encryption - Add (d) Homomorfic - Add

Figure 4: Percentage of processing time dedicated to Communication, Execution and Encryp-
tion operations

and without encryption) for each array size (50x50 to 250x250). As each group consisted of
two subgroups of unpaired samples, we conducted the necessary tests to assess whether or not
it would be feasible to apply the T-Student test. By applying the Bartlett test, we verified that
the sample variances were not equal for all matrix sizes, which makes using the T-Student test
unfeasible. Because of this, we chose the Mann-Whitney test [20]. In the Mann-Whitney test,
the null hypothesis (H0) indicates no difference between the evaluated means, i.e., rejecting
H0 means that the means differ. Table 1 shows the results of the Mann-Whitney test. We
noticed that the null hypothesis was rejected for all matrix sizes. Thus, we conclude that the
means shown in Figure 3 are statistically relevant and summarize the behavior of each method
of offloading in each scenario.

Matrix Size 50x50 100x100 150x150 200x200 250x250
Sum of Matrices

Mann-Whitney 2.80 · 10−11 2.98 · 10−11 2.98 · 10−11 3.00 · 10−11 2.97 · 10−11

Reject H0? ✓ ✓ ✓ ✓ ✓

Multiplication of Matrices
Mann-Whitney 2.95 · 10−11 3.00 · 10−11 3.00 · 10−11 3.00 · 10−11 2.99 · 10−11

Reject H0? ✓ ✓ ✓ ✓ ✓

Table 1: Mann-Whitney test results related to the processing time metric

9



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

5.5 Discussions

The results were quite unfavorable to adopting homomorphic cryptography in a computational
offloading scenario. Although some works in the literature have shown that conventional crypto-
graphic algorithms are feasible in computational offloading[14], they still demand that the data
be decrypted before task processing effectively, which can be an opportunity to access raw data.
Therefore, by overcoming this disadvantage, homomorphic cryptography makes computational
offloading even more secure, although significantly slower. This section presents ideas to speed
up computing a task using homomorphic cryptography faster, maintaining data privacy.

The first method is caching to map input and output data. The server machine can save
the results of operations performed in memory and link them to the received operands. Thus,
when receiving a new offloading request with the same entry, the server does not need to com-
pute the same operation again. Instead, it just returns the result saved in memory. Another
approach would be to use a more efficient programming language to compute the task. In this
case, the developer would need to use the [6] computational offloading multi-language approach.
Although more laborious in terms of development, the technique could significantly reduce the
processing time of the task and make offloading faster than local processing if the developer
chooses the most appropriate server language. A third mechanism would be to improve the
hardware of the server machine that will process the task submitted in offloading. The cloudlet
used in our experiments has a good hardware configuration for a personal computer. However,
it is still weak compared to powerful servers allocated in the Cloud and/or Fog. Therefore,
using more powerful server machines can significantly accelerate task processing using homo-
morphic cryptography, especially when the task is computationally more complex and involves
larger input parameters. Even parallel computing can be used to improve the performance of
homomorphic encryption. The work [16] introduces a generic method to perform arithmetic
operations on encrypted matrices using a homomorphic system and presents the using matrix
operations in parallel.

6 Conclusion and Future Works

The present work presented an implementation of a client-server architecture focused on pro-
viding security using a homomorphic encryption algorithm for the offloading operation used in
the scenario of applications for mobile devices, in addition to having an extensible solution for
any encryption algorithm. The purpose is to present a possibility for developers of the Android
platform and the Java programming language to safely use offloading resources from the im-
plemented algorithms. As a result, it was shown that the module’s implementation with the
homomorphic cryptography algorithm is evaluated in terms of offloading time, which proved
inefficient for the mobile application scenario. A limitation was observed when performing
addition and multiplication operations using homomorphic cryptography for matrices with di-
mensions of 500x500 or greater due to the lack of resources related to the device’s main memory
when using this technique.

In future works, the following improvements are proposed in this work: (i) Implement a Java
Annotation, which receives parameters (e.g., security level, required performance) and, from
them, defines the cryptographic algorithm to be used; and (ii) Analyze the energy consumption
of offloading when performed using the proposed solution.

10



Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

7 Acknowledgments

This work is partially supported by INES3, CNPq grant 465614/2014-0, FACEPE grants APQ-
0399-1.03/17 and APQ/0388-1.03/14, CAPES grant 88887.136410/2017-00

References

[1] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. ACM Comput. Surv., 51(4), jul 2018.

[2] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. ACM Computing Surveys (Csur), 51(4):1–35,
2018.

[3] Ahmed Aliyu, Abdul Hanan Abdullah, Omprakash Kaiwartya, Syed Hamid Hussain Madni, Us-
man Mohammed Joda, Abubakar Ado, and Muhammad Tayyab. Mobile cloud computing: tax-
onomy and challenges. Journal of Computer Networks and Communications, 2020, 2020.

[4] Steve Burnett and Stephen Paine. RSA Security’s official guide to cryptography. McGraw-Hill,
Inc., 2001.

[5] Costa et al. Mpos: A multiplatform offloading system. 2015.

[6] Filipe F. S. B. de Matos, Paulo A. L. Rego, and Fernando A. M. Trinta. An empirical study about
the adoption of multi-language technique in computation offloading in a mobile cloud computing
scenario. In Proceedings of the 11th International Conference on Cloud Computing and Services
Science - CLOSER,, pages 207–214. INSTICC, SciTePress, 2021.

[7] P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and C. Busch. On the application of
homomorphic encryption to face identification. In 2019 International Conference of the Biometrics
Special Interest Group (BIOSIG), pages 1–5, 2019.

[8] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud computing: A survey.
Future generation computer systems, 29(1):84–106, 2013.

[9] Hans Fischer. A history of the central limit theorem: From classical to modern probability theory.
Springer Science & Business Media, 2010.

[10] Caroline Fontaine and Fabien Galand. A survey of homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security, 2007:1–10, 2007.

[11] Joffre Gavinho Filho, Gabriel P Silva, and Claudio Miceli. A public key compression method for
fully homomorphic encryption using genetic algorithms. In 2016 19th International Conference on
Information Fusion (FUSION), pages 1991–1998. IEEE, 2016.

[12] Craig GENTRY. Fully homomorphic encryption using ideal lattices. Proceedings of the forty-first
annual ACM symposium on Theory of computing, pages 169–178, 2009.

[13] Francisco AA Gomes, Paulo AL Rego, Lincoln Rocha, José N de Souza, and Fernando Trinta.
Caos: A context acquisition and offloading system. In 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 957–966. IEEE, 2017.

[14] Francisco AA Gomes, Paulo AL Rego, Fernando Antonio Mota Trinta, Windson Viana, Fran-
cisco Airton Silva, José AF de Macêdo, and José N de Souza. A study about the impact of
encryption support on a mobile cloud computing framework. In CLOSER, pages 400–407, 2020.

[15] Dijiang Huang and Huijun Wu. Mobile cloud computing taxonomy. In Mobile Cloud Computing,
pages 5–29. Elsevier, 2018.

[16] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix compu-
tation and application to neural networks. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security, pages 1209–1222, 2018.

3www.ines.org.br

11

www.ines.org.br


Evaluating the use of the Homomorphic Algorithm on Computational Offloading Gomes et al.

[17] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A survey of computation
offloading for mobile systems. Mobile networks and Applications, 18(1):129–140, 2013.

[18] Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, and Lusheng Wang. A survey on compu-
tation offloading modeling for edge computing. Journal of Network and Computer Applications,
169:102781, 2020.

[19] Jibang Liu, Karthik Kumar, and Yung-Hsiang Lu. Tradeoff between energy savings and privacy
protection in computation offloading. pages 213–218, 2010.

[20] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random Variables is Stochas-
tically Larger than the Other. The Annals of Mathematical Statistics, 18(1):50 – 60, 1947.

[21] Shahryar Shafique Qureshi, Toufeeq Ahmad, Khalid Rafique, et al. Mobile cloud computing as
future for mobile applications-implementation methods and challenging issues. In 2011 IEEE
International Conference on Cloud Computing and Intelligence Systems, pages 467–471. IEEE,
2011.

[22] Paulo AL Rego, Philipp B Costa, Emanuel F Coutinho, Lincoln S Rocha, Fernando AM Trinta,
and Jose N de Souza. Performing computation offloading on multiple platforms. Computer Com-
munications, 105:1–13, 2017.

[23] Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min, Zhiwei Zhao, and Ali Kashif
Bashir. Privacy-preserving using homomorphic encryption in mobile iot systems. Computer Com-
munications, 165:105–111, 2021.

[24] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The case for vm-
based cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23, 2009.

[25] Leandro V Silva, Pedro Barbosa, Rodolfo Marinho, and Andrey Brito. Security and privacy aware
data aggregation on cloud computing. Journal of Internet Services and Applications, 9(1):1–13,
2018.

12


	1 Introduction
	2 Background
	2.1 Mobile Cloud Computing
	2.2 Offloading
	2.3 Security Techniques

	3 Related Works
	4 Proposal
	4.1 Architecture
	4.2 LoadBench

	5 Experiments and Results
	5.1 Execution Environment Description
	5.2 Description of the experiment
	5.3 Results Obtained
	5.4 Statistical Data Analysis
	5.5 Discussions

	6 Conclusion and Future Works
	7 Acknowledgments
	References

