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Abstract

The evolution of mutualism between host and symbiont communities plays an
essential role in maintaining ecosystem function and should therefore have a pro-
found effect on their range expansion dynamics. In particular, the presence of
mutualistic symbionts at the leading edge of a host-symbiont community should
enhance its propagation in space. We develop a theoretical framework that cap-
tures the eco-evolutionary dynamics of host-symbiont communities, to investigate
how the evolution of resource exchange may shape community structure during
range expansion. We consider a community with symbionts that are mutualis-
tic or parasitic to various degrees, where parasitic symbionts receive the same
amount of resource from the host as mutualistic symbionts, but at lower cost.
The selective advantage of parasitic symbionts over mutualistic ones is strength-
ened with resource availability (i.e. with host density), promoting mutualism at
the range edges, where host density is low, and parasitism in the population core,
where host density is higher. This spatial selection also influences the speed of
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spread. We find that the host growth rate (which depends on the average benefit
provided by the symbionts) is maximal at the range edges, where symbionts are
more mutualistic, and that host-symbiont communities with high symbiont den-
sity at their core (e.g. resulting from more mutualistic hosts) spread faster into
new territories. These results indicate that the expansion of host-symbiont com-
munities is pulled by the hosts but pushed by the symbionts, in a unique push-pull
dynamic where both the host and symbionts are active and tightly-linked players.

Keywords: eco-evolutionary dynamics, mathematical model, mutualism, range
expansion, arbuscular mycorrhizal fungi, host-microbial communities, differential
equations

MSC Classification: 92D40: Ecology , 92D15: Problems related to evolution , 92D25:
Population dynamics (general).

Acknowledgments. JG and RCT would both like to thank Mark Lewis for the
many wonderful research discussions, workshop invitations, and support that he has
provided over the years MMM acknowledges the Azrieli Foundation for the award of
the Azrieli Fellowship. MMM and OK acknowledge the Israel Science Foundation (ISF)
(grant number 1826/20), the Gordon and Betty Moore Foundation, and the United
States-Israel Binational Science Foundation (BSF). RCT acknowledges the Natural
Sciences and Engineering Research Council (NSERC) of Canada Discovery Grants
Program, grant number RGPIN-2022-03589, and the University of British Columbia
Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services. JG acknowl-
edges ModEcoEvo project funded by the Université Savoie Mont-Blanc and the ANR
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Dedicated to Mark Lewis who always pushes and pulls mathematical biology
expansion

Introduction

Climate change and anthropogenic disturbance are inducing species to engage in range
expansion toward more suitable habitats at an unprecedented rate. Understanding the
mechanisms governing population spread is therefore a key priority in conservation
biology. Nonetheless, predicting the specific contours of a species’ range expansion
remains challenging (Fournier et al, 2019). Spatial spread is determined by processes
acting at the edge of a species’ range, where population densities are lower in com-
parison to those in the core of the range (Chuang and Peterson, 2016). Low-density
populations experience unique interaction structures and selective pressures, such as
decreased intraspecific competition, or altered reproductive success (Phillips, 2009;
Huang and Peng, 2016)), that together favour the evolution of certain traits with
respect to others and can affect population spread in an unexpected manner.

The range expansion of a host population associated with a mutualistic sym-
biont community represents a particularly challenging study system. The term
‘host-associated community’ refers to a community of small organisms with a short
generation time (the ‘symbionts’) associated with a large host (Bronstein, 2015). Host-
associated communities may encompass a collection of parasitic, commensal, and/or
mutualistic organisms where, to be defined as ‘mutualistic’ the associated symbionts
should have an overall positive effect on host fitness, at least to some extent (Bron-
stein, 2015). If the fitness of a host species is affected by the presence of its mutualistic
symbionts, it follows that the spatial spread of the host population will be intrinsically
coupled to the density and characteristics of its associated symbionts at the range
edge. Additionally, lower population densities of the host at the range edges of an
expanding population may lead to the selection of symbionts with mutualistic traits
that differ from those observed in the population core, further affecting the expan-
sion dynamics (Koella, 2000; Van Dyken et al, 2013). Mutualism thus adds a further
degree of complexity to the evaluation of the speed of spread of hosts and symbionts.

Host-associated mutualistic communities are widespread in nature, and many have
well-established ecological and economic significance. Examples include the crucial role
played by mycorrhizal fungi in plant growth and agricultural productivity (Smith and
Read, 2010), or the fundamental functions performed by zooxanthellae in supporting
coral reef ecosystems and fisheries (Muller-Parker et al, 2015). Only recent studies,
however, have investigated how mutualistic interactions can affect the range limits of a
host population and its symbionts (Afkhami et al, 2014; Araújo and Rozenfeld, 2014;
Stanton-Geddes and Anderson, 2011; Dickie et al, 2017; Godsoe et al, 2017; Fournier
et al, 2019; Benning and Moeller, 2021; Paquette and Hargreaves, 2021; Stephan et al,
2021). In this context, much greater attention has been given to the influence of abiotic
factors (Chen et al, 2011; Spence and Tingley, 2020), or to the negative impacts of
biotic factors such as predation, competition, or pathogen transmission (Phillips et al,
2010; Brown and Vellend, 2014; Wan et al, 2016). Theoretical approaches have also
been scarce (Case et al, 2005; Brooker et al, 2007; Mack, 2012; Kubisch et al, 2014;
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Shaw, 2022), with very few mathematical models treating hosts and their multiple
symbionts as separate entities capable of influencing each others’ population dynamics
and evolutionary trajectories.

Even less is known about how the interaction dynamics between hosts and sym-
bionts are shaped by spatial dispersal (Mony et al, 2022; Hu et al, 2022), and whether
the community of symbionts in a core population should be expected to differ from
what is observed at the edges of the expansion range (Doebeli and Knowlton, 1998).
Empirical work on host-microbial symbioses has revealed changes in microbial diver-
sity at the range edge (Lankau and Keymer, 2016; Fowler et al, 2023). This variation
could lead to a decrease in host fitness or could help the host to better adapt to new
environmental challenges, depending on the microbial composition observed in the
edge community. These studies, however, do not address the question of whether range
expansion favours selection for specific mutualistic traits in the symbionts, thereby
affecting the structure of the symbiotic community. Currently, only a few studies of
protective plant-ant mutualisms have tackled this issue; these studies have identified
differences between the mutualistic investment of ants in the core and at the range
edge (Léotard et al, 2009; Vittecoq et al, 2012).

To address these questions, we develop a theoretical framework considering the
mutualistic interactions of a population of one type of plant (the ‘host’) and a com-
munity of host-associated arbuscular mycorrhizal fungi (the ‘symbionts’). We consider
host and symbionts to interact by exchanging resources necessary for their growth,
where access to the host’s resource is the same for all symbionts, regardless of the
benefit they provide in return. We further assume that symbionts have the ability
to disperse independently from the host and to transmit horizontally within the host
population.

Host control, intended as any mechanism by which hosts can actively select for
more beneficial symbionts in the community, has been a popular explanation for the
persistence of mutualism in the face of cheaters (Hoeksema and Kummel, 2003; Bever,
2015; Bachelot and Lee, 2018; Christian and Bever, 2018). Host species have been
found to have some influence over the composition and persistence of their symbionts,
e.g. through gene regulation (Wier et al, 2010; Davenport et al, 2015), through secre-
tion of compounds such as amino acids, sugars, and organic acids (Yuan et al, 2015;
Frenkel and Ribbeck, 2017), or through preferential allocation of resources (Bever
et al, 2009; Kiers et al, 2011). The universality of host control mechanisms, however,
and the extent to which these mechanisms apply in natural contexts, have both been
questioned in numerous studies, particularly in the context of the mycorrhizal sym-
biosis (Cameron et al, 2008; Walder et al, 2012; Walder and Van Der Heijden, 2015;
Zhang et al, 2015; van der Heijden and Walder, 2016).

In the absence of host control mechanisms, vertical transmission of symbionts has
also been found to favour mutualism (Ewald, 1987; Sachs et al, 2004). Indeed the faith-
ful transmission of symbionts from parent to offspring may promote the evolution of
more mutualistic traits when the reproductive success of a host and its symbionts is
linked (Sachs et al, 2011; Frederickson, 2013). Symbionts, however, are often horizon-
tally or environmentally inherited (Wilkinson and Sherratt, 2001; Vandenkoornhuyse
et al, 2015; Shade et al, 2017). In this case, a symbiont may remain parasitic rather

4



than engage in a mutualistic interaction (Ferdy and Godelle, 2005; Drew et al, 2021a),
and little is known about how mutualism can persist when the fates of the symbionts
and the host are decoupled. We have therefore developed a model that allows us
to investigate mutualism persistence in the paired conditions of no host control and
sharing of symbionts among hosts.

Evolutionary changes in symbionts have been proposed to play a key role in
structuring microbial communities, and represent an important factor to consider in
elucidating the interaction dynamics of a host and its symbionts (Gómez et al, 2016;
Miller et al, 2018). We, therefore, assume that the mutualistic investment of each sym-
biont (quantified by the rate at which the symbiont provides a benefit to the host)
can change in time through a diversification process, e.g., genetic or phenotypic muta-
tion. We develop a theoretical framework in which the evolutionary dynamics of the
symbionts and their ecological interactions with the host occur on the same timescale.
Specifically, we ask the following questions:
(i) How do eco-evolutionary dynamics shape the structure of host-associated mutu-

alistic communities?
(ii) How does symbiont investment, in the mutualistic relationship with the host,

differ between the population core and the edge of the expansion range?
(iii) How does resource supply of a host population toward its symbionts affect the

spread of both host and symbiont populations?
Our analysis provides insights into the eco-evolutionary dynamics and linked expansion
dynamics of a host population and its symbionts. To make our work more concrete,
we select the mycorrhizal mutualism as our motivating example, but our model and
results apply to multiple ecological systems (Palmer et al, 2003; Robinson et al, 2010).

Models and Methods

We present an eco-evolutionary model describing the dynamics of a host population
of plants supporting a host-dependent community of arbuscular mycorrhizal fungi
(AMF), where the associated AMF compete amongst each other for space (Thonar
et al, 2014; Engelmoer et al, 2014). The plant and AMF densities correspond to the
amount of biomass (leaves, roots, hyphae, etc.) present at each time and location and
are described by the variables p(t, x) andm(t, x, α), respectively. The AMF community
is composed of fungi that differ in their ability α to deliver resources to host plants,
as explained in detail below.

Individuals within the plant population and AMF community are each character-
ized by a trait quantifying their mutualistic investment, i.e., the rate at which each
delivers resource to the partner: Each plant delivers carbon to the AMF at a rate quan-
tified by parameter β, while each associated AMF delivers phosphorus to the plant at
a rate quantified by parameter α. The mutualistic investment of the fungi is subject
to evolution, i.e., α can evolve through mutation or recombination during spore pro-
duction and spread, or during root colonization (Vandenkoornhuyse et al, 2001; den
Bakker et al, 2010). Thus, a plant-dependent community of AMF includes fungi that
differ in their mutualistic investment α. When the mutation rate is high, or mutations
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with large effects on traits are rare (as it is commonly observed in microbial communi-
ties (LeClerc et al, 1996; Oliver et al, 2000; Trindade et al, 2010)), diversification of the
trait α can be modelled as a diffusion process with a diffusion or diversification rate
dm, corresponding to the product of the mutation rate and half the variance associated
with mutational effects (Fleming, 1979). In addition to trait evolution, we consider the
plant population and AMF community to undergo spatial expansion through the ran-
dom dispersal of seeds or spores, respectively, and we quantify their dispersal ability
by the diffusion coefficients Dp (for the plant) and Dm (for the associated AMF).

We thus obtain the following model for a population of plants with biomass density
p(t, x) interacting with a community of AMF with total biomass density M(t, x), com-
posed of multiple AMF whose biomass density m(t, x, α) depends on their mutualistic
investment α:

∂tp = Dp∂
2
xp+ p

(
rp +

Qα(t, x)M(t, x)

p+ d
− βM(t, x)− µpp

)
, x ∈ R, t > 0, (1a)

∂tm = Dm∂2
xm+ dm∂2

αm+m

(
β p− αp

p+ d
− µmM(t, x)

)
, α ∈ (αmin, αmax) . (1b)

Note that p, m, and M have been converted into dimensionless quantities with arbi-
trary units. The parameter αmin is the minimal mutualistic investment of the AMF
(which can be zero) and αmax > 0 is the maximal mutualistic investment. Each AMF
is considered parasitic (if the cost of the symbiont for the plant is higher than the ben-
efit it provides) and mutualistic (if the benefit provided is higher than the cost), as we
will explain in detail below (see Eq. (3)). The quantity α(t, x) is the mean mutualistic
investment of the AMF community at location x and time t and is defined as

α(t, x) =

∫ αmax

αmin

α
m(t, x, α)

M(t, x)
dα and M(t, x) =

∫ αmax

αmin

m(t, x, α) dα . (2)

To ensure that mutations do not affect the total population biomass of the symbiont
community, Eqs. (1) have no-flux boundary conditions on the boundary of the trait
domain (αmin, αmax), that is,

∂αm(t, x, αmin) = ∂αm(t, x, αmax) = 0, for all t > 0, x ∈ R .

A list of model’s parameters is provided in Table 1.
The delivery of resources from the plant to the AMF depends linearly on plant

and AMF densities (see fourth and third terms in Eqs. (1a) and (1b) respectively).
Resource delivery from the AMF to the plant increases linearly with increasing fungal
density, and nearly linearly with increasing plant density when plant density is low
(relative to parameter d) (see third and fourth terms in Eqs. (1a) and (1b) respec-
tively). When plant density is large (relative to parameter d) resource delivery tends
toward a dependency on fungal density only, as we assume host availability to not be a
factor affecting the resource delivery capacity of associated symbionts (see Martignoni
et al (2020) for more details about the biological assumptions underlying the choice
of these functional responses for the benefit and cost of mutualism).
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The nutrients (e.g., phosphorus) received by the plant from the AMF, and the car-
bon received by the AMF from the plant, are converted into plant and AMF biomass,
respectively. The parameter Q represents the efficiency of these conversions (see Mar-
tignoni et al (2020)). Parameters µp and µm correspond to the density-dependent rates
at which resources are directed to the maintenance of the existing plant and AMF
biomass, respectively. These costs encompass, for example, energetic costs and the
cost of direct competition. Note that the maintenance term for the AMF community
depends on the total AMF density M(x, t) (see last term of Eq. (1b)), and therefore
includes direct competition between symbionts.

Below, we summarize the main questions we investigate using our model, and the
approaches we take to do so.

The eco-evolutionary dynamics of host-associated communities:

We first consider the model of Eq. (1) in the absence of spatial spread (i.e., Dm =
Dp = 0). We aim to understand how a symbiotic community can emerge from natural
selection and persist in association with a population of host plants. For this pur-
pose, we investigate the coupled dynamics of a community of AMF associated with a
population of host plants, and we consider the role that evolutionary changes in the
mutualistic investment of the symbionts (α) may play in the establishment and persis-
tence of mutualistic communities. Symbionts with low mutualistic investment reduce
the growth rate of the host. We will refer to these symbionts as ‘parasitic’, and we will
define them as AMF characterized by α ⩽ αc, where αc is the threshold below which
an obligate mutualistic plant can not survive in the presence of that single symbiont
(see SI.A for mathematical details). The threshold αc is defined by

αc =
β d

Q

(Q+ 1)−
√

(Q− 1)2 − 4
Qµmµp

β2

2
. (3)

Symbionts with large mutualistic investment (α ⩾ αc) enhance the host growth rate,
which allows the host-associated community to survive. We will refer to these sym-
bionts as ‘mutualistic’. We investigate the mechanisms leading to the coexistence of
mutualistic and parasitic symbionts in a community supported by a host popula-
tion. In addition, we study how the mutualistic investment (β) of host plants toward
their associated AMF affects the distribution of mutualistic traits (α) among the
AMF community and the proportion of parasitic and mutualistic symbionts in the
community.

Community structure at the range edges:

We aim to understand how dispersal structures the average mutualistic investment
α along a range expanding community of AMF associated with a population of host
plants. The travelling wave solutions of Eqs. (1), i.e., solutions whose fixed profile
moves at a constant speed, can be used to understand this propagation. We compare
the proportion of parasitic and mutualistic symbionts and their average mutualistic
investment α at the edge and in the core of an expanding plant-AMF community. By
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computing the plant and AMF growth rates along the wave front, we also gain insights
into whether the expansion of host-associated communities can be defined as a pushed
wave (i.e. driven by a growth rate that is highest some distance behind the wave front)
or pulled wave (i.e. driven by a growth rate that is highest at the leading edge). We
also investigate the ancestry of the symbionts at the leading edge, to determine the
relative contribution of parasitic and mutualistic symbionts to the community at the
leading edge.

The spread of a host population and its symbionts:

We aim to understand how mutualistic interactions between a plant and its associated
AMF affect the speed of spread of a host and its associated symbionts in a homoge-
neous landscape. We first compute the speed of spread of a host-symbiont community
for different values of the rate β at which the plant provides carbon to its AMF. We
further investigate how the speed of spread is affected by the difference between the
dispersal abilities of the plant and the AMF. More precisely, we vary the ratio between
the dispersal ability of the plant population (Dp) and that of the AMF community
(Dm). Finally, we test how results differ when the plant is an obligate versus a fac-
ultative mutualist (i.e., when the intrinsic growth rate of the plant rp is zero, if the
mutualism is obligate, or larger than zero if the mutualism is facultative).

Parameters Range

x variable representing position in space (−∞,∞)
α AMF mutualistic investment trait [0, 5]

rp intrinsic growth rate of plant [0, 0.8]
β plant carbon supply rate [0.29, 13]

Q relative nutrient conversion efficiency 6
d half-saturation constant 1.2
µp Parameters of plant density dependence 0.3
µm Parameter of AMF density dependence 0.3

dm diversification rate [10−5, 10−1]

Dp dispersal rate of plant 0.1
Dm dispersal rate of AMF 0.1

Table 1 Parameters of the model with either the range of values we consider, or
the default value used in the simulations.

Results

The eco-evolutionary dynamics of host-associated communities

In the absence of dispersal, our model predicts the establishment and persistence
of a mutualistic host-associated community (Fig. 1(a)). The emerging community is
composed of a combination of symbionts that are parasitic or mutualistic to various
degree, where the mutualistic investment of the symbionts does not converge to a
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Fig. 1 Host-symbiont community dynamics in the absence of dispersal. Panel (a), Plant density
at equilibrium (black) and total density of the AMF community (blue) as functions of the plant
carbon supply rate β. The mean mutualistic trait α of the AMF community is shown in red and the
mutualism/parasitism threshold αc is shown in grey. Black asterisks correspond to the simulation
results in panel (b). Panel (b), Trait distribution in the AMF community as a function of AMF
phosphorus supply rate α and for various values of plant carbon supply rate β. For both panels,
symbols correspond to equilibria of the model (1) without spatial spread (Dp = Dm = 0) obtained
from numerical simulations, while curves correspond to theoretical approximations defined in SI.A.
Parameter values used for the simulations are: dm = 0.01, Q = 6, µp = µm = 0.3, αmin = 0 and
αmax = 5.

specific value but is distributed within the community across the range αmin to αmax

(Fig. 1(b)).
Mutualistic symbionts receive the same benefit from the hosts as parasitic ones

(proportional to β p) but at a higher cost (proportional to αp/(p + d), where α is
lower for parasitic symbionts) as described by Eq. (1b). Parasites thus benefit from
higher fitness and reach higher densities than mutualists, which confers a competi-
tive advantage to parasitic symbionts. As a result, the trait distribution of AMF has
its maximum at αmin and decreases with increasing α (Fig. 1(b) and SI.B for math-
ematical details). However, the proportion of parasites in the AMF community, that
is AMF with low mutualistic investment (αmin ⩽ α ⩽ αc), is not always larger than
1/2. The prevalence of parasites in the AMF community truly depends on the plant
carbon supply rate β as well as the diversification rate dm (see Fig. B2).

The selection strength favouring parasitic symbionts (with lower values of α)
increases with plant density p (see Eq. (1b)). However, host density decreases as sym-
bionts become more parasitic and the mean mutualistic investment α decreases (see
Eq. 1a). Thus, in the absence of mutations, mutualistic symbionts are competitively
excluded by parasitic symbionts, with a consequent reduction in plant growth and col-
lapse of the whole community (see SI.A for more details). Mutations cause parasites
to evolve into better mutualists, driving diversification in α toward higher mutualistic
investment. Even when diversification occurs at an extremely low rate (Fig. B1(a) in
SI.B), this process can balance selection due to competition between symbionts (which
selects for low values of α) to produce a mean mutualistic investment of the AMF
community large enough to support plant growth (Fig. 1(a)).
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From the perspective of the symbionts, the intertwined effects of mutation and
selection generate an average mutualistic investment α that decreases with selection
strength and thus decreases with respect to plant density. More specifically, the result-
ing balance between selection and mutation produces a distribution of AMF density as
a function of plant density p that can be approximated by the Airy function truncated
at αmax, with mean α satisfying

α = z0

(
(p+ d)dm

p

)1/3

, (4)

where z0 is a positive constant that depends only on the Airy function solving the
dimensionless problem Ai′′(z) − zAi(z) = 0 on R (see SI.B.3 for more details and
Fig. 1b). In addition, the mean mutualistic investment α is increasing with the
diversification rate dm (Fig. B1).

From the perspective of the plants, the ecological interaction between the plants
and the AMF community produces dynamics with antagonistic effects. Host plants
benefit from the community at rate QαM/(p+d), which is increasing with the average
mutualistic investment α, but decreasing with host density p. At ecological equilibrium,
plant density satisfies

p = d

(
α

αc
− 1

)
, (5)

where αc is the parasitic/mutualistic threshold defined by (3) (see SI. B).
The antagonistic outcomes of the evolutionary process described by (4), and the

ecological interactions between the host plants and symbiont community described
by (5), produce an eco-evolutionary equilibrium. The eco-evolutionary feedback
between plant density and AMF mean mutualistic trait is key to the persistence of
a community where parasitic and mutualistic symbionts coexist (see more details in
Box 1 and SI.A).
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Box 1: Forces stabilizing the eco-evolutionary dynamics of host-symbiont
communities

Diagram illustrating the evolutionary and ecological forces stabilizing the popu-
lation dynamics of host-symbiont communities. Ecological interactions between
hosts and symbionts tend to increase host density in a way that is proportional
to the mean mutualistic investment α of its symbionts (see Eq.(5)). Evolution-
ary forces, on the other hand, tend to favor parasitic symbionts, which have a
greater fitness advantage over mutualistic symbionts. This advantage increases
with increasing resource availability, and thus with increasing host density (see
Eq.(4)). If the community is highly parasitic, α assumes a lower value, which
causes a reduction in host density and a decrease in the fitness advantage of
parasitic symbionts, which then leads the community to become more mutual-
istic on average. If the community is more mutualistic, host density increases
and so does the fitness advantage of parasitic symbionts. The balance between
evolutionary forces (selecting for more parasitic traits through the benefits of
cheating) and ecological forces (selecting for more mutualistic traits when plant
density is high) stabilizes host density around a fixed value.

Carbon supply to the symbionts (parameter β) represents the mutualistic invest-
ment of the host plants. It determines the growth of the associated AMF and, in turn,
plant growth. Plant density at equilibrium is therefore affected by β (see Eq. (5)).
Since the plant density affects community structure through the evolutionary dynam-
ics of symbionts (see Eq. (4) and SI.B), the carbon supply rate β is also an indirect
determinant of community structure. In particular, a low rate of carbon supply β from
the host to the symbionts does not provide enough resource for the AMF community
to grow and support host growth, while a large β leads to a high cost of mutualism for
the plant population, and thus directly reduces its growth. Plant density is therefore
maximized at an intermediate value of β (Fig. 1(a)).
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Community structure at the range edges

Mutualistic investment at the range edges:

In this section we focus on the specific contribution of parasitic and mutualistic sym-
bionts in shaping the expansion dynamics of the community. We observe that in the
core of an expanding population, coexistence of parasitic and mutualistic symbionts
is dynamically stable, with selection favouring parasitic symbionts and allowing them
to grow larger than mutualistic symbionts (Fig. 2(a)), consistent with the non-spatial
eco-evolutionary dynamics described above. In contrast, toward the expansion edges
plant density decreases, which reduces the strength of selection acting against mutual-
istic symbionts and thus increases the mean mutualistic investment of the community.
The resulting effect on the distribution of α across the AMF community is similar to
the one observed when varying β in the absence of dispersal, but with position along
the wavefront, x, playing the role of β (cfr. Fig. 1(b) and Fig. 2(b)). Indeed, the pos-
itive dependence of the selection strength on plant density, combined with the low
plant density at the leading edge of the traveling wave, explains the decrease in the
proportion of parasitic symbionts toward the traveling front (Fig. 2(c) and SI.B.4).

Note that Fig. 2(a) and Fig. 2(c) are apparently contradictory. The first shows
that, in the core of the travelling wave, the parasitic AMF occur at higher density
than mutualistic AMF, but that the cumulative density of mutualistic AMF exceeds
that of parasitic AMF. This situation arises because there are few values of α that
qualify as parasitic (α < αc), but many values of α that qualify as mutualistic. An
examination of Fig. 1(b) confirms this observation: If we consider, for example, the
β = 0.4 curve and the corresponding gray dotted line indicating αc (near 0), we can
see that the area under the curve to the left of α = αc is indeed small and probably
smaller than the area under the curve to the right of αc. This comparison also holds for
all of the other curves that appear in Fig. 1(b). Consequently, the cumulative density
of mutualistic AMF exceeds that of parasitic AMF, as shown in Fig. 2(c).

Fixation probability of parasitic and mutualistic traits:

We find that it is evolution among the parasitic symbionts in the population core that
gives rise to the mutualistic population at the range edge. Indeed, parasitic symbionts
are the most likely common ancestors of mutualistic symbionts (Fig. 3 and Fig. B3).
The curve of diamonds in Fig. 3 represents the average fixation probability of symbiont
individuals originating from location x, that is the probability that their descendants
become prevalent at the leading edge of the travelling wave. In other words, this curve
shows the probability with which AMF at position x along the travelling wave give
rise to AMF (which are highly mutualistic) at the leading edge of the wave. Note,
however, that at each location x, there exists an entire community of symbionts.
Consequently, the fixation probability is not uniform among the individuals starting
at a given location x: the probability truly depends on the value of the trait, α, for
each symbiont. That is, knowing that an ancestor comes from position x is insufficient:
We also need to know which of the AMF at that position are the likely ancestors. The
diamonds are therefore coloured according to the mean α value of the likely ancestors
at that position, or the mean mutualistic trait of individuals with respect to this
fixation probability. In other words, the colour of each diamond describes the trait
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Fig. 2 Panel (a), Travelling wave profile. Plot of AMF density for increasing values of α (green
to blue curves), total AMF density with respect to α (black curve), plant density (dashed black
curve), and mean AMF trait α (thick solid red curve). The crosses (and vertical dotted lines) indicate
the positions along the travelling wave corresponding to the curves in panel (b). Panel (b), The
distribution of the trait α at four different positions along the travelling wavefront. For both plots,
β = 0.4. Panel (c), Cumulative densities of parasitic AMF (α ⩽ αc, green area) and mutualistic AMF
(α > αc, blue area) inside the traveling front (black curve). Red curve corresponds to the proportion
of parasitic AMF along the traveling wave. Panel (d), Growth rate of the plant (dashed red curve)
and AMF (solid red curve) as a function of position along the travelling wave (plant - dashed black
curve, AMF - solid black curve). Parameter values used for the simulations are: Dm = Dp = 0.1,
dm = 0.01, Q = 6, µp = µm = 0.3, β = 0.72, and αmin = 0 and αmax = 5.

value at that location x of the ancestors of the symbionts sampled at the leading edge
of the front.

From the curve of diamonds in Fig. 3, we see that: (i) Symbionts just behind the
leading edge contribute more to the spread (i.e., the peak of the fixation probability
curve is found toward the front of the travelling wave, but behind the leading edge),
and (ii) the most likely common ancestors of these symbionts are parasitic symbionts
(as shown by the green colour of the peak of the fixation probability curve and, indeed,
of most points along this curve).

Thus, the proportion of individuals at the leading edge that come from mutualistic
individuals is small (as we can see in the blue right tail of the fixation probability
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Fig. 3 Fixation probability of plant (red dashes) and symbionts (green diamonds) with respect to
location in space. Dashes and symbols (dots and diamonds) represent solutions of numerical sim-
ulation of Eq. (C65)-(C68) and gray curves are the corresponding approximations obtained from
Eq. (6) (C70). We also plot the densities of plants (black dashes) and AMF symbionts (blue dots).
The colour of each dot and diamond represents the value of the mean mutualistic trait α(x) at
the corresponding location x (where green denotes parasitic and blue denotes mutualistic symbiont
communities). Parameter values used for the figure are: dm = 0.01, Dp = Dm = 0.1, Q = 6,
µp = µm = 0.3, β = 0.72 and αmin = 0 and αmax = 5.

curve), and mutualistic individuals at the leading edge mainly come from parasitic
individuals from behind the leading edge of the front.

The mutualistic AMF at the leading edge arise from two sources: (1) offspring of
mutualistic AMF at the leading edge, and (2) mutated offspring of dispersed parasitic
AMF from behind the leading edge. Since parasites are more abundant than mutualists
(see Fig. 2(a)), they make up a larger proportion of the total biomass and thus also
disperse more biomass. At the leading edge of the travelling wave, host density is low
and selection of AMF at the ecological scale favors mutualism. Thus, of the parasitic
AMF that disperse to the leading edge, only those that mutate into mutualists are
selected in this region. The mutualistic AMF already at the leading edge also give rise
to mutualistic offspring, but given that the biomass of parasitic AMF dispersing to the
leading edge far exceeds the biomass of mutualistic AMF already at the leading edge,
the proportion of mutualists selected from parasitic ancestors (source (2)) is much
larger than the proportion of mutualists arising from mutualistic ancestors (source
(1)).

Specifically, the probability of fixation PFm satisfies the following formula

PFm(x) =
e

cx
Dm M2(x)∫

R
e

cz
Dm M2(z)dz

, (6)

where M is the profile of the symbiont density in the moving frame at the spreading
speed c (see Appendix C.2 for details). The probability of fixation thus depends on
the dispersal rate Dm, as well as on symbiont growth, through the profile of the
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symbiont density M. We see that the probability of fixation at the leading edge (from
mutualistic ancestors) will always be lower than the probability of fixation just behind
the leading edge (from parasitic ancestors), meaning that the wave front is mostly
composed of parasitic symbionts arriving through dispersal and then mutating into
mutualistic symbionts.

Note that the fixation probability curve for the hosts is closer to the leading edge of
the travelling wave that of the AMF (Fig. 3). The process, therefore, is that the hosts
disperse first and symbionts follow. We emphasize here that, among the symbionts,
neither mutualists nor parasites spread faster. The key is that mutualists have an
advantage at low host density, while parasites grow larger than mutualists at high host
density. Consequently, the mutualists found in regions of low host density (leading
edge of the travelling wave) are more likely to stem from mutated parasites dispersing
from regions of higher host density (behind the leading edge).

Growth rates at the range edges and pushed and pulled waves:

A mutualistic community at the leading edge provides a large growth rate to the
host plants, leading to a rapid increase in host density (Fig. 2(d)). As plant density
increases, the growth rate of the symbionts will also increase, given that the benefit
provided by the host to the symbionts increases linearly with host density (see third
term in Eq. (1b)). However, it is also true that the strength of selection favoring
parasites increases with increasing host density. As the symbiotic community becomes
more parasitic behind the wave front, the host growth rate decreases, causing in turn
a decrease in the growth rate of the whole symbiotic community. Thus, the maximal
symbiont growth rate is located just behind the maximal growth rate of the host
population, where host density is large enough to support symbiont growth, but low
enough to limit the growth of parasites. This situation is similar to that for the fixation
probabilities (cfr. Fig. 3 and Fig. 2(d)). As the host population colonizes first, followed
by its associated symbiotic community, the expansion is pulled by the host population,
which benefits from the high proportion of mutualists at the range edge, but is pushed
by the symbionts, which generate mutualists from mutation within the population
core (Fig. 3).

The expansion dynamics of host-associated communities is therefore the result of
a unique interaction of pushed and pulled waves. That is, the speed of spread depends
on both the characteristics of the wave core as well as its leading edge. We have
derived approximations for the speed of spread in SI.C, shown in Fig. 4 (solid curves),
which combine information on the mean trait of the population in the core with the
growth dynamics at the leading edge of the wave. Our approximations capture the
general shape of the speed function, but under-estimate the speed of spread. This
difference is partly due to spatial heterogeneity in the mean mutualistic investment
of the symbiont community α, which is not embedded our approximation (i.e., in our
analytical approximation α is considered to be constant, while effectively α increases
in space x, see Fig. 2).
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The spread of a host population and its symbionts

Resource supply from the hosts to the symbionts determines the speed of spread of the
whole community (Fig. 4). This speed reflects a similar broad unimodal dependence
already observed for the plant and AMF densities (cfr. Fig. 1(a) and 4(a)). We find
that the speed of spread is maximal when conditions in the core of the population
maximise the density of the symbiont community rather than the density of plants
(i.e., the maximal speed of spread is obtained around β = 0.86, a value close to the
one which maximizes symbiont density at equilibrium, β = 0.72). Indeed, as discussed
in the previous section, the wave of expansion is pushed by the symbionts (Fig. 3 and
Fig. 2(d)). Thus, large carbon supply from the host, despite not resulting in maximal
plant density, may accelerate range expansion of a given host-symbiont community.
Any difference in the dispersal abilities of the host and symbionts decreases the speed of
spread (compare the blue and yellow curves with the red curve of Fig. 4(a)), although
the carbon supply rate that maximizes the speed of spread remains essentially the
same (compare the location of the peak in the blue, yellow, and red curves of Fig. 4(a)).

As the wave of expansion is pulled by the plants (Fig. 3 and Fig. 2(d)), the speed
of spread increases if the plants can grow in the absence of the symbiont community
(Fig. C4(b)). However, the speed advantage provided by the symbiont community
depends on the obligate degree of the plant. When considering the difference between
the speed of spread in the absence and presence of symbionts, we show that symbionts
can induce either a positive or negative effect on the speed of spread (Fig. 4(b)).
When the plants have a small intrinsic growth rate and need the symbiont community
for growth, symbionts enhance the speed of spread. For plants with a large intrinsic
growth rate, however, the presence of symbionts reduces the speed of spread. The
speed load induced by the symbionts depends on the cost of symbionts to the host,
which depends on the rate of carbon supply β. In conclusion, strategies that decrease
the dependency of hosts on their symbionts (such as a transition from obligate to
facultative mutualism) or, alternatively, strategies that increase symbiont density in
the core of the population (such as selection for a carbon supply rate that maximizes
symbiont density), enhance the speed of spread of the whole host-symbiont community.

Discussion

The Eco-evolutionary dynamics of host-associated communities

There have been several calls for investigation of the dynamics that emerge when evo-
lutionary and ecological changes in symbiotic communities occur at the same timescale
(Koskella et al, 2017; Fitzpatrick et al, 2020; Drew et al, 2021b). Evolutionary and eco-
logical forces are known to drive the spread of pathogens in host populations (Restif,
2009; Day et al, 2020), but our understanding of eco-evolutionary dynamics involving
mutualistic symbionts remains limited. Here we present a theoretical framework that
allows us to investigate, under minimal assumptions, the linked population dynamics,
spread, and evolution of a host population and its associated mutualistic and para-
sitic symbionts. We show how mutualism can emerge from a parasitic community of
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(a) (b)

Fig. 4 Panel (a), Speed of spread of AMF and plants with different relative dispersal abilities
described by the diffusivity ratio (Dp/Dm): slow plant (blue), slow AMF (orange), and both identical
(red); Panel (b) Difference between the speed of spread of a plant with and without an AMF com-
munity for various plants with different carbon supply rate (β) and different degree of dependence on
the symbiont: obligate mutualistic plants (blue, rp = 0), facultative mutualistic plants with various
intrinsic growth rates, rp = 0.1 (red), rp = 0.2 (orange) and rp = 0.8 (purple). The markers corre-
spond to the travelling wave speed for the model (1) with evolution dm = 0.01) and the solid curves
correspond to the analytical approximation (C59). The parameter values are: Q = 6, µp = µm = 0.3,
and αmin = 0 and αmax = 5.

symbionts, and stably persist in a community in which parasites and mutualists coex-
ist and rapidly evolve along the parasitism-mutualism continuum (Lin and Koskella,
2015; Rogalski et al, 2021). Our framework accounts for unique characteristics of host-
associated communities, such as their short generation time and horizontal modes of
transmission, and constitutes the basis for further investigation of the eco-evolutionary
dynamics of host-symbiont communities.

In our model, coexistence of parasites and mutualists occurs thanks to two key
features: (1) a mutation-selection balance acting on the symbionts at the individual
scale, and (2) a positive eco-evolutionary feedback acting at the host-community level.
At the individual scale, parasitic symbionts benefit from a higher fitness than mutual-
istic symbionts, because they receive the same benefit from the host at a smaller cost.
However, the average mutualistic investment of the whole community, and not the
individual contribution of each symbiont, determines whether a community will estab-
lish and be mutualistic as a whole, as observed in previous modeling work (Archetti
and Scheuring, 2011, 2013; Martignoni et al, 2020). Thus, in our context, the evolution
of mutualism looks similar to the evolution of altruism. Even though the emergence
of altruism is a fraternal transition (i.e., arises from a division of labour among indi-
viduals of the same species), whereas the transition from parasitism to mutualism is
egalitarian (i.e., results from the association of different species to complement their
function), both result from the conflict between two levels of selection: the individual-
level, favouring parasites, and the group-level, favoring altruists or mutualists (Wilson
and Sober, 1989; Van Baalen and Rand, 1998; Simon et al, 2013).

Previous work has shown a strong shift from mutualism to parasitism with
increasing availability of resources, with more beneficial symbionts dominating the
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community when host productivity is low, and parasites dominating when host pro-
ductivity is high (Schwartz and Hoeksema, 1998; Hochberg et al, 2000; Hochberg
and van Baalen, 2000; Neuhauser and Fargione, 2004). Similarly, in our simulations
the selective advantage of parasites increases with the amount of resource avail-
able (i.e., with host density). Thus, high host density promotes the establishment of
parasitic communities and, conversely, low host density reduces the selective advan-
tage of parasitic symbionts, causing the community to become more mutualistic
on average. Fluctuations in selection pressures due to, for instance, nonlinear pub-
lic goods Archetti and Scheuring (2013), genotype-environment interactions (Parker,
1995), negative frequency-dependent selection (Bever, 1999; Brown and Tellier, 2011)
or selection mosaics (Thompson, 2005) are known to maintain variation in partner
quality (Mitchell-Olds et al, 2007). Here we show that fluctuation in selection pres-
sures, due to variation in host density, can induce a shift from parasitism to mutualism
in a symbiotic community.

Interesting future directions could consider how the inclusion of additional mecha-
nisms, such as host control and different symbiont transmission modes, may improve
the quality of the mutualistic interactions between hosts and symbionts. For exam-
ple, host phenotypic plasticity in its mutualistic investment toward the symbionts
may facilitate the evolution of more mutualistic traits (Koskella and Bergelson, 2020;
Hou et al, 2021), even though the evolution of mutualism among hosts occurs after
the emergence of mutualism among symbionts (Ledru et al, 2022). Strict vertical
transmission of symbionts could also enhance evolution toward stronger mutualistic
communities (Ewald, 1987; Sachs et al, 2004). Competition between hosts can also
shape community structure: More mutualistic symbiotic communities should provide
a fitness advantage to their host, which could drive the selection for communities with
a lower proportion of parasites (Hartnett et al, 1993; Jones et al, 2012). Extension of
our current model would allow us to investigate the evolutionary potential of these
additional mechanisms.

Community structure at the range edges

Range expansion can result from various mechanisms involving growth and dispersal.
Generally, we distinguish between two types of expansions: those that are pushed ver-
sus those that are pulled. In a pulled propagating wave, the population expands its
range thanks to a higher growth rate at the population edges, while in a pushed wave
population expansion is driven by a higher growth rate in the core (but see (Gandhi
et al, 2016; Miller et al, 2020; Erm and Phillips, 2020)). Here, host-symbiont commu-
nities follow a combined expansion dynamic in which the wave of expansion is pulled
by the hosts and pushed by the symbionts.

When host-symbiont communities expand their range, the selective pressure on
symbionts becomes a function of space, due to changes in host density along the trav-
elling wave, with strong selection favouring parasitic symbionts in the population core
(where host density is large) but not at the population edges. The low density of plants
at the population edges promotes the formation of a more mutualistic community,
causing plant growth rate to be maximal at the wave front. Thus, the host plants pull
the expansion wave by providing new resources to their obligate symbionts. In contrast
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to the pulling dynamics of the plants, the wave of expansion is pushed by the sym-
bionts from the population core. The symbiotic community in the population core is
more parasitic than that at the wave front, due to higher resource availability. As dis-
cussed in the previous section, parasitic symbionts are the common ancestors of good
mutualists at the wave front. Thus, these symbionts are pushed from the population
core into the front and closely follow their hosts in their expansion dynamics.

Spatial self-organization has been found to increase the abundance of mutual-
istic symbionts during range expansion in theoretical models (Momeni et al, 2013;
Van Dyken et al, 2013) and synthetic microbial communities (Pande et al, 2016; Amor
et al, 2017; Rodŕıguez Amor and Dal Bello, 2019), with cheaters or parasitic symbionts
lagging behind the mutualists at the leading edge. Emerging evidence also indicates
that under stressful conditions plants may actively ‘cry for help’ (i.e., by secreting
chemical compounds) and recruit beneficial symbionts (Schuman et al, 2015; Rizaludin
et al, 2021). In our work, spatial selection occurs in the absence of built-in mecha-
nisms. Instead, it is spontaneously driven by lower host density at the leading edges,
which reduces the selection strength against mutualists in this region.

Invasion by alien organisms is often studied from the perspective of a single popu-
lation, despite the fact that the success of an invasion might require the simultaneous
successful spread of the focal population and its invisible symbionts (Dickie et al,
2017). Eradication and restoration strategies should therefore consider both hosts and
symbionts as active and tightly-linked players in invasion dynamics. As conservation
strategies to limit pulled and pushed invasions differ (Gandhi et al, 2016), the combined
push-pull dynamics of linked host-symbiont invasions may require novel containment
strategies (Taylor and Hastings, 2004). For example, limiting the invasive spread of
species expanding as a pulled wave is currently accomplished by eradicating invaders
at the population edges. However, this strategy may be inefficient if expansion and
evolution of the symbionts in the population core facilitates the quick restoration of
the population at the range edges. Our general framework may be adapted to host-
symbiont populations expanding over a heterogeneous landscape, such as a fragmented
or disturbed habitat (Willing et al, 2021), and to consider range overlaps with native
populations (Dickie et al, 2017).

The spread of a host population and its symbionts

The effect of mutualistic interactions between hosts and symbionts on their range
expansion is unclear in the existing literature. On the one hand, the growth benefits
provided by mutualism can increase the speed of spread of the host, while on the
other hand the absence of mutualistic partners at the range edge may produce an
Allee effect that limits the rate of spread into new territories (Stanton-Geddes and
Anderson, 2011; Kubisch et al, 2014; Fowler et al, 2023). Our framework allows us
to disentangle these two tendencies and study how resource exchange (determining
fitness of hosts and symbionts along the expansion range) and differences in host and
symbiont dispersal abilities can affect the speed of spread of the community.

The ‘enemy release hypothesis’ postulates that species can escape their enemies
(such as predators, pathogens, parasites, or herbivores) when introduced into a new
range (Torchin et al, 2003; Colautti et al, 2004). A similar effect can occur at the edge
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of an expanding population, if enemies disperse more slowly than their hosts (Fagan
et al, 2002; Nomikou et al, 2003). In contrast, if the linked species is beneficial, an
expanding host population may also escape its mutualistic symbionts (Dickie et al,
2017; Shaw, 2022), to the detriment of its speed of spread. A similar behaviour occurs
in cooperative systems, where the phenotype with the slowest speed of spread limits
the spreading speed of the community Li et al (2005).

In agreement with these results, we found that differences in the dispersal abili-
ties of hosts and symbionts may reduce expansion rates. Thus, symbiont inoculation
at the leading edges can also contribute to accelerating range expansion if symbionts
have limited dispersal ability. We also found that the optimal carbon supply rate, i.e.,
the one that maximizes AMF density at equilibrium, corresponds to the rate that
maximizes the speed of spread of the whole host-symbiont community. Thus, host
investment in the mutualistic relationship with symbionts may be considered an evo-
lutionary strategy to increase the colonization speed of the host-symbiont community,
and might also compensate for an eventual decrease in the speed of spread due to a
lack of symbionts at the leading edge.

Our results also show that the speed of spread of host-symbiont communities can
be maximized with reduced host dependence on the mutualism (from obligate to facul-
tative). It follows that the evolution of reduced dependence of a host on its symbionts
at the range edges of an expanding population can potentially facilitate plant invasion
(Seifert et al, 2009). Note, however, that we only included one axis of benefit to the
hosts, that is, one symbiont-supplied resource. Mutualistic interactions can be multi-
dimensional; AMF, in particular, have been found to provide a suite of benefits to
their hosts, such as protection against pathogens or abiotic factors (Smith and Read,
2010; Fowler et al, 2023). The inclusion of these other benefit axes might reduce the
benefit of a host reducing its dependence on symbionts.

Our model could be extended to consider the evolution of obligate mutualism
from facultative mutualism. Indeed, hosts that are facultative mutualists may reach
higher densities in the absence of symbionts. Subsequent colonization of these hosts
with parasites, and the evolution of some mutualistic traits in these parasites, may be
sufficient to drive a transition from parasitism to mutualism in the community. Future
studies are needed to consider how, once mutualism has emerged, host adaptation may
lead to increased investment into the mutualistic relationship with symbionts, rather
than into self-growth (Ledru et al, 2022). Similarly, the model could be extended to
consider the evolution of microorganisms from free-living to host-associated states
(Drew et al, 2021b).

Finally, it might be interesting to investigate dynamics of co-evolution between the
mutualistic investment of symbionts and their dispersal ability. Indeed, in some cir-
cumstances dispersal ability has been found to evolve during range expansion (Urban
et al, 2007; Brown and Vellend, 2014). A recent study (Ledru et al, 2022) has shown
that co-evolution between mutualistic effort and dispersal results in mutualistic sym-
bionts that disperse locally (i.e., have low dispersal ability), while parasitic symbionts
disperse over longer distances (i.e., have high dispersal ability). Such negative corre-
lation between dispersal ability and mutualistic quality has also been observed in the
context of altruism (Koella, 2000; Le Galliard et al, 2005; Hochberg et al, 2008; Eldakar
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et al, 2010; Purcell et al, 2012; Mullon et al, 2018), and between local interactions
and evolution of avirulence (Boots and Mealor, 2007). In a range expansion context,
this correlation might be reversed because mutualistic symbionts have an evolutionary
advantage at the leading edge.

Conclusion and future work

Current ecological and evolutionary theory fails to explain the complex dynamics
structuring stable host-symbiont communities (Koskella et al, 2017). This gap is at
least partly due to unique characteristics of these communities, such as rapid evolu-
tion, interdependent fitness, and horizontal transmission of symbionts, which make
study and analysis challenging. Here we present a theoretical framework that con-
tributes to our understanding of host-symbiont linked population dynamics, evolution,
and spread, with possible implications for microbiome research (Koskella et al, 2017;
Fitzpatrick et al, 2020) and for the management of linked plant-microbial invasions
(Dickie et al, 2017).
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Appendix A No evolution no space, competitive
exclusion and parasitic threshold

We first look at the dynamical system without spacial component and evolution of
the trait α, and we only focus on obligate hosts, for which the intrinsic growth rate
rp = 0).

Monomorphic population of AMF.

We first look at a population of symbionts that are monomorphic, that is all the
individuals share the same trait α. In this situation, the system is reduce to the
following differential equations for the biomass of plant P and the biomass of the
monomorphic symbionts M :

P ′(t) = P

(
QαM(t)

P (t) + d
− βM(t)− µpP (t)

)
, t > 0 (A1a)

M ′(t) = M(t)

(
β P (t)− αP (t)

P (t) + d
− µmM(t)

)
. (A1b)

From the analysis of Martignoni et al (2020), the system admits the extinction steady
state (0, 0), which might be stable if d < α/β and a stable positive steady state (P,M)
if the following properties are satisfied:

• Q > 1
• α ⩾ αc(β) where αc(β) satisfies

αc(β) =
β d

Q

(Q+ 1)−
√

(Q− 1)2 − 4
Qµmµp

β2

2
(A2)

• µpµm ⩽ β2(Q− 1)2/(4Q).
The assumption on α shows that the mutualistic investment of the symbiont needs to
be large enough to persist with the plant, that is α ⩾ αc where the threshold satisfies

αc =
β d

Q

(Q+ 1)−
√

(Q− 1)2 − 4
Qµmµp

β2

2
⩾

β d

Q
(A3)

which means that the symbiont provides a positive benefit to the plant when the plant
is at low density. In addition, the analysis first points out that if the monomorphic
population of AMF have a low mutualistic quality α below the threshold αc, then the
system goes extinct. As such, we say the a symbionts is parasitic if its mutualistic
investment α is below αc, while it is mutualistic if α > αc.

Polymorphic population of AMF and competitive exclusion

On the other hand, if the symbiont population is initially polymorphic, with an initial
trait density m(t, α) with α ∈ [αmin, αmax], then the population will converges toward
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a monomorphic population with mutualistic quality αmin. If this quality is below the
critical value αc, the population will go extinct.

The population densities (P,m) satisfies in this case the following model:

P ′(t) = P

(
Qα(t)M(t)

P (t) + d
− βM(t)− µpP (t)

)
, t > 0 (A4a)

∂tm(t, α) = m

(
β P (t)− αP (t)

P (t) + d
− µmM(t)

)
, α ∈ (αmin, αmax) (A4b)

where the quantity α(t) is the mean AMF trait in the community at location x and
M(t) is the total biomass of AMF, defined by

α(t) =

∫ αmax

αmin

α
m(t, α)

M(t)
dα and M(t) =

∫ αmax

αmin

m(t, α) dα (A5)

As the result, the total biomass of AMF satisfies the following equation

M ′(t) = M

(
β P (t)− α(t)P (t)

P (t) + d
− µmM(t)

)
(A6)

and the trait distribution ϕm(t, α) = m(t, α)/M(t) is described by the following model

∂tϕm(t, α) = ϕm(t, α)
(
α(t)− α

) P (t)

P (t) + d
, α ∈ (αmin, αmax), t > 0. (A7)

From the definition of the mean trait α, it satisfies α(t) ∈ [αmin, αmax] for all time
t > 0 and for all α < α(t), ϕm(t, α) is decreasing over time, while ϕm(t, α) is increasing
for α ⩽ α(t). Consequently, α(t) is decreasing over time, and it converges to αmin,
while ϕm converges toward the dirac mass at α = αmin.

If the minimal value of the trait αmin is below the persistence threshold αc then
the population goes extinct. So in absence of diversification of trait α, the population
experience a competitive exclusion that can expose the population to extinction.

Appendix B Evolution, no dispersal, analysis

To understand the co-evolution of a plant with its AMF community, we first look
at the diversification of AMF for a given plant at a fixed location. In this situation,
the plant with biomass P (t) is able to provide carbon for the AMF with trait α and
density m(t, α), at a rate β.

The model (1) then becomes

P ′(t) = P (t)

(
Qα(t)M(t)

P (t) + d
− βM(t)− µpP (t)

)
, t > 0 (B8a)
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∂tm(t, α) = dm∂2
αm(t, α) +m(t, α)

(
P (t)

(
β − α

P (t) + d

)
− µmM(t)

)
, α ∈ (αmin, αmax)

(B8b)

We here aim to understand the AMF community that emerges from the interaction
with the plant and the evolutionary process. More precisely, we aim to characterize the
steady states of this model (B8). We first prove the existence and some properties of
the non trivial steady state and then we provide an approximation which corresponds
to special case where αmax = ∞.

Let us first write the model (B8) with different variables. First, if we integrate
over α the equation for m, we obtain the following system of equations for the total
biomass of AMF M and plant P :

P ′(t) = P (t)

(
Qα(t)M(t)

P (t) + d
− βM(t)− µpP (t)

)
M ′(t) = M(t)

(
P (t)

(
β − α(t)

P (t) + d

)
− µmM(t)

) , t > 0. (B9)

Then, let us write an equation for the trait distribution of AMF ϕm(t, α) =
m(t, α)/M(t). Using equation for m and M , we obtain ∂tϕm(t, α) = dm∂2

αϕm(t, α) + ϕm(t, α)
(
α(t)− α

) P (t)

P (t) + d
, α ∈ (αmin, αmax), t > 0

∂αϕm(t, αmin) = ∂αϕm(t, αmax) = 0, t > 0
(B10)

B.1 Steady state.

A non trivial steady state (P,m(α)) of the model (1) without spatial dispersal (Dp =
Dm = 0, should satisfy the two following problems. First, the biomass of the plant P
and the total biomass of AMF M =

∫
m(α)dα solve the following system

0 =
QαM

P + d
− βM − µpP

0 = P

(
β − α

P + d

)
− µmM

(B11)
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where α is the mean trait of the AMF distribution at steady state. And the trait
distribution at equilibrium ϕm(α) = m(α)/M satisfies the following elliptic problem

−dmϕ′′
m + α

P

P + d
ϕm = α

P

P + d
ϕm, in (αmin, αmax)

ϕ′
m(αmin) = ϕ′

m(αmax) = 0

ϕm > 0

(B12)

Proposition 1. If, the diversification rate dm > 0 and the following inequality holds
true

αmin + αmax

2
> αc(β) where αc(β) =

β d

Q

(Q+ 1)−
√

(Q− 1)2 − 4
Qµmµp

β2

2
(B13)

then, there exists a steady state of the model (B8).
In addition, the mean trait α at equilibrium satisfies the following property

αc(β) ⩽ α ⩽
αmin + αmax

2
(B14)

Proof of Proposition 1. If a non trivial steady state (P,m(α)) of the system (B8) exists
then the total biomass (P,M) should satisfy the following system, which depends on
α,

0 =
QαM

P + d
− βM − µpP

0 = P

(
β − α

P + d

)
− µmM

(B15)

From Martignoni et al (2020), we know that the system admits at least a positive
solution, if the following conditions holds true

Q > 1 and

√
4Qµmµp

|Q− 1|
< β < Q

α

d
(B16)

Under this condition, the following equilibrium exists

P (α) = d

(
α

αc
− 1

)
, with αc(β) =

β d

Q

(Q+ 1)−
√

(Q− 1)2 − 4
Qµmµp

β2

2

M(α) =
P (α)

µm

(
β − α

P + d

) (B17)
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In addition, we can show from (B10) that (α, ϕm) solves the following problem, which
depends on P

−dmϕ′′
m(α) + α

P

P + d
ϕm(α) = α

P

P + d
ϕm(α), α ∈ (αmin, αmax),

ϕ′
m(αmin) = ϕ′

m(αmax) = 0.

(B18)

However, we know that for any positive P , the Neumann principal eigenproblem
−dmϕ′′ + α

P

P + d
ϕ = λϕ, in (αmin, αmax)

ϕ′(αmin) = ϕ′(αmax) = 0

ϕ > 0

(B19)

admits a principal eigenpair (λP , ϕP ), normalized by

∫
ϕ2
P = 1 and we have the

variational formula

λP = min

{
QP (ϕ) :=

∫ αmax

αmin

(
dmϕ′2 + α

P

P + d
ϕ2
)
dα, for ϕ ∈ E

}
, (B20)

where

E =
{
ϕ ∈ H1(αmin, αmax) and

∫
ϕ2 = 1

}
. (B21)

If the parameter dm > 0, the eigenpair (λP , ϕP ) satisfies the following properties
(i) for all P > 0, we have

P

P + d
αmin < λP <

P

P + d

αmin + αmax

2
(B22)

(ii) the function P 7→ λP is increasing and concave in (0,∞), and

lim
P→0

λP = 0, λP ∼
P→0

P

P + d

αmin + αmax

2
and lim

P→∞
λP = λdm

<
αmin + αmax

2
(B23)

where λdm > 0 is the principal eigenvalue of the problem when P/(P + d) = 1.
(iii) the eigenfunction ϕ is is decreasing on [αmin, αmax] and it is strictly concave on

[αmin, λP ) and strictly convex on (λP , αmax].

Since α =
P + d

d
αc(β) from (B17), we know that there exists a unique positive P such

that λP = αP/(P + d) if and only if the following inequality holds true

αmin + αmax

2
> αc(β). (B24)

This inequality ensures the existence of a unique steady state (P,M,α, ϕm) which
satisfies simultaneously (B17) and (B12).
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Moreover, this inequality shows that when β → βmax such that inequality (B24)
is an equality, then the mean trait in the AMF population converges towards
αmin + αmax

2
and thus the distribution ϕm converges towards the uniform distribution

ϕm(α) = 1/(αmax − αmin) for all α ∈ (αmin, αmax).
So, if β = βmax and competition between AMF all sharing one plant, we expect a

uniform distribution of AMF biomass across the range of α values (Fig. 1b).
In addition, if the plant density is low P → 0 then the mean AMF trait should be

close to (αmin+αmax)
2 and thus the AMF distribution should be uniform over α. As a

result, when the plant density is low, we expect the AMF distribution to be uniform
Moreover, the presence of mutation through the diffusion operator is crucial for the

existence of a non trivial positive steady state. In absence of mutation, the competitive
exclusion drives the population toward extinction.

B.2 Approximation of the steady states

We aim to find some approximations for α, P , M , and m. First, we assume that

αmin = 0 and αmax = ∞. (B25)

Exact solution for the eigenpair problem.

In this situation, we can compute an explicit solution of (B19) using the Airy function
Ai, which satisfies Ai′′(z)− zAi(z) = 0 for all z ∈ R. Indeed, the following function ϕ
is a positive solution of (B19):

ϕ(α) =

Ai

((
P

(P + d)dm

)1/3

α− z0

)
∫ ∞

−z0

(
P

(P + d)dm

)−1/3

Ai(z)dz

and λ = z0 d
1/3
m

(
P

(P + d)

)2/3

(B26)

where −z0 is the maximal value such that Ai achieves a maximum at −z0 and the
mean trait α and P solves the following system:

P = d

(
α

αc
− 1

)
α

P

P + d
= λ = z0 d

1/3
m

(
P

(P + d)

)2/3 (B27)

The following system can be reduced to P = d
(
α/αc − 1

)
and the mean trait α is the

real positive root of the following polynomial function A(X) = X3−αc(β)X
2−z30 dm.
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B.3 Effect of the diversification rate dm and plant biomass

We can write the previous system (B27) in the following form

α =
P + d

d
αc(β) (B28)

α = z0

(
dm
P

(P + d)

)1/3

. (B29)

First, the mean trait α is increasing with the diversification rate dm. As a result, the
biomass of the plant as well as the total biomass of AMF is also increasing with the
diversification rate dm (Fig. B1. Secondly, the plant biomass P has antagonistic effects
on the mean trait α. The ecological dynamics, described by (B28), increases the mean
trait with the biomass of the plant P . A more mutualsitic community will support a
larger plant (see Martignoni et al, 2020). While, the evolutionary dynamics described
by (B29), decreases the mean trait when the bimoass of the plant increases. Indeed,
in the evolutionary dynamics, the strength of selection, tha is P/(P + d), is driven by
the biomass of the plant. If the biomass of the plant is large, selection is strong and it
drives the trait distribution toward small values of α. Conversely, when the biomass
of the plant is small, selection is weak and the mutations drive the trait distribution
toward larger α. The equilibrium results from the balance between the ecological forces
which promotes mutualism and evolutionary forces enhancing parasitism.

B.4 Proportion of parasitic symbionts

In previous section, we introduce the critical value αc of the trait, such that if the plant
is in association with a single symbiont with trait α ⩽ αc, then the plant-symbiont
system goes extinct. Conversely, the system survives if α > αc. The critical value
αc(β) does depend on the mutualistic investment of the plant β.

In a polymorphic community, where the trait can range from αmin to αmax such
that αmin < αc < αmax, the symbionts can be split in two groups: parasitic symbionts
(α < αc) and mutualistic symbionts (α ⩾ αc). We investigate the proportion of
parasitic and mutualistic symbiont in the community for different plant (Fig. B2). The
proportion is defined by

prop =

∫ αc

αmin

m(α)dα

M
=

∫ αc

αmin

ϕm(α)dα (B30)

With the approximation of ϕm defined in (B19), we obtain

prop =

∫ ( P
(P+d)dm

)
1/3

αc−z0

−z0

Ai(α)dα∫ ∞

−z0

Ai(α)dα

=

∫ z0(αc
α −1)

−z0

Ai(α)dα∫ ∞

−z0

Ai(α)dα

(B31)
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Fig. B1 Effect of the diversification rate dm on the biomass of the plant (black curves and triangles)
and the total biomass of the AMF (blue curves and dots), and the mean mutualistic investment α
(red curves and dots) at eco-evolutionary equilibrium. For the simulations, the parameters are: Q = 6,
µp = µm = 0.3, and αmin = 0 and αmax = 5.

On the one hand the proportion of parasitic symbionts increases with the plant biomass
if the parasitic threshold αc remains constant. And the proportion is decreasing with
the diversification rate. On the other hand, the proportion of parasitic symbionts
depends on the ratio between the critical threshold αc(β) and the mean trait α. Since
α is increasing with respect to the diversification rate dm, the proportion of parasits
in the community decreases with the diversification rate, as expected by the previous
results (Fig. B2(a-b)).
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At equilibrium, the expression of αc and the relationship between P and α (B28)
provide the following expression:

prop =

∫ −z0
P

P+d

−z0

Ai(α)dα∫ ∞

−z0

Ai(α)dα

(B32)

In this case, the porportion of parasitic symbionts depends on the bimoass of the
plant at equilibrium. The effect of the mutualistic investment of the plant on the
proportion is thus not monotonic because, the biomass of the plant is not monotonic
with the parameter β. However, we have shown that the plant biomass at equilibrium is
increasing and then decreasing with respect to β. The proportion of parasitic symbionts
is decreasing and then increasing with respect to the mutualistic investment of the
plant β (Fig. B2).

B.5 Lineages among the symbionts community

We aim to understand the lineages of individuals present at time t in the community
at equilibrium. We first track the offspring of individuals, which are present initially,
using the inside dynamics approach developed by Roques et al (2012). Individuals are
labeled, and transmit their label to their offspring. Since individuals only differ by
their label and their trait, each label k ∈ N corresponds to a neutral fraction of density
υk inside the community at equilibrium m(α). Initially we assume that

m(α) =
∑
k⩾1

υk(0, α), for all α ∈ (αmin, αmax). (B33)

Their dynamics is described by

∂tυ
k(t, α) = dm∂2

αυ
k(t, α) + υk(t, α)

(
P

(
β − α

P + d

)
− µmM

)
, (B34)

where (P,M,α) are the equilibrium satisfying (B11)-(B12) and the Neumann bound-
ary conditions

∂αυ
k(t, αmin) = ∂αυ

k(t, αmax) = 0.

The linear operator associated to this equation is compact and self-adjoint. Moreover,
we know that m(α) is the eigenvector associated to the principal eigenvalue 0. Then
from classical semi-group theory (Henry, 1981; Pazy, 1983), the solution υk converges
uniformly in space toward the following quantity p[υk

0 ]m(α) where the positive scalar
p[υ0] is defined by

p[υ0] =

∫ αmax

αmin

υ0(α)m(α)dα∫ αmax

αmin

m2(α)dα

and υ0(α) = υ(0, α) ⩽ m(α). (B35)
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Fig. B2 Proportion of parasitic symbionts in the symbionts community associated with an obligate
(panel (a-c) rp = 0) or facultative (panel (b-d) rp = 0.2) mutualistic plant with various carbon supply
ability β. Blue dots corresponds to the proportion at equilibrium from the model (1) and the blue
curve corresponds to the approximation defined by (B26). Biomass of the plant (black curve and
triangles) and mean mutualistic investment of AMF in the community (red curve and dots). Grey
curve corresponds to the mutualistic threshold αc. Dashed black line in panel (d) is the approximation
for the obligate mutualistic plant biomass. For the simulations, the parameters are: dm = 0.01, Q = 6,
µp = µm = 0.3, β = 0.43 and αmin = 0 and αmax = 5.

Using this forward approach, we are able to define a backward ancestral process
Ys, for each individual with trait α at time t (see Forien et al (2022) for more details
on the derivation). More precisely, the ancestral process at time s aims to describe the
trait of the ancestor (alive at time t − s) of an individual sampled randomly among
individuals with trait α at time t. The ancestral process Ys is related to the previous
model through the following relationship for all (t, α) ∈ (0,∞) × (αmin, αmax) and
k ∈ N:

υk(t, α)

m(α)
= Eα

[
υk(s, Yt−s)

m(Yt−s)

]
, 0 ⩽ s ⩽ t. (B36)
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This equality means that the probability of sampling an individual of type k among
individual with α at time t is equal to the probability of drawing an individual of type
k among individuals with trait y in the past, at the time t − s (right hand side). In
particular, the previous long time behavior property (B35), shows that the ancestral
process converges as s → ∞ towards a random variable Y∞, which admits the density

α 7→ m2(α)∫ αmax

αmin

m2(α)dα

(B37)

In particular, we show that the most likely common ancestor is a parasitic symbiont
with trait α = αmin. In addition, on average the trait of the common ancestor is smaller
than the mean trait of the actual community (see red and orange curves in Fig. B3).
In addition, for small β, the mean trait of the common ancestor is mutualistic while
for large β, it is parasitic (see orange curve in Fig. B3). As a result, we show that the
equilibrium is most likely produced by parasitic individuals that mutate and generate
the equilibrium distribution. So, mutualism can emerge from parasitism and persist.
This behavior persists even for facultative mutualistic plants (Fig. B3c).

Appendix C Spreading with and without evolution

C.1 Spreading without evolution

First we investigate the spreading properties of the solution of our problem without
variation in trait α. So we assume that AMF community is monomorphic: there is only
one trait α in the AMF population. We assume that α is a real positive constant value
between (αmin and (αmax + αmin)/2, so that the following system admits a constant
positive steady state. We investigate the spreading speed of solutions of the following
system of equations

∂tP (t, x) = Dp∂
2
xP + P

(
QαM(t, x)

P + d
− βM(t, x)− µpP (t, x)

)
, x ∈ R, t > 0

(C38)

∂tM(t, x) = Dm∂2
xM +M

(
β P − αP

P + d
− µmM(t, x)

)
. (C39)

Under, the assumption of Proposition 1, there exists a positive steady state of the
model. We aim to investigate the traveling wave solutions of this model, that are
solutions of the form P (x − ct) and M(x − ct) where c is the spreading speed of the
solution and P and M are profiles that connect the positive stationary state (P ∗,M∗)
to the trivial state (0, 0). Let us remind that the positive steady state satisfies

P ∗ = d

(
α

αc
− 1

)
(C40)

M∗ =
P ∗

µm

(
β − αc

d

)
(C41)
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Fig. B3 Panel (a-b), Probability of a parasitic common ancestor (dark blue curve and triangles)
and mean mutualistic investment of the common ancestor (orange curve and diamonds) compared
respectively with the proportion of parasitic symbiont in the AMF community at equilibrium without
spatial spread (light blue curve and dots) and the mean mutualistic investment of the community
(red curve and dots) associated with obligate mutualistic plant (panel (a)) and facultative mutualistic
plant (panel b). Distribution of the mutualistic investment for the common ancestor (dark blue
curve and triangles) and the AMF community (red curve and dots) with obligate mutualistic plant
(panel (c)) and facultative mutualistic plant (panel d). The curves correspond to the approximations,
while the markers correspond to the outcome of the model. For the simulations, the parameters are:
dm = 0.01, Q = 6, µp = µm = 0.3, β = 0.72 and αmin = 0 and αmax = 5.

where αc(β) is the mutualistic/parasitic threshold defined in (3) and it depends on
the parameter β.

To investigate the spreading speed problem, we look at the following equations

∂tp(t, x) = Dp∂
2
xp+ fpp

2(1− p/P ∗), x ∈ R, t > 0 (C42)

∂tm(t, x) = Dm∂2
xm+ fmm2(1−m/M∗), (C43)
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where fp and fm are positive constants. We know (Turchin, 1998) that these equations,
which are linked only through the positive steady state (P ∗,M∗), admit a unique
traveling wave solutions, that move at a speed cp and cm respectively. The speed of
spread are given by the following formula

cp =

√
Dp fp P

∗

2
(C44)

cm =

√
Dm fm M∗

2
(C45)

For appropriate constant fp and fm, the associated solutions p and m should be sub-
solutions of the initial problem (C38). More precisely, we choose fp and fm as follows.
Let γ be a positive constant that we will determine later, and define

fp(γ) =

(
Qα

d
− β

)
γ − µp (C46)

fm(γ) =
(
β − α

d

) 1

γ
− µm (C47)

We choose γ such that cp(γ) = cm(γ), so that the solutions p and m will spread at
the same speed

c∗ = cp(γ
∗) = cm(γ∗). (C48)

The parameter γ∗ should be the positive root of the following polynomial function

G(X) =

(
Qα

d
− β

)
X2 +

(
µm

Dm M∗

Dp P ∗ − µp

)
X − Dm M∗

Dp P ∗

(
β − α

d

)
(C49)

The solution m is a super-solution of the initial system if β and γ are large enough.
First, if the solution (P,M) of (C38) start from the initial condition (P 0,M0)

which is bounded by

0 ⩽ sup
x∈R

P 0(x) ⩽ P (M) :=
1

2

(√
d2 + 4

QαM

µp
− d
)

and 0 ⩽ sup
x∈R

M0(x) ⩽ M (C50)

with the constant M such that

M >
µp

Qβ

2

1−
√

1− 4
µpµm

Qβ2

α

β

2

1−
√

1− 4
µpµm

Qβ2

− d

 . (C51)

then, the solution (P,M) is also bounded for any time t > 0.
If M is uniformly bounded by M for any positive time t > 0 then P is also bounded

for any time t > 0. In this case, a natural super-solution of P is a solution p of the
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following equation ∂tp(t, x) = Dp∆xp(t, x) + p(t, x)

(
QαM

p(t, x) + d
− µpp(t, x)

)
, t < 0, x ∈ R

p(0, x) = P 0(x), x ∈ R
(C52)

Since, this equation admits the following constant positive steady state

P (M) =
1

2

(√
d2 + 4

QαM

µp
− d
)
,

we deduce that this constant is a super-solution of problem (C38) starting from P 0

and thus from comparison theorem, we deduce that

P (t, x) ⩽ P (M), for all t > 0, x ∈ R. (C53)

Now, assume by contradiction that M is not bounded by M , then there exists a
positive time t0 such that M(t0, x0) > M for some location x0 ∈ R. If we define T as
follows

T = inf {t > 0 such that sup
R

M(t, x) > M}

By definition of M we know that T > 0 and we have T ⩽ t0. We can thus apply the
same argument as above to show that

P (t, x) ⩽ P (M) for all t ∈ [0, T ), x ∈ R.

Then, the solution m of the following problem: ∂tmi(t, x) = Dm∆xm(t, x) +m(t, x)

((
β − α

P (M) + d

)
P (M)− µmm(t, x)

)
, t < 0, x ∈ R

m(0, x) = M0(x), x ∈ Ω
(C54)

is a super-solution of (C38). In particular, we can show that

M(t, x) ⩽
1

µm

(
β − α

P (M) + d

)
P (M), for all t ∈ [0, T ), x ∈ R.

Thus for M large enough, that is M satisfies (C51), we deduce that

M(t, x) ⩽
1

µm

(
β − α

P (M) + d

)
P (M) < M, for all t ∈ [0, T ), x ∈ R.

which contradicts the definition of T . Thus the solution M should be uniformly
bounded by M > 0 large enough.
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Now, let us prove that the ratio γ(t, x) = M/P is uniformly bounded if Dm =
Dp = D. First, the function γ is solution to the following problem

∂tγ(t, x) = D∂2
xγ(t, x)+2D

∂xP

P
∂xγ(t, x)+P

(
β− α

P + d
+µp+

(
β− Qα

P + d
+µm

)
γ
)
γ(t, x)

(C55)
Using the estimates on P and M , we can show the following estimates for γ if β is
large enough,

0 < γ(t, x) ⩽ γ :=
µm

M

P
+ µp

(Q− 1)β − µm(Q
M

P
+ 1))

for all t > 0, x ∈ R.

Now let us prove that m is a super-solution of the initial problem, starting with
appropriate initial condition. Using the estimates on P , M and M/P , we can show
that if β large enough, for all t > 0, x ∈ R and γ > γ, we have

M

(
β P − αP

P + d
− µmM(t, x)

)
⩾ M2

((
β − α

d

) P

M
− µm

)(
1− M

M∗

)
⩾ M2

((
β − α

d

) 1

γ
− µm

)(
1− M

M∗

)
⩾ M2fm(γ)

(
1− M

M∗

) (C56)

Since m is a super-solution of the initial system, the solution (P,M) should travel
at a speed c < c∗ for large β (Fig. C4).

C.2 Spreading with evolution

Speed of spread

We now look at the spreading sped of the solution with evolution. In this case, we
know that the biomass satisfy the following problem

∂tP (t, x) = Dp∂
2
xP + P

(
Qα(t, x)M(t, x)

P + d
− βM(t, x)− µpP (t, x)

)
, x ∈ R, t > 0

(C57)

∂tM(t, x) = Dm∂2
xM ++M

(
β P − α(t, x)P

P + d
− µmM(t, x)

)
. (C58)

where α(t, x) is increasing and satisfies the following property α(t, x) → α as t → +∞
locally uniformly in space, where α solves the steady state problem (B11)- (B12).
From numerical simulation we see that α(t, x) is increasing with respect to the space
variable x. Under these conditions, we use the previous approximation (C48) to derive
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Fig. C4 Panel (a), Effect of the carbon supply rate β on the speed of spread a plant associated
with one AMF with various fixed trait α (panel (a)): blue curve (α = 0.4), red curve (α = 0.7)
and orange curve (α = 0.9); Panel (b), Difference between the speed of spread of a plant with and
without the monomorphic AMF community for various plants with different carbon supply rate and
different degree of dependence on the symbiont: obligate mutualistic plants (blue, rp = 0), facultative
mutualistic plants with various intrinsic growth rates, rp = 0.1 (red), rp = 0.2 (orange) and rp = 0.8
(purple). The markers correspond to the speed of the model (1) without evolution dm = 0) and
the curves correspond to the approximation speed (C48). For the simulations, the parameters are:
Dp = Dm = 0.1, Q = 6, µp = µm = 0.3.

the following numerical estimate

c∗ ⩾ cp(γ
∗(α)). (C59)

In this case, the mean mutualistic investment α varies over space, and it is more
complicated to provide super or sub-solutions for the problem.

Fixation probability along the range expansion

Here, we aim to understand how the propagation occurs in space. We first assume
that the population of host and symbionts are represented by traveling waves of profile
P(x) and m(x, α) respectively, which satisfy the following problem

DpP
′′(z) + cP′(z) +P(z)

(
Qα(z)M(z)

P+ d
− βM(z)− µpP(z)

)
= 0, z ∈ R (C60)Dm∂2

zm(z, α) + dm∂2
αm(z, α) + c∂zm(z, α) +m

(
βP− αP

P+ d
− µmM(z)

)
= 0

∂αm(z, αmin) = ∂αm(z, αmax) = 0, z ∈ R
(C61)

where

α(z) =

∫ αmax

αmin

α
m(z, α)

M(z)
dα and M(z) =

∫ αmax

αmin

m(z, α) dα . (C62)
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The traveling wave profile satisfy the following boundary conditions{
P(−∞) = P ∗

m(−∞, α) = M∗ϕ(α)
and

{
P(∞) = 0
m(∞, α) = 0

for all α ∈ (αmin, αmax) (C63)

where (P ∗,M∗, ϕ) solves the stationary problem (B11) and (B12)
We use the inside dynamics approach presented in the previous section B.5 and

introduced by (Roques et al, 2012). We here label the individuals – hosts or symbionts
– according to their initial position in the front, and they transmit their label to their
offspring. Since they only differ by their label and their trait for the symbionts, each
label k ∈ N corresponds to a neutral fraction of density υk

p inside the host population

P(x− ct) and υk
m inside the symbiont population M(x− ct, α). Initially, the fractions

satisfy

P(z) =
∑
k∈N

υk
p(0, z) and m(z, α) =

∑
k∈N

υk
m(0, z, α) (C64)

Their dynamics in the moving frame of speed c, is described by

∂tυ
k
p(t, z) = Dp∂

2
zυ

k
p + c∂zυ

k
p + υk

p

(
Qα(z)M(z)

P(z) + d
− βM(z)− µpP(z)

)
, z ∈ R, t > 0

(C65)

∂tυ
k
m(t, z, α) = Dm∂2

zυ
k
m + c∂zυ

k
m + dm∂2

αυ
k
m + υk

m

(
βP(z)− αP(z)

P(z) + d
− µmM(z)

)
, α ∈ (αmin, αmax)

(C66)

∂αυ
k
m(z, αmin) = ∂αυ

k
m(z, αmax) = 0, z ∈ R (C67)

Since we are interested in the effect of initial space location, we can integrate the
equation in υk

m and we obtain that the quantity Υk
m(t, z) =

∫
υk
m(t, z, α)dα satisfies

the following problem

∂tΥ
k
m(t, z) = Dm∂2

zΥ
k
m+c∂zΥ

k
m+Υk

m

(
βP(z)− α(z)P(z)

P(z) + d
− µmM(z)

)
, α ∈ (αmin, αmax)

(C68)
Formally, the solutions υk

p and Υk
m converge locally uniformly in space z, toward

pkpP(z) and pkmM(z) respectively, where the positive constant pkp and pkm satisfies

pkp =

∫
R
υk
p(0, z)e

cz
Dp P(z)dz∫

R
e

cz
Dp P2(z)dz

and pkm =

∫
R
Υk

m(0, z)e
cz

Dm M(z)dz∫
R
e

cz
Dm M2(z)dz

(C69)

As a result, the fixation probability of host and symbiont individuals starting at loca-
tion x, that is the probability that their descendants become prevalent at the leading
edge of the travelling wave, is given by, respectively, PFp(x) and PFm(x), which are
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defined by

PFp(x) =
e

cx
Dp P2(x)∫

R
e

cz
Dp P2(z)dz

and PFm(x) =
e

cx
Dm M2(x)∫

R
e

cz
Dm M2(z)dz

(C70)

Since the traveling profiles P and M decay at different rates (Fig. 3), the fixation
probability attains is maximum at different location. In particular, we see that the
plant at the leading edge have a higher probability of fixation than the symbiont at
the same location. Thus plant at the leading edge mainly come from this edge, while
the symbiont come more from the core of the population (Fig. 3).
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