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Abstract: Hard marine growth is an important process that affects the design and maintenance of
floating offshore wind turbines. A key parameter of hard biofouling is roughness since it considerably
changes the level of drag forces. Assessment of roughness from on-site inspection is required to
improve updating of hydrodynamic forces. Image processing is rapidly developing as a cost effective
and easy to implement tool for observing the evolution of biofouling and related hydrodynamic
effects over time. Despite such popularity; there is a paucity in literature to address robust features
and methods of image processing. There also remains a significant difference between synthetic
images of hard biofouling and their idealized laboratory approximations in scaled wave basin testing
against those observed in real sites. Consequently; there is a need for such a feature and imaging
protocol to be linked to both applications to cater to the lifetime demands of performance of these
structures against the hydrodynamic effects of marine growth. This paper proposes the fractal
dimension as a robust feature and demonstrates it in the context of a stereoscopic imaging protocol;
in terms of lighting and distance to the subject. This is tested for synthetic images; laboratory
tests; and real site conditions. Performance robustness is characterized through receiver operating
characteristics; while the comparison provides a basis with which a common measure and protocol
can be used consistently for a wide range of conditions. The work can be used for design stage
as well as for lifetime monitoring and decisions for marine structures, especially in the context of
offshore wind turbines.

Keywords: underwater inspections; infrastructure damage assessment; image-processing; biofouling;
roughness; drag; fractals

1. Introduction

Within a short period of time after construction, offshore structures are usually covered
with a biofilm, which serves for the development of macrofouling. Some key effects of
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marine growth on offshore structures have been investigated several decades back [1–3] and
include bio-chemical attacks in the form of corrosion effects, masking effect for structural
inspections, mass effect related to structural over-loading, and hydrodynamic over-loading
effect related to drag (e.g., flow through screens).

Generally, biofouling can be divided into hard (mussels, barnacles, oysters), soft
(anemones, soft corals, seaweeds), and long flapping (kelps) categories. Biofouling can
reach a considerable extent depending on the site location and water depth [2,4,5]. Addi-
tionally, it is well known since the 1970s that one of the main drivers for hydrodynamic
changes is the roughness of hard marine growth and that long flapping kelps change the dy-
namic behavior through vortex induced vibrations [6]. The roughness turbulence generated
by all the different types of fouling are dissimilar [7]. Roughness caused by the presence of
hard marine growth (barnacles, oysters, mussels, etc.) is known to change the flux around
an immersed cylindric component by changing the frontier between hydrodynamical
regimes assessed by the Reynolds number (sub, post-super critical Reynolds numbers)
and the hydro-dynamic coefficients of the Morison equation [8,9]. Uncertainties from
hydrodynamic and biological parts can be accounted for through response surfaces [10].

In the majority of cases, several types of biofouling communities colonize the sur-
face, but normally there are dominant species and types. Dominant communities and
similar species are likely to have similar characteristics in terms of roughness and weight.
However, the uncertainty of this characterization is generally high from on-site inspection.
Idealization of such growths exists in recommended engineering practices [11,12] in com-
parison with real shape and distribution. Theophanatos [6] evaluates that the roughness
varies between 8–34 mm for a single layer covering of mussels. Following recent inves-
tigations and based on more information from site conditions, it is understood that the
recommended idealizations of biofouling can often be unrepresentative of real colonization,
and the roughness is quite random (Figure 1). A limited number of tests in a tank were
carried out with random roughness when it was idealized [6], and, thus, the hazard of
biofouling was not fully characterized for (i) analyzing its representativeness of natural
colonization, (ii) reproducing the test carried out, or (iii) comparing idealized shapes with
other similar shapes used in other tests. In this context, only a few papers simulate the
loading on structures in the presence of random roughness [9]. As a consequence, the
quantification and modeling of the real shape from on-site inspection is mandatory to
better represent the reality and to provide specifications for new tests [13,14].

Progress in recent years has seen improvement in both on-site protocols for thickness
assessment and underwater image processing [15,16]. This allows on-site roughness
measurements once the protocols are established. Contrary to thickness measurements [17],
roughness measurements require low turbidity, and there is a paucity in literature in terms
of appropriate features to use.

The requirement of assessment of biofouling has become more relevant in the recent
years with the rise of offshore wind turbines to produce renewable energy. Such turbines
tend to get bigger with each generation, giving rise to more slender solutions with higher
dynamics, nonlinearity, and the impact of secondary loads such as biofouling becoming
critical for their lifetime performance. They also contribute to extra fatigue on the structure
and on the geotechnical base, which can be crucial when deciding on site reuse following
one life cycle of a turbine. With the underwater drone market and their performance in
harsh conditions rapidly improved, inspection and maintenance will depend increasingly
on image processing and the related assessment, analysis, and interpretation of visual data.
Under such circumstances, the gap in choice of appropriate features, testing environment,
and quantitative evaluation of the performance of such features and methods under
laboratory and real-life conditions are exceedingly important to be established. This paper
approaches this problem for hard biological growths, and related detection aspects of
surface roughness due to their growth, which guide the unwanted hydrodynamic effects
over their lifetime.
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Figure 1. (a) Schematic view of soft and hard biofouling as per [2], and (b) definition of terms as per [11]. 
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To address this, Section 2 focuses on two critical parameters of laboratory and field
imaging protocol, the artificial light and the distance to the structure. These are tested
first in controlled laboratory conditions for cones of various color, height, and diameter,
which is not just a rapid assessment of the imaging protocol but also an assessment of
idealistic testing conditions that are often created in scaled wave basin tests. Section 3
implements an established image processing methodology [16] for such laboratory tests,
including coupons to optimize the image processing parameters. This follows an automatic
segmentation algorithm implementation and the development of indicators of quality
of assessment based on detection threshold and quality of sizing. Several estimates for
selection of the best protocol are tested and compared, and receiver operating curves are
selected. For real inspections where roughness is a random process, methods for roughness
quantification are introduced through the fractal dimension. Section 4, in the context of
the proposed fractal dimension, demonstrates how to robustly choose testing protocols
for site implementation, linking it back to initial laboratory testing framework. This also
demonstrates how an overarching experimental protocol can reduce the interpretative gap
between realistic biological effects and idealistic laboratory tests or synthetic simulations,
which are bound to miss complexities of nature. This protocol is then implemented
successfully to the offshore site of Université de Nantes UN-SEA [18], and roughness due
to natural colonization of adult mussels along anchoring lines is characterized through
its fractal dimension. Data of roughness are then post-processed. The fractal dimension
is validated as an appropriate metric for characterizing the on-site complex shape of
homogeneous hard biofouling.

The results have an impact on enhancing the value of information from visual inspec-
tions [19] and in the testing and monitoring of wind turbines [20,21] and other marine
structures. While biofouling is a part of a design process of offshore structures, such
structures are often investigated at a low technological readiness level (TRL). Under such
circumstances, we need to have better tools and markers, even for a low TRL and for ocean
wave basins.
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2. Case Studies

Roughness assessment is affected by several environmental factors and experimental
conditions, such as wake, luminosity, and turbidity. Wake can be managed by selected
sea states for underwater inspection, but both luminosity and turbidity are difficult to
forecast and are usually to be dealt with during diving. Laboratory tests were carried out to
measure the effect of these parameters on the roughness measurement, with the knowledge
that its order of magnitude varies between 8 mm–34 mm for species encountered along
European coasts [6]. Refraction may also play an effect, but eventually the light and
turbidity combination turns out to be one of the core combinations that also takes into
account some of the effects of refraction.

2.1. Underwater Image Acquisition

Underwater images are available from video recordings carried out with Aksi3D
protocol (Figure 2a). The objective is to obtain as much benefit as possible from a simple,
easy to use, and robust system for providing stereoscopic images. It consists of two
synchronized cameras fixed on a T-structure, on which a telescopic jib is fixed in view to
control the distance between the cameras and the structure (Figure 2b). This jib is ended
with a U-shape tube in view to carry out measurement along chains (Figure 2c). Two
GoPro 3 Black edition cameras have been employed with checkerboard calibration. Two
waterproof Sola Dive 1200 Light & Motion LED lights were also added with the following
set ups, (i) “flood” with a 60-degree angle of flood beam and (ii) “spot” with a 12-degree
angle of spot beam (Figure 2b). In both conditions, the maximum capacity of lights
(2 × 1200 lumens) have been used. Artificial lighting is preferred in this experiment to
ensure the control of operational conditions.
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2.2. Artificial Coupon and Test Tank

The coupon is an artificially colonized plate built from wood. On this, 108 wood cones
of various diameters, heights, and colors were glued. Wood gives a natural variability
of colors for each cone and between cones (Figure 3). Each cone and the wood plate
were covered by a translucent colored lacquer coating in view to obtain some of the
worst conditions for which the light is reflected. Finally, the heights of the specimen
were randomly selected between 7 and 21 mm, with a mean value of 14.7 mm and a
standard deviation of 3.2 mm. Note that the diameter of the cone’s base depends on each
height. Contact between specimens is realistic (barnacles or mussels for instance) and offers
the worst conditions for identification of boundaries. The shape was selected because it
offers a compromise between the shape of two common species, barnacles (pyramids) and
mussels (ellipse).
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Figure 3. Close-up view of the artificial colonization and board.

The distribution of heights is given in Figure 4. Note that, due to the U-shape end of
the jib, 13 cones were not visible and were removed from the database for detection (low
part Figure 5).
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The test tank of Université de Nantes (Figure 6) is a unit of the UN-SEA-Material
Durability Testing-Center and is 3 m long, 0.6 m wide, and 0.5 m deep. This tank is used
for under-water image processing and tide simulation for material degradation. The wood
plate is fixed vertically at one end, and measurements are carried out by placing our device
horizontally. Two examples are provided in Figure 5.
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2.3. On-Site Measurements

The best protocol selected from tests in the laboratory is used for the measurements
carried out on site and is supported by LEHERO-MG project [13,14,22–24]. A day and
depth were selected, in view to get these conditions, and three pictures on three separated
parts of a chain were taken. This chain is the main anchoring material for the equipment
buoys of the SEMREV site, operated by Ecole Centrale de Nantes, where adult mussels
were observed. The same type of picture was obtained 10 km away, on the test platform
UN@SEA (called UN-SEA-SMS previously) [18] of Université de Nantes, two years after
its installation in June 2017. The main interest is that the colonization is homogeneous; the
chain is fully covered by the same species (the pictures of these mature mussels were taken
in 2019). These three pictures are given in Figure 7.

The roughness appears to be slightly different in the three pictures; there can be
considered multiple realizations of the stochastic process. The colonization in these pictures
is similar (same species and same thickness with the same maturity), and it is known that
the arrangement of mussels depends on the available place and the capacity to open
the two shells for capturing and filtering water. These pictures will help to highlight if
an invariant exists for embracing these realizations. This will be studied by analyzing
the ability of statistical and numerical estimates to characterize the roughness of this
homogeneous colonization.
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3. Isolation of Specimens, Quality of Measurement, and Roughness
Mathematical Modeling

The roughness of the chosen specimens was estimated as per API-RP-2A [11]. This
means that the distance between the mean surface (here the surface of the wood plate) and
the peak (the height of the cone) should be measured.

3.1. Automatic Segmentation

As a preliminary step for identifying the best protocol, each artificial specimen was
isolated using an automatic segmentation technique. The segmentation technique is
graphically described in Figure 8.

For clustering overlapping specimens, the roughness is defined as the maximum
height accessible in each cluster. In the present study, it is always the distance between the
peak and the colonized surface (wood plate). To highlight the center of the specimen and
the boundaries, stick voting parallel and perpendicular to the gradient is next carried out,
followed by optimal boundary extraction around each seed point (specimen centers) using
loopy belief propagation [24] applied to the boundary saliency map. Finally, spurious cases
are discarded (e.g., too large of a height, for instance more than 40 mm). Key steps are
visually presented in Figures 9–11. This segmentation is not used for on-site measurements
due to the absence of clean surfaces between specimens.
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3.2. Configurations of the Tests

To deal with the turbidity, we have changed distances between cameras and the plate
by adjusting the length of the jib in clean fresh water with low turbidity. Both flood and
spot lighting were selected with camera subject distances of 58 cm, 65 cm, 100 cm, and
120 cm, respectively, with Figure 12 demonstrating how it allows us to cover a wide range
of quality of the picture.

3.3. Height Measurement

The reference was measured with a dial gauge with an accuracy of 0.1 mm. In
Figure 13a, the algorithm provides an estimate of the height of each individual specimen.
This was achieved by subtracting the average height values in and around the base of the
segmented specimen (represented by the larger circle in Figure 13b) from the maximum
height values (represented by the smaller circle in Figure 13b) and by excluding any
outlier values (i.e., implausibly large or small heights) that would otherwise skew the
measurements if not discarded.
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3.4. Indicators of Quality of Measurement

To obtain a distribution of measurements as close as possible to the real one (Figure 3),
it was required to detect all the peaks and size them as accurately as possible. Conse-
quently, the probability of detection (PoD) was used as a measure of performance (Equa-
tions (1) and (2)), as presented in [25] as an estimate of the peaks and the mean and
standard deviation of estimated peaks. The mean and standard deviation were evaluated
for estimating the peak sizes first, and the error was deduced from Equation (3) (bias and
standard deviation) at the second step.

PoD(X) = P(X ≥ ad) (1)

PoD(X) ≈ Nd
Ntot

(2)



J. Mar. Sci. Eng. 2021, 9, 1344 11 of 25

where X is the random variable, the height of artificial specimens; Xi and X̃i are, respec-
tively, the real and measured values of the specimen; Nd and Ntot denote, respectively, the
number of detections after boundary extraction and the total number of artificial specimens.

Bias is computed as the mean value of ε as

εi ≈ Xi − X̃i (3)

Receiver operating curves (ROC) have been shown to give a rational and efficient
decision tool to compare protocols [26], including for underwater image processing [15].
It plots or fits a curve in the probability of detection (PoD) versus the probability of false
alarm (PFA) space, as defined in Equation (4), when the detection threshold ad varies from
–∞ to +∞.

PoD =

+∞∫
ad

fSN

(
d̂
)

d d̂ ; PFA =

+∞∫
ad

fN(η) dη (4)

where fSN and fN indicate the probability densities of the variables ‘signal + noise’ and
‘noise’ [27], respectively. Here, the noise is the error of measurement and the ‘signal + noise’
is the distribution of measured heights.

3.5. Estimation of Natural Roughness through Fractal Dimension

The natural roughness is more complex than simulated ones. Moreover, the difference
of the heights of neighboring peaks governs the drag coefficient [9]. To characterize the
roughness of a mature colonization of mussels, the chain of the Biocolmar offshore station
was inspected after 2 years. This station is dedicated to the analysis of biofouling of offshore
structures with more than 80 coupons. In this paper, we consider the part of the chain to
be between 1 m–4 m depth, which was fully colonized by the same thickness of mussels.
Three pictures of three parts of this section of the chain were carried out in view to analyze
the robustness of the estimates.

First, the ability of the statistical parameters that classically describe the roughness to
characterize the fouling was tested. They estimated the dispersion and the shape of the
valleys and peaks, computing the average roughness (Equation (5)), the average distance
of the peaks to the average roughness (Equation (6)), the standard deviation (Equation (7)),
the skewness (Equation (8)), and the kurtosis (Equation (9)) of the roughness.

Ra=
1
M ∑M

i=1 R(i) (5)

Rma =
1
M ∑M

i=1

∣∣∣∣R(i)− Ra

∣∣∣∣ (6)

Rsq =

√
1
M ∑M

i=1|R(i)− Ra|2 (7)

Rsk =
1

Rsq3 ∑M
i=1(R(i)− Ra)

3 (8)

Rku =
1

Rsq4 ∑M
i=1(R(i)− Ra)

4 (9)

Note that parameters Rma and Rsq do not differentiate between peaks and valleys,
and both, with Rsk and Rku, are sensitive to the distribution and the number of locations.

Next, we will analyze the fractal properties linked to the statistical self-similarity
of the data. The fractal dimension (DF) is a further roughness parameter, in addition to
the above statistical parameters. Further, the fractal dimension correctly measures the
surface roughness itself. For example, two surfaces can have the same skewness or average
roughness but different DF (Figure 14).
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However, such a link is not necessary for spatial data when both irregularity and
the spatial variability of the surfaces are mixed to produce statistical self-similarity. In
this case, the similarity can be tested through an infinite range of the scale only on the
probability law [28]. The natural fractal of the biofouling surface might be produced from
the multi-scaled randomness of the species of the biofouling with different size and at
different locations. The fractal dimension DF satisfies the bounds

d < DF < d + 1 (10)

where d is the spatial dimension or topologic dimension. When DF = d, the surface is
differentiable (smooth), but when it approaches d + 1, the surface is extremely rough. On
the other hand, the fractal measure DF is not an integer, and it can be estimated as the limit
(known as Box dimension)

DF = −lim
h→0

Q(h)
h

(11)

where Q(h) is a spatial statistical quantity (variogram, madogram, periodogram, or number
of d-dimensional boxes) and h is a spatial unit. To estimate the fractal dimension of
biofouling, 1-D measurements of three trajectories are considered in order to analyze if
it is an intrinsic characteristic of a given biofouling, which is mussels in this paper. The
most used estimators of DF are proposed using three 1-D trajectories (d = 1) from the
biofouling line. Several methods are available for estimating the roughness measure DF
and a summary, with their parameters, is provided in Table 1. All methods follow a
common procedure that consists of establishing a power law of Qu(h) as a function of a
small-scale h ≈ 0 (the smallest observed one)

Qu(h) ∝ h−L(DF) (12)

where the exponent L(.) is a linear application of DF, computed from a linear regression
of log(Qu(h)) on log(h). The cube-count estimate of the fractal dimension consists of
counting the number of Euclidian boxes at small scale h, which are required to cover the
surface or line R. Then, the DF is estimated as the negative slope of log(N(h)) versus log(h),
where N(h) is the total number of boxes at scale h. This method is sensitive to the amount
of area occupied in a grid and the pattern of its distribution [28,29].

The roughness surface is modeled with a rough (non-smooth) spatial stationary
random field, typically Gaussian or a transformation of a Gaussian random field with a
smooth transformation. Therefore, the geostatistical estimation methods of DF use a linear
law between DF and the so called the fractal index 0 < δ < 2. The fractal index characterizes
the behavior of some spatial function Qu(h) near to the origin, such as the variogram or the
madoram of the random field [29,30], or the decay of the spectral density at large frequency.
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Table 1. Methods considered to estimate the DF of a 1-D rough curve.

Method Qu(.) Scale h Power Law

Madogram γ1(h) h : lag γ1(h) ∝ h2−DF

Variogram γ2(h) h : lag γ2(h) ∝ h4−2DF

Periodogram S(p) spectral density p : frequency S(p) ∝ h2DF−5

Cube-count N(h) number of cubes h : with of cube N(h) ∝ h−DF

The variogram and madogram [30] of a random function R(x) are defined by

γ2 =
1
2

∣∣∣∣E[R(x + h)− E[R(h)]
∣∣∣∣2 (13)

γ1 =
1
2

∣∣∣∣E[R(x + h)− E[R(h)]
∣∣∣∣ (14)

They satisfy the estimate γ2 ≈ hδ and γ1 ≈ hδ/2 near the origin (for small h ≈ 0).
Under such circumstances, the fractal dimension quantifies the curvature of the

variogram or madogram near the origin, which characterizes the roughness of the surface.
The periodogram method uses the behavior of the spectral density at infinity. The

periodogram is an estimate of the spectral density, defined by

S(p) = 2
∫ ∞

0
c(x) cos(px)dx (15)

where the spatial correlation c is approximated by the empirical correlation using the
spatial mean of all contribution distant with a given lag h. Further, we use the discrete
Fourier transform (DFT) to compute the periodogram Q(h) as an estimate of the spectral
density S. Therefore, by using the decay of the spectral density that decreases at infinity, it is
similar to the bound O

(
p−δ−1) [31]. Here, DF is estimated from a regression fit of log(Q(h))

versus log(h). Table 1 summarizes the methods considered and compared for estimating
the fractal dimension of the rough curve (of the graph). This measure of roughness is
estimated only from the data and independently of the covariance model of the random
field. Once the fractal dimension is estimated, a spatial model can be chosen with adequate
fractal index from the estimated fractal dimension to quantify the hydrodynamic forces.

Finally, these estimates are subjected to a statistical error. To obtain the confidence
interval for various DF estimates, we use the parametric bootstrap method, as proposed
by [32]. The method starts with an appropriate model of the covariance function to well fit
the spatial data. The powered exponential correlation is largely used in the literature and
is defined by:

c(h) = exp (−
∣∣∣∣hc
∣∣∣∣δ) (16)

It is an appropriate model since it is a valid covariance for all values of the fractal
index δ in (0, 2). Further, the model is only smooth when δ = 2.

Fractal based detection has been applied successfully to build infrastructure systems
before [33], including renewable energy device platforms [34], and the non-detection
aspects are also known [35,36]. This approach further establishes this measure as a core
feature for biofouling effects.

4. Results in Laboratory and on Site
4.1. Results from Measurements for Each Protocol in Laboratory

The histograms of the measured heights are plotted for various device set-ups in terms
of lighting and distance (Figure 15). Depending on the distance to the target, flood, or spot
lights, this can lead to more or less favorable conditions. For instance, Figure 16 illustrates
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that the spot light gives a high contrast picture for a small distance (58 cm) but a small
area of the clear image, whereas the contrast is low, but the area is large when the distance
increases to 120 cm.

The shape of the distribution is significantly different from the original Figure 3, with
a clear asymmetry and a single mode of the distribution except for 120 cm and 65 cm flood
lighting conditions. For these two setups a second mode is captured around 3 cm, whereas
for the actual figure it is around 2 cm.

The asymmetry can be assessed by computing the skewness (Table 2).

Table 2. Skewness of the real distribution and the measured ones.

Ref. Light

m 58 cm
Flood

58 cm
Spot

65 cm
Flood

65 cm
Spot

100 cm
Flood

100 cm
Spot

120 cm
Flood

120 cm
Spot

0.04 0.5 0.3 0.3 1.4 0.7 1.2 1.1 1

Results show that, in contrary to the real distribution, the skewness of measured
distribution is significant (between 0.3–1.2).
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4.2. Evaluation of the Indicators in Laboratory

With selected indicators evaluated, the probability of detection (PoD) is computed
from the data base of 95 measurements and is plotted in Figure 17. The PoD varies from
0.55 (65 cm, spot light) to 0.95 (58 cm; 100 cm; 120 cm flood light), indicating that the flood
light provides better conditions when limiting the number of missed detections.
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The two first moments (mean, standard deviation) are estimated next in Figure 18
and are compared to the reference (real value). The protocol 120 cm-flood light is one of
the best, with a 58 cm-spotlight being the worst, despite performing well in terms of PoD
(85%). This criterion is thus observed to be complementary to PoD estimates. Table 3 gives
the relative errors of the mean (5–35%) and the standard deviation (10–200%). According
to this criterion, the best protocol is the 120 cm-flood light (in bold in Table 3), which was
already selected according to the PoD criterion, corresponding to a 5% error in mean and a
10% error in standard deviation (10%).
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Table 3. Relative errors (%) of the mean and standard deviation estimates.

58 cm
Flood
Light

58 cm
Spot
Light

65 cm
Flood
Light

65 cm
Spot
Light

100 cm
Flood
Light

100 cm
Spot
Light

120 cm
Flood
Light

120 cm
Spot
Light

Mean 35 35 25 5 25 15 5 10

Standard
deviation 170 145 75 85 200 145 10 185

Finally, the distribution of error was assessed. The mean value (bias) and the standard
deviation of this distribution are reported in Figure 19. The bias was observed to range from
−0.5 to +0.2 cm, and the standard deviation stays in the range 0.5–0.95. Once again, the
protocol 120 cm-spotlight gave the best results with a bias of 0.05 and a standard deviation
of 0.5. It is noteworthy to highlight that the 65 cm-spotlight leads to a very low error (bias
of 0.05 and standard deviation of 0.65), but the PoD was very low for this protocol.
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This last estimate shows a good assessment for the 120 cm-flood light, with 5 and 10%
of error, respectively, of the mean and standard deviation. The bias has been shown to
reach −0.5 cm if optimal conditions are not gathered.

The effect on loading through the computation of drag coefficients is analyzed next.
Two types of structures are considered for which the loading can be computed through
Morison’s equation. The first structure is a mooring line with a rope of an equivalent
diameter of 30 cm, and the second one is structural members of a jacket structure with
an equivalent diameter of 1.2 m colonized with marine growth of a roughness of 2 cm.
The global effect of marine growth has been studied and quantified [8–10]. These studies
highlight that roughness affects steady flow drag coefficient CDS through the relative
roughness e = k/De, where k is the roughness and De is the diameter. With the above
diameters of 0.3 and 1.2m, e takes values of 0.07 and 0.018, respectively, and according
to API [11] CDS, takes values of 1.1 and 1.07, respectively. An error of −0.5 cm leads,
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respectively, to errors of e of −0.017 and −0.004, which produces a negligible change of
−0.005 (0.5%) and −0.01 (1%) on CDS. A lower bias (0.05 for 120 cm-flood light) allows for
a very good accuracy for an assessment of the distribution and the fractal dimension.

4.3. ROC Curves for Detection Assessment in Laboratory

Figure 19 plots the distributions of errors for each protocol. For discrete values, we
estimated the probabilities by computing statistical frequencies [37]. ROC curves are
plotted in Figure 20. Protocols with spot light are among the worst ones.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 20. ROC curves for each protocol. 

Protocol of the 100cm-spotlight distinguishes itself from others with the bar ROC 
curve. The best one, plotted in a red dashed line, corresponds to the 65 cm-flood light. 
This quality can be quantified by δ, the distance between the point of coordinates (0,1) 
(absolute best performance point) and the ROC curve [38], reported in Table 4; the point 
on the ROC is called the best performance point. It is shown that δ is the smallest for the 
65cm-flood light (0.04) and 58 cm-flood light (0.06) protocols. The point on the ROC curve 
corresponding to this smallest value allows computing of the detection threshold ad de-
fined in (4); this threshold is an optimal value in the sense that it minimizes the PFA while 
maximizing the PoD. Its values are reported in Table 4, and, for the smallest δ, there are 
0.5 cm (protocol 58 cm-flood light) and 0.75 cm (65 cm-flood light). It is important to note 
here that 0.7 cm was the smallest height of artificial roughness, and only 0.75 cm has a 
sense, marked in bold in the table. Note that ad distance is similar for performances that 
change significantly; this is due to the definition of ad that is related to the angle α between 
the line between (0;1) and coordinates of the best performance point and the y-axis. More 
details can be found in [38]. 

Table 4. Values of distance δ and corresponding detection threshold ad. 

 
58 cm 
Flood 
Light  

58 cm 
Spot 
Light 

65 cm 
Flood 
Light 

65 cm 
Spot 
Light  

100 cm 
Flood 
Light 

100 cm 
Spot 
Light 

120 cm 
Flood 
Light 

120 cm 
Spot 
Light 

δ 0.06 0.13 0.04 0.14 0.17 0.36 0.13 0.17 
ad [cm] 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 

4.4. 2D-Fractal Dimension Assessment on Site 
The protocol selected in the previous section (65 cm-flood light) was selected for as-

sessing the roughness on site and the photos in Figure 3. The corresponding profile of 
roughness is plotted in Figure 21. 
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Protocol of the 100cm-spotlight distinguishes itself from others with the bar ROC
curve. The best one, plotted in a red dashed line, corresponds to the 65 cm-flood light.
This quality can be quantified by δ, the distance between the point of coordinates (0,1)
(absolute best performance point) and the ROC curve [38], reported in Table 4; the point
on the ROC is called the best performance point. It is shown that δ is the smallest for
the 65cm-flood light (0.04) and 58 cm-flood light (0.06) protocols. The point on the ROC
curve corresponding to this smallest value allows computing of the detection threshold
ad defined in (4); this threshold is an optimal value in the sense that it minimizes the PFA
while maximizing the PoD. Its values are reported in Table 4, and, for the smallest δ, there
are 0.5 cm (protocol 58 cm-flood light) and 0.75 cm (65 cm-flood light). It is important to
note here that 0.7 cm was the smallest height of artificial roughness, and only 0.75 cm has a
sense, marked in bold in the table. Note that ad distance is similar for performances that
change significantly; this is due to the definition of ad that is related to the angle α between
the line between (0;1) and coordinates of the best performance point and the y-axis. More
details can be found in [38].

Table 4. Values of distance δ and corresponding detection threshold ad.

58 cm
Flood
Light

58 cm
Spot
Light

65 cm
Flood
Light

65 cm
Spot
Light

100 cm
Flood
Light

100 cm
Spot
Light

120 cm
Flood
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120 cm
Spot
Light

δ 0.06 0.13 0.04 0.14 0.17 0.36 0.13 0.17

ad [cm] 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75
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4.4. 2D-Fractal Dimension Assessment on Site

The protocol selected in the previous section (65 cm-flood light) was selected for
assessing the roughness on site and the photos in Figure 3. The corresponding profile of
roughness is plotted in Figure 21.
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The two first statistical moments of these trajectories and the coefficient of variation
are computed next, as reported in Table 5.

Table 5. Statistics for the roughness of the three trajectories.

Trajectory R1 Trajectory R2 Trajectory R3

Mean (cm) 1.9 2.1 2.1

Standard deviation (cm) 0.48 0.63 0.49

CoV (%) 25 30 23

These statistics show that there are some similarities (10% of discrepancy in mean) but
also some differences (30% of discrepancy in standard deviation). When looking at the
trajectories on Figure 22, it is observed that the global shape due to the spatial arrangement
of mussels should be assessed.

The statistical parameters related to roughness estimates are computed subsequently
by estimating the dispersion and the shape of the valleys and peaks (Table 6).

The discrepancies are significant (15% to 150%) depending on the parameter. The
fractal dimension is then assessed and reported in Table 7.
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Table 6. Classical roughness parameter estimates.

Parameters

Profiles
R1 R2 R3

Ra 1.922 2.129 2.09

Rma 0.406 0.511 0.3905

Rsq 0.482 0.634 0.488

Rsk 2.168 2.497 3.476

Rku 0.136 0.61 0.856

Table 7. Fractal dimension estimation.

Method

Profiles
R1 R2 R3

Madogram 1.2102 1.1934 1.1872

Variogram 1.2749 1.2534 1.2378

Cube-count 1.2301 1.1939 1.1941

Periodogram 1.4854 1.2557 1.1857

All estimates of the fractal dimensions show a considerable roughness for the profiles
(DF > 1). Further, except estimates given by the periodogram method, estimates give
some isotropy of the roughness (isotropic spatial random field with the same regularity).
Furthermore, the absence of relationship between madogram and variogram estimates
can suggest modeling of the curves R1, R2, and R3 with non-Gaussian random fields (for
example a log-normal random field can be more adequate) because in the case of the
Gaussian random surface, the madogram satisfies γ1 =

√
γ2 [30]. We chose an estimate of

the fractal dimension that has a tick confidence interval of DF.
Figure 22 depicts the boxplots of the fractal dimension estimates from simulated data

using the powered exponential model. It shows that the method of the periodogram gives
more dispersed estimates than the other methods, while the estimate from the method
of the variogram is less dispersed. Further, the madogram estimate can be seen as more
efficient than the cube-count estimator and the periodogram estimator.

Under the assumption of isotropy between the two directions of the surface and by
considering the average of the fractal dimension of the curves from the variogram estimates
(Table 7), we approximate the fractal dimension of the surface roughness by DF ≈ 9/4.
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5. Discussion and Conclusions

Assessment of roughness from on-site inspection is required to improve the updating
of hydrodynamic forces after inspection, to better predict the service lifetime, and to
optimize the operation and maintenance planning. This geometrical parameter is shown to
have a significant impact on the drag coefficients. It was first mentioned in aerodynamics
studies [39–41], and it was found that the roughness density plays a critical role in the
mean forces and pressures. Fuss [42] showed that, in addition to the maximal and mean
surface roughness, the surface skewness is a further roughness parameter that affects the
critical Reynolds number and the lift/drag coefficients. With offshore renewable energy on
the rise, this is an important topic to focus on.

With the rise of the importance of drones, image processing is bound to play an im-
portant role in this regard through inspection driven maintenance of lifetime performance
needs of offshore wind turbines. This paper investigates two key control parameters of
such inspections, through stereo-imaging, to obtain information about their roughness and
establish their applicability through comparative performance under controlled and semi-
controlled conditions. The 120 cm-flood light protocol for testing was shown to be a good
candidate, with the highest PoD, lowest errors on the mean and standard deviation, lowest
bias and standard deviation of error, and best for establishing the modes of distribution
appropriately. This protocol, however, performed poorly for skewness. Consequently, a
detailed study with ROC curves was carried out to understand if a more robust approach
of selecting testing protocols existed, since a highly sensitive but less robust method may
not be the best to use. This approach elicited a 65cm-flood light protocol as the appropriate
method for a range of performance conditions, and it was robust against environmental
variations, which are often important criteria for field implementation. Both of these com-
parative protocols with varied performance advantages lead to a detection threshold of
7.5 mm.

Subsequent site implementation to estimate mussel roughness indicated that the com-
plexity the of natural shapes requires more sophisticated methods for such assessments
than what might be apparent from controlled tests, which are often carried out in various
laboratories. The 2-D fractal dimension was observed to be a good feature for such esti-
mation, especially when computed via madogram. Similar and long-term studies around
spatial and temporal growth of various species (e.g., oysters, barnacles) have the poten-
tial to calibrate such roughness against fractal dimensions in the form of comprehensive
experimental mapping.

To choose a method or a feature for inspection implementation, it is typically guided
by risk-based inspection methodology [25,27,43], and there will remain the question of a
calibration gap between real-world imagery and synthetic data. However, ‘trust’ on such
virtual data [44] can be improved through choosing robust features such as the fractal
dimension presented here. Machine learning and deep learning are popular, but such
methods tend to not capture realistic details in a simulated environment and can under-
perform in real environments. Consequently, damage-assessment algorithms trained with
synthetic data may not generalize well for real-world examples, including the semantics
that influence such detection processes [45]. Therefore, it is prudent to collect some degree
of ’real’ data in order to validate statistical learning models, especially in the context of
calibrating features such as the fractal dimensions [46]. This paper is timely since the
results are particularly relevant for floating wind turbines, a sector that is seeing a surge
at the moment and is expected to evolve rapidly in an interdisciplinary manner, with the
requirements of aspects such as biofouling entering at earlier TRLs. Such biofouling will
also impact the lifetime fatigue of the turbine base, and the possibility of reuse of the site
following the completion of the lifetime of a turbine will also be a function of such growths,
distributions, and rates.

The choice of more than one statistical marker highlights the requirement to focus on
a set of admissible markers, rather than trying to establish the best marker. The advantage
of this approach is that, while they outperform each other in terms of various metrics based
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on a specific environment, they will be robust against changes and provide an overall
comparable performance, as evidenced by their proximity in the ROC space.

The work also creates a future possibility of investigating the interaction of multiple
species, such as barnacles and mussels, with ecological compatibility required to be estab-
lished in terms of their growth rates, predator presence, and related hydrodynamic impacts.
Field experiments in the seasonal site of the northern gulf of California [47] experimentally
demonstrated how the mussel–barnacle community is close [48] and influence each-other,
as has been indicated by other works [49,50]. The competition from mussels comes at lower
shore levels to barnacles [51] where rock space becomes less for barnacle settlement. Barna-
cles on living mussel shells grow faster than empty shells, but the presence of barnacles
seems to have little effect on mussel growth [52]. While there is a hierarchy of species, as
is expected in an ecology [53], their close interaction [54,55] remains a well-documented
aspect. This ecological aspect is another area where continued work is needed.

It is difficult to compare the quantitative results presented in this paper with other
studies, as the proposed methodology and the detection method is new. However, rel-
evant works on varied, controlled lighting conditions, created in the laboratory [15] or
synthetically [45], indicate that the ROC space, region of operation, and best performance
points established from image processing [17,56–58] are similar to what has been obtained
in this paper. Fractal estimates on corrosion images [59] indicate how this feature can be
an indicator of gradual degradation. Soil–water interaction and pore solid distributions
have extensively considered fractal estimates as well [60–65]. While a quantitative estimate
comparison is not meaningful here, the consistency of the fractal estimates with gradual
and consistent changes and their monotonicity of their relationship indicate how the cur-
rent work can be influential in developing and calibrating the markers of such changes
from image processing around hard biofouling. This characterization subsequently has the
impact of influencing scaled testing in ocean wave basin tests at lower TRLs and is relevant
for offshore renewable energy.

The concept of ’digital twin’ is attracting growing interest and appears to be a promi-
nent research direction for offshore marine structures [66,67]. A close similarity between a
virtual and physical structure will allow for better monitoring and data analysis of such
systems, leading to early detection of features of interest [68] and lower downtime and
allow for improved decisions on future remedial actions through scenario assessment [69].
It is also expected that this paper will be relevant for offshore experimental sites around
biofouling [70] and marine heritage [71].
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61. Sławiński, C.; Sokołowska, Z.; Walczak, R.; Borówko, M.; Sokołowski, S. Fractal dimension of peat soils from adsorption and
from water retention experiments. Colloids Surf. A Physicochem. Eng. Asp. 2002, 208, 289–301. [CrossRef]

62. Piñuela, J.; Alvarez, A.; Andina, D.; Heck, R.; Tarquis, A. Quantifying a soil pore distribution from 3D images: Multifractal
spectrum through wavelet approach. Geoderma 2010, 155, 203–210. [CrossRef]

63. Vallejo, L.E. Fractal analysis of the fabric changes in a consolidating clay. Eng. Geol. 1996, 43, 281–290. [CrossRef]
64. Cihan, A.; Tyner, J.S.; Perfect, E. Predicting relative permeability from water retention: A direct approach based on fractal

geometry. Water Resour. Res. 2009, 45, W04404. [CrossRef]
65. Martín, M.A.; Taguas, F.J. Fractal modelling, characterization and simulation of particle-size distributions in soil. Proc. R. Soc. A

Math. Phys. Eng. Sci. 1998, 454, 1457–1468. [CrossRef]
66. Jaksic, V.; Wright, C.S.; Murphy, J.; Afeef, C.; Ali, S.F.; Mandic, D.P.; Pakrashi, V. Dynamic response mitigation of floating wind

turbine platforms using tuned liquid column dampers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140079.
[CrossRef]

67. Jaksic, V.; O’Shea, R.; Cahill, P.; Murphy, J.; Mandic, D.P.; Pakrashi, V. Dynamic response signatures of a scaled model platform for
floating wind turbines in an ocean wave basin. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140078. [CrossRef]

68. Mucchielli, P.; Bhowmik, B.; Ghosh, B.; Pakrashi, V. Real-time accurate detection of wind turbine downtime - an Irish perspective.
Renew. Energy 2021, 179, 1969–1989. [CrossRef]

69. Bhattacharya, S.; Lombardi, D.; Amani, S.; Aleem, M.; Prakhya, G.; Adhikari, S.; Abdullahi, A.; Alexander, N.; Wang, Y.; Cui, L.;
et al. Physical modelling of Offshore Wind Turbine Foundations for TRL studies. J. Mar. Sci. Eng. 2021, 9, 589. [CrossRef]

70. Vinagre, P.A.; Simas, T.; Cruz, E.; Pinori, E.; Svenson, J. Marine Biofouling: A European Database for the Marine Renewable
Energy Sector. J. Mar. Sci. Eng. 2020, 8, 495. [CrossRef]

71. Skarlatos, D.; Agrafiotis, P.; Balogh, T.; Bruno, F.; Castro, F.; Petriaggi, B.D.; Demesticha, S.; Doulamis, A.; Drap, P.; Georgopoulos,
A.; et al. Project iMARECULTURE: Advanced VR, iMmersive serious games and augmented REality as tools to raise awareness
and access to European underwater CULTURal heritagE. In Euro-Mediterranean Conference; Springer: Cham, Switzerland, 2016;
pp. 805–813.

http://doi.org/10.1111/mice.12098
http://doi.org/10.1111/j.1467-8667.2012.00790.x
http://doi.org/10.1016/j.patrec.2006.05.005
http://doi.org/10.1016/j.geoderma.2009.04.014
http://doi.org/10.1016/S0927-7757(02)00156-5
http://doi.org/10.1016/j.geoderma.2009.07.007
http://doi.org/10.1016/S0013-7952(96)00038-5
http://doi.org/10.1029/2008WR007038
http://doi.org/10.1098/rspa.1998.0216
http://doi.org/10.1098/rsta.2014.0079
http://doi.org/10.1098/rsta.2014.0078
http://doi.org/10.1016/j.renene.2021.07.139
http://doi.org/10.3390/jmse9060589
http://doi.org/10.3390/jmse8070495

	Introduction 
	Case Studies 
	Underwater Image Acquisition 
	Artificial Coupon and Test Tank 
	On-Site Measurements 

	Isolation of Specimens, Quality of Measurement, and Roughness Mathematical Modeling 
	Automatic Segmentation 
	Configurations of the Tests 
	Height Measurement 
	Indicators of Quality of Measurement 
	Estimation of Natural Roughness through Fractal Dimension 

	Results in Laboratory and on Site 
	Results from Measurements for Each Protocol in Laboratory 
	Evaluation of the Indicators in Laboratory 
	ROC Curves for Detection Assessment in Laboratory 
	2D-Fractal Dimension Assessment on Site 

	Discussion and Conclusions 
	References

