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In the automotive industry, building parametric surrogate models is a fundamental tool to evaluate, in real time, 
the performance of newly designed car components. Such models allow to compute any Quantity of Interest 
—QoI—, such as a specific safety protocol index, for any choice of material and/or geometrical parameters 
characterizing the component, within the stringent real time constraint. For instance, they can be exploited to 
guarantee safer designs (e.g., maximizing energy absorption by the crash boxes) or to reduce manufacturing 
costs (e.g., minimizing the mass of a specific structure under some safety protocol constraints). In general, these 
parametric simulation tools allow a significant gain in terms of manufacturing costs and time delays during the 
investigation phase. In this study, we focus on the vehicle frontal structure system considering its performance 
in a full-frontal crash scenario. In the front structure system we parameterize the crash boxes (left and right) 
and the inner/outer side front members (left and right, front and rear) with respect to the part thickness and the 
material parameters characterizing the Krupkowski plasticity curve. Moreover, Strain Rate Effect is also taken 
into account via Neural Network based regressions, whose training dataset comes from experimental data. The 
parametric metamodel is built via Non-Intrusive PGD —NI–PGD— strategies, relying on a sparse sampling of the 
parametric space, and allowing a quite reduced number of High Fidelity —HiFi— simulations. A novel strategy 
based on clustering and classification, known as Multi-PGD, is also applied and numerically verified.
1. Introduction

In this paper, we revisit some state-of-the-art Model Order Reduc-

tion —MOR— technologies and propose new advances to address safety 
analyses in the automotive industry.2 The main goal of the work is to 
build a parametric metamodel of the vehicle frontal structure (involving 
material properties and design parameters), enabling accurate real-time 
evaluations of its response to a crash scenario. Such model allows fast 
optimization, inverse analysis and uncertainty propagation; it can be 
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exploited, for instance, to guarantee safer designs (e.g., maximizing en-

ergy absorption by the crash boxes) or to reduce manufacturing costs 
(e.g., minimizing the mass of a specific structure under some safety pro-

tocol constraints).

MOR is a really wide topic, largely covered in the existing literature 
[1, 2, 3]. This work primarily focuses on snapshots-based reduced-order 
modeling (a subject that is extensively discussed in [2]) and, partic-

ularly, on the Proper Orthogonal Decomposition —POD— and on the 
sparse Proper Generalized Decomposition —sPGD—. Extensive reviews 
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and investigations on such techniques can be found in [4, 5, 6, 7, 8, 9, 
10, 11, 12]. In particular, in the recent work [10], the authors deal 
with parametric metamodeling of curves, based on POD, PGD, data 
alignment, data clustering and data classification, with emphasis in 
computational materials science. Moreover, in [10], authors exploit the 
surrogates to quantify and propagate uncertainty, obtaining parametric 
statistical bounds for the predicted curves. This paper follows and fur-

ther develops the methods introduced in [10], focusing in particular on 
the study-case of vehicle crash simulations. Within such context, even 
though similar workflows have already been applied in literature (e.g., 
[13, 14, 15]), this work presents elements of novelty both from the 
viewpoint of the applied methodologies and from the analyzed model 
features. In terms of methodologies, the multi-sPGD is applied, combin-

ing the sPGD regression with clustering and classification algorithms 
based on crash modes. The main motivation beyond the choice of the 
method is that the sPGD allows the usage of a reduced number of of-

fline simulations (which are highly expensive computationally when 
the full vehicle is considered). This is not trivial when working in high-

dimensional spaces and with highly non-linear problems, which is the 
case studied in this work. Moreover, the combination of the sPGD with 
clustering and classification is an innovative sub-modeling procedure al-

lowing to improve the model accuracy. In terms of model features, we 
focus on the vehicle frontal structure, whose thicknesses and materials’ 
Krupkowski strain-hardening laws are parametric (for a total number of 
13 parameters). A standard sampling strategy based on Latin-Hypercube 
Sampling —LHS— to select the Krupkowski parameters would not have 
allowed physical-consistent results. For this reason, a specific sampling 
based on physical materials’ properties has been employed, represent-

ing another innovative part of the work. Particularly, this makes use 
of the 𝑘-nearest neighbors algorithm (alternatives would be manifold 
learning techniques) to move close to the manifold of experimental 
data (existing and tested materials). Moreover, another point of nov-

elty is the usage of Neural Networks (trained on experimental data) to 
account for strain-dependent plasticity in the metamodel.

The sPGD regression is employed following the methods widely de-

tailed in Section 2 of [10]. More specifically, the approximation of 
curves is performed within a POD-based approach (Subsection 2.3.3.1 
of [10]) and a quality enhancement of the regression is achieved 
through a clustering-classification strategy (Subsection 2.4 of [10]).

Since works such as [8, 10] extensively expose all the specifics of 
the methods, hereafter we only briefly go over the sPGD method’s core 
concept.

For the sake of simplicity and without loss of generality, we consider 
function 𝑢(𝑥, 𝑦), with 𝑥 and 𝑦 two parameters defined in Ω ⊂ℝ2. We look 
for the approximate 𝑢𝑀 (𝑥, 𝑦) expressed in the separated form given in 
Eq. (1)

𝑢𝑀 (𝑥, 𝑦) =
𝑀∑
𝑚=1

𝑋𝑚(𝑥) ⋅ 𝑌𝑚(𝑦) =
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where 𝑀 refers the number of terms (rank) of the finite sum decom-

position, vectors 𝐍𝑥
𝑚
(𝑥) and 𝐍𝑦𝑚(𝑦) contain the functions involved in the 
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𝑚
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the associated (searched) coefficients.

With the first 𝑀 − 1 modes already calculated, the obtention of the 
𝑀 -mode results from the minimization problem
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where 𝐷 is the number of available data-points, (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝐷, for 
which the solution is assumed known (high-fidelity solutions) 𝑢(𝑥𝑖, 𝑦𝑖).

Eq. (2) proceeds by calculating iteratively coefficients 𝐚𝑥
𝑚

and 𝐚𝑦𝑚, 
from Eq. (3) and (4), respectively
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both solved in a least square sense, with 𝐊𝑥
𝑀

, 𝐊𝑥
𝑀

and 𝐫 derived from 
Eq. (2).

To avoid overfitting the richness of the approximation bases used at 
each level (𝑚) is controlled, by increasing gradually the approximation 
degree when increasing 𝑚.

The paper is structured as follows. In Section 2 the target system 
is presented, describing in detail the parametric vehicle frontal struc-

ture. Section 3 represents an introductory example to the sPGD based 
regression within the PODI MOR builder; only the thicknesses are con-

sidered in this case. Section 4 describes in detail the integration of ma-

terial properties and strain-rate dependent Krupkowski plasticity into 
the sPGD model. Section 5 presents the multi-PGD approach based on 
clustering different crash dynamics. Section 4 and 5 represent the main 
original contributions of this work. Section 6 is a short conclusion on 
the proposed method and discusses several industrial applications.

2. Target system

The vehicle front structure composed by the crash boxes, the front 
side inner members (front and rear) and the front side outer member is 
parametrized. The target system is shown in Fig. 1, while Fig. 2 gives 
multiple zoomed views of the parametric parts.

Numerical simulations of the vehicle full-frontal rigid barrier crash 
are carried-out using the finite element method with the commercial 
software LS-Dyna used by Hyundai. The frontal structure is discretized 
by means of 23233 shell elements (23737 nodes), as shown in Fig. 3, 
and using 5 integration points through-the-thickness. The mesh of the 
full vehicle consists of several millions of elements (solids, beam and 
thin shell types) and has been verified being fine enough to ensure ac-

curate high-fidelity simulations. Moreover, we stress the fact that the 
quality of the parametric model is evaluated with respect to LS-Dyna 
simulations, and not with respect to the experimental tests of the full-

car crash test. This because, as usually done in reduced-order modeling, 
the target is the solution we would obtain by performing the full-order 
simulation.

Quantities of interest are extracted at the measurement nodes lo-

cated at the bottom of the B-pillar (left and right), as shown in Fig. 4. 
Particularly, we focus on displacement, velocity and acceleration along 
the 𝑥-direction. The crash pulse curve (acceleration time history) is ob-

tained by deriving the velocity signal computed by LS-Dyna and then 
filtering according to the CFC60 filter class (based on the iso6487 stan-

dard).

The initial velocity of the vehicle is approximately 55 km/h and a 
full frontal rigid barrier crash is simulated over the first 100 ms. Accel-

eration is measured in standard gravity 𝑔. Fig. 5 shows the deformation 
behavior of the parts of interest.

Some important crash severity parameters are listed here below:

• The 1st peak of acceleration curve is defined as the maximum value 
of the filtered acceleration curve over the first 27 ms. The upper-

bound of this safety index is a peak value of 25 g.

• The Occupant Load Criterion —OLC— which indicates the mini-

mum occupant acceleration, induced by a given crash pulse under 
the protection of the ideal restraint system [16, 17, 18]. When the 
occupant reaches the distance of 65 mm, it is assumed that the oc-

cupant is optimally restrained. The EuroNCAP procedure for the 
computation of OLC is detailed in [19] and described here below:

1. let 𝑣0 and 𝑣 denote 𝑥-velocity at initial time 𝑡0 and a generic 
time 𝑡, respectively;

2. let 𝑆1(𝑡) = ∫ 𝑡0 (𝑣0 − 𝑣) d𝑡;
3. find the time 𝑡2 such that 𝑆1(𝑡2) = 65 mm;

4. define 𝑆2(𝑡) = (𝑡 − 𝑡2)(𝑣0 − 𝑣)∕2;

5. find the time 𝑡3 such that 𝑆2(𝑡3) − 𝑆1(𝑡3) = 300 mm;

6. use the definition OLC = − 𝑣(𝑡3)−𝑣(𝑡2) .

𝑡3−𝑡2
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Fig. 1. Full car model and highlighted target system.

Fig. 2. Zoom of the target system.
Fig. 3. Mesh of the target system.

Values in between 30 g and 35 g are considered as an acceptable 
crash performance in our study.
3

• The Ride-Down Energy —RDE— computed by taking the integral 
of the acceleration-displacement curve 𝑎-𝑥. Detailed analysis for 
ride-down mechanism can be found in [20, 21, 22, 23]. The con-

cept of ride-down efficient and the ride-down existent criteria are 
discussed in [20, 23]. Denoting with 𝐸rd the ride-down energy 
density and with 𝐸 the initial occupant kinetic energy density (as-

suming for the occupant the same velocity as the impact speed), 
then the ride-down energy density rate is defined as 𝑅rd = 𝐸rd∕𝐸
and we consider the occupant injury to be acceptable for rate val-

ues under < 50%.

• The rebound time, that is the time instant in which the velocity 
curve gets to zero.

3. Parametric model with part thicknesses

For the sake of methodological illustration, we first build a paramet-

ric model considering only the part thicknesses. Table 1 summarizes the 
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Fig. 4. Location of measurement nodes (LH/RH).

Fig. 5. Deformation behavior evolving in time during crash.
Table 1. Thickness information.

Part (LH/RH) Original Thickness [mm] Parameter Range [mm]

Member-Front Side Outer 1.4 𝑡1 ∈ [0.8, 2.3]

Member-Front Side Inner Front 1.8 𝑡2 ∈ [0.8, 2.3]

Member-Front Side Inner Rear 2 𝑡3 ∈ [0.8, 2.3]

Crash Box 3.2 𝑡4 ∈ [2, 4]

Fig. 6. Sketch of parts with parametric thickness.

original thickness of parts of interest as well as the parametric ranges 
covered by the model of the frontal structure, sketched in Fig. 6.

10 High-Fidelity simulations are chosen by means of a Latin Hyper-

cube Sampling. The sampled points in the parametric space are reported 
in Table 2.

In Fig. 7, we give the plots of the displacement and velocity curves 
obtained by integration of the filtered acceleration. The sub-figures at 
top and bottom are related to left-hand (LH) and right-hand (RH) side 
measurement node, respectively (as shown in Fig. 4). Moreover the neg-

ative sign is related to the fixed reference system and chosen positive 
direction.

Following the procedure described in Section 2 of [10], a POD basis 
is extracted from 8 Hi-Fi simulations, while remaining 2 (run 3 and run 
8) are taken for testing. Analyzing the singular values pattern, we de-
4

Table 2. DoE for thickness (data in mm).

Run 𝑡1 𝑡2 𝑡3 𝑡4
1 1.080 1.689 1.927 2.426

2 2.020 1.364 1.499 3.583

3 1.763 1.832 2.165 3.320

4 0.868 1.972 1.045 2.748

5 1.678 2.114 1.383 3.040

6 1.122 1.487 1.133 2.314

7 2.207 0.943 2.092 2.018

8 1.497 1.115 0.914 2.964

9 1.923 2.158 1.639 3.747

10 1.340 1.026 1.836 3.971

duce that two modes contain the most information. For instance, Figs. 8

and 9 show the POD results in the case of displacement and velocity 
computed at the left-side of the vehicle (LH), respectively. A basis of 
quite few time modes (two in this example) is thus retrieved employing 
the truncated POD and, then, the sPGD method is applied to predict the 
coefficients (weights) of such modes. Once the model has been trained 
and calibrated, new coefficients can be predicted for a novel choice of 
parameters and time functions are reconstructed using the reduced POD 
basis.

Figs. 10 and 11 show the results on the test runs, for the displace-

ment and velocity respectively. Both the results show great accuracy.

4. Accounting for material properties

The core of the work is considering material properties in the meta-

model. With the aim of simulating virtual plastic materials, a Krup-

kowski strain-hardening law is considered, as usual in the high-fidelity 
models. For this to be done, two important novelties are introduced. The 
first one concerns the Design of Experiments —DoE— and, particularly, 
a physics-informed sampling strategy following the manifolds experi-

mentally observed. The second one is related to the strain-dependent 
plasticity accounted by using Neural Networks, respecting the static 
and dynamic tests experimentally performed over materials specimens. 
These points are explained in detail hereafter.
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Fig. 7. Filtered curves for 10 runs of Table 2 (LH and RH measurement points at top and bottom, respectively).

Fig. 8. POD results for LH 𝑥-displacement snapshots.

Fig. 9. POD results for LH 𝑥-velocity snapshots.
4.1. Sampling strategy

In this study, the material properties of the front side members 
(steel parts) are also considered as problem parameters. For each part, 
we consider the 3 parameters (𝑛, 𝐾, 𝜀0) characterizing the Krupkowski 
strain-hardening law

𝜎 =𝐾(𝜀+ 𝜀0)𝑛,

linking the True Strength and the True Strain.

Since a Latin Hypercube Sampling —LHS— for the point (𝑛, 𝐾, 𝜀0)
could lead to nonphysical results, we perform the sampling over three 
physical properties: the Yield Strength YS (𝑅𝑝), the Ultimate Tensile 
5

Strength UTS (𝑅𝑚) and the Uniform Elongation U-El (𝐴𝑔 , in %). Fig. 12

shows the location of such points over a typical plasticity curve linking 
the Engineering Strength and Engineering Strain.

From the sampled tuple (YS, UTS, U-El), we compute the corre-

sponding Krupkowski parameters (𝐾, 𝑛, 𝜀0) by means of a non-linear 
optimization algorithm, detailed hereafter (Algorithm 1). Once such pa-

rameters are computed, the Krupkowski plasticity curve (𝜀, 𝜎) identifies 
the material of a specific part.

As one can deduce from Fig. 12, the sampling of material properties 
shall also meet some requirements to ensure realistic plastic behaviors. 
For instance, if values of 𝑅𝑚 and 𝑅𝑝 are too close, then the fitted curve 
would be meaningless (perfect plasticity). To avoid such uncomfortable 
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Fig. 10. Reconstructed 𝑥-displacement using the sPGD models (orange: Hi-Fi simulation, blue: Reduced Model).

Fig. 11. Reconstructed 𝑥-velocity using the sPGD models (orange: Hi-Fi simulation, blue: Reduced Model).
Fig. 12. Plasticity curve and location of sampled points.

configurations, a good alternative is based on sampling the Yield Ratio, 
YR = YS

UTS
= 𝑅𝑝

𝑅𝑚
and fix a suitable lower bound on this quantity.

4.2. Strain-rate effect

Since Strain-Rate Effect is considered in our simulations, the ma-

terial of a part is identified by a rate-dependent plasticity curve (i.e., 
a plasticity curve for each rate). To correctly account for that in our 
parametric model, we exploit available experimental data collecting 
results of tests performed over specimens ranging from Mild Steel to 
Press Hardened Steel —PHS—. Such dataset links material properties 
6

Algorithm 1 Computation of Krupkowski plasticity parameters from 
material properties

Input: 𝑅𝑝, 𝑅𝑚, 𝐴𝑔
Output: 𝑛, 𝐾, 𝜀0

1: 𝐴 ←𝐴𝑔∕100
2: 𝐼 ←𝐴 + 1
3: 𝑓 (𝑛) ← 𝐼𝑅𝑚∕𝑅𝑝 − (𝑛∕(𝑛− ln𝐼))𝑛

4: 𝑛0 ← 1.01 ln𝐼
5: find 𝑛 such that 𝑓 (𝑛) = 0, given the initial guess 𝑛0

⊳ non-linear roots finder, e.g. Newton-Krylov optimization

6: 𝐾 ←𝑅𝑝∕(𝑛 − ln𝐼)𝑛

7: 𝜀0 ← 𝑛 − ln𝐼

observed at quasi-static test (YS, UTS, U-El)QS with the ones obtained 
at dynamic test under a strain rate 𝑟, (YS, UTS, U-El)D

𝑟
. Each tuple of 

material properties identifies a plasticity curve, via Algorithm 1. For a 
given strain rate, we can therefore build a regression model whose fea-

tures are the S-S curves at quasi-static test, while the targets are the 
corresponding S-S curves at dynamic test. Our data collect 1080 curves 
and account for 8 different strain rates (0.008, 0.1, 1, 5, 10, 50, 100, 200)
s−1, that is 135 curves for a given strain rate. Data observed at strain 
rate equal to 0.008 represent the quasi-static test. For each rate, a 
Single-layer Fully Connected Neural Network is trained (using a ReLU 
activation function), with a ratio between train and test data is set as 
9:1. Moreover, a standardization based on the usual Min-Max scaler is 
used to normalize the input features prior to model fitting.
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Fig. 13. Predicted versus true values in case of rate 0.1; top: training data, bottom: test data.
Finally, for each part (Member-Front Side Outer, Member-Front Side 
Inner Front, Member-Front Side Inner Rear), the sampling procedure 
reads as follows:

1. sample (UTS, YR, U-El)QS, i.e. at strain rate 0.008 s−1;
2. calculate YS from YR: YS = UTS ⋅ YR;

3. for each rate 𝑟 in (0.1, 1, 5, 10, 50, 100, 200) s−1:

(a) use the corresponding trained NN model to predict the tuple 
(YS, UTS, U-El)D

𝑟
accounting for strain rate;

(b) from the sampled tuple (YS, UTS, U-El)D
𝑟

, compute the corre-

sponding plasticity parameters (𝑛, 𝐾, 𝜀0)𝑟 via Algorithm 1 and, 
given the elongation 𝜀, compute the curve (𝜀, 𝜎)𝑟.

4. generate the material collecting the rate-dependent plasticity 
curves (𝜀, 𝜎)𝑟.

For the sake of clarity, we underline that the Strain-Rate is not di-

rectly related to the Design of Experiments. After the sampling of a 
virtual material through its properties at quasi-static test, its response 
to Strain-Rate is predicted through the trained Neural-Networks mod-

els, allowing to obtain a plasticity curve for each rate characterizing 
such newly defined material.

Fig. 13 shows the results of NN predictions over train and test data, 
for Strain Rate 0.1. Table 3 gives the MSE values over train and test, 
which are small enough compared to the order of magnitude of the 
parameters.

Since the Strain-Rate —SR— models are trained over experimen-

tal data, one needs to pay special attention to point 1. Indeed, if the 
sampled virtual material is too far from the ones used for training the 
Neural-Network models, we cannot expect reliable Strain-Rate curve 
predictions (point 3). A standard Latin Hypercube Sampling would def-

initely not be a good approach, since the experimental data belong to 
a small manifold inside the hypercube. The sampling strategy we use 
is thus based on a 𝑘-nearest neighbors —KNN— algorithm and sum-

marized in Algorithm 2, which allows us to move close to the training 
7

Table 3. MSE values for Neural-Network predictions.

Strain Rate [s−1] YS [MPa] UTS [MPa] U-El [%]

Train Test Train Test Train Test

0.1 11.275 8.391 2.844 6.087 1.219 ⋅10−5 5.318 ⋅10−5

1 7.886 18.260 9.046 18.271 2.942 ⋅10−5 2.937 ⋅10−5

5 8.830 15.036 10.964 14.333 2.799 ⋅10−5 3.743 ⋅10−5

10 21.110 38.357 10.350 15.002 2.687 ⋅10−5 2.757 ⋅10−5

50 19.942 28.299 62.160 49.671 1.814 ⋅10−5 2.015 ⋅10−5

100 19.452 22.485 23.471 32.218 2.414 ⋅10−5 3.319 ⋅10−5

200 10.318 16.290 11.551 23.754 5.559 ⋅10−6 5.116 ⋅10−6

dataset without having to know the manifold to which the data belong 
(otherwise, one could investigate the data distribution through specific 
manifold learning techniques).

Algorithm 2 KNN-based sampling of material properties

Input: number of points to be sampled 𝑁 , number of neighbors 𝑘, experimental data 
𝑋 ∈ℝ𝑀×3

Output: DoE

1: Apply a Min-Max scaling of data to obtain the normalized ones 𝑋adim ∈ [0, 1]𝑀×3

2: Select randomly 𝑁 points from 𝑋 (i.e., 𝑁 random row indices)

3: for each selected point do

4: Find its 𝑘 nearest neighbors

5: Generate a new point as the linear combination of such 𝑘 neighbors (with random 
weights)

6: Add the newly generated point to the DoE

7: end for

4.3. Parametric metamodel construction

The new parametric model accounts for 13 parameters, as reported 
in Table 4 and sketched in Fig. 14. The three steel parts (Member-

Front Side Outer, Member-Front Side Inner Front, Member-Front Side 
Inner Rear) have parametric material properties and thickness, while 
the Crash Boxes have only parametric thickness. 70 Hi-Fi simulations 
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Fig. 14. Sketch of parts with parametric thickness and material properties.

Fig. 15. 30 sampled points (YS,UTS,U-El)QS using the KNN-based algorithm.

Fig. 16. POD results for LH 𝑥-velocity snapshots.
Table 4. DoE structure for thickness 𝑡 and material parameters 
(YS, UTS, U-El)QS.

Outer Inner Front Inner Rear Crash Box

𝑡1 (YS,UTS,U-El)QS

1 𝑡2 (YS,UTS,U-El)QS

2 𝑡3 (YS,UTS,U-El)QS

3 𝑡4

have been performed, 66 are taken for training the model while re-

maining 4 for validation.

The parameter range for thicknesses is the same as the introduc-

tory study of Section 3, reported in Table 1. Material properties at 
quasi-static test have been sampled via the KNN-based Algorithm 2

and, according to the available experimental data, they range from Mild 
Steel to Press Hardened Steel. Fig. 15 shows, for instance, 30 sampled 
points using this procedure, for the three parts. The material proper-

ties for one simulation are MAT = (YS, UTS, U-El)QS
 , with  = 1, 2, 3

the corresponding part, meaning in total 9 material parameters. Such 
parameters are obtained taking the sampled point in the three 3D plots 
8

Table 5. 𝐿2 norm relative errors on test.

Run 30 Run 59 Run 34 Run 68

LH RH LH RH LH RH LH RH

0.023 0.023 0.036 0.033 0.014 0.029 0.033 0.023

of Fig. 15 simultaneously. From the points sampled at quasi-static test, 
we can compute the parameters accounting for strain rate by means of 
the trained Neural-Network, as detailed in Subsection 4.2.

Analyzing the singular values pattern, we deduce that three modes 
contain the most information. For instance, Fig. 16 shows the POD re-

sults in the case of velocity computed at the left-side of the vehicle (LH). 
The sPGD regression is thus applied as described in the previous section.

Fig. 17 shows the plots of predicted curves for testing points and 
Table 5 gives the related 𝐿2 norm relative errors.
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Fig. 17. Reconstructed 𝑥-velocity using the sPGD models (orange: Hi-Fi simulation, blue: Reduced Model).

Fig. 18. POD results for LH 𝑥-acceleration snapshots.

Fig. 19. Reconstructed 𝑥-acceleration using the sPGD models (orange: Hi-Fi simulation, blue: Reduced Model).
The same study is done over acceleration curves, for which first 
four modes are selected after a scaling analysis on singular values (see 
Fig. 18).

In Fig. 19 predictions on acceleration curves are given. Regardless a 
well captured global shape, the oscillations and peaks amplitudes char-

acterizing the transitory regimen are mostly wrong. One can notice that 
in runs 30 and 59 the measurement node starts decelerating at almost 
45 ms. Different behavior is observed for runs 34 and 68 where the 
point keeps accelerating up to almost 65 ms and suddenly decelerates 
with a more pronounced slope. Such simulations highlight substantially 
9

different crash dynamics. The low accuracy of predictions can thus be 
ascribed to a model which is mixing and averaging such dynamics. 
These comments motivate the clustering-based approach investigated 
in the next section.

5. Multi-PGD

Further improvements can be reached through the multi-regression 
strategy briefly discussed in Section 2.4 of [10]. The idea is basically 
to cluster the high-fidelity simulations according to the most relevant 
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Fig. 20. Two different crash modes, at bottom and top. Snapshots taken at the last timestep.
Fig. 21. Two different crash modes (plastic-strain over the deformed structure 
with isometric view). Snapshots taken at the last timestep.

crash mode, e.g. buckling and compression behaviors, as emphasized in 
Figs. 20 and 21. Once a cluster criterion is established, separate reduced 
models are built. A classification algorithm is also necessary since, dur-

ing the online phase, one needs to identify the right cluster for a new 
simulation (coming for a new choice of parameters).

5.1. Clustering

The approach followed in this work is based on clustering the high-

fidelity simulations according to the displacement of lower boundary 
Fig. 22. Left side member lower boundary displacem

10
Table 6. Configuration of parameters for base mode definition.

Outer Inner Front Inner Rear Crash Box

1.4 SPFC980Y 1.8 SPFC590DP 2 SPFC590DP 3.2

nodes of the left side member as illustrated in Fig. 22. A similar cluster-

ing procedure was also applied in [14].

First, a reference deformation mode is computed for a specific con-

figuration of parameters, reported in Table 6 (same layout as Table 4).

Then, for each simulation we compute the mean distance of its lower 
boundary nodes to such reference mode (each coordinate 𝑥, 𝑦 and 𝑧 sep-

arately) and use a min-max scaling to normalize data. In such a way, 
a unique point in three-dimensional space is associated to each simula-

tion. A hierarchical cluster based on ward linkage and euclidean affinity 
is applied and two clusters are obtained, as shown in Fig. 23.

Fig. 24 shows an important difference in final deformation stage 
between the two clusters (up and down parts of the figure).

5.2. Multi-regression models

In Figs. 25 and 26 we give the results of POD performed separately 
for each cluster, for left and right measurement points, respectively. 
As remarked at the end of Section 4, the two clusters identified based 
on the crash dynamics influence the final part of the acceleration curve 
(starting from 45 ms). In the first scenario, the measurement node starts 
decelerating while in the second one it keeps accelerating up to a maxi-

mum point (at almost 65 ms) and then suddenly falls. Two sPGD models 
are thus trained and calibrated, one for each cluster.

5.3. Classification

A classification step shall also be integrated in the procedure since, 
for a new choice of parameters, one must be able to select the right sub-

model for curves prediction. A Random Forest classifier was employed 
for this study, whose confusion matrix is given in Fig. 27.
ent. Nodes of interest are highlighted in yellow.
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Fig. 23. Hierarchical clustering results.

Fig. 24. Two clustered deformation modes (up and down); black fat line representing the reference mode.

Fig. 25. POD results for LH 𝑥-acceleration snapshots within the two identified clusters.

Fig. 26. POD results for RH 𝑥-acceleration snapshots within the two identified clusters.
11
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Fig. 27. Confusion matrix for Random Forest Classifier.

Fig. 28. Reconstructed 𝑥-acceleration using the multi-PGD models (orange: Hi-Fi simulation, blue: Reduced Model).
Finally, in Fig. 28 we give the results on the acceleration predictions. 
As expected, test runs 30 and 59 belong to the first cluster, while 34 and 
68 to the second one.

The first peak and the final part of the curve are now almost per-

fectly predicted. The average 𝐿2 norm error is now reduced to 9% on 
average, against the 15% of the unique model.

6. Conclusion, further developments and applications

In the present study a parametric model of the vehicle frontal struc-

ture has been built and numerically tested over a full-frontal crash. 
Thicknesses and material properties of the front side members are para-

metric.

Virtual plastic materials can be sampled moving near the manifold 
identified by experimental data collected for the quasi-static material 
tests. The rate-dependent Krupkowski plasticity curves (i.e., the strain-

rate effects) are consequently built according to trained Neural-Network 
models linking experiments at quasi-static and dynamic tests. The Neu-

ral Networks show great accuracy in the prediction from quasi-static to 
dynamic, meaning that the parametric strain-rate is of great precision.

The model allows to evaluate in real time the influence of 13 pa-

rameters (4 thicknesses and 9 material properties), without needs of 
performing again a full vehicle crash computation. To improve the ac-

curacy of acceleration curves predictions a hierarchical clustering on 
crash dynamics has been performed and separate multi-regression mod-
12
els have been built. Accordingly, a Random Forest classifier is trained 
to identify the right cluster for a newly defined run.

Although the accuracy of the model seems to be really satisfactory 
considering its computational gains, several developments could be at-

tempted for accuracy improvements. First, a reduced parametric space 
could be considered, being the material parameters range quite wide in 
this study (from Mild Steel to Press Hardened Steel). Some other strate-

gies, towards specific and physics-informed models, will also be part of 
our future research in this line. The curves could, indeed, be split in 
several regimes and separate sub-models could be built for each part 
of the curve. For this, one could be inspired by the curves alignment 
methodology proposed in [10]. Such regimes are often evident observ-

ing the acceleration-displacement curve and its integral function (RDE 
as a function of the displacement). Once the different regimes identi-

fied, some physical considerations could be embedded in the model to 
understand which parameters are actively influencing a specific part of 
the curve. For instance, since in the energy absorption the crash boxes 
act before then the side members, the parameters of crash boxes shall 
influence mostly the first part of the pulse. Similarly, the transitory part 
will mostly be influenced by side members parameters.

Among the applications and advantages of the proposed procedure, 
there is the monitoring, in real time, of the influence of material pa-

rameters on all safety indices like RDE, OLC, first peak acceleration 
or rebound time. Moreover, defining a parametric metamodel for an-

other crash scenario, e.g. an offset crash, a constrained optimization 
problem could be considered: find the optimal parameters to minimize 
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the frontal structure weight or manufacturing cost while respecting 
all crash performance specifications. We may also comment-out about 
the design space. In this paper, only the frontal structure has been 
parametrized. However, in our works in progress, we focus also on 
models where several parts (in the whole vehicle) are parametric and 
where the reduced-order model is built for all the measured 3D fields. 
In general, higher the number of parameters, higher the number of re-

quired high-fidelity simulations. Although this is a classical limitation 
of Non-Intrusive ROMs —NI-ROMs—, the sPGD structure allows us to 
work in the low-data limit even in high-dimensional parametric spaces. 
The algorithm, as done in this paper, needs sometimes, for the sake of 
accuracy, to be coupled with fields alignment, clustering and classifica-

tion. This requires, not only good results from the clustering step, but 
also the existence of a discriminant in the design space and a classifier 
able to detect it. From clustering and classification results obtained in 
[10] and in this work, the multi-sPGD seems being really promising. In 
our current research we are focusing on developing new methodologies 
based on a non-intrusive parametric domain-decomposition approach 
to reduce the computational effort required when many parts (conse-

quently, many parameters) are involved.
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