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Polynomial Equations: Theory and Practice

Simon Telen

AbstractSolving polynomial equations is a subtask of polynomial optimization. This
article introduces systems of such equations and the main approaches for solving
them. We discuss critical point equations, algebraic varieties, and solution counts.
The theory is illustrated by many examples using different software packages.

1 Polynomial equations in optimization

Polynomial equations appear in many fields of science and engineering. Some exam-
ples are chemistry [19, 42], molecular biology [23], computer vision [32], economics
and game theory [47, Chapter 6], topological data analysis [9], and partial differential
equations [47, Chapter 10]. For an overview and more references, see [10, 14]. This
article will be a chapter in the forthcoming book Polynomial optimisation, moments
and applications presenting research acitivies conducted in the European Network
POEMA. In that context, polynomial equations arise from optimization problems.
Let us consider the problem of minimizing a polynomial objective function

𝑓 (𝑥1, . . . , 𝑥𝑘) over the set 𝑋 = {𝑥 ∈ R𝑘 : ℎ1 (𝑥) = · · · = ℎℓ (𝑥) = 0} ⊂ R𝑘 ,
where also ℎ1, . . . , ℎℓ are polynomials in the 𝑘 variables 𝑥 = (𝑥1, . . . , 𝑥𝑘). This is a
polynomial optimization problem [35], often written as

min
𝑥∈R𝑘

𝑓 (𝑥1, . . . , 𝑥𝑘),

subject to ℎ1 (𝑥1, . . . , 𝑥𝑘) = · · · = ℎℓ (𝑥1, . . . , 𝑥𝑘) = 0.
(1)

Introducing new variables 𝜆1, . . . , 𝜆ℓ we obtain the Lagrangian 𝐿 = 𝑓 −𝜆1ℎ1− · · · −
𝜆ℓℎℓ , whose partial derivatives give the optimality conditions
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𝜕𝐿

𝜕𝑥1
= · · · = 𝜕𝐿

𝜕𝑥𝑘
= ℎ1 = · · · = ℎℓ = 0. (2)

A solution in R𝑘 is a candidate minimizer. Many methods for solving the equations
(2), like those presented in Section 4, compute all complex solutions first and then
select the real ones among them. The number of solutions over C is typically finite.
We present two examples of (1). First, weminimize the distance to algebraic varieties.

Example: Euclidean distance degree

Given a point 𝑦 = (𝑦1, . . . , 𝑦𝑘) ∈ R𝑘 , we consider the squared Euclidean distance
function 𝑓 (𝑥1, . . . , 𝑥𝑘) = ∥𝑥 − 𝑦∥22 = (𝑥1 − 𝑦1)2 + · · · + (𝑥𝑘 − 𝑦𝑘)2. As above, 𝑋 is the
set {𝑥 ∈ R𝑘 | ℎ1 = · · · = ℎℓ = 0}. The solution 𝑥∗ of the optimization problem (1) is

𝑥∗ = argmin
𝑥∈𝑋

∥𝑥 − 𝑦∥22, (3)

i.e. the point on 𝑋 that is closest to 𝑦. The algebraic complexity of this problem is
studied in [20]. For instance, let 𝑘 = 2, ℓ = 1 and let 𝑋 be the unit ball with respect
to the 4-norm ∥·∥4: ℎ = ℎ1 = 𝑥

4
1 + 𝑥

4
2 − 1. We want to find the point on 𝑋 closest to

𝑦 = (2, 1.4). In Mathematica [?], one solves (2) as follows:
f = (x1 - 2)^2 + (x2 - 1.4)^2; h = x1^4 + x2^4 - 1; L = f - lambda*h;
NSolve[{D[L, x1] == 0 && D[L, x2] == 0 && h == 0}, Reals]

This returns two critical points on 𝑋 . One of them minimizes the distance to 𝑦, the
other maximizes it. The minimizer is 𝑥∗ = (0.904944, 0.757564). If we delete the
option Reals, the program returns 16 complex solutions.

Second, we set up a polynomial optimization problem from system identification.

Example: parameter estimation for system identification

System identification is an engineering discipline that aims to construct models for
dynamical systems from measured data. A model explains the relationship between
input, output, and noise. It depends on a set of model parameters, which are selected
to best fit the measured data. A discrete-time, single-input single-output linear time-
invariant system with input sequence 𝑢 : Z → R, output sequence 𝑦 : Z → R and
white noise sequence 𝑒 : Z→ R is often modeled by

𝐴(𝑞) 𝑦(𝑡) =
𝐵1 (𝑞)
𝐵2 (𝑞)

𝑢(𝑡) + 𝐶1 (𝑞)
𝐶2 (𝑞)

𝑒(𝑡). (4)

Here 𝐴, 𝐵1, 𝐵2, 𝐶1, 𝐶2 ∈ C[𝑞] are unknown polynomials of a fixed degree in the
backward shift operator 𝑞, acting on 𝑠 : Z → R by 𝑞𝑠(𝑡) = 𝑠(𝑡 − 1). The model
parameters are the coefficients of these polynomials, which are to be estimated.
Clearing denominators in (4) gives
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𝐴(𝑞)𝐵2 (𝑞)𝐶2 (𝑞)𝑦(𝑡) = 𝐵1 (𝑞)𝐶2 (𝑞)𝑢(𝑡) + 𝐵2 (𝑞)𝐶1 (𝑞)𝑒(𝑡). (5)

Suppose we have measured 𝑢(0), . . . , 𝑢(𝑁), 𝑦(0), . . . , 𝑦(𝑁). Let 𝑑 = max(𝑑𝐴 +
𝑑𝐵2 + 𝑑𝐶2 , 𝑑𝐵1 + 𝑑𝐶2 , 𝑑𝐵2 + 𝑑𝐶1 ), where 𝑑𝐴, 𝑑𝐵1 , 𝑑𝐵2 , 𝑑𝐶1 , 𝑑𝐶2 are the degrees of our
polynomials. Writing (5) for 𝑡 = 𝑑, 𝑑 + 1, . . . , 𝑁 , we find algebraic relations among
the coefficients of 𝐴, 𝐵1, 𝐵2, 𝐶1, 𝐶2. The model parameters are estimated by solving

min
Θ∈R𝑘

𝑒(0)2 + . . . + 𝑒(𝑁)2 subject to (5) is satisfied for 𝑡 = 𝑑, . . . , 𝑁

where Θ consists of 𝑒(0), . . . , 𝑒(𝑁) and the coefficients of 𝐴, 𝐵1, 𝐵2, 𝐶1, 𝐶2. We
refer to [3, Section 1.1.1] for a worked-out example and more references.

More general versions of (1) add inequality constraints of the type 𝑞1 (𝑥) ≥
0, . . . , 𝑞ℓ′ (𝑥) ≥ 0, where 𝑞1, . . . , 𝑞ℓ′ are polynomials. Such problems can be handled
using sums-of-squares relaxations [34].
Our aim in this article is to introduce systems of polynomial equations in general,

and methods for solving them. The reader is encouraged to try out these methods for
polynomial optimization, for instance, in a Euclidean distance computation (3) or
in system identification. Section 2 discusses solution sets to polynomial equations,
also called algebraic varieties, and root finding over different fields. In Section 3, we
present several classical upper bounds on the number of solutions. Section 4 is about
normal form methods and homotopy continuation methods, which are two different
important approaches to solving polynomial equations. Finally, Section 5 contains a
case study in which we apply these methods to compute 27 lines on a cubic surface.

Acknowledgements. This article is based on an introductory lecture given at the
workshop Solving polynomial equations and applications organized at CWI, Ams-
terdam in October 2022. I thankMonique Laurent for involving me in this workshop,
and all other speakers and attendants for making it a success. I was supported by a
Veni grant from the Netherlands Organisation for Scientific Research (NWO).

2 Systems of equations and algebraic varieties

Let 𝐾 be a field with algebraic closure 𝐾 , e.g., 𝐾 = R and 𝐾 = C. The polynomial
ring with 𝑛 variables and coefficients in 𝐾 is 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛]. We abbreviate
𝑥 = (𝑥1, . . . , 𝑥𝑛) and use variable names 𝑥, 𝑦, 𝑧 rather than 𝑥1, 𝑥2, 𝑥3 when 𝑛 is small.
Elements of 𝑅 are polynomials, which are functions 𝑓 : 𝐾𝑛 → 𝐾 of the form

𝑓 (𝑥) =
∑︁
𝛼∈N𝑛

𝑐 (𝛼1 ,...,𝛼𝑛) 𝑥
𝛼1
1 · · · 𝑥𝛼𝑛𝑛 =

∑︁
𝛼∈N𝑛

𝑐𝛼 𝑥
𝛼,

with finitely many nonzero coefficients 𝑐𝛼 ∈ 𝐾 . A system of polynomial equations is

𝑓1 (𝑥) = · · · = 𝑓𝑠 (𝑥) = 0, (6)
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where 𝑓1, . . . , 𝑓𝑠 ∈ 𝑅. By a solution of (6), we mean a point 𝑥 ∈ 𝐾𝑛 satisfying all
of these 𝑠 equations. Solving usually means finding coordinates for all solutions.
This makes sense only when the set of solutions is finite, which typically happens
when 𝑠 ≥ 𝑛. However, systems with infinitely many solutions can be ‘solved’ too,
in an appropriate sense [45]. We point out that one is often mostly interested in
solutions 𝑥 ∈ 𝐾𝑛 over the ground field 𝐾 . The reason for allowing solutions over the
algebraic closure 𝐾 is that many solution methods, like those discussed in Section
4, intrinsically compute all such solutions. For instance, (2) is a polynomial system
with 𝑛 = 𝑠 = 𝑘 + ℓ, and the field is 𝐾 = R. Here are some other examples.

Example: univariate polynomials (𝑛 = 1) and linear equations

When 𝑛 = 𝑠 = 1, solving the polynomial systemdefined by 𝑓 = 𝑎0+𝑎1𝑥+· · ·+𝑎𝑑𝑥𝑑 ∈
𝐾 [𝑥], with 𝑎𝑑 ≠ 0, amounts to finding the roots of 𝑓 (𝑥) = 0 in 𝐾 . These are the
eigenvalues of the 𝑑 × 𝑑 companion matrix

𝐶 𝑓 =

©­­­­«
−𝑎0/𝑎𝑑

1 −𝑎1/𝑎𝑑
. . .

...

1 −𝑎𝑑−1/𝑎𝑑

ª®®®®¬
(7)

of 𝑓 , whose characteristic polynomial is det(𝑥 · id − 𝐶 𝑓 ) = 𝑎−1𝑑 · 𝑓 .
When 𝑓𝑖 =

∑𝑛
𝑗=1 𝑎𝑖 𝑗 𝑥 𝑗 − 𝑏𝑖 are given by affine-linear functions, (6) is a linear

system of the form 𝐴𝑥 = 𝑏, with 𝐴 ∈ 𝐾𝑠×𝑛, 𝑏 ∈ 𝐾𝑠 .

This example shows that, after a trivial rewriting step, the univariate and affine-linear
cases are reduced to a linear algebra problem. Here, we are mainly interested in the
case where 𝑛 > 1, and some equations are of degree > 1. Such systems require tools
from nonlinear algebra [38]. We proceed with an example in two dimensions.

Example: intersecting two curves in the plane

Let 𝐾 = Q and 𝑛 = 𝑠 = 2. We work in the ring 𝑅 = Q[𝑥, 𝑦] and consider the system
of equations 𝑓 (𝑥, 𝑦) = 𝑔(𝑥, 𝑦) = 0 where

𝑓 = −7𝑥 − 9𝑦 − 10𝑥2 + 17𝑥𝑦 + 10𝑦2 + 16𝑥2𝑦 − 17𝑥𝑦2,
𝑔 = 2𝑥 − 5𝑦 + 5𝑥2 + 5𝑥𝑦 + 5𝑦2 − 6𝑥2𝑦 − 6𝑥𝑦2.

(8)

Geometrically, we can think of 𝑓 (𝑥, 𝑦) = 0 as defining a curve in the plane. This
is the orange curve shown in Fig. 1a. The curve defined by 𝑔(𝑥, 𝑦) = 0 is shown
in blue. The set of solutions of 𝑓 = 𝑔 = 0 consists of points (𝑥, 𝑦) ∈ Q2 satisfying
𝑓 (𝑥, 𝑦) = 𝑔(𝑥, 𝑦) = 0. These are the intersection points of the two curves. There
are seven such points in Q

2
, of which two lie in Q2. These are the points (0, 0) and
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(1, 1). Note that all seven solutions are real: replacing Q by 𝐾 = R, we count as
many solutions over 𝐾 as over 𝐾 = C.

(a) Curves defined by 𝑓 , 𝑔 from (8). (b) The Clebsch surface.

Fig. 1: Algebraic curves in the plane (𝑛 = 2) and an algebraic surface (𝑛 = 3).

The set of solutions of the polynomial system (6) is called an affine variety. We
denote this by 𝑉

𝐾
( 𝑓1, . . . , 𝑓𝑠) = {𝑥 ∈ 𝐾𝑛 | 𝑓1 (𝑥) = · · · = 𝑓𝑠 (𝑥) = 0}, and replace 𝐾

by 𝐾 in this notation to mean only the solutions over the ground field. Examples of
affine varieties are the red curve𝑉

𝐾
( 𝑓 ) and the set of black dots𝑉

𝐾
( 𝑓 , 𝑔) in Fig. 1a.

In the case of 𝑉
𝐾
( 𝑓 ), Fig. 1a only shows the real part 𝑉

𝐾
( 𝑓 ) ∩ R2.

Example: surfaces in R3

Let 𝐾 = R and consider the affine variety 𝑉 = 𝑉C ( 𝑓 ) where

𝑓 = 81(𝑥3 + 𝑦3 + 𝑧3) − 189(𝑥2𝑦 + 𝑥2𝑧 + 𝑦2𝑥 + 𝑦2𝑧 + 𝑥𝑧2 + 𝑦𝑧2) + 54𝑥𝑦𝑧
+ 126(𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧) − 9(𝑥2 + 𝑦2 + 𝑧2) − 9(𝑥 + 𝑦 + 𝑧) + 1.

(9)

Its real part𝑉R ( 𝑓 ) is the surface shown in Fig. 1b. The variety𝑉 is called theClebsch
surface. It is a cubic surface because it is defined by an equation of degree three.
We will revisit this surface in Section 5. Note that 𝑓 is invariant under permutations
of the variables, i.e., 𝑓 (𝑥, 𝑦, 𝑧) = 𝑓 (𝑦, 𝑥, 𝑧) = 𝑓 (𝑧, 𝑦, 𝑥) = 𝑓 (𝑥, 𝑧, 𝑦) = 𝑓 (𝑧, 𝑥, 𝑦) =
𝑓 (𝑦, 𝑧, 𝑥). This reflects in the symmetries of the surface 𝑉R ( 𝑓 ). Many polynomials
from applications have similar symmetry properties. Exploiting this in computations
is an active area of research, see for instance [29].

More pictures of real affine varieties can be found, for instance, in [16, Chapter
1, §2], or in the algebraic surfaces gallery hosted at
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https://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html.

We now briefly discuss commonly used fields 𝐾 . In many engineering applica-
tions, the coefficients of 𝑓1, . . . , 𝑓𝑠 lie in R or C. Computations in such fields use
floating point arithmetic, yielding approximate results. The required quality of the
approximation depends on the application. Other fields also show up: polynomial
systems in cryptography often use 𝐾 = F𝑞 , see for instance [44]. Equations of many
prominent algebraic varieties have integer coefficients, i.e., 𝐾 = Q. Examples are
determinantal varieties (e.g., the variety of all 𝑚 × 𝑛 matrices of rank < min(𝑚, 𝑛)),
Grassmannians in their Plücker embedding [38, Chapter 5], discriminants and re-
sultants [49, Sections 3.4, 5.2] and toric varieties obtained from monomial maps
[50, Section 2.3]. In number theory, one is interested in studying rational points
𝑉Q ( 𝑓1, . . . , 𝑓𝑠) ⊂ 𝑉Q ( 𝑓1, . . . , 𝑓𝑠) on varieties defined over Q. Recent work in this
direction for del Pezzo surfaces can be found in [39, 18]. Finally, in tropical ge-
ometry, coefficients come from valued fields such as the 𝑝-adic numbers Q𝑝 or the
Puiseux series C{{𝑡}} [36]. Solving over the field of Puiseux series is also relevant
for homotopy continuation methods, see Section 4.2. We end the section with two
examples highlighting the difference between 𝑉𝐾 ( 𝑓1, . . . , 𝑓𝑠) and 𝑉𝐾 ( 𝑓1, . . . , 𝑓𝑠).

Example: Fermat’s last theorem

Let 𝑘 ∈ N \ {0} be a positive integer and consider the equation 𝑓 = 𝑥𝑘 + 𝑦𝑘 − 1 = 0.
For any 𝑘 , the variety 𝑉Q ( 𝑓 ) has infinitely many solutions in Q

2
. For 𝑘 = 1, 2,

there are infinitely many rational solutions, i.e. solutions in Q2. For 𝑘 ≥ 3, the only
solutions in Q2 are (1, 0), (0, 1) and, when 𝑘 is even, (−1, 0), (0,−1) [17].

Example: computing real solutions

The variety𝑉C (𝑥2 + 𝑦2) consists of the two lines 𝑥 +
√
−1 · 𝑦 = 0 and 𝑥 −

√
−1 · 𝑦 = 0

in C2. However, the real part 𝑉R (𝑥2 + 𝑦2) = {(0, 0)} has only one point. If we are
interested only in this real solution, we may replace 𝑥2 + 𝑦2 with the two polynomials
𝑥, 𝑦, which have the property that 𝑉R (𝑥2 + 𝑦2) = 𝑉R (𝑥, 𝑦) = 𝑉C (𝑥, 𝑦). After this
replacing step, an algorithm that computes all complex solutions will still recover
only the interesting solutions. It turns out that such a ‘better’ set of equations can
always be computed. The new polynomials generate the real radical ideal associated
to the original equations [38, Sec. 6.3]. For recent computational progress, see [1]. A
different approach for real root finding in bounded domains is subdivision, see [41].
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3 Number of solutions

A univariate polynomial 𝑓 ∈ C[𝑥] of degree 𝑑 has at most 𝑑 roots in C. Moreover,
𝑑 is the expected number of roots. We now formalize this. Consider the family

F (𝑑) = {𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑑𝑥𝑑 | (𝑎0, . . . , 𝑎𝑑) ∈ C𝑑+1} ≃ C𝑑+1 (10)

of polynomials of degree at most 𝑑. There is an affine variety ∇𝑑 ⊂ C𝑑+1, such that
all 𝑓 ∈ F (𝑑) \ ∇𝑑 have precisely 𝑑 roots in C. Here ∇𝑑 = 𝑉C (Δ𝑑), where Δ𝑑 is a
polynomial in the coefficients 𝑎𝑖 of 𝑓 ∈ F (𝑑). Equations for small 𝑑 are

Δ1 = 𝑎1,

Δ2 = 𝑎2 · (𝑎21 − 4 𝑎0𝑎2),
Δ3 = 𝑎3 · (𝑎21𝑎

2
2 − 4 𝑎0𝑎

3
2 − 4 𝑎

3
1𝑎3 + 18 𝑎0𝑎1𝑎2𝑎3 − 27 𝑎

2
0𝑎
2
3),

Δ4 = 𝑎4 · (𝑎21𝑎
2
2𝑎
2
3 − 4 𝑎0𝑎

3
2𝑎
2
3 − 4 𝑎

3
1𝑎
3
3 + 18 𝑎0𝑎1𝑎2𝑎

3
3 + · · · + 256 𝑎30𝑎

3
4).

Notice that Δ𝑑 = 𝑎𝑑 · Δ̃𝑑 , where Δ̃𝑑 is the discriminant for degree 𝑑 polynomials.
Similar results exist for families of polynomial systems with 𝑛 > 1, which bound the
number of isolated solutions from above by the expected number. This section states
some of these results. It assumes that 𝐾 = 𝐾 is algebraically closed.

3.1 Bézout’s theorem

Let 𝑅 = 𝐾 [𝑥] = 𝐾 [𝑥1, . . . , 𝑥𝑛]. A monomial in 𝑅 is a finite product of variables:
𝑥𝛼 = 𝑥𝛼1 · · · 𝑥𝛼𝑛 , 𝛼 ∈ N𝑛. The degree of the monomial 𝑥𝛼 is deg(𝑥𝛼) =

∑𝑛
𝑖=1 𝛼𝑖 ,

and the degree of a polynomial 𝑓 =
∑
𝛼 𝑐𝛼𝑥

𝛼 is deg( 𝑓 ) = max{𝛼 : 𝑐𝛼≠0} deg(𝑥𝛼).
We define the vector subspaces

𝑅𝑑 = { 𝑓 ∈ 𝑅 : deg( 𝑓 ) ≤ 𝑑}, 𝑑 ∈ N.

For an 𝑛-tuple of degrees (𝑑1, . . . , 𝑑𝑛), we define the family of polynomial systems

F (𝑑1, . . . , 𝑑𝑛) = 𝑅𝑑1 × · · · × 𝑅𝑑𝑛 .

That is, 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) ∈ F (𝑑1, . . . , 𝑑𝑛) satisfies deg( 𝑓𝑖) ≤ 𝑑𝑖 , 𝑖 = 1, . . . , 𝑛,
and represents the polynomial system 𝐹 = 0 with 𝑠 = 𝑛. We leave the fact that
F (𝑑1, . . . , 𝑑𝑛) ≃ 𝐾𝐷 , with 𝐷 =

∑𝑛
𝑖=1

(𝑛+𝑑𝑖
𝑛

)
, as an exercise to the reader. Note that

this is a natural generalization of (10). The set of solutions of 𝐹 = 0 is denoted by
𝑉𝐾 (𝐹) = 𝑉𝐾 ( 𝑓1, . . . , 𝑓𝑛), and a point in 𝑉𝐾 (𝐹) is isolated if it does not lie on a
component of 𝑉𝐾 (𝐹) with dimension ≥ 1.
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Theorem 1 (Bézout)
For any 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) ∈ F (𝑑1, . . . , 𝑑𝑛), the number of isolated solutions

of 𝑓1 = · · · = 𝑓𝑛 = 0, i.e., the number of isolated points in 𝑉𝐾 (𝐹), is at most
𝑑1 · · · 𝑑𝑛. Moreover, there exists a proper subvariety ∇𝑑1 ,...,𝑑𝑛 ⊊ 𝐾𝐷 such that, when
𝐹 ∈ F (𝑑1, . . . , 𝑑𝑛) \ ∇𝑑1 ,...,𝑑𝑛 , 𝑉𝐾 (𝐹) consists of exactly 𝑑1 · · · 𝑑𝑛 isolated points.

The proof of this theorem can be found in [22, Theorem III-71]. As in our
univariate example, the variety ∇𝑑1 ,...,𝑑𝑛 can be described using discriminants and
resultants. See, for instance, the discussion at the end of [49, Section 3.4.1]. Theorem
1 is an important result and gives an easy way to bound the number of isolated
solutions of a system of 𝑛 equations in 𝑛 variables. The bound is almost always tight,
in the sense that the only systems with fewer solutions lie in ∇𝑑1 ,...,𝑑𝑛 . Unfortunately,
many systems coming from applications lie inside ∇𝑑1 ,...,𝑑𝑛 . Here is an example.

Example: a planar robot arm

This example comes from robotics. Consider a planar robot arm whose shoulder
is fixed at the origin (0, 0) in the plane, and whose two arm segments have fixed
lengths 𝐿1 and 𝐿2. We determine the possible positions of the elbow (𝑥, 𝑦), given
that the hand of the robot touches a given point (𝑎, 𝑏). The situation is illustrated in
Fig. 2. The Pythagorean theorem gives the identities

𝑥2 + 𝑦2 − 𝐿21 = (𝑎 − 𝑥)2 + (𝑏 − 𝑦)2 − 𝐿22 = 0, (11)

which is a system of 𝑠 = 2 equations in 𝑛 = 2 variables 𝑥, 𝑦. The plane curves
corresponding to these equations are shown in Fig. 2. Their intersection points are
the possible configurations. Naturally,more complicated robots lead tomore involved
equations, see [56]. The system (11) with 𝐾 = C lies in ∇2,2: the two real solutions
seen in Fig. 2 are the only solutions over C, and 2 < 𝑑1 · 𝑑2 = 4. However, the
slightest perturbation of the equations introduces two extra solutions. For instance,
replace the first equation with 𝑥2 + 𝜖 · 𝑥𝑦 + 𝑦2 − 𝐿21 = 0, for small 𝜖 . The resulting
system lies in F (2, 2) \ ∇2,2. It has four complex solutions, two of which lie close
to the intersection points in Figure 2. The other two are large, see Remark 1.

Remark 1 Bézout’s theorem more naturally counts solutions in projective space
P𝑛
𝐾
, and it accounts for solutions with multiplicity > 1. More precisely, if 𝑓𝑖 is a

homogeneous polynomial in 𝑛 + 1 variables of degree 𝑑𝑖 , and 𝑓1 = · · · = 𝑓𝑛 = 0 has
finitely many solutions in P𝑛

𝐾
, the number of solutions (counted with multiplicity) is

always 𝑑1 · · · 𝑑𝑛. We encourage the reader who is familiar with projective geometry
to check that (11) defines two solutions at infinity, when each of the equations is
viewed as an equation on P2

C
by homogenizing. Introducing 𝜖 brings these solutions

back into C2. Since they come from infinity, they have large coordinates.
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Fig. 2: The two configurations of a robot arm are the intersection points of two
circles.

3.2 Kushnirenko’s theorem

An intuitive consequence of Theorem 1 is that random polynomial systems given by
polynomials of fixed degree always have the same number of solutions. Looking at
𝑓 and 𝑔 from (8), we see that they do not look so random, in the sense that some
monomials of degree ≤ 3 are missing. For instance, 𝑥3 and 𝑦3 do not appear. Having
zero coefficients standing with some monomials in F (𝑑1, . . . , 𝑑𝑛) is sometimes
enough to conclude that the system lies in∇𝑑1 ,...,𝑑𝑛 . That is, the system is not random
in the sense of Bézout’s theorem. The (monomial) support of 𝑓 =

∑
𝛼 𝑐𝛼𝑥

𝛼 is

supp
(∑︁
𝛼

𝑐𝛼𝑥
𝛼
)
= {𝛼 : 𝑐𝛼 ≠ 0} ⊂ N𝑛.

This subsection considers families of polynomial systems with fixed support. Let
A ⊂ N𝑛 be a finite subset of exponents of cardinality |A|. We define

F (A) = { ( 𝑓1, . . . , 𝑓𝑛) ∈ 𝑅𝑛 : supp( 𝑓𝑖) ⊂ A, 𝑖 = 1, . . . , 𝑛 } ≃ 𝐾 𝑛· |A | .

The next theorem expresses the number of solutions for systems in this family in
terms of the volume Vol(A) =

∫
Conv(A) d𝛼1 · · · d𝛼𝑛 of the convex polytope

Conv(A) =

{∑︁
𝛼∈A

𝜆𝛼 · 𝛼 : 𝜆𝛼 ≥ 0,
∑︁
𝛼∈A

𝜆𝛼 = 1

}
⊂ R𝑛. (12)

The normalized volume vol(A) is defined as 𝑛! · Vol(A).

Theorem 2 (Kushnirenko)
For any 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) ∈ F (A), the number of isolated solutions of 𝑓1 = · · · =

𝑓𝑛 = 0 in (𝐾 \ {0})𝑛, i.e., the number of isolated points in 𝑉𝐾 (𝐹) ∩ (𝐾 \ {0})𝑛, is
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at most vol(A). Moreover, there exists a proper subvariety ∇A ⊊ 𝐾 𝑛· |A | such that,
when 𝐹 ∈ F (A) \ ∇A , 𝑉𝐾 (𝐹) ∩ (𝐾 \ {0})𝑛 consists of vol(A) isolated points.
For a proof, see [33]. The theorem necessarily counts solutions in (𝐾\{0})𝑛 ⊂ 𝐾𝑛, as
multiplying all equations with a monomial 𝑥𝛼 may change the number of solutions in
the coordinate hyperplanes (i.e., there may be new solutions with zero-coordinates).
However, it does not change the normalized volume vol(A). The statement can be
adapted to count solutions in 𝐾𝑛, but becomes more involved [28]. We point out
that, with the extra assumption that 0 ∈ A, one may replace (𝐾 \ {0})𝑛 by 𝐾𝑛 in
Theorem 2. To compare Kushnirenko’s theorem with Bézout, note that F (A) for

A = {𝛼 ∈ N𝑛 : deg(𝑥𝛼) ≤ 𝑑} (13)

is F (𝑑, . . . , 𝑑), and 𝑑 𝑛 = vol(A). Theorem 2 recovers Theorem 1 for 𝑑1 = · · · = 𝑑𝑛.

Example: back to plane curves

The polynomial system 𝑓 = 𝑔 = 0 from (8) belongs to the family F (A) with
A = {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (2, 1), (1, 2)}. The convex hull Conv(A) is a
hexagon inR2, see Fig. 3. Its normalized volume is vol(A) = 𝑛!·Vol(A) = 2!·3 = 6.
Theorem 2 predicts six solutions in (Q \ {0})2. These are six of the seven black dots
seen in the left part of Fig. 1a: the solution (0, 0) is not counted. We have a chain of
inclusions ∇A ⊂ F (A) ⊂ ∇3,3 ⊂ F (3, 3) and ( 𝑓 , 𝑔) ∈ F (A) \ ∇A .

𝑥

𝑥𝑦

𝑥𝑦2

𝑦

𝑦2

𝑥2

𝑥2𝑦

Fig. 3: The polytope Conv(A) in this example is a hexagon.

Remark 2 The analog of Remark 1 for Theorem 2 is that vol(A) counts solutions on
the projective toric variety 𝑋A associated with A. It equals the degree of 𝑋A in its
embedding in P |A |−1

𝐾
(after multiplying with a lattice index). A proof and examples

are given in [50, Section 3.4]. When A is as in (13), we have 𝑋A = P𝑛.
Remark 3 The convex polytope Conv(supp( 𝑓 )) is called the Newton polytope of 𝑓 .
Its importance goes beyond counting solutions: it is dual to the tropical hypersurface
defined by 𝑓 , which is a combinatorial shadow of𝑉𝐾 ( 𝑓 )∩(𝐾\{0})𝑛 [36, Prop. 3.1.6].
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3.3 Bernstein’s theorem

There is a generalization of Kushnirenko’s theorem which allows different supports
for the polynomials 𝑓1, . . . , 𝑓𝑛.Wefix 𝑛finite subsets of exponentsA1, . . . ,A𝑛 ⊂ N𝑛
with respective cardinalities |A𝑖 |. These define the family of polynomial systems

F (A1, . . . ,A𝑛) = { ( 𝑓1, . . . , 𝑓𝑛) ∈ 𝑅𝑛 : supp( 𝑓𝑖) ⊂ A𝑖 , 𝑖 = 1, . . . , 𝑛 } ≃ 𝐾𝐷 ,

where 𝐷 = |A1 | + · · · + |A𝑛 |. The number of solutions is characterized by the mixed
volume ofA1, . . . ,A𝑛, which we now define. TheMinkowski sum 𝑆 +𝑇 of two sets
𝑆, 𝑇 ⊂ R𝑛 is {𝑠 + 𝑡 : 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}, where 𝑠 + 𝑡 is the usual addition of vectors in R𝑛.
For a nonnegative real number 𝜆, the 𝜆-dilation of 𝑆 ⊂ R𝑛 is 𝜆 · 𝑆 = {𝜆 · 𝑠 : 𝑠 ∈ 𝑆},
where 𝜆 · 𝑠 is the usual scalar multiplication in R𝑛. Each of the supports A𝑖 gives a
convex polytope Conv(A𝑖) as in (12). The function R𝑛≥0 → R≥0 given by

(𝜆1, . . . , 𝜆𝑛) ↦−→ Vol( 𝜆1 · Conv(A1) + · · · + 𝜆𝑛 · Conv(A𝑛) ) (14)

is a homogeneous polynomial of degree 𝑛, meaning that all its monomials have
degree 𝑛 [15, Chapter 7, §4, Proposition 4.9]. The mixed volumeMV(A1, . . . ,A𝑛)
is the coefficient of the polynomial (14) standing with the monomial 𝜆1 · · · 𝜆𝑛.

Theorem 3 (Bernstein-Kushnirenko)
For any 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) ∈ F (A1, . . . ,A𝑛), the number of isolated solutions

of 𝑓1 = · · · = 𝑓𝑛 = 0 in (𝐾 \ {0})𝑛, i.e., the number of isolated points in 𝑉𝐾 (𝐹) ∩
(𝐾 \ {0})𝑛, is at mostMV(A1, . . . ,A𝑛). Moreover, there exists a proper subvariety
∇A1 ,...,A𝑛

⊂ 𝐾𝐷 such that, when 𝐹 ∈ F (A1, . . . ,A𝑛) \ ∇A1 ,...,A𝑛
, 𝑉𝐾 (𝐹) ∩ (𝐾 \

{0})𝑛 consists of preciselyMV(A1, . . . ,A𝑛) isolated points.

This theorem was originally proved by Bernstein for 𝐾 = C in [6]. The proof by
Kushnirenko in [33] works for algebraically closed fields. Several alternative proofs
were found by Khovanskii [31]. Theorem 3 is sometimes called the BKK theorem,
after the aforementioned mathematicians. Like Kushnirenko’s theorem, Theorem 3
can be adapted to count roots in 𝐾𝑛 rather than (𝐾 \ {0})𝑛 [28], and if 0 ∈ A𝑖 for
all 𝑖, one may replace (𝐾 \ {0})𝑛 by 𝐾𝑛.
When A1 = · · · = A𝑛 = A, we have F (A1, . . . ,A𝑛) = F (A), and when

A𝑖 = {𝛼 ∈ N𝑛 : deg(𝑥𝛼) ≤ 𝑑𝑖}, we have F (A1, . . . ,A𝑛) = F (𝑑1, . . . , 𝑑𝑛). Hence,
all families of polynomialswe have seen before are of this form, andTheorem3 gener-
alizes Theorems 1 and 2. Note that, in particular, we haveMV(A, . . . ,A) = vol(A).

Example: mixed areas

A useful formula for 𝑛 = 2 is MV(A1,A2) = Vol(A1 +A2) −Vol(A1) −Vol(A2).
For instance, the following two polynomials appear in [49, Example 5.3.1]:

𝑓 = 𝑎0 + 𝑎1𝑥3𝑦 + 𝑎2𝑥𝑦3, 𝑔 = 𝑏0 + 𝑏1𝑥2 + 𝑏2𝑦2 + 𝑏3𝑥2𝑦2.
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The system 𝑓 = 𝑔 = 0 is a general member of the family F (A1,A2) ≃ 𝐾7, where
A1 = {(0, 0), (3, 1), (1, 3)} and A2 = {(0, 0), (2, 0), (0, 2), (2, 2)}. The Newton
polygons, together with their Minkowski sum, are shown in Fig. 4. By applying the

Fig. 4: The green area counts the solutions to equations with support in 𝑃1, 𝑃2.

formula for MV(A1,A2) seen above, we find that the mixed volume for the system
𝑓 = 𝑔 = 0 is the green area in the right part of Fig. 4, which is 12. Note that the
Bézout bound (Theorem 1) is 16. and Theorem 2 also predicts 12 solutions, withA =

A1 ∪ A2. Hence F (A1,A2) ⊂ F (A) ⊂ ∇4,4 ⊂ F (4, 4) and F (A1,A2) ⊄ ∇A .

Theorem 3 provides an upper bound on the number of isolated solutions to any
system of polynomial equations with 𝑛 = 𝑠. Although it improves significantly on
Bézout’s bound for many systems, it still often happens that the bound is not tight for
systems in applications. That is, one often encounters systems 𝐹 ∈ ∇A1 ,...,A𝑛

. Even
more refined root counts exist, such as those based on Newton-Okounkov bodies
[30]. In practice, with today’s computational methods (see Section 4), we often
count solutions reliably by simply solving the system. Certification methods provide
a proof for a lower bound on the number of solutions [11]. The actual number of
solutions is implied if one can match this with a theoretical upper bound.

4 Computational methods

We give a brief introduction to two of the most important computational methods
for solving polynomial equations. The first method uses normal forms, the second
is based on homotopy continuation. We keep writing 𝐹 = ( 𝑓1, . . . , 𝑓𝑠) = 0 for the
system we want to solve. We require 𝑠 ≥ 𝑛, and assume finitely many solutions over
𝐾 . All methods discussed here compute all solutions over 𝐾 , so we keep assuming
that 𝐾 = 𝐾 is algebraically closed. An important distinction between normal forms
and homotopy continuation is that the former works over any field 𝐾 , while the latter
needs 𝐾 = C. If the coefficients are contained in a subfield (e.g. R ⊂ C), a significant
part of the computation in normal form algorithms can be done over this subfield.
Also, homotopy continuation is most natural when 𝑛 = 𝑠, whereas 𝑠 > 𝑛 is not
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so much a problem for normal forms. However, if 𝐾 = C and 𝑛 = 𝑠, continuation
methods are extremely efficient and can compute millions of solutions.

4.1 Normal form methods

Let 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑠⟩ ⊂ 𝑅 = 𝐾 [𝑥1, . . . , 𝑥𝑛] be the ideal generated by our polynomials.
For ease of exposition, we assume that 𝐼 is radical, which is equivalent to all points
in 𝑉𝐾 (𝐼) = 𝑉𝐾 ( 𝑓1, . . . , 𝑓𝑠) having multiplicity one. In other words, the Jacobian
matrix (𝜕 𝑓𝑖/𝜕𝑥 𝑗 ), evaluated at any of the points in 𝑉𝐾 (𝐼), has rank 𝑛. Let us write
𝑉𝐾 (𝐼) = {𝑧1, . . . , 𝑧𝛿} ⊂ 𝐾𝑛 for the set of solutions, and 𝑅/𝐼 for the quotient ring
obtained from 𝑅 by the equivalence relation 𝑓 ∼ 𝑔 ⇔ 𝑓 − 𝑔 ∈ 𝐼. The main
observation behind normal form methods is that the coordinates of 𝑧𝑖 are encoded
in the eigenstructure of the 𝐾-linear endomorphisms 𝑀𝑔 : 𝑅/𝐼 → 𝑅/𝐼 given by
[ 𝑓 ] ↦→ [𝑔 · 𝑓 ], where [ 𝑓 ] is the residue class of 𝑓 in 𝑅/𝐼.
We will now make this precise. First, we show that dim𝐾 𝑅/𝐼 = 𝛿. We define

ev𝑖 : 𝑅/𝐼 → 𝐾 as ev𝑖 ( [ 𝑓 ]) = 𝑓 (𝑧𝑖), and combine these to get

ev = ( ev1, . . . , ev𝛿 ) : 𝑅/𝐼 −→ 𝐾 𝛿 , given by ev( [ 𝑓 ]) = ( 𝑓 (𝑧1), . . . , 𝑓 (𝑧𝛿) ).

By Hilbert’s Nullstellensatz [16, Chapter 4], a polynomial 𝑓 ∈ 𝑅 belongs to 𝐼 if
and only if 𝑓 (𝑧𝑖) = 0, 𝑖 = 1, . . . , 𝛿. In other words, the map ev is injective. It is also
surjective: there exist Lagrange polynomials ℓ𝑖 ∈ 𝑅 satisfying ℓ𝑖 (𝑧 𝑗 ) = 1 if 𝑖 = 𝑗 and
ℓ𝑖 (𝑧 𝑗 ) = 0 for 𝑖 ≠ 𝑗 [49, Lemma 3.1.2]. We conclude that 𝑅/𝐼 ev≃ 𝐾 𝛿 .
The following statement makes our claim that the zeros 𝑧1, . . . , 𝑧𝛿 are encoded

in the eigenstructure of 𝑀𝑔 concrete.

Theorem 4 The left eigenvectors of the 𝐾-linear map 𝑀𝑔 are the evaluation func-
tionals ev𝑖 , 𝑖 = 1, . . . , 𝛿. The eigenvalue corresponding to ev𝑖 is 𝑔(𝑧𝑖).

Proof Wehave (ev𝑖◦𝑀𝑔) ( [ 𝑓 ]) = ev𝑖 ( [𝑔· 𝑓 ]) = 𝑔(𝑧𝑖) 𝑓 (𝑧𝑖) = 𝑔(𝑧𝑖)·ev𝑖 ( [ 𝑓 ]), which
shows that ev𝑖 is a left eigenvector with eigenvalue 𝑔(𝑧𝑖). Moreover, the ev𝑖 form a
complete set of eigenvectors, since ev : 𝑅/𝐼 → 𝐾 𝛿 is a 𝐾-linear isomorphism. □

Weencourage the reader to check that the residue classes of theLagrange polynomials
[ℓ𝑖] ∈ 𝑅/𝐼 form a complete set of right eigenvectors.We point out that, after choosing
a basis of 𝑅/𝐼, the functional ev𝑖 is represented by a row vector 𝑤⊤

𝑖
of length 𝛿, and

𝑀𝑔 is a multiplication matrix of size 𝛿 × 𝛿. The eigenvalue relation in the proof
of Theorem 4 reads more familiarly as 𝑤⊤

𝑖
𝑀𝑔 = 𝑔(𝑧𝑖) · 𝑤⊤

𝑖
. Theorem 4 suggests

breaking up the task of computing 𝑉𝐾 (𝐼) = {𝑧𝑖}𝛿𝑖=1 into two parts:
(A) Compute multiplication matrices 𝑀𝑔 and
(B) extract the coordinates of 𝑧𝑖 from their eigenvectors or eigenvalues.

For step (B), let {[𝑏1], . . . , [𝑏 𝛿]} be a 𝐾-basis for 𝑅/𝐼, with 𝑏 𝑗 ∈ 𝑅. The vector 𝑤𝑖 is
explicitly given by 𝑤𝑖 = (𝑏1 (𝑧𝑖), . . . , 𝑏 𝛿 (𝑧𝑖)). If the coordinate functions 𝑥1, . . . , 𝑥𝑛
are among the 𝑏 𝑗 , one reads the coordinates of 𝑧𝑖 directly from the entries of 𝑤𝑖 . If
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not, some more processing might be needed. Alternatively, one can choose 𝑔 = 𝑥 𝑗
and read the 𝑗-th coordinates of the 𝑧𝑖 from the eigenvalues of 𝑀𝑥 𝑗 . There are
many things to say about these procedures, in particular about their efficiency and
numerical stability.We refer the reader to [49, Remark 4.3.4] for references and more
details, and do not elaborate on this here.
We turn to step (A), which is where normal forms come into play. Suppose a basis

{[𝑏1], . . . , [𝑏 𝛿]} of 𝑅/𝐼 is fixed.We identify 𝑅/𝐼 with 𝐵 = span𝐾 (𝑏1, . . . , 𝑏 𝛿) ⊂ 𝑅.
For any 𝑓 ∈ 𝑅, there are unique constants 𝑐 𝑗 ( 𝑓 ) ∈ 𝐾 such that

𝑓 −
𝛿∑︁
𝑗=1
𝑐 𝑗 ( 𝑓 ) · 𝑏 𝑗 ∈ 𝐼 . (15)

These are the coefficients in the unique expansion of [ 𝑓 ] = ∑𝛿
𝑗=1 𝑐 𝑗 ( 𝑓 ) · [𝑏 𝑗 ] in our

basis. The 𝐾-linear map N : 𝑅 → 𝐵 which sends 𝑓 to
∑𝛿
𝑗=1 𝑐 𝑗 ( 𝑓 ) · 𝑏 𝑗 is called a

normal form. Its key property is that N projects 𝑅 onto 𝐵 along 𝐼, meaning that
N◦N = N (N|𝐵 is the identity), and kerN = 𝐼. Themultiplicationmap𝑀𝑔 : 𝐵 → 𝐵

is simply given by 𝑀𝑔 (𝑏) = N(𝑔 · 𝑏). More concretely, the 𝑖-th column of the matrix
representation of 𝑀𝑔 contains the coefficients 𝑐 𝑗 (𝑔 · 𝑏𝑖), 𝑗 = 1, . . . , 𝛿 of N(𝑔 · 𝑏𝑖).
Here is a familiar example.

Example: normal forms for 𝑛 = 1

Let 𝐼 = ⟨ 𝑓 ⟩ = ⟨𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑑𝑥𝑑⟩ be the ideal generated by the univariate
polynomial 𝑓 ∈ 𝐾 [𝑥]. For general 𝑎𝑖 , there are 𝛿 = 𝑑 roots with multiplicity one,
hence 𝐼 is radical. The dimension dim𝐾 𝐾 [𝑥]/𝐼 equals 𝑑, and a canonical choice of
basis is {[1], [𝑥], . . . , [𝑥𝑑−1]}. Let us construct the matrix 𝑀𝑥 in this basis. That is,
we set 𝑔 = 𝑥. We compute the normal forms N(𝑥 · 𝑥𝑖−1):

N(𝑥𝑖) = 𝑥𝑖 , 𝑖 = 1, . . . , 𝑑 − 1 and N(𝑥𝑑) = −𝑎−1𝑑 (𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑑−1𝑥𝑑−1).

One checks this by verifying that 𝑥𝑖 − N(𝑥𝑖) ∈ ⟨ 𝑓 ⟩. The coefficients 𝑐 𝑗 (𝑥𝑖), 𝑗 =
1, . . . , 𝑑 of N(𝑥𝑖) form the 𝑖-th column of the companion matrix 𝐶 𝑓 in (7). Hence
𝑀𝑥 = 𝐶 𝑓 , and Theorem 4 confirms that the eigenvalues of 𝐶 𝑓 are the roots of 𝑓 .

Computing normal forms can be done using linear algebra on certain structured
matrices, called Macaulay matrices. We illustrate this with an example from [52].

Example: Macaulay matrices

Consider the ideal 𝐼 = ⟨ 𝑓 , 𝑔⟩ ⊂ Q[𝑥, 𝑦] given by 𝑓 = 𝑥2 + 𝑦2 − 2, 𝑔 = 3𝑥2 − 𝑦2 − 2.
The variety𝑉Q (𝐼) = 𝑉Q (𝐼) consists of 4 points {(−1,−1), (−1, 1), (1,−1), (1, 1)}, as
predicted by Theorem 1.We construct aMacaulay matrixwhose rows are indexed by
𝑓 , 𝑥 𝑓 , 𝑦 𝑓 , 𝑔, 𝑥𝑔, 𝑦𝑔, and whose columns are indexed by all monomials of degree ≤ 3:
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M =



𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥2 𝑦2 1 𝑥 𝑦 𝑥𝑦

𝑓 1 1 −2
𝑥 𝑓 1 1 −2
𝑦 𝑓 1 1 −2
𝑔 3 −1 −2
𝑥𝑔 3 −1 −2
𝑦𝑔 3 −1 −2


.

The first row reads 𝑓 = 1·𝑥2+1·𝑦2−2·1. A basis forQ[𝑥, 𝑦]/𝐼 is {[1], [𝑥], [𝑦], [𝑥𝑦]}.
These monomials index the last four columns. We now invert the leftmost 6×6 block
and apply this inverse from the left toM:

M̃ =



𝑥3 𝑥2𝑦 𝑥𝑦2 𝑦3 𝑥2 𝑦2 1 𝑥 𝑦 𝑥𝑦

𝑥3−𝑥 1 −1
𝑥2𝑦−𝑦 1 −1
𝑥𝑦2−𝑥 1 −1
𝑦3−𝑦 1 −1
𝑥2−1 1 −1
𝑦2−1 1 −1


.

The rows of M̃ are linear combinations of the rows ofM, representing polynomials
in 𝐼. The first row reads 𝑥3 − 1 · 𝑥 ∈ 𝐼. Comparing this with (15), we see that we have
found that N(𝑥3) = 𝑥. Using M̃ we can construct 𝑀𝑥 and 𝑀𝑦:

𝑀𝑥 =


[𝑥 ] [𝑥2 ] [𝑥𝑦 ] [𝑥2𝑦 ]

[1] 0 1 0 0
[𝑥 ] 1 0 0 0
[𝑦 ] 0 0 0 1
[𝑥𝑦 ] 0 0 1 0

 , 𝑀𝑦 =


[𝑦 ] [𝑥𝑦 ] [𝑦2 ] [𝑥𝑦2 ]

[1] 0 0 1 0
[𝑥 ] 0 0 0 1
[𝑦 ] 1 0 0 0
[𝑥𝑦 ] 0 1 0 0

 .
The reader is encouraged to verify Theorem 4 for these matrices.

Remark 4 The entries of aMacaulaymatrixM are the coefficients of the polynomials
𝑓1, . . . , 𝑓𝑠 . An immediate consequence of the fact that normal forms are computed
using linear algebra on Macaulay matrices is that when the coefficients of 𝑓𝑖 are
contained in a subfield 𝐾̃ ⊂ 𝐾 , all computations in step (𝐴) can be done over 𝐾̃ . This
assumes the polynomials 𝑔 for which we want to compute 𝑀𝑔 have coefficients in 𝐾̃ .

As illustrated in the example above, to compute the matrices 𝑀𝑔 it is sufficient
to determine the restriction of the normal form N : 𝑅 → 𝐵 to a finite-dimensional
𝐾-vector space 𝑉 ⊂ 𝑅, containing 𝑔 · 𝐵. The restriction N|𝑉 : 𝑉 → 𝐵 is called a
truncated normal form, see [51] and [49, Chapter 4]. The dimension of the space 𝑉
counts the number of columns of the Macaulay matrix.
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Usually, one chooses the basis elements 𝑏 𝑗 of 𝐵 to be monomials, and 𝑔 to be a
coordinate function 𝑥𝑖 . The basis elements may arise as standard monomials from a
Gröbner basis computation. We briefly discuss this important concept.

•> Gröbner bases

Gröbner bases are powerful tools for symbolic computation in algebraic geometry.
A nice way to motivate their definition is by considering Euclidean division as a
candidate for a normal form map. In the case 𝑛 = 1, this rewrites 𝑔 ∈ 𝐾 [𝑥] as

𝑔 = 𝑞 · 𝑓 + 𝑟, where deg(𝑟) < 𝑑. (16)

Clearly [𝑔] = [𝑟] in 𝐾 [𝑥]/⟨ 𝑓 ⟩, and N(𝑔) = 𝑟 since 𝑟 ∈ 𝐵 = span𝐾 (1, 𝑥, . . . , 𝑥𝑑−1).
To generalize this to 𝑛 > 1 variables, we fix a monomial order ⪯ on 𝑅 =

𝐾 [𝑥1, . . . , 𝑥𝑛] and write LT( 𝑓 ) for the leading term of 𝑓 with respect to ⪯. The
reader who is unfamiliar with monomial orders can consult [16, Chapter 2, §2]. As
above, let 𝐼 = ⟨ 𝑓1, . . . , 𝑓𝑠⟩ ⊂ 𝑅 be a radical ideal such that |𝑉𝐾 (𝐼) | = 𝛿 < ∞. As
basis elements 𝑏1, . . . , 𝑏 𝛿 of 𝐵 ≃ 𝑅/𝐼, we use the 𝛿 ⪯–smallest monomials which are
linearly independent modulo our ideal 𝐼. They are also called standard monomials.
By [16, Chapter 9, §3, Theorem 3], there exists an algorithm which, for any input
𝑔 ∈ 𝑅, computes 𝑞1, . . . , 𝑞𝑠 , 𝑟 ∈ 𝑅 such that

𝑔 = 𝑞1 · 𝑓1+· · ·+𝑞𝑠 · 𝑓𝑠 +𝑟, where LT( 𝑓𝑖) does not divide any term of 𝑟 , ∀𝑖. (17)

This algorithm is called multivariate Euclidean division. Note how the condition
“LT( 𝑓𝑖) does not divide any term of 𝑟, for all 𝑖” generalizes deg(𝑟) < 𝑑 in (16). From
(17), it is clear that [𝑔] = [𝑟]. However, we do not have 𝑟 ∈ 𝐵 in general. Hence,
unfortunately, sending 𝑔 to its remainder 𝑟 is usually not a normal form. . . but it is
when 𝑓1, . . . , 𝑓𝑠 is a Gröbner basis!
A set of polynomials 𝑔1, . . . , 𝑔𝑘 ∈ 𝐼 forms a Gröbner basis of the ideal 𝐼 if the

leading terms LT(𝑔1), . . . ,LT(𝑔𝑘) generate the leading term ideal ⟨LT(𝑔) : 𝑔 ∈ 𝐼⟩.
We point out that no finiteness of𝑉𝐾 (𝐼) or radicality of 𝐼 is required for this definition.
The remainder 𝑟 in 𝑔 = 𝑞1 ·𝑔1+· · ·+𝑞𝑘 ·𝑔𝑘 +𝑟 where LT( 𝑓𝑖) does not divide any term
of 𝑟, for all 𝑖, now satisfies [𝑔] = [𝑟] and 𝑟 ∈ 𝐵. This justifies the following claim:

Taking remainder upon Euclidean division by a Gröbner basis is a normal form.

Computing a Gröbner basis 𝑔1, . . . , 𝑔𝑘 from a set of input polynomials 𝑓1, . . . , 𝑓𝑠
can be interpreted as Gaussian elimination on a Macaulay matrix [24]. Once this
has been done, multiplication matrices are computed via taking remainder upon
Euclidean division by {𝑔1, . . . , 𝑔𝑘}.
On a sidenote, we point out that Gröbner bases are often used for the elimination of

variables. For instance, if 𝑔1, . . . , 𝑔𝑘 form a Gröbner basis of an ideal 𝐼 with respect
to a lex monomial order for which 𝑥1 ≺ 𝑥2 ≺ · · · ≺ 𝑥𝑛, we have for 𝑗 = 1, . . . 𝑛 that
the 𝑗-th elimination ideal

𝐼 𝑗 = 𝐼 ∩ 𝐾 [𝑥1, . . . , 𝑥 𝑗 ] = ⟨𝑔𝑖 : 𝑔𝑖 ∈ 𝐾 [𝑥1, . . . , 𝑥 𝑗 ]⟩
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is generated by those elements of our Gröbner basis which involve only the first 𝑗
variables, see [16, Chapter 3, §1, Theorem 2]. In our case, a consequence is that
one of the 𝑔𝑖 is univariate in 𝑥1, and its roots are the 𝑥1-coordinates of 𝑧1, . . . , 𝑧𝛿 .
The geometric counterpart of computing the 𝑗-th elimination ideal is projection
onto a 𝑗-dimensional coordinate space: the variety 𝑉𝐾 (𝐼 𝑗 ) ⊂ 𝐾 𝑗 is obtained from
𝑉𝐾 (𝐼) ⊂ 𝐾𝑛 by forgetting the final 𝑛 − 𝑗 coordinates (𝑥1, . . . , 𝑥𝑛) ↦→ (𝑥1, . . . , 𝑥 𝑗 )
and taking the closure of the image. Here are two examples.

Example: the projection of a space curve

To the right we show a blue curve in R3 defined
by an ideal 𝐼 ⊂ R[𝑥, 𝑦, 𝑧]. Its Gröbner basis with
respect to the lex ordering 𝑥 ≺ 𝑦 ≺ 𝑧 contains 𝑔1 ∈
R[𝑥, 𝑦], which generates 𝐼2. The variety 𝑉R (𝐼2) =
𝑉R (𝑔1) ⊂ R2 is the orange curve in the picture.

Example: smooth del Pezzo surfaces

In [39], the authors study del Pezzo surfaces of degree 4 in P4 with defining
equations 𝑥0𝑥1 − 𝑥2𝑥3 = 𝑎0𝑥20 + 𝑎1𝑥

2
1 + 𝑎2𝑥

2
2 + 𝑎3𝑥

2
3 + 𝑎4𝑥

2
4 = 0. We will substitute

𝑥4 = 1 − 𝑥0 − 𝑥1 − 𝑥2 − 𝑥3 to reduce to the affine case. It is claimed that the smooth
del Pezzo surfaces of this form are those for which the parameters 𝑎0, . . . , 𝑎4 lie
outside the hypersurface 𝐻 = {𝑎0𝑎1𝑎2𝑎3𝑎4 (𝑎0𝑎1 − 𝑎2𝑎3) = 0}. This hypersurface
is the projection of the variety{
(𝑎, 𝑥) ∈ Q5 × Q4 : 𝑥0𝑥1 − 𝑥2𝑥3 =

3∑︁
𝑖=0

𝑎𝑖𝑥
2
𝑖 + 𝑎4

(
1 −

3∑︁
𝑖=0

𝑥𝑖
)2

= 0 and rank(𝐽) < 2
}

onto Q5. Here 𝐽 is the 2× 4 Jacobian matrix of our two equations with respect to the
four variables 𝑥0, 𝑥1, 𝑥2, 𝑥3. The defining equation of 𝐻 is computed in Macaulay2
[25] as follows:

R = QQ[x_0..x_3,a_0..a_4]
x_4 = 1-x_0-x_1-x_2-x_3
I = ideal( x_0*x_1-x_2*x_3 , a_0*x_0^2 + a_1*x_1^2 + ... + a_4*x_4^2 )
M = submatrix( transpose jacobian I , 0..3 )
radical eliminate( I+minors(2,M) , {x_0,x_1,x_2,x_3} )

The work behind the final command is a Gröbner basis computation.
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Remark 5 In a numerical setting, it is better to use border bases or more general
bases to avoid amplifying rounding errors. Border bases use basis elements 𝑏𝑖 for 𝐵
whose elements satisfy a connectedness property. See, for instance, [40] for details.
They do not depend on a monomial order. For a summary and comparison between
Gröbner bases and border bases, see [49, Sections 3.3.1, 3.3.2]. Nowadays, bases are
selected adaptively by numerical linear algebra routines, such as QR decomposition
with optimal column pivoting or singular value decomposition. This often yields a
significant improvement in terms of accuracy. See, for instance, Section 7.2 in [52].

4.2 Homotopy Continuation

The goal of this subsection is to briefly introduce the method of homotopy continua-
tion for solving polynomial systems. For more details, we refer to the textbook [46].
We set 𝐾 = C and 𝑛 = 𝑠. We think of 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) ∈ 𝑅 as an element of a

family F of polynomial systems. The reader can replace F with any of the families
seen in Section 3. A homotopy in F with target system 𝐹 ∈ F and start system
𝐺 ∈ F is a continuous deformation of the map 𝐺 = (𝑔1, . . . , 𝑔𝑛) : C𝑛 → C𝑛 into
𝐹, in such a way that all systems obtained throughout the deformation are contained
in F . For instance, When 𝐹 ∈ F (𝑑1, . . . , 𝑑𝑛) as in Section 3.1 and 𝐺 is any other
system in F (𝑑1, . . . , 𝑑𝑛), a homotopy is 𝐻 (𝑥; 𝑡) = 𝑡 · 𝐹 (𝑥) + (1 − 𝑡) · 𝐺 (𝑥), where
𝑡 runs from 0 to 1. Indeed, for any fixed 𝑡∗ ∈ [0, 1], the degrees of the equations
remain bounded by (𝑑1, . . . , 𝑑𝑛), hence 𝐻 (𝑥; 𝑡∗) ∈ F (𝑑1, . . . , 𝑑𝑛).
The method of homotopy continuation for solving the target system 𝑓1 = · · · =

𝑓𝑛 = 0 assumes that a start system 𝑔1 = · · · = 𝑔𝑛 = 0 can easily be solved. The idea
is that transforming 𝐺 continuously into 𝐹 via a homotopy 𝐻 (𝑥; 𝑡) in F transforms
the solutions of 𝐺 continuously into those of 𝐹. Here is an example with 𝑛 = 1.

Example: 𝑛 = 𝑠 = 1, F = F (3)

Let 𝑓 = −6 + 11𝑥 − 6𝑥2 + 𝑥3 = (𝑥 − 1) (𝑥 − 2) (𝑥 − 3) be the Wilkinson polynomial
of degree 3. We view 𝑓 = 0 as a member of F (3) and choose the start system
𝑔 = 𝑥3 − 1 = 0. The solutions of 𝑔 = 0, are the third roots of unity. The solutions of
𝐻 (𝑥; 𝑡) = 𝛾 · 𝑡 · 𝑓 (𝑥) + (1 − 𝑡) · 𝑔(𝑥) travel from these roots to the integers 1, 2, 3 as
𝑡 moves from 0 to 1. This is illustrated in Fig. 5. The random complex constant 𝛾 is
needed to avoid the discriminant, see below. This is known as the gamma trick.

More formally, if 𝐻 (𝑥; 𝑡) = (ℎ1 (𝑥; 𝑡), . . . , ℎ𝑛 (𝑥; 𝑡)) is a homotopy with 𝑡 ∈ [0, 1],
the solutions describe continuous paths 𝑥(𝑡) satisfying 𝐻 (𝑥(𝑡); 𝑡) = 0. Taking the
derivative with respect to 𝑡 gives the Davidenko differential equation
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Fig. 5: The third roots of unity travel to 1, 2, 3 along continuous paths.

d𝐻 (𝑥(𝑡), 𝑡)
d𝑡

= 𝐽𝑥 · ¤𝑥(𝑡) +
𝜕𝐻

𝜕𝑡
(𝑥(𝑡), 𝑡) = 0, with 𝐽𝑥 =

(
𝜕ℎ𝑖

𝜕𝑥 𝑗

)
𝑖, 𝑗

. (18)

Each start solution 𝑥∗ of 𝑔1 = · · · = 𝑔𝑛 = 0 gives an initial value problem with
𝑥(0) = 𝑥∗, and the corresponding solution path 𝑥(𝑡) can be approximated using any
numerical ODE method. This leads to a discretization of the solution path, see the
black dots in Fig. 5. The solutions of 𝑓1 = · · · = 𝑓𝑛 = 0 are obtained by evaluating
the solution paths at 𝑡 = 1. The following are important practical remarks.

•> Predict and correct

Naively applying ODE methods for solving the Davidenko equation (18) is not the
best we can do. Indeed, we have the extra information that the solution paths 𝑥(𝑡)
satisfy the implicit equation 𝐻 (𝑥(𝑡), 𝑡) = 0. This is used to improve the accuracy of
the ODE solver in each step. Given an approximation of 𝑥(𝑡∗) at any fixed 𝑡∗ ∈ [0, 1)
and a step size 0 < Δ𝑡 ≪ 1, one approximates 𝑥(𝑡∗ + Δ𝑡) by 𝑥 using, for instance,
Euler’s method. This is called the predictor step. Then, one refines 𝑥 to a satisfactory
approximation of 𝑥(𝑡∗ + Δ𝑡) by using 𝑥 as a starting point for Newton iteration on
𝐻 (𝑥, 𝑡∗ + Δ𝑡) = 0. This is the corrector step. The two-step process is illustrated in
Fig. 5 (predict in orange, correct in green, solution paths 𝑥(𝑡) in blue). In the right
part of the figure, the predict-correct procedure fails: because of a too-large step size
Δ𝑡 in the predictor step, the Newton correction converges to a different path. This
phenomenon is called path jumping, and to avoid it one must choose the stepsize Δ𝑡
adaptively. Recent work in this direction uses Padé approximants, see [53, 54].
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•> Avoid the discriminant

Each of the families seen in Section 3 has a subvariety∇F ⊂ F consisting of systems
with non-generic behavior in terms of their number of solutions. This subvariety is
sometimes referred to as the discriminant ofF , for reasons alluded to at the beginning
of Section 3. When the homotopy 𝐻 (𝑥; 𝑡) crosses ∇F , i.e. 𝐻 (𝑥; 𝑡∗) ∈ ∇F for some
𝑡∗ ∈ [0, 1), two or more solution paths collide at 𝑡∗, or some solution paths diverge.
This is not allowed for the numerical solution of (18). Fortunately, crossing ∇F can
be avoided. The discriminant ∇F has complex codimension at least one, hence real
codimension at least two. Since the homotopy 𝑡 ↦→ 𝐻 (𝑥; 𝑡) describes a one-real-
dimensional path in F , it is always possible to go around the discriminant. See for
instance [46, Section 7]. When the target system 𝐹 belongs to the discriminant, end
games are used to deal with colliding/diverging paths at 𝑡 = 1 [46, Section 10]. This
story implies that the number of paths tracked in a homotopy algorithm is the generic
number of solutions of the family F . In that sense, results like Theorems 1, 2 and 3
characterize the complexity of homotopy continuation in the respective families.

•> Start systems in practice

There are recipes for start systems in the families F from Section 3. For instance, we
use𝐺 = (𝑥𝑑11 −1, . . . , 𝑥𝑑𝑛𝑛 −1) forF (𝑑1, . . . , 𝑑𝑛). The 𝑑1 · · · 𝑑𝑛 solutions can easily be
written down. Note that 𝐺 ∉ ∇𝑑1 ,...,𝑑𝑛 . For the families F (A) and F (A1, . . . ,A𝑛),
an algorithm to solve start systems was developed in [27]. For solving start systems
of other families, one may use monodromy loops [21].

5 Case study: 27 lines on the Clebsch surface

A classical result from intersection theory states that every smooth cubic surface in
complex three-space contains exactly 27 lines. In this final section, we use Gröbner
bases and homotopy continuation to compute lines on the Clebsch surface defined
by (9). This particular surface is famous for the fact that all its 27 lines are real. Let
𝑓 (𝑥, 𝑦, 𝑧) be as in (9). A line inR3 parameterized by (𝑎1+𝑡 ·𝑏1, 𝑎2+𝑡 ·𝑏2, 𝑎3+𝑡 ·𝑏3) is
contained in our Clebsch surface if and only if 𝑓 (𝑎1+ 𝑡 ·𝑏1, 𝑎2+ 𝑡 ·𝑏2, 𝑎3+ 𝑡 ·𝑏3) ≡ 0.
The left-hand side evaluates to a cubic polynomial in 𝑡 with coefficients in the ring
Z[𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3] = Z[𝑎, 𝑏]:

𝑓 ( 𝑎1+ 𝑡 ·𝑏1, 𝑎2+ 𝑡 ·𝑏2, 𝑎3+ 𝑡 ·𝑏3 ) = 𝑓1 (𝑎, 𝑏) · 𝑡3+ 𝑓2 (𝑎, 𝑏) · 𝑡2+ 𝑓3 (𝑎, 𝑏) · 𝑡+ 𝑓4 (𝑎, 𝑏).

The lines contained in the Clebsch surface satisfy

𝑓1 (𝑎, 𝑏) = 𝑓2 (𝑎, 𝑏) = 𝑓3 (𝑎, 𝑏) = 𝑓4 (𝑎, 𝑏) = 0. (19)
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We further reduce this to a system of 𝑠 = 4 equations in 𝑛 = 4 unknowns by
removing the redundancy in our parameterization of the line: the space of lines in
three-space (i.e. the Grassmannian G(1, 3)) has dimension four, not six. We may
impose a random affine-linear relation among the 𝑎𝑖 and 𝑏𝑖 . We choose to substitute

𝑎3 = −(7 + 𝑎1 + 3𝑎2)/5, 𝑏3 = −(11 + 3𝑏1 + 5𝑏2)/7.

Implementations of Gröbner bases are available, for instance, in Maple [37] and
in msolve [7], which can be used in julia via the package msolve.jl. This is
also available in the package Oscar.jl [43]. The following snippet of Maple code
constructs our system (19) and computes a Gröbner basis with respect to the graded
lexicographic monomial ordering with 𝑎1 ≻ 𝑎2 ≻ 𝑏1 ≻ 𝑏2. This basis consists of 23
polynomials 𝑔1, . . . , 𝑔23.
> f := 81*(x^3 + y^3 + z^3) - 189*(x^2*y + x^2*z + x*y^2 + x*z^2 + y^2*z + y*z^2)

+ 54*x*y*z + 126*(x*y + x*z + y*z) - 9*(x^2 + y^2 + z^2) - 9*(x + y + z) + 1:
> f := expand(subs({x = t*b[1] + a[1], y = t*b[2] + a[2], z = t*b[3] + a[3]}, f)):
> f := subs({a[3] = -(7 + a[1] + 3*a[2])/5, b[3] = -(11 + 3*b[1] + 5*b[2])/7}, f):
> ff := coeffs(f, t):
> with(Groebner):
> GB := Basis({ff}, grlex(a[1], a[2], b[1], b[2]));
> nops(GB); ----> output: 23

The set of standard monomials is the first output of the command NormalSet. It
consists of 27 elements, and the multiplication matrix with respect to 𝑎1 in this basis
is constructed using MultiplicationMatrix:
> ns, rv := NormalSet(GB, grlex(a[1], a[2], b[1], b[2])):
> nops(ns); ----> output: 27
> Ma1 := MultiplicationMatrix(a[1], ns, rv, GB, grlex(a[1], a[2], b[1], b[2])):

This is a matrix of size 27×27 whose eigenvectors reveal the solutions (Theorem 4).
We now turn to julia and use msolve to compute the 27 lines on { 𝑓 = 0} as follows:

using Oscar
R,(a1,a2,b1,b2) = PolynomialRing(QQ,["a1","a2","b1","b2"])
I = ideal(R, [-189*b2*b1^2 - 189*b2^2*b1 + 27*(11 + 3*b1 + 5*b2)*b1^2 + ...
A, B = msolve(I)

The output B contains 4 rational coordinates (𝑎1, 𝑎2, 𝑏1, 𝑏2) of 27 lines which ap-
proximate the solutions. To see them in floating point format, use for instance

[convert.(Float64,convert.(Rational{BigInt},b)) for b in B]

We have drawn three of these lines on the Clebsch surface in Fig. 6 as an illustration.
Other software systems supporting Gröbner bases are Macaulay2 [25], Magma [8],
Mathematica [?] and Singular [26].
Homotopy continuation methods provide an alternative way to compute our 27

lines. Here we use the julia package HomotopyContinuation.jl [12].
using HomotopyContinuation
@var x y z t a[1:3] b[1:3]
f = 81*(x^3 + y^3 + z^3) - 189*(x^2*y + x^2*z + x*y^2 + x*z^2 + y^2*z + y*z^2)

+ 54*x*y*z + 126*(x*y + x*z + y*z) - 9*(x^2 + y^2 + z^2) - 9*(x + y + z) + 1
fab = subs(f, [x;y;z] => a+t*b)
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Fig. 6: Two views on the Clebsch surface with three of its 27 lines.

E, C = exponents_coefficients(fab,[t])
F = subs(C,[a[3];b[3]] => [-(7+a[1]+3*a[2])/5; -(11+3*b[1]+5*b[2])/7])
R = solve(F)

The output is shown in Fig. 7. There are 27 solutions, as expected. The last line indi-
cates that a :polyhedral start system was used. In our terminology, this means that
the system was solved using a homotopy in the family F (A1, . . . ,A4) from Section
3.3. The number of tracked paths is 45, which is the mixed volumeMV(A1, . . . ,A4)
of this family. The discrepancy 27 < 45 means that our system 𝐹 lies in the discrim-
inant ∇A1 ,...,A4 . The 18 ‘missing’ solutions are explained in [4, Section 3.3]. The
output also tells us that all solutions have multiplicity one (this is the meaning of
non-singular) and all of them are real.

Fig. 7: The julia output when computing 27 lines on the Clebsch surface.

Other software implementing homotopy continuation are Bertini [2] and PHCpack
[55]. Numerical normal form methods are used in EigenvalueSolver.jl [5].
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