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Dynamical Hyperspectral Unmixing with
Variational Recurrent Neural Networks

Ricardo A. Borsoi, Member, IEEE, Tales Imbiriba, Pau Closas, Senior Member, IEEE

Abstract—Multitemporal hyperspectral unmixing (MTHU) is
a fundamental tool in the analysis of hyperspectral image
sequences. It reveals the dynamical evolution of the materi-
als (endmembers) and of their proportions (abundances) in a
given scene. However, adequately accounting for the spatial and
temporal variability of the endmembers in MTHU is challeng-
ing, and has not been fully addressed so far in unsupervised
frameworks. In this work, we propose an unsupervised MTHU
algorithm based on variational recurrent neural networks. First,
a stochastic model is proposed to represent both the dynamical
evolution of the endmembers and their abundances, as well
as the mixing process. Moreover, a new model based on a
low-dimensional parametrization is used to represent spatial
and temporal endmember variability, significantly reducing the
amount of variables to be estimated. We propose to formulate
MTHU as a Bayesian inference problem. However, the solution
to this problem does not have an analytical solution due to the
nonlinearity and non-Gaussianity of the model. Thus, we propose
a solution based on deep variational inference, in which the
posterior distribution of the estimated abundances and endmem-
bers is represented by using a combination of recurrent neural
networks and a physically motivated model. The parameters
of the model are learned using stochastic backpropagation.
Experimental results show that the proposed method outperforms
state of the art MTHU algorithms.

Index Terms—Hyperspectral data, hyperspectral unmixing,
recurrent neural networks, deep learning, multitemporal.

I. INTRODUCTION

Hyperspectral images (HIs) have very high spectral reso-
lution, which allows for a precise discrimination of different
materials in a scene [1]. However, physical limitations of spec-
tral image acquisition and large distances between the sensor
and the scene of interest as seen in, e.g., remote sensing, means
that each pixel of an HI may cover a large area of the scene
and typically contains a mixture of different materials [2].
Hyperspectral unmixing (HU) aims to decompose an HI into
the spectral signatures of the pure materials it contains (the
endmembers – EMs), and the proportions with which they
appear in each pixel (the abundances) [3].

The classical approach to describe the interactions between
light and the different materials in a pixel is the linear mixing
model (LMM) [3]. However, the LMM assumes the EM
signatures to be the same for all pixels in an HI, disregarding
spectral variability of the EMs which can be caused by,
e.g., atmospheric, illumination or seasonal variations, and
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propagates significant errors throughout the HU processing
chain [4], [5]. Thus, significant effort has been dedicated to
address spectral variability in HU (see Section II for a review).

More recently, multitemporal HU (MTHU) has been re-
ceiving increasing interest in the literature since it leverages
information in sequences of HIs acquired at different time
instants to reveal the dynamical evolution of the endmembers
and abundances in a scene [6]–[9]. MTHU has proven impor-
tant for many applications such as invasive species mapping
in rainforests [10], [11], and monitoring vegetation cover in
shrublands [12] or seasonal variations of vegetation cover in
dry forests [13]. Moreover, MTHU is also useful to perform
change detection at the subpixel level [14], [15]. However,
spectral variability can be very significant in MTHU due to
different seasonal and acquisition conditions [4], [5], [7].

Addressing both the spatial and temporal spectral variabil-
ity of the EMs is challenging, and has only been done in
MTHU by supervised techniques [10], [16]. However, super-
vised MTHU techniques require prior knowledge of libraries
containing spectral signatures which can accurately represent
the endmembers for each image in the time sequence. Such
libraries can be difficult or expensive to collect. Unsupervised
MTHU methods, on the other hand, estimate both the end-
member signatures and the abundances for all time instants
directly from the observed HI sequence. Thus, unsupervised
methods are of great practical interest, but can be challenging
to design. See Section II for a review of MTHU methods.

Machine learning has become a popular framework to
solve the HU problem [17]. Recent developments include
methods based on, e.g., autoencoders (AECs) [18] or unrolled
optimization-based neural networks [19] (see Section II for
a review). In particular, solutions based on deep learning
are especially attractive for HU when the mixing model
considers nonidealities such as, e.g., nonlinearity [20] and EM
variability [21], circumventing the need to construct complex
analytical models to represent such physical effects.

However, the literature lacks MTHU solutions that are
unsupervised and take spatial and temporal EM variability into
account, which are addressed in this work. In particular, we
also address several other needs, including the development
of parsimonious models for EM variability with adjustable
flexibility, and of machine learning-based strategies for MTHU
which jointly leverage both a physically motivated and data-
driven (e.g., neural networks) models in a principled manner.
Such hybrid approaches, where physics-informed models are
used to regularize and provide interpretability to data-driven
methodologies are becoming increasingly popular [22].

In this work, we propose an unsupervised MTHU algorithm
based on variational recurrent neural networks (RNNs). First,
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a stochastic model is proposed to represent both the dynamical
evolution of the EMs and of the abundances, as well as
the mixing process. Moreover, a new low-dimensional model
is used to represent spatial and temporal EM variability by
parametrizing band-dependent scaling variations of the EMs
using a set of smooth spectral basis functions. This allows us
to control the flexibility of the model by varying the number
and types of basis functions. To model the abundances, we
make use of the softmax basis representation [23], which
leads to a physically accurate model and has been successfully
used for fuzzy classification [24] and single-image HU [25].
This way, we can use a Gaussian distribution to represent the
abundances in the softmax basis, which closely approximates
a Dirichlet distribution when mapped back to the original
abundance domain (i.e., the unit simplex) [26].

MTHU is then formulated as a Bayesian inference problem.
However, exact inference is analytically intractable due to the
nonlinearities in the model. Thus, we consider a variational
inference solution based on RNNs, in which the approximate
joint posterior distribution of abundances and EMs is learned
by maximizing a lower bound over the marginal likelihood
of all pixels. Note that approximating the true posterior
typically requires a flexible family of distributions which can
be represented using neural networks [27]. However, using
feedforward neural networks leads to models with large num-
bers of parameters, making inference costly. By exploiting the
temporal structure in the data (e.g., Markovity), RNNs provide
a solution that gives flexibility while also having a lower
number of parameters (being computationally lightweight).
Besides, RNNs have shown excellent performance in numer-
ous sequence modeling tasks [28]. Interpretability of the esti-
mated abundances and EMs is paramount for the applicability
of MTHU systems. For this reason, we parameterized the
joint posterior distribution using a hybrid model composed of
physics-based and data-driven components. More specifically,
the posterior is modeled by a family of nonlinear functions
constructed by integrating both a simple, physically motivated
model that is able to provide an approximate abundance
estimate, and a bidirectional RNN that can represent more
complex effects (i.e. not captured by the simpler model). The
parameters of the model and of the posterior distribution are
learned based on all image pixels using stochastic gradient
descent (SGD). The contributions of this paper include:
‚ a new low-dimensional model to represent the spatial and

temporal variability of the EMs with a small amount of
parameters to be learned;

‚ a stochastic model describing the temporal evolution of
the abundances and of the EM variability parameters,
which leverages the softmax basis used in single-image
HU [25] to obtain a physically accurate representation of
the abundance dynamics using a Gaussian distribution;

‚ a deep variational inference formulation of model-based
MTHU with both spatial and temporal EM variability,
solved using stochastic backpropagation;

‚ a parametrization of the posterior distribution of the
abundances and EMs combining bidirectional RNNs and
a physically interpretable model.

The proposed method is called ReDSUNN for Recurrent

hyperSpectral Unmixing with Neural Networks. Experimental
results with synthetic and real data show that ReDSUNN
outperforms state of the art MTHU algorithms. Codes are
available at https://github.com/ricardoborsoi/ReDSUNN.

II. BACKGROUND AND RELATED WORK

A general multitemporal linear mixing model represents the
n-th pixel of an HI acquired at time t as:

yn,t “Mn,tan,t ` rn,t ,

s.t. 1Jan,t “ 1, an,t ě 0 ,
(1)

where, for each time t P t1, . . . , T u and pixel n P t1, . . . , Nu,
yn,t P RL denotes the observed pixel with L bands, the
columns of Mn,t P RLˆP contain the spectral signatures of
the P endmembers in the scene, vector an,t P RP contains the
fractional abundances of each EM, and rn,t P RL represents
additive noise. Note that the general model (1) can accom-
modate EM variability both in space and in time, being able
to represent effects such as, e.g., atmospheric, illumination, or
seasonal variations [4]. In the following, we review different
HU strategies addressing multitemporal sequences, spatial EM
variability, and based on deep learning frameworks.

A. Multitemporal HU

A fundamental aspect of MTHU is taking into account the
relationship between the EMs and abundances at different time
instants. Since these are usually temporally correlated, this
can greatly improve the performance of unmixing algorithms.
Most previous works have been focused on addressing the
variability of the EMs in time. This was usually performed by
considering a more constrained version of model (1), where
only the temporal variability of the EMs is considered, leading
to Mn,t “Mm,t, for all 1 ď n,m ď N [6]–[8].

Several works have considered parametric models to rep-
resent the temporal variability of the EMs (i.e., using only a
single EM matrix per image). For instance, dynamical model
was used in [6] to constrained the EMs to be a scaled versions
of a reference EM matrix, with smoothly varying scaling
factors. Another model considered the EM matrices at each
time instant to be an additive perturbation of a mean EM
matrix [7]. Using this model, MTHU was performed using a
two-stage stochastic programming approach [7]. Other works
considering this model have also proposed MTHU solutions
using a distributed algorithm using sparsity constraints [29],
and a hierarchical Bayesian framework incorporating additive
residual terms to account for outliers [30]. A recent work
proposed a hierarchical Bayesian MTHU strategy (called
HBUN) which incorporated priors promoting the spectral
smoothness of the estimated EM signatures, and the spatial and
temporal smoothness of the abundances [9]. Another model
representing the EMs using bandwise multiplicative scalings
of a set of reference EM signatures was considered in [8].
MTHU was performed by combining a Bayesian filtering
(the Kalman filter and smoother) with the expectation maxi-
mization method. Heteroscedastic measurement noise was also
considered in [31], where the (diagonal) covariance matrix of

https://github.com/ricardoborsoi/ReDSUNN
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Fig. 1: Illustrative diagram of the proposed ReDSUNN method. A likelihood and transition PDFs, with parameters θ, define the spatiotemporal mixing process
(i.e., the generative model). The variational posterior, with parameters φ, approximates the unmixing solution (i.e., the PDF of the abundances and EMs
conditioned on the HIs) recursively, being implemented using an RNN. The parameters of these PDFs are learned by maximizing a loss function based on
the ELBO, which balances data reconstruction (MSE) and consistency between posterior and prior (KLD). The parameters cn,t and ψn,t are mapped to the
abundances and EM matrices, an,t and Mn,t using a deterministic model. The notation z´1 represents a delay. See Section III for more details.

Fig. 2: In the generative model (left), conditional independence among pixels
yt is assumed given abundances at and variability coefficients ψt, as well as
Markovity of state variables. During inference (right), state estimation exploits
correlations between pixels, states and hidden representations ht generated
by a bi-directional RNN.

the measurement noise was estimated along with the EMs and
abundances in a maximum a posteriori framework.

However, these methods disregard EM variability within a
single image, which limits their performance. Existing MTHU
algorithms which tackle both spatial and temporal variabilty
are based on the MESMA framework [32], which searches
for a combination of EM signatures in a library which can
best reconstruct a given HI, rendering it highly interpretable.
These have been applied for MTHU in vegetation monitor-
ing applications [10], [12], [33]. Recent advances were also
made on developing efficient solutions to this problem with
theoretical guarantees by exploring the temporal information
of the abundances [16]. However, MESMA-based approaches
are computationally costly and their performance depends
strongly on the accuracy of the library, rendering this model
inadequate for unsupervised processing. Note that some works
proposed to leverage complementary high-resolution (Landsat)
images to unmix low-resolution (MODIS) images [34], [35].
However, the availability of such complementary information
and difficulties associated to differences in their acquisition
times limit the applicability of such methods in practice.

B. HU with EM variability

The variability of the EMs across an HI occurs due to atmo-
spheric, illumination (e.g., topographic) or intrinsic variations
of the EM spectra [4], [5], [36]. It introduces errors which
propagate through the various steps of the traditional HU

processing chains and can have significant negative impact on
the abundance estimation performance. EM variability is gen-
erally addressed in HU by representing the spectral signature
of each material using structured spectral libraries, statistical
distributions, or physically motivated parametric models [4].

Spectral library-based methods represent the EMs in each
pixel as one of several spectral signatures in a dictionary
known a priori, which implies formulating HU as a struc-
tured sparse regression problem. The sparsity prior can be
addressed either with combinatorial approaches, which are
computationally costly [32], or using different relaxations
of the L0 seminorm based on convex [37], [38] or non-
convex [39] sparsity promoting penalties. Other strategies
also allow each EM to be a convex combination of library
spectra [40]. Such relaxations are computationally easier to
solve. This can be a reasonable modeling assumption when
multiple signatures of the same EM can contribute to form
a single pixel. However, such relaxations might reduce the
interpretability of the solutions if the goal is to identify which
signature is active [39]. Nevertheless, the performance of both
kinds of strategies is strongly dependent on the quality of the
spectral library.

Using statistical distributions to model the endmembers has
been well-investigated as it provides principled HU solutions
through a Bayesian framework. The Gaussian [41], mixture of
Gaussians [42] or Beta [43] distributions have been considered.
However, when complex distributions (such as the Beta or
mixtures of Gaussians) are used to represent the endmembers,
HU (which consists in a Bayesian inference problem) can
become computationally expensive.

Another approach to address spectral variability consists in
representing the signatures of the EMs in each pixel using a
physically meaningful parametric model, and estimating the
model parameters during HU. Examples of such models in-
clude the use of additive perturbations [44], spectrally uniform
or spectrally localized multiplicative scaling factors [45], [46],
or a combination thereof [47]. Other models explicitly exploit
spatial information, using multiscale [48] or low-rank tensor
representation [49], and external information (e.g., LiDAR)



4

by means of digital surface models [50]. However, designing
physically accurate models whose parameters can at the same
time be properly recovered from an HI can be challenging.

C. Deep learning-based HU

Deep learning has recently become a popular approach
to perform HU. While HU was traditionally viewed as a
regression problem (i.e., learning a mapping from the pixels to
the abundances) [51], [52], recent work has been focused on
developing unsupervised or self-supervised strategies, which
avoid the need for vast amounts of training data. Among
such strategies, AECs have become a predominant approach
for deep learning-based HU due to their close connection to
linear or nonlinear mixing models and good experimental per-
formance [18]. The latent representations of the image pixels
obtained by the AEC are associated to the abundances, and
the decoder network to the mixing model [53], [54]. Several
AEC methods for HU have been proposed for linear HU by
using different choices of encoder networks including, e.g.,
denoising layers [55], [56], spatial-spectral (convolutional)
architectures [57], [58] and the use of sparsity constraints [59].

AECs have also been used to perform nonlinear HU by con-
sidering nonlinear decoder networks to address complex mix-
ing effects. This includes a post-nonlinear mixing model [20],
additive nonlinearities [60] and the use of application-specific
nonlinear neural network layers [61]. Another work also
exploited the relationship between the encoder and decoder
networks to propose a model-based architecture [62].

Spectral variability was also addressed using deep learning
methods. In [21], a generative EM model is proposed to repre-
sent the variability of the EMs on a low-dimensional manifold.
Such a model was used to perform HU using methods inspired
by matrix factorization [21], sparse regression [63] and proba-
bilistic approaches [56], [64]. Gaussian process regression has
also been considered as a non-parametric approach to mitigate
the effects of spectral variability in HU [65], [66].

Other approaches also used multiple sets of pure pixels
extracted in a self-supervised manner to regularize (explicitly
or implicitly) AEC-based HU algorithms in order to improve
their robustness [67]–[69]. An approach to learn learn dy-
namical models for the spectra of individual materials has
also been proposed [70]. Finally, other methods have been
proposed using, e.g., Wasserstein [71], adversarial [72], or
cycle-consistency [73] loss functions during training. Deep
priors [74] and unfolding optimization-based neural networks
have also been considered [19].

We highlight, however, that despite these advances previous
MTHU methods did not address spatial EM variability without
supervision, and also did not exploit deep learning frame-
works. In the following, we will present a probabilistic model
representing both spatial and temporal EM variability, and
develop an unsupervised inference strategy based on RNNs.

III. OVERVIEW OF THE PROPOSED APPROACH

We consider a probabilistic framework for MTHU. This
amounts to two steps. The first is the modeling step, which
consists in defining a set of probability density functions

(PDFs) which describe how the abundances and EMs evolve
over time, and how the pixels are generated. Note that the
model PDFs typically depend on different deterministic param-
eters, some of which are specified a priori (which we refer to
as hyperparameters) and some which we intend to learn from
the observed HIs. We represent the parameters to be learned
in the set θ. We include the subscript θ on the model PDFs in
order to make their dependence on these parameters explicit.

The second is the inference step, which consists in com-
puting (an approximation of) the posterior distribution, which
is the PDF of the abundances and EMs conditioned on the
observed pixels. The inference step is also decomposed in two
distinct parts which are interdependent. The first part consists
in computing the approximate posterior distribution, while the
second part involves learning the deterministic parameters of
the model in θ by maximizing the likelihood of the pixels.

Note that this process leads to an unsupervised learning
problem, that is, the model parameters in θ and posterior
distribution are both computed based only on the observed
HI pixels (i.e., there is no separate training and testing data).
In the following, we provide a high-level description of the
approach, which is illustrated in Figures 1 and 2. Modeling
and inference steps are then detailed in Sections IV and V.

Modeling step: The first step is to characterize the
dynamical evolution of the EMs and abundances. Under a
Markovity assumption, it can be expressed using the following
sequence of conditional probability distributions [75]:

pat,M tq „ pθpat,M t|at´1,M t´1q , (2)

where at “ raJ1,t, . . . ,a
J
N,ts

J denotes the abundance maps
in lexicographic ordering and M t “

 

M1,1, . . . ,MN,t

(

the
collection of EM matrices for all pixels, and pa0,M0q „

pθpa0,M0q. We also assume that the abundances and end-
members at time t are statistically independent when condi-
tioned on the their values at time t´ 1, that is,

pθpat,M t|at´1,M t´1q “ pθpat|at´1qpθpM t|M t´1q .
(3)

This allows us to model the evolution of at andM t separately.
The second part of the model represents how the HI pixels

are generated from at and M t, which is given by

yt „ pθpyt|at,M tq , (4)

where yt “ ry
J
1,t, . . . ,y

J
N,ts

J denotes the HI in lexicographic
ordering. Note that the pixels yt are assumed to be condition-
ally independent given at and M t. These PDFs are defined
explicitly in Section IV.

Inference step: This step, which constitutes the solution
to the MTHU problem, consists in computing the posterior
PDF of the EMs and of the abundances given the observed
pixels, which is given by:

pθpa1,M1, . . . ,aT ,MT |y1, . . . ,yT q (5)

“
pθpa0,M0q

śT
t“1 pθpyt|at,M tqpθpat|at´1qpθpM t|M t´1q

pθpy1, . . . ,yT q
,

where the r.h.s. of (5) was obtained using the Bayes rule and
the factorization in (2)–(4). The PDF in (5) generally does not
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have a closed form solution [75]. One efficient solution is to
use variational inference based on SGD [27], which attempts
to find an approximate posterior q P Q within a family of
distributions Q that is as close as possible to the true posterior
in (5). This approximation is often obtained by maximizing
a lower bound on the marginal log-likelihood, the so-called
evidence lower bound (ELBO):

ELBOpq, θq ď log pθpy1, . . . ,yT q , (6)

see Section V for a detailed explanation. Under specific
conditions over the model and posterior family Q, such
as assuming conditionally Gaussian distributions, the max-
imization maxqPQ ELBOpq, θq can be solved locally using
SGD techniques, which are computationally efficient when
compared to solutions based on Monte Carlo sampling [27].

The flexibility provided by the family of posterior distri-
butions Q is paramount for the performance of the strategy.
Recent works have considered neural networks, parameterized
by φ, to represent the approximate posterior. Thus, instead of
searching for q in a (continuous) family of distributions Q,
we search for the parameters φ, such that the parameterized
posterior, denoted by qφ, maximizes the ELBO. Thus, the
optimization becomes maxφ ELBOpqφ, θq. For problems with
a temporal Markov structure, RNNs provide a parameter-
ization that, although flexible, is computationally efficient.
Moreover, they explicitly explore the temporal structure in the
data, having shown excellent performance in various sequence
modeling tasks [28]. This will motivate us to use an RNN in
the parametrization of our posterior in Section V-C.

Finally, the parameters of the generative model, θ, are also
learned within the same framework. The underlying idea is
to perform type-II maximum likelihood (ML) estimation [76],
that is, maxθ log pθpy1, . . . ,yT q. However, since computing
pθpy1, . . . ,yT q is intractable, θ is also computed by maxi-
mizing the ELBO w.r.t. θ using SGD. Thus, as ELBOpqφ, θq
is maximized w.r.t. qφ, the lower bound in (6) becomes tighter
and its maximization w.r.t. θ better approximates ML estima-
tion. Thus, the complete inference problem is formulated as
the maximization of the ELBO w.r.t. both the posterior and
the model parameters, that is, maxθ, φ ELBOpqφ, θq.

IV. PROPOSED MODEL

The modeling step will be divided as follows. First, we
develop a mixing model and represent EM variability (which
defines pθpyt|at,M tq). Next, we consider the dynamical
behavior of the EMs, and finally of the abundances (which
define pθpM t|M t´1q and pθpat|at´1q, respectively).

A. Mixture model with EM variability

As discussed in Section II, devising EM models that
combine flexibility to represent complex spectral variability
with simplicity of having a small number of parameters
is challenging. Flexible models such as the PLMM [44],
GLMM [46] and ALMM [47] have many degrees of freedom
and require additional regularization strategies to guarantee
physically meaningful solutions, while simpler models such as

the ELMM [45] are too restrictive to represent complex spec-
tral variability. An important information which can be used
in the design of mixing models accounting for endmember
variability is the spectral correlation of EM signatures [4]. This
points to a natural representation of EMs as smooth functions.
Although the smoothness of the EMs can be introduced
through regularization (see, e.g., [77], [78]), this leads to high-
dimensional and potentially costly HU solutions. On the other
hand, a more efficient and interpretable model can be obtained
by directly parametrizing smoothness using properly selected
basis functions [79].

In this work, we consider an EM model inspired by the
GLMM [46], which represents spectral variability using a
multiplicative scaling of reference EM spectra that vary for
each band, endmember and pixel. However, instead of using
regularizations we propose to constrain the scaling factors to
be linear combinations of spectrally smooth functions. The
resulting model, which we call Smooth GLMM (SGLMM),
represents each observed HI pixel yn,t as follows:

yn,t “
`

M0 d p1`D rΨn,tq
˘

looooooooooooomooooooooooooon

Mn,t

an,t ` rn,t , (7)

where d represents the Hadamard (elementwise) product,
1 is an L ˆ P matrix of ones, M0 P RLˆP a set of
reference or average EM signatures, matrix D P RLˆK
contains K spectrally smooth basis vectors as its columns,
and rΨn,t P RKˆP contains the low-dimensional coefficients
that parameterize the variability of each EM. Vector rn,t P RL
denotes zero-mean additive Gaussian noise.

It is instructive to analyze how the variability of the
endmembers Mn,t is introduced in the model (7). The EM
matrix Mn,t is formed by scaling the reference EMs in M0

bandwise by matrix 1 ` D rΨn,t P RLˆP . This model is
similar to the GLMM, the difference being in the structure
of this multiplicative scaling matrix. First, note that when
rΨn,t « 0, the term D rΨn,t is also small and the scaling
factors will be close to 1, meaning that Mn,t « M0, i.e.,
the spectral variability is small. Thus, the amount of EM
variability depends directly on the amplitude of the elements
of rΨn,t. Second, matrix D rΨn,t represents a perturbation over
the constant scaling 1, and its properties depend directly on the
choice of D. Thus, by properly selecting D we can constrain
D rΨn,t to represent smooth functions with few parameters,
leading to smooth spectral variations in Mn,t. Following an
idea used in [79] for robust HU with smooth additive residual
terms, we select the columns of D as the first K rows of the
discrete cosine transform (DCT) matrix.

The SGLMM models endmember variability using KP
parameters. The number of basis functions K gives a trade-
off between existing models in the literature: when K “ 1,
D will contain only a constant vector and the model becomes
equivalent to the ELMM [45], whereas for K “ L it has the
same flexibility as the PLMM [44] and GLMM [46]. Values
of K ! L should give the SGLMM sufficient flexibility to
represent smooth spectral variability accurately.

Representing the spectral variability parameters in vector-
ized form as ψn,t “ vecp rΨn,tq and assuming the noise rn,t
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to be independent for each pixel, the PDFs in the generative
model (4) can be rewritten equivalently in terms of ψn,t as

pθpyt|at,ψtq “
N
ź

n“1

pθpyn,t|an,t,ψn,tq , (8)

where

pθpyn,t|an,t,ψn,tq

“ N
´

`

M0 d p1`D vec´1pψn,tqq
˘

an,t, σ
2
rI

¯

, (9)

in which σr P R˚` is the standard deviation of the measurement
noise, which is assumed to be independent and identically
distributed for different bands.

B. Dynamical model for the EM scaling parameters

In this work, we consider M0 to be a deterministic pa-
rameter of the model and estimated from the observed HIs
using an approximate ML framework (i.e., M0 P θ). This
means that the EM matrix for each t and n, Mn,t “

M0 d p1`D rΨn,tq, is a deterministic function of the lower-
dimensional vector of scaling factors ψn,t. Thus, we can
substitute the problem of estimating the very high-dimensional
pθpM t|M t´1q by the problem of estimating pθpψt|ψt´1q,
with ψt “

“

ψJ1,t, . . . ,ψ
J
N,t

‰J
. Since vector ψt is still high

dimensional, we consider an independence assumption on the
time evolution between different pixels:

pθpψt|ψt´1q “

N
ź

n“1

pθpψn,t|ψn,t´1q , (10)

for t ě 1, where the prior PDF for time instant t “ 0 will
be specified later in Section IV-D. We consider a Gaussian
distribution to represent the evolution of ψn,t:

pθpψn,t|ψn,t´1q “ N
`

ψn,t´1, σ
2
ψIPK

˘

, (11)

where σψ P R˚` is the distribution standard deviation, which
controls its uncertainty and is assumed to be isotropic. Note
that the evolution of ψn,t is not assumed to be affected by
abrupt changes, which leads us to consider σψ constant. This
assumption is motivated from the fact that the reflectance of
materials are primarily influenced by their physico-chemical
composition (e.g., particle size and roughness in packed parti-
cle spectra [80], or biophysical parameters in leaf spectra [81]),
which we assume to change smoothly at fine time scales.

C. Abundances model

In order to represent the abundances dynamical behavior,
we first assume their time evolution to be independent for
different pixels in order to make the problem tractable, that is,

pθpat|at´1q “

N
ź

n“1

pθpan,t|an,t´1q , (12)

for t ě 1, where the prior PDF for time instant t “ 0
will be specified later in Section IV-D. To represent the time
evolution at each pixel, we consider a Dirichlet distribution.
The Dirichlet is a natural choice of distribution to model the
abundances as it enforces the physical constraints that the

elements of at should be nonnegativity and sum to one [82],
[83]. The transition PDF is then given by

pθpan,t|an,t´1q “ Dirpαn,tq , (13)

where αn,t P RP` denotes the concentration parameters,
which are a function of the abundances at the previous
time instant, an,t´1 (i.e., the parameters of pθpan,t|an,t´1q,
αn,t, are a function of the conditioning variable). Note that
the uncertainty of the abundances predictions is represented
implicitly in αn,t, where small concentration values yield low
uncertainty and temporally smooth transition, whereas large
values lead to higher uncertainty, allowing for more changes.

However, the Dirichlet distribution can make infer-
ence difficult. One workaround consists of using, e.g.,
Laplace’s method, which approximates the Dirichlet distribu-
tion Dirpαn,tq by a Gaussian with mean and inverse covari-
ance equal to the mode of the original distribution and the
Hessian of its negative logarithm, respectively [23]. However,
since the Dirichlet distribution is supported at the simplex, this
approximation can be inaccurate. To overcome this problem,
MacKay [26] proposed to perform this approximation in
the so-called softmax basis, which consists in a mapping
π´1 : an,t ÞÑ cn,t from the unity simplex to RP , where
π is the softmax function:

π´1pan,tq “ cn,t , (14)

πipcn,tq “
exppcn,t,iq

ř

j exppcn,t,jq
, i P t1, . . . , P u , (15)

with πi, cn,t,i being the i-th positions of π and cn,t. This
approximation is very accurate and has been used in several
works to facilitate statistical inference [84], [85]. Thus, re-
placing an,t by the softmax parameters cn,t, we achieve the
following alternative representation of (13) [26]:

pθpcn,t|cn,t´1q

“
Γp
řP
i“1 αn,t,iq

śP
i“1 Γpαn,t,iq

P
ź

i“1

πipcn,tq
αn,t,igp1Jcn,tq , (16)

where αn,t,i is the i-th position of αn,t, Γ denotes the Gamma
function, and g is an arbitrary distribution used to constrain
an extra degree of freedom (since the Dirichlet has only
P ´ 1 degrees of freedom), selected as gpxq9 expp´ ε

2x
2q

for mathematical convenience [26]. The Gaussian approxima-
tion of this distribution is then given by pθpcn,t|cn,t´1q «

N pµn,t,Σn,tq [26], [84], with µn,t given by

µn,t,i “ logpαn,t,iq ´
1

P

P
ÿ

`“1

logpαn,t,`q , (17)

where µn,t,i is the i-th position of µn,t and Σn,t is the
negative Hessian of (16) at cn,t “ µn,t. Note that the mean
and covariance µn,t and Σn,t are a function of αn,t and,
consequently, depend implicitly on cn,t´1.

Therefore, we can approximate the transition PDF (13) by a
Gaussian one on the softmax basis. Note that the relationship
between the parameters of both models, that is, between αn,t
and µn,t and Σn,t, is nonlinear and burdensome to compute.
However, by working on the softmax basis we do not need
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to specify pθpan,t|an,t´1q explicitly in (13). Instead, we can
directly define the Gaussian transition for pθpcn,t|cn,t´1q,
which is mathematically more convenient. This implicitly
defines a transition probability pθpan,t|an,t´1q by mapping
cn,t „ pθpcn,t|cn,t´1q into the simplex, approximating a
Dirichlet distribution. Thus, we consider the following model:

pθpcn,t|cn,t´1q “ N
`

cn,t´1, σ
2
apcn,t´1qIP

˘

, (18)

where IP is a P ˆP identity matrix. Note that, for simplicity,
the covariance matrix in (18) was constrained to be isotropic,
and is scaled by σ2

apcn,t´1q. The function σa : RP Ñ R˚`
computes the standard deviation of each element of cn,t „
pθpcn,t|cn,t´1q as a function of cn,t´1. Thus, it directly
influences the amount of change in the abundances: the larger
σapcn,t´1q, the larger the changes we expect to observe
between cn,t´1 and cn,t. This function, which is part of the
generative model, will be learned during inference using a
maximum likelihood approach. It will be parameterized using
a fully connected neural network with Rσa layers, where each
hidden layer has P neurons and uses the ReLU activation
function, and the output layer maps to a scalar and uses an
exponential activation function to ensure the output is positive.

D. The complete model

To finish the model derivation, we need to define the initial
PDFs at time t “ 0, which under the new parametrization
of the abundances and endmembers, which we assume to be
pixelwise independent Gaussian distributions, given by:

pθpc0,ψ0q “

N
ź

n“1

pθpcn,0qpθpψn,0q , (19)

pθpcn,0q “ N
`

νc0,diagpγc0q
2
˘

, (20)

pθpψn,0q “ N
`

νψ0 ,diagpγψ0 q
2
˘

, (21)

for all n “ 1, . . . , N , where the means νc0, νψ0 and diagonal
covariance parameters, γc0, γψ0 are constant and shared among
all pixels in order to reduce the amount of parameters in the
model. Finally, the measurement model (9) can be written
using the softmax abundance reparametrization as:

pθpyn,t|cn,t,ψn,tq

“ N
´

`

M0 d p1`D vec´1pψn,tqq
˘

πpcn,tq, σ
2
rI

¯

, (22)

where π is the softmax function.
The final dynamical model is then given by equa-

tions (20), (21) (initial PDFs), (18), (11) (the dynamical
model) and (22) (the measurement model). Finally, we de-
note the parameters of the model which will be estimated
from the data using approximate ML inference by θ “

tM0, σr, σa,ν
c
0,ν

ψ
0 ,γ

c
0,γ

ψ
0 u. An illustrative diagram of the

proposed generative model can be seen in Figure 3.

V. VARIATIONAL INFERENCE WITH RNNS FOR HU

In this section, we will present the proposed solution to
the inference step, referred to as ReDSUNN. Considering
the parametrization of the abundances and of endmember
variability derived in the previous section, this task, which

Likelihood

Transition

Transition

Prior

Prior

Fig. 3: Illustrative diagram of the proposed generative model.

consists in performing MTHU, becomes that of approximating
the posterior distribution:

pθ
`

c1,ψ1, . . . , cT ,ψT
ˇ

ˇy1, . . . ,yT
˘

, (23)

where ct “
“

cJ1,t, . . . , c
J
N,t

‰J
. First, let us denote with an

underline the collection of variables at all time instants:

y “ ty1, . . . ,yT u , (24)

y
n
“ tyn,1, . . . ,yn,T u , (25)

c “ tc0, . . . , cT u , (26)
ψ “ tψ0, . . . ,ψT u . (27)

As discussed in Section III, due to the nonlinearity in the
model caused by the interaction between the abundances
and the variability scaling factors, and the potentially high
dimensionality of these variables, it is not possible to com-
pute the posterior distribution (23) in closed form. In this
work, we adopt a deep variational inference framework: we
consider a parametric surrogate distribution qφpc,ψ|yq from
a sufficiently flexible family with parameters φ, and learn its
parameters by minimizing the Kullback-Leibler (KL) diver-
gence between qφpc,ψ|yq and the true posterior pθpc,ψ|yq:

KL
`

pθpc,ψ|yq
›

›qφpc,ψ|yq
˘

“ log pθpyq

` Eqφpc,ψ|yqtlog qφpc,ψ|yqu

´ Eqφpc,ψ|yqtlog pθpc,ψ,yqu . (28)

Since the KL divergence is nonnegative and log pθpyq is a
constant, the above expression can be equivalently minimized
by maximizing a lower bound to the data likelihood formed
by the last two terms in the right hand side of the expression,
which is the so-called ELBO [23], [86]:

log pθpyq ě Eqφpc,ψ|yqtlog pθpc,ψ,yqu

´ Eqφpc,ψ|yqtlog qφpc,ψ|yqu . (29)

Recent advances in variational deep learning such as in varia-
tional autoencoders has made it possible to devise efficient
algorithms to maximize (29) when the PDFs are possibly
parameterized by deep neural network using, e.g., stochastic
backpropagation algorithms [87]. Furthermore, the conditional
independence assumptions of the model in the previous section
can be exploited to further simplify the inference problem. In
the following, we factorize the ELBO both in the temporal as
well as in the pixel dimensions.

Note that, as discussed in Section III, (29) will be optimized
both with respect to the parameters of the posterior distribution
φ, but also with respect to the parameters of the generative
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model pθpc,ψ,yq in the set θ in order to estimate them by
approximate ML inference. In the following, we will use the
Markov and pixelwise conditional independence assumptions
of the generative model in Section IV to factorize qφpc,ψ|yq
and simplify the solution to the inference problem.

A. Factorizing the posterior distribution

Factorizing the posterior distribution in time: Various
kinds of parametrizations of the distribution qφpc,ψ|yq have
been proposed. One of the simplest is to consider a mean field
assumption [88], which assumes that tct,ψtu and tct1 ,ψt1u
are conditionally independent given y, for all t ‰ t1. However,
this disregards the temporal structure of the data. A more
suitable factorization can be obtained by noting that the
Markov property of the model can be used to show that the
true posterior factorizes as

pθpc,ψ|yq “ pθpc0,ψ0|yq
T
ź

t“1

pθpct,ψt|ct´1,ψt´1,yq .

Incorporating this assumption into the variational approxima-
tion qφpa,ψ|yq leads to a similar factorization:

qφpc,ψ|yq “ qφpc0,ψ0|yq
T
ź

t“1

qφpct,ψt|ct´1,ψt´1,yq ,

(30)

which preserves the temporal dependency of the model.
Factorizing the posterior distribution in pixels: The

vectors ct,ψt in (30) contain the abundances and variability
coefficients for all image pixels, and are thus of very high
dimension. Therefore, additional simplifications are necessary
in order to make inference tractable. One important property
is that in the model derived in Section IV, the initial, transi-
tion, and measurement PDFs (equations (20), (21), (18), (11)
and (22)) can be factorized among the different image pixels.
Thus, the inference process can be factorized at the pixel level,
which leads to the following form for the posterior distribution:

qφpct,ψt|ct´1,ψt´1,yq

“

N
ź

n“1

qφpcn,t,ψn,t|cn,t´1,ψn,t´1,ynq , (31)

for t ě 1, and similarly for the initial PDF at t “ 0:

qφpc0,ψ0|yq “
N
ź

n“1

qφpcn,0,ψn,0|ynq . (32)

Although this factorization does not directly consider spatial
correlation between different pixels, which has been found to
be a useful source of prior information in HU [25], [82], it
allows us to work with pixelwise variational posterior PDFs
(i.e., the r.h.s. of (31) and (32)) which have a much lower
dimension, thus reducing the computational burden associated
with the inference step. To some extent, spatial information can
still be introduced indirectly by constraining the parametriza-
tion of the variational posterior distributions among different
pixels, which will be explained in the rest of this subsection.
The incorporation of spatial information directly through the
probabilistic model will be investigated in a future work.

Parameterizing the posterior: A key aspect of the model
is how to parameterize the posterior PDFs of the different
pixels in the r.h.s. of (31) and (32). First, variational inference
implies selecting a parametric family of distributions from
which to select qφ, which directly impact the results. Note
that the true posterior in (5) might have a complex form and
be possibly multimodal, however, its form is not known in
advance. Thus, as in recent works in deep variational inference
(see, e.g., [86]) we considered a Gaussian family for qφ since
this will simplify the maximization of the ELBO considerably
(through, e.g., the reparametrization trick and closed form
expressions for KL divergences), leading to important com-
putation savings. Thus, it can be expressed as:

qφ
`

cn,t,ψn,t
ˇ

ˇcn,t´1,ψn,t´1,yn

˘

“ N
`

µc,ψφ pΥn,tq,diagpσc,ψφ pΥn,tqq
2
˘

, (33)

where Υn,t “
 

cn,t´1,ψn,t´1,yn

(

and µc,ψφ and σc,ψφ are
functions (e.g., neural networks parameterized by φ) which
compute the parameters of the posterior distribution, mapping
the data tcn,t´1,ψn,t´1,ynu to the mean and the square root
of the diagonal covariance matrix of the Gaussian posterior,
respectively. For convenience of notation, we decompose µc,ψφ
and σc,ψφ into two functions:

µc,ψφ “

„

µcφ
µψφ



, σc,ψφ “

„

σcφ
σψφ



. (34)

Note that functions µcφ and σcφ compute the mean and
square root of the diagonal covariance matrix of the
qφ
`

cn,t
ˇ

ˇcn,t´1,ψn,t´1,yn

˘

, while µψφ and σψφ compute the
mean and square root of the diagonal covariance matrix of
qφ
`

ψn,t
ˇ

ˇcn,t´1,ψn,t´1,yn

˘

.
A Gaussian parametrization is also used for the posterior

distribution of the initial PDF:

qφpc0,ψ0|yq “ N
`

ζc,ψ,diagpξc,ψq2
˘

, (35)

where a fixed distribution was used for all pixels, with ζc,ψ

and ξc,ψ being the mean and the diagonal of the square root
of the covariance matrix, respectively.

An important observation is that we consider a shared
parametrization, where the posterior in (33) and (35) has the
same form for all pixels. More precisely, this means that the
same functions µc,ψφ and σc,ψφ are used to compute the poste-
rior mean and covariance for every HI pixel, given the input
data Υn,t. This is an important characteristic of the method,
since it allows information from different pixels (i.e., from the
whole image) to be leveraged jointly in the estimation of the
model and, consequently, of the abundances and variability
coefficients in each pixel, cn,t,ψn,t, n “ 1, . . . , N .

B. Factorizing the ELBO cost function

Using the simplifications derived in the previous subsection,
in the following we will rewrite the ELBO cost function (29)
in terms of the factorized model.
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Factorizing the ELBO temporally: Using the factoriza-
tion (30) and the Markovity of the model, the lower bound
in (29) can be written as [88]:

log pθpyq ě Lpθ, φ,yq “
T
ÿ

t“1

Eqφpct,ψt|yq
 

log pθpyt|ct,ψtq
(

´KL
`

qφpc0,ψ0|yq
›

›pθpa0,ψ0q
˘

´

T
ÿ

t“1

Eqφpct´1,ψt´1|yq

!

KL
`

qφpct,ψt|ct´1,ψt´1,yq
›

›pθpct,ψt|ct´1,ψt´1q
˘

)

.

(36)

Factorizing at pixel level: Using the pixelwise factor-
ization of the generative and posterior PDFs discussed in Sec-
tion IV, we can simplify each term of (36). To this end, we use
the fact that KLpppx1, x2q}qpx1, x2qq “ KLpppx1q}qpx1qq `
KLpppx2q}qpx2qq when both ppx1, x2q “ ppx1qppx2q and
qpx1, x2q “ qpx1qqpx2q are independent, and the fact that
Eppx1,x2qtfpx1qu “ Eppx1qtfpx1qu. We proceed to analyse
each term of (36) in the following.

First term: Using the factorization of the measurement
model in (8), the first term in the r.h.s. of (36) becomes:

Eqφpct,ψt|yq
 

log pθpyt|ct,ψtq
(

“

N
ÿ

n“1

Eqφpcn,t,ψn,t|ynq
 

log pθpyn,t|cn,t,ψn,tq
(

. (37)

Second term: Using the pixelwise independence of the ini-
tial PDF in the generative model (19) and in the posterior (32),
the KL divergence can be written as:

KL
`

qφpc0,ψ0|yq
›

›pθpc0,ψ0q
˘

“

N
ÿ

n“1

KL
`

qφpcn,0,ψn,0|ynq
›

›pθpcn,0,ψn,0q
˘

. (38)

Third term: Using the pixelwise independence of the
posterior (31) and of the predictive PDFs (12), (10), this term
can be written as:

Eqφpct´1,ψt´1|yq

 

KL
`

qφpct,ψt|ct´1,ψt´1,yq
›

›pθpct,ψt|ct´1,ψt´1q
˘(

“

N
ÿ

n“1

Eqφpcn,t´1,ψn,t´1|yn
q

 

KL
`

(39)

qφpcn,t,ψn,t|cn,t´1,ψn,t´1,ynq
›

›pθpcn,t,ψn,t|ct´1,ψt´1q
˘(

.

Combining these results, we can write the cost function
Lpθ, φ,yq as in equation (40) (depicted on top of the next
page). Details on the computation of the log-likelihood and
KL divergences can be found in Appendix A.

C. An RNN-based implementation

A key question is how to define the functions µcφ, µψφ , σcφ
and σψφ in (33) and (34), which parameterize the approximate
posterior distribution. On the one hand, these have to be
flexible to be able to approximate the true posterior, which
cannot be written in the form of a simple and well-known

Bidirectional 
RNN

Fig. 4: Diagram of the proposed network implementing the posteriors
qφpcn,t,ψn,t|cn,t´1,ψn,t´1,ynq and qφpc0,ψ0|yq.

distribution. On the other hand, it is important to incorpo-
rate information from a physical modeling of the problem
to make inference process more efficient, interpretable and
stable. Thus, we will parameterize the variational posterior
distribution using a lightweight RNN and, whenever possible,
leveraging physically motivated models.

First, a bidirectional RNN is used to compute a set of
feature-based representations, denoted by hn,t P RH , from
the image pixel sequence y

n
. In particular, we compute hn,t

by combining the hidden states learned by two LSTMs [89]:

hforw
n,t “ LSTMforw

φ phforw
n,t´1,yn,tq, t “ 1, . . . , T , (41)

hback
n,t “ LSTMback

φ phback
n,t`1,yn,tq, t “ T, . . . , 1 , (42)

hn,t “
1

2

`

hforw
n,t ` h

back
n,t

˘

, (43)

for n “ 1, . . . , N , where LSTMforw
φ and LSTMback

φ denote
two LSTMs which process the data forward and backwards in
time, respectively; their hidden state representation being given
by hforw

n,t and hback
n,t . We choose LSTMs due to their excellent

performance in various sequence modeling tasks [28]. More-
over, a bidirectional RNN (i.e., two LSTMs) is used because
at every time instant the posterior in (33) depends on the HI
pixels at all time instants, y

n
, whereas the LSTMs in (41)

and (42) depend only on past and future data, respectively.
The dimension of the RNN representation is selected as

H “ pK ` 1qP (i.e., the dimension of the state vector).
The gating units of the LSTMs use the sigmoid nonlinearity,
while the input and hidden state units use the uses the
hyperbolic tangent nonlinearity. Note that the parameters of
these LSTMs will also be learned during inference by SDG
using backpropagation through time [28].

We now use the representation hn,t to parameterize µcφ,
µψφ , σcφ and σψφ . To introduce physical knowledge, we fol-
low the general idea of using hybrid models [22], [62], in
which an approximate model is complemented by a learnable
component (in this case derived from the RNN). In particular,
for the posterior mean of the abundances, µcφ, we construct an
approximate model by assuming that 1) a least squares solution
provides a crude abundance estimate, 2) the abundances are
temporally smooth but may undergo sudden changes, and
3) abrupt abundance changes lead to abrupt changes in the
pixels. For the variability parameters, µψφ , we consider it to
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Lpθ, φ,yq “
T
ÿ

t“1

N
ÿ

n“1

Eqφpcn,t,ψn,t|ynq
 

log pθpyn,t|cn,t,ψn,tq
(

´

N
ÿ

n“1

KL
`

qφpcn,0,ψn,0|ynq
›

›pθpcn,0,ψn,0q
˘

´

T
ÿ

t“1

N
ÿ

n“1

Eqφpcn,t´1,ψn,t´1|yn
q

!

KL
`

qφpcn,t,ψn,t|cn,t´1,ψn,t´1,ynq
›

›pθpcn,t,ψn,t|cn,t´1,ψn,t´1q
˘

)

. (40)

be temporally smooth. For the standard deviations, σcφ and σψφ ,
we don’t have a good physical model; thus, we use a purely
non-parametric representation. In the following, we define
each of these functions explicitly; an illustrative diagram can
be seen in Figure 4.

Considering the RNN features hn,t, the abundance posterior
means µcφ is then parameterized as:

µcφpΥn,tq “ π
´1

´

α1p1´ un,tqπpcn,t´1q

` α2un,t
`

M :
n,t´1yn,t `Wchn,t

˘

¯

, (44)

where Mn,t´1 “ M0 d p1 ` D vec´1pψn,t´1qq is the
predicted EM matrix at pixel n and time t ´ 1, α1 and α2

are trainable, real-valued weighting coefficients, and Wc P

RPˆpK`1qP is a trainable matrix that maps the hidden
RNN representations to the abundances in the softmax ba-
sis. The scalar coefficient un,t P r0, 1s, defined as un,t “
1
2P }spM

:
n,t´1yn,tq ´ πpcn,t´1q}1, measures the difference

between the predicted abundances πpcn,t´1q and a crude
estimation of the current abundances at time t, given by
spM :

n,t´1yn,tq, where the fixed function sp¨q projects the
linear regression solution M :

n,t´1yn,t to the unit simplex.
Thus, un,t works as a crude abrupt change detector.

The parametrization (44) can be seen as a weighted com-
bination of three terms: the abundances at the previous time
instant, a crude abundance estimate at time t computed by
linear regression, and a non-parametric term depending on
hn,t. The balance between them depends on the trainable
weights and on the change detector un,t. When there are no
changes, un,t is small, which gives a higher contribution to
the predicted abundances cn,t´1 in (44). On the other hand,
if there is an abrupt change, un,t is large, giving a higher
contribution to the sum of the last two terms in (44), which is
a linear regression-based abundance estimate augmented by a
non-parametric RNN-based representation. This parametriza-
tion is particularly relevant since the generative model (18)
does not explicitly represent abrupt changes.

For the function µψφ , to leverage temporal smoothness we
consider a weighted linear combination of the variability
coefficients at the previous time instant ψn,t´1 and a linear
mapping of the hidden RNN representation:

µψφ pΥn,tq “ βψn,t´1 `Wψhn,t , (45)

where β is a real-valued weight, and Wψ P RKPˆpK`1qP is
a matrix that computes the variability coefficients’ innovation
from the RNN representation hn,t, both of which are trainable.
Note that by not considering abrupt changes to occur in ψt
we obtain a simpler model compared to µcφ.

The standard deviations σcφ and σψφ are computed based
on a fully non-parametric model, which is given as linear
mappings of the RNN representations hn,t:

σcφpΥn,tq “ exp
`

V chn,t
˘

, (46)

σψφ pΥn,tq “ exp
`

Vψhn,t
˘

, (47)

where V c P RPˆpK`1qP and Vψ P RKPˆpK`1qP are
the transformation matrices, and the exponential function
is applied elementwise in order to ensure nonnegativity
of the standard deviations. The parameters of the
approximate posterior are finally denoted by φ “

 

ζc,ψ,

ξc,ψ,LSTMforw
φ ,LSTMback

φ , α1, α2, β,Wc,V c,Wψ,Vψ
(

.
Note that all parameters in φ will be learned using SGD.

Approximating the expectations and optimization: To
optimize (40) using stochastic backpropagation, it is neces-
sary to estimate gradients of expectations whose distribution
depend on θ and φ, which are the parameters to be optimized.
To address this issue, we consider the reparametrization trick,
which provides low-variance gradient estimates [86]. This
is performed by writing the random variables inside the
expectations as deterministic functions of a random variable
that does not depend on φ. In general, for a distribution qφpxq
and function f , this can be formulated as Eqφpxqtfpxqu “
Eppεqtfpgpεqqu, where g is a function such that x and gpεq
have the same distribution, and ppεq does not depend on φ.
Applying this to the expectations in (40) and considering that
the posterior in our model is Gaussian, this is achieved as:

“

aJn,t,ψ
J
n,t

‰J
“ µc,ψφ pΥn,tq ` σ

c,ψ
φ pΥn,tq d ε , (48)

for t “ 1, . . . , T , where ε „ N p0, Iq. It can be verified that
the random variables in (48) are sampled according to the dis-
tribution qφpcn,t,ψn,t|ynq. Thus, by using this reparametriza-
tion, the expectations in (40) can be rewritten in terms of
expectations of ε, which we subsequently approximate using
a one-sample Monte Carlo estimate and denote by pLpθ, φ,yq.

The approximated cost function pLpθ, φ,yq is then optimized
with respect to both θ and φ (i.e., the parameters of the gener-
ative model and of the variational posterior) using the Adam
stochastic optimization method [87]. We used a learning rate
of 0.001 and a batch size of 128. Training was performed for
30 epochs. The full MTSU process performed by ReDSUNN
is summarized in Algorithm 1.

Since the cost function is non-convex, the initialization of
the parameters can have an important impact on the solu-
tion. The parameters of the neural networks σa, LSTMforw

φ ,
LSTMback

φ , and the matrices V c and Vψ are initialized ran-
domly using Glorot initialization [90]. Wc and Wψ are initial-
ized with zeros, and β “ α1 “ α2 “ 1. M0 was initialized
using the vertex component analysis (VCA) algorithm [91],
and σr “ 0.0001 (corresponding to an SNR of about 35dB



11

Algorithm 1: ReDSUNN
Input : HIs y1, . . . ,yT , hyperparameters P , K and σψ .

1 Initialize θ0 and φ0 as described in Section V-C ;
2 Use Adam [87] to maximize pLpθ, φ,yq w.r.t. both φ and θ ;
3 for n “ 1, . . . , N do
4 Compute pcn,0, pψn,0 as the means of qφpcn,0,ψn,0|ynq

using (35);
5 Compute the hn,1, . . . ,hn,T using (41), (42) and (43) ;
6 for t “ 1, . . . , T do
7 Compute pcn,t, pψn,t as the means of

qφpct,ψt|pct´1, pψt´1,yq using (44) and (45) ;
8 end
9 end

10 Set pan,t “ πppcn,tq, xMn,t “ xM0 d p1`D vec´1ppψn,tqq ;
Output: pan,t, xMn,t, for n “ 1, . . . , N and t “ 1, . . . , T .

for spectra with standard deviation 0.5). For the parameters of
the initial prior and variational posterior PDFs, we initialized
the means νa0 , νψ0 and ζc,ψ with zeros, and the variances
γa0 , γψ0 and ξc,ψ with ones, making the initial PDFs standard
Gaussians.

D. Model complexity and comparisons

We now summarize the parameters of the generative model,
of the variational posterior, and their dimensionality (i.e., the
number of parameters that have to be inferred). This can
be seen in Table I. To compute the number of parameters
corresponding to the LSTMs, we note that each LSTM has
four input-hidden weight matrices, four hidden-hidden weight
matrices, and four biases (where the input is of size L, and the
hidden state of size pK`1qP ). It is instructive to compare the
amount of parameters to other methods in the literature. By
using a Markovity assumption, a shared posterior distribution
for all pixels, and an RNN posterior parametrization, the
amount of parameters to be learned by ReDSUNN in Table I
does not scale with either N or T , differently from previous
methods such as OU [7] or the HBUN [9].

TABLE I: Variables to be estimated and number of parameters.

Generative model (θ)

M0 LP

σr 1
σa P pP ` 1qRσa
νa0 ,ν

ψ
0 ,γ

a
0 ,γ

ψ
0 2pK ` 1qP

Variational posterior (φ)

LSTMforw
φ , LSTMback

φ 8pK ` 1qP
`

pK ` 1qP ` L` 1
˘

α1, α2, β 3

Wc, Vc 2pP 2pK ` 1qq

Wψ , Vψ 2pKP 2pK ` 1qq

ζc,ψ , ξc,ψ 2pK ` 1qP

VI. RESULTS

The performance of the proposed ReDSUNN algorithm is
evaluated using simulations with synthetic and real data. We
compare our method with the fully constrained least squares
(FCLS), online unmixing (OU) [7], HBUN [9], and with a
Kalman filter and expectation maximization-based strategy

TABLE II: Quantitative results of the simulations using synthetic data.

NRMSEA NRMSEM SAMM NRMSEY Time

Data Sequence 1 – DS1

FCLS 0.537 – – 0.086 2.7
OU 0.434 0.342 0.260 0.051 24.9
HBUN 0.479 0.355 0.162 0.050 542.6
Kalman 0.356 0.124 0.076 0.061 2422.8
ReDSUNN 0.318 0.117 0.075 0.089 479.0

Data Sequence 2 – DS2

FCLS 0.500 – – 0.122 7.3
OU 0.335 0.256 0.120 0.055 60.6
HBUN 0.474 0.515 0.141 0.050 2166.0
Kalman 0.659 12.222 0.496 0.108 5937.4
ReDSUNN 0.294 0.203 0.289 0.160 1231.3

(referred to simply as Kalman) [8]. The EMs used by FCLS
were extracted by the VCA algorithm at each time instant [91].
The reference EMs required by the Kalman method, and the
initialization for the EMs in OU, HBUN and for the proposed
method were all set with the signatures obtained by apply-
ing VCA to the matrix ry1,1, . . . ,yn,t . . . ,yN,T s P RLˆNT
formed by concatenating the HI pixels for all time instants.

The abundances and EM scaling factors estimated by
ReDSUNN are set according to Algorithm 1. The hyperparam-
eters of all algorithms were adjusted so as to obtain high abun-
dance reconstruction performance. For ReDSUNN, parameters
K and σψ (which are not optimized) were searched within
the ranges K P t1, . . . , 10u and σψ P t10´5, . . . , 0.1, 1u,
and Rσa “ 2 layers were used to parameterize function
σap¨q in (18). For the other algorithms, their parameters were
selected in the ranges indicated in their original publications.
The proposed method was implemented in Pytorch (codes will
be available at https://github.com/ricardoborsoi/ReDSUNN).
The remaining methods were implemented in Matlab (codes
were provided by the original authors). All experiments were
run in a desktop computer with an Intel XeonTM W-2104 CPU
with four 3.2GHz cores and 24GB of RAM. No GPU was
used in the simulations. ReDSUNN, OU and Kalman used
parallelization in their implementations.

The quantitative performance of the algorithms was
evaluated using the average normalized mean squared
error (NRMSE), between the abundances, EMs, and
reconstructed HIs, which are computed as NRMSEA “
`

1
T

řT
t“1

řN
n“1 }an,t ´ pan,t}

2
L

}at}
2
˘1{2

, NRMSEM “
`

1
NT

řT
t“1

řN
n“1 }Mn,t ´ xMn,t}

2
F

L

}Mn,t}
2
F

˘1{2
, and

NRMSEY “
`

1
T

řT
t“1

řN
n“1

›

›yn,t ´
xMn,tpat

›

›

2L
}yt}

2
˘1{2

,
where pan,t and xMn,t denote the estimated abundances
and EMs. To evaluate the EMs, we also computed
the average spectral angle mapper (SAM) as
SAMM “ 1

TNP

řT
t“1

řN
n“1

řP
j“1 arccos

´

mJ
n,t,jxmn,t,j

}mn,t,j}}xmn,t,j}

¯

,
in which mn,t,j and xmn,t,j are the true and estimated EM
signatures for time t, pixel n and EM j.

A. Simulations with synthetic data
Two synthetic datasets were considered with spatiotemporal

abundance and EM variability. The first dataset, referred to as

https://github.com/ricardoborsoi/ReDSUNN
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Fig. 5: Estimated abundance maps and ground truth for DS1, shown as
composite color maps (that is, the abundances of the EMs #1, #2 and #3
are represented as the red, green, and blue color channels).

Data Sequence 1 (DS1), contains P “ 3 EMs and T “ 6 HIs.
The HIs are generated from sequences of abundance maps
with N “ 50ˆ 50 pixels containing localized abrupt changes
for t P t2, 3, 4, 5u (depicted in the first row of Figure 5).
The EMs for each pixel and time instant were generated as
follows. First, three signatures with L “ 224 bands were
selected from the USGS library and used as a reference EM
matrix. Then, for the first time instant (t “ 1), spatial EM
variability was introduced by following the model in [44],
in which the EMs in each pixel (Mn,1, n “ 1, . . . , N )
were generated by multiplying the reference signatures with
piecewise linear random scaling factors with amplitude in
the interval r0.85, 1.15s. For each subsequent time instant
t ą 1, the EMs were also generated as scaled versions of the
reference spectral signatures. However, to introduce temporal
EM variability, the scaling factors at time t are defined to
be the sum of the scaling factors at time t ´ 1 plus random
piecewise linear functions in the range r´0.1, 0.1s. Samples of
the generated EMs can be seen in Figure 6. These EM matrices
Mn,t are then used to generate the HI pixels using the LMM
(1), with the measurement noise rn,t being white and Gaussian
with an SNR of 30 dB. The second dataset, referred to as Data
Sequence 2 (DS2), contained P “ 4 EMs and N “ 50 ˆ 50
pixels. A sequence of abundance maps generated randomly
according to a Gaussian random field and containing small,
spatially compact abrupt changes was considered to generate
T “ 15 HIs. To introduce realistic spectral variability, the
EM signatures at each pixel and time instant were randomly
selected from a set of pure pixels of water, vegetation, soil
and road that were manually extracted from the Jasper Ridge
HI, with L “ 198 bands. The HI sequence was then generated
according to the multitemporal LMM (1), with the rn,t being
white Gaussian noise with an SNR of 30 dB. The parameters
of the ReDSUNN were K “ 10 and σψ “ 10´5 for DS1, and
K “ 2 and σψ “ 10´5 for DS2. The quantitative results are
presented in Table II, while the visual results (only shown for
DS1 due to space limitations) are depicted in Figures 5 and 7.

1) Discussion: It can be seen from Table II that ReDSUNN
achieved the best abundance estimation performance for both
datasets. OU and HBUN achieved consistent but intermediate

EM #1 EM #2 EM #3

Fig. 6: True EMs for the DS1, sampled over space, for time instant t “ 3
(top), and over time, for pixel n “ 1 (bottom).

EM #1 EM #2 EM #3

Fig. 7: Estimated EMs for the DS1, sampled over space, for time instant t “ 3
(top), and over time, for pixel n “ 1 (bottom).

results, while the performance of the Kalman filter was good
for DS1 but very poor for DS2. The FLCS, which does not take
temporal information of spatial EM variability into account,
did not perform very well, having the worse abundance re-
constructions on average for both datasets. From the estimated
abundances in Figure 5, it can be seen that ReDSUNN’s
results are the closest to the ground truth. However, the
results for all methods were relatively noisy. The abundances
recovered by the Kalman filter, OU and HBUN indicated more
heavily mixed pixels. FCLS achieves reasonable performance
for t ď 4, but led to a completely wrong estimation for t “ 6.
The changes occurring in the ground truth abundances can
be observed in the estimations of all methods, although they
are more clearly visible in the Kalman and ReDSUNN results
since these methods led to a larger separation between the
different materials. The visual abundance results for DS2 (not
shown due to space limitations) were qualitatively similar to
those of DS1, with the exception that the Kalman filter failed
to identify the soil EM for all images in the sequence, which
explains its poor performance.

The ReDSUNN method also obtained the best EM esti-
mation performance all metrics except for the SAM in DS2,
in which OU achieved the best result followed by HBUN.
The Kalman filter obtained good results for DS1 (close to
ReDSUNN), but poor results in DS2. This happened despite
the Kalman filter obtaining reasonable image reconstruction
errors NRMSEY for both DS1 and DS2. Samples of the true
and estimated EMs in Figures 6 and 7 (only shown for DS1
and for ReDSUNN due to space limitations) indicate that
the EMs are correctly recovered. However, there are some
differences, particularly in the shape of the first EM (which
show higher amplitude in the ground truth compared to the
estimates). Moreover, the amount of variability was lower in
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Fig. 8: Abundance RMSE as a function of hyperparameters K and σψ for
DS1 (left) and DS2 (right).

the retrieved EMs compared to the ground truth; this occurs
for the synthetic examples since the hyperparameter σψ , which
controls the flexibility of the EM model, was selected to
provide the best performance in terms of NRMSEA, leading
to relatively small σψ values. This is further illustrated in the
experiments shown in Section VI-B.

The lowest image reconstruction errors (NRMSEY ) were
obtained by OU and HBUN, while those obtained by
ReDSUNN were similar to those by FCLS. This is expected,
since NRMSEY is closely related to the number of learnable
parameters of each algorithm, and is not directly related
to the abundance or EM reconstruction performance. This
explains the higher reconstruction error by ReDSUNN since,
as discussed in Section V-D, the shared parametrization of
the variational posterior PDF leads to a relatively low num-
ber of parameters, which also helps to mitigate overfitting.
Nonetheless, for the synthetic data sequences (DS1 and DS2)
ReDSUNN still has between 30% and 50% more learnable
parameters than OU. Its parametrizaition becomes significantly
more favorable when the images have a larger amounts of
pixels, such as in the experiments with the Lake Tahoe images
presented in Section VI-C. The computation times show a
clear separation between FCLS and OU, which were faster,
and HBUN, the Kalman filter and ReDSUNN, which took
longer to run. This indicates that the proposed method has
a competitive computational performance when compared to
more complex algorithms.

B. Sensitivity analysis

To measure the influence of different hyperparameters on
the performance of the method, we evaluated how NRMSEA
varied as a function of the hyperparameters, namely, the
number of basis vectors for the variability model, K, and the
innovation standard deviation of the EM variability parame-
ters, σψ . The results for both DS1 and DS2 can be seen in
Figure 8. It can be seen that for DS1, the performance of
ReDSUNN is not heavily affected by the number of bases K
within the evaluated range. However, σψ has a larger impact on
the result, with smaller values leading to a lower NRMSEA.
For DS2, smaller values for both parameters generally lead
to lower NRMSEA results, although there performance varied
more with K and σψ . For both datasets, small variations of
these parameters around the optimal values lead to similar
results. In general, the larger the value of σψ , the more
temporal EM variability is allowed by the model, whereas
the larger the value of K, the more complex the spatial and

10–04–2014 02–06–2014 19–09–2014 17–11–2014 29–04–2015 13–10–2015

Fig. 9: True color depiction of the Lake Tahoe HIs and their acquisition dates.

Water Soil Vegetation

Fig. 10: Estimated EMs for the Lake Tahoe HIs, sampled over space, for time
instant t “ 3 (top), and over time, for pixel n “ 1 (bottom).

temporal EM variability the model can represent. Devising
a methodology to automatically tune these parameters is an
interesting question for future work.

TABLE III: Quantitative results for the Lake Tahoe HI sequence.

FCLS OU HBUN Kalman ReDSUNN

NRMSEY 0.321 0.058 0.054 0.185 0.114
Time 16.1 92.5 3381.9 4607.7 2857.2

C. Simulations with real data

To evaluate the performance of the algorithms on real
data, we considered the Lake Tahoe HI sequence, which was
originally described in [7]. It consists of a sequence of T “ 6
images acquired over the Lake Tahoe area by the AVIRIS
instruments, which are depicted in true color in Figure 9. Each
HI contained N “ 16500 pixels, and L “ 173 bands were left
after the removal of low-SNR and water absorption bands. This
scene contains P “ 3 predominant EMs, consisting of soil,
water and vegetation, and considerable changes on the lake
and on the crop circles can be observed between the images.
The parameters of the ReDSUNN were set as K “ 3, σψ “ 1,
while the parameters of OU, HBUN and of the Kalman filter
were selected as described in their original publications. The
recovered abundances are depicted in Figure 11, while the
recovered EMs (only shown for ReDSUNN due to space
limitations) are shown in Figure 10. The reconstruction errors
and the processing times are presented in Table III.

1) Discussion: From Figure 11, it can be seen that the
FCLS method did not achieve a good performance in general,
particularly for the fifth image in which there was a consid-
erable confusion between the soil and vegetation EMs. The
remaining algorithms achieve more stable performance due to
taking the temporal information into account. The OU and the
HBUN algorithms (both of which use the PLMM [44] model
to represent the temporal endmember variability) behaved
similarly to each other. Although these methods performed
more stably than the FCLS, they still presented considerable
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Fig. 11: Estimated abundances for the water (left panel), soil (central panel) and vegetation (right panel) EMs of the Lake Tahoe HIs.

water abundances outside of the lake region, which are pre-
dominantly composed by soil. The performance of the Kalman
filter method was relatively poor for the third, fourth and
sixth images (in which the area of the lake is small), and
contained a considerable amount of artifacts. This happens
since the Kalman filter method assumes the abundances to be
constant over time when estimating the EMs. Consequently,
it is not able to handle large abundance changes in the image
sequence. The abundances estimated by ReDSUNN, on the
other hand, showed a clear separation between the different
materials, adequately capturing the abundance changes occur-
ring in the HIs. Moreover, larger concentrations of mixed
pixels were observed in regions that are meaningful, such
as at the drying edge of the lake in the third image, and
in some parts of the crop circles. The EMs recovered by
ReDSUNN show considerable variability in soil and vegetation
spectral, particularly over space, while the water spectra shows
little variability. Moreover, the variability of the EMs can be
spectrally localized, which can be observed most clearly in the
temporal signatures of soil. Moreover, spatial EM variability
was more significant than temporal EM variability. Note that
the EM variability was also more significant in this example
compared to the experiments with synthetic data since a larger
value for the hyperparameter σψ was selected.

The results in Table III show that HBUN and OU obtain
the smallest reconstruction errors (NRMSEY ), while those
obtained by Kalman and ReDSUNN, which have less learn-
able parameters, were larger, with FCLS having the largest
NRMSEY . The ratio between the computation times were
similar to the synthetic examples, with the Kalman filter
being the slowest and the OU the fastest among the MTHU
methods that account for temporal information, and the pro-
posed ReDSUNN method achieving intermediate results. This
indicates that the methods scale similarly with the image size.
Nevertheless, developing more efficient MTHU algorithms is
an interesting subject for future work.

VII. CONCLUSIONS

This paper proposed a multitemporal hyperspectral unmix-
ing method based on a variational recurrent neural network.
A low-dimensional, dynamical state space model was pre-
sented to represent the spatial and temporal variations of
the endmember spectra by expanding it over a small set of

spectrally smooth basis vectors. The dynamics of the abun-
dances were modelled using a Dirichlet distribution, which
was approximated as a Gaussian in the softmax basis in order
to improve the efficiency of the inference process. Based on
this generative model, variational inference was considered to
perform unmixing by approximating the posterior distribution
of the abundances and endmembers. The Markov and inde-
pendence properties of the model were also used to improve
the efficiency of the solution. The posterior distribution was
parameterized using a combination of a simple, physically
interpretable, model and LSTM recurrent neural networks
to improve flexibility while maintaining the physical inter-
pretability of the abundances. In the proposed framework, all
parameters were computed using stochastic backpropagation.
Experimental results indicate that the proposed algorithm
achieves better unmixing performance when compared to
state-of-the-art methods, at a similar computational complex-
ity, using both synthetic and real datasets.

APPENDIX A
COMPUTING THE TERMS IN (40)

Due to the (conditionally) Gaussian assumptions in the gen-
erative model and in the variational posterior, the three terms
inside the expectations in (40) can be computed analytically.
The first term in (40) is the log-likelihood of a Gaussian
PDF, which can be computed from (22). The second and
third terms are KL divergences between Gaussian PDFs, which
can be computed using the general result for two Gaussians
of dimension D, given by KL

`

N pµ1,Σ1q
›

›N pµ2,Σ2q
˘

“
1
2

`

log |Σ2|

|Σ1|
´D` trtΣ´1

2 Σ1u` pµ2´µ1q
JΣ´1

2 pµ2´µ1q
˘

.
The second (resp., third) term are thus computed substituting
the mean and covariance from (35) and (20), (21) (resp., (33)
and (18), (11)) in the expression above by using the fact that
cn,t and ψn,t are independent in the generative model. For
more details, see, e.g., [92].
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