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Continuous attractor neural networks (CANN) form an appealing conceptual model for the stor-
age of information in the brain. However a drawback of CANN is that they require finely tuned
interactions. We here study the effect of quenched noise in the interactions on the coding of po-
sitional information within CANN. Using the replica method we compute the Fisher information
for a network with position-dependent input and recurrent connections composed of a short-range
(in space) and a disordered component. We find that the loss in positional information is small for
not too large disorder strength, indicating that CANN have a regime in which the advantageous
effects of local connectivity on information storage outweigh the detrimental ones. Furthermore, a
substantial part of this information can be extracted with a simple linear readout.

I. INTRODUCTION

The ring attractor neural network was proposed by Amari in the 70’s as a practical way to memorize a collective
variable within a noisy neural population [1]. This work opened the way to various theoretical applications of the
concept of continuous attractor neural networks (CANN), e.g. in the contexts of the orientational tuning [2] or
hippocampal place cells [3], as well as to extensions, in particular to the case of multiple attractor embeddings [4–6].
While indirect evidence for the existence of CANN could be found in recordings of activity in the hippocampus [7],
in the enthorinal [8] and the prefrontal cortex [9], a direct and beautiful observation of ring attractor coding for head
direction was obtained only recently in the ellipsoid body of the fly [10].

From a theoretical point of view, CANN models rely on recurrent excitatory interactions between neurons active
for similar values of the encoded variable, e.g. the position of the animal in physical space, together with a long-
range inhibition preventing all cells to be active together. This combination of local positive interactions and global
inhibition creates a localized bump of activity, whose center of mass reliably represents the collective variable. In this
regard, a crucial condition is that the bump can be easily moved (under weak external, ”sensory”, inputs) to span the
continuous set of values of the variable. This condition imposes that the short-range connections are finely tuned, so
that the model be effectively translation invariant.

When the finite-tuning condition breaks down, e.g. due to random modulations of the interactions, the bump can
get stuck in the absence of neural noise [3]. In practice, quenched noise in the interactions can come from imperfect
learning of one environment, or from interferences resulting from other information encoded (maps, objects distorting
the map locally, ...). Quantifying the loss in the accuracy of information storage resulting from heterogeneities in the
interactions is an important issue.

We address this question here in the framework of decoding of information, based on analytical and numerical
calculations. We propose an analytically tractable model of binary (active/silent) neurons receiving position-dependent
inputs, and connected to each other through spatially coherent and short-range interactions, on top of a disordered
and incoherent background. Using the replica method we compute the Fisher information in the high-dimensional
neural activity about the encoded position as a function of the intensity of disordered interactions. This quantity
was identified as a measure that is both relatively easy to compute for many systems and objectively quantifies the
information contained in the neural activity about the stimulus (an orientation or a point in space) [11]. It is more
appropriate for this quantification than, for example, the readout of the center of mass of a bump of activity [12].
Yet, the Fisher information is not an information measure in the sense of Shannon. From this point of view, the
mutual information between the stimulus and the neural activity is the quantity we are eventually interested in [13].
However, the latter is a global quantity, integrated over all possible stimuli and its computation is generally more
difficult than that of the Fisher information, which puts restrictions on the system it can be calculated for [14]. In the
thermodynamic limit, the mutual information can be obtained from the Fisher information under the condition that
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FIG. 1: Scheme of the network model employed in this work. The bell-shaped curves represent the space sensitive
single-neuron (feedforward) input and the red circle a symbolic inhibitory neuron that ensures that the summed

activity of all neurons is constant.

the correlations are not too strong [15]. We have explicitly checked that this prerequisite is fulfilled by our model, so
that the computation of the Fisher information is actually sufficient. For a current review discussing both measures
of information and their use in neuroscience, see e.g. [16].
The paper is organized as follows. In sec. II, our model is introduced. We establish the Fisher information as a
means to quantify the information contained in the neural activity about the stimulus, together with its relation to
other information-theoretic measures, compute it in the thermodynamic (mean-field) limit and derive its analytical
properties in the limiting case of weak connection strengths. In sec. III, we validate our mean-field results by means of
Monte-Carlo calulations, study the dependence of the Fisher information on changes in the recurrent and feed-forward
connectivity and how precise a linear readout can be compared to the bound predicted by the Fisher information. In
sec. IV, we put our results into context and give an outlook to possible future directions.

II. MODEL AND METHODS

A. Distribution of neural activities

We model neurons as binary units, taking the value 1 when active and 0 when inactive. Each neuron is receiving
a ‘sensory’ input, whose value depends on the mismatch between the position ri in physical space it is maximally
responding to and the position of the ’animal’, see fig. (1) for a scheme of our setup. The probability distribution of
activities is governed by a Boltzmann law P (n|ξ) ∼ e−E[n] and the energy

E [n] = −1

2

∑
i 6=j

(Jij +Kij)ninj −
∑
i

ni U (ξ − ri) , (1)

where Kij = K (ri − rj) is the local part of the interaction that we assume to be decaying in space with a typical
length scale wrec and strength Krec. J is the disordered part of the connectivity with the statistics

〈Jij〉 = 0, 〈JijJi′j′〉 =
g2

2N
δii′δjj′ (2)

and U mimics the space-dependent input, which we model by

U (∆x) = Uinp exp

(
−∆x2

w2
inp

)
. (3)
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We are assuming periodic boundary conditions. As a simple way to model global inhibition, we impose the constraint
that the summed activity is fixed to

∑
i ni = f · N = M , where f ∈ [0, 1]. Our model is closely related to that of

[17], where the case of a proper continuous attractor neural network (CANN) is studied, so the connectivity matrix is
composed of a sum of local connectivities in different environments. However, in this study we are interested in the
effect of the disorder on the information content in the neural activity for a single environment. Also, the presence
of other maps is not the only source of disorder as there is always some variability in the connectivity. Therefore,
to simplify the setup, we content ourselves with approximating the disordered contribution to the connections as
Gaussian, which also corresponds to the high-temperature behaviour of the disorder in [17].

B. Fisher information and mutual information

We now want to quantify the amount of information contained in the neural activity. One possibility to do so is to
compute the Fisher information for a given stimulus ξ,

In (ξ) :=

〈
− ∂2

∂ξ2
lnP (n|ξ)

〉
n

, (4)

a standard measure for the quantification of information in neural populations [12, 16]. According to the Cramér-Rao
bound, its inverse gives a lower bound on the variance of any unbiased estimator of ξ [13]. We will discuss this
relation in greater depth in section III C. Furthermore, in the thermodynamic limit, that we are interested in, it
also determines the mutual information, a connection first established in [15] and later refined in [18]. The mutual
information is given by the decrease of the entropy of the neural activity due to the knowledge of the stimulus,
concretely

IMI := −
∑
n

P (n) lnP (n) +

∫
dξ p (ξ)

∑
n

P (n|ξ) lnP (n|ξ)

where P (n) :=

∫
dξ p (ξ)P (n|ξ) .

In [15] (their eq. (13)), the relation

IMI = −
∫
dξ p (ξ) ln p (ξ) +

∫
dξ p (ξ) ln

(
In (ξ)

2πe

)
+O

(
1

N

)
(5)

was derived for an ensemble of neurons with fixed covariances, without disorder. However, in this study we are limiting
ourselves to the saddle-point approximation of the Fisher information, which is valid up to corrections of order 1/N
as well. So the presence of disorder does not change much and we obtain that

〈IMI〉J = −
∫
dξ p (ξ) ln p (ξ) +

∫
dξ p (ξ) ln

(
〈In (ξ)〉J

2πe

)
+O

(
1

N

)
, (6)

where 〈. . . 〉J is indicating the average over the disordered connectivity J . In appendix D, we rederive this relation,
for unconnected neurons, but more directly than in [15].
Hereafter, we will focus on the Fisher information, which is easier to obtain than the mutual information that we get
for free due to eq. (6). Determining the Fisher information for our model, we obtain from eq. (4) after some lines of
computation, detailed in appendix B,

In (ξ) =
∑
i,j

U′ (ξ − ri)
〈[
〈ninj〉n − 〈ni〉n 〈nj〉n

]〉
J

U′ (ξ − rj) (7)

=
[
U′ (ξ − r)

]T
CU′ (ξ − r) , (8)

where C denotes the disorder-averaged covariance matrix of n. Conditioned on one realization of the disorder fur-
thermore, we have introduced the thermal average

〈f (n)〉n :=
1

ZJ (ξ)

∑
n

f (n) e−E[n], (9)
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for some function f , together with the partition function

ZJ (ξ) :=
∑
n

e−E[n]. (10)

Eq. (7) can be brought into a more familiar form by noting that

∂

∂ξ
T (ξ − ri) :=

∂

∂ξ
〈ni〉n =

〈
ni

∑
j

U′ (ξ − rj) (nj − 〈nj)〉

〉
n

=
(
CU′

)
i

(11)

⇔ U′ (ξ − ri) =
(
C−1T′)

i
, (12)

where we have introduced the tuning curve T of neuron i indicating its average activity given the input ξ. With this,
the Fisher information can be written as [14]

In (ξ) =
[
T′ (ξ)

]T
C−1T′ (ξ) . (13)

This form is more handy when dealing with experimental data because the tuning curve is (in principle) a directly
measurable quantity, whereas U′ is not. For our purposes, however, the form of eq. (7) is more practical because
there, the only quantity depending on the disorder is the covariance matrix. We therefore only have to compute the
disorder average of the covariance matrix, which we will tackle in the following.

C. Disorder-averaged statistics

As usual for disordered systems [19], we determine the statistics from the logarithm of the partition function, the
cumulant-generating functional (or Gibbs free energy)

〈W (h)〉J =

∫
dJ P (J) ln

 ∑
n,

∑
i ni=M

e
1
2

∑
i6=j(Jij+Kij)ninj+

∑
i ni[U(ξ−ri)+hi]

 . (14)

The computation of W proceeds along the classical lines [20], with the difference that we have a local connectivity.
We therefore do not only introduce the Gaussian helping field q to decouple the four-point terms emerging from the
disorder average, but also a space-dependent (also Gaussian) order parameter φx to decouple the local term nTKn.
As apparent from the saddle-point equations (18) and (19), q quantifies the population-averaged variance of the
activity and φx the population-averaged input to the neuron with place field at position x. Furthermore, due to the
restriction on the summed activity, we introduce the Lagrange multiplier λ. As derived in appendix B, we obtain the
disorder-averaged cumulant-generating function in the thermodynamic limit N →∞

〈W (h)〉J = extr
q,q̄,ψ,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φTK−1φ−N

(
λ− g2 (q̄ − q)

)
f. (15)

+
∏
y

1√
2π

∫
dty e

− t
2
y
2

∑
x

ln
[
1 + eφx+txg

√
2q+U(ξ−rx)+λ+hx

]}
(16)

=:G (h,φ, q) , (17)

where the ”extr.” implies a supremum over q, q̄, ψ and φ and an infimum over λ. We comment on the latter point
in appendix A 1. As detailed in appendix A 2, we obtain the saddle-point equations

q =

∫
dx

∫
Dtx

1[
1 + e−(φx+txg

√
2q+U(ξ−x)+λ)

]2 , (18)

φx =

∫
dyK (x− y)

∫
Dty

1

1 + e−(φy+tyg
√

2q+U(ξ−y)+λ)
. (19)

and f =

∫
dx

∫
Dtx

1

1 + e−(φx+txg
√

2q+U(ξ−x)+λ)
, (20)
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with the Gaussian measure ∫
Dt =

1√
2π

∫
dte−

t2

2 . (21)

The entire statistics of our system can now be determined by taking derivatives of G with respect to h, which is set
to 0 afterwards. We have to calculate the total derivative, also taking into account the h-dependence of q, φ and λ,
which in turn, by the implicit-function theorem, we obtain by taking the total derivative with respect to h of the their
saddle-point-equations. This yields

1

N

d2

dh2
〈Wf (h)〉J =

∂2G

∂h2
−


∂2G
∂h∂φ
∂2G
∂h∂q
∂2G
∂h∂λ


T

∂2G
∂φ2

∂2G
∂φ∂q

∂2G
∂φ∂λ

∂2G
∂q∂φ

∂2G
∂q2

∂2G
∂q∂λ

∂2G
∂λ∂φ

∂2G
∂λ∂q

∂2G
∂λ2


−1

∂2G
∂φ∂h
∂2G
∂q∂h
∂2G
∂λ∂h

 . (22)

Evaluating this expression, we obtain

C = V + V KeffV + C indirect (23)

= V (1−KV )
−1

+ C indirect, (24)

where V is the diagonal matrix with the disorder-averaged single-neuron variances

Vxy = δxyvx, (25)

where vx :=

∫
Dt∂mx

∂φx
=

∫
Dtmx (1−mx) , (26)

mx is the magnetization conditioned on the Gaussian helping variable t,

mx :=
1

1 + e−[φx+t g
√

2q+U(ξ−x)+λ]
, (27)

the effective local connectivity Keff is given by
[(
Keff

)−1
]
xy

:= − ∂2G
∂φx∂φy

and fulfills the Dyson equation

Keff
xy = Kxy +

∫
dz KxzvzK

eff
zy , (28)

and C indirect emerges from the remaining part of the Hessian in eq. (22). It results in an subleading contribution to
the Fisher information (see below), so we give its precise form only in appendix B.

D. Disorder-averaged Fisher information

The Fisher information per neuron averaged over the disorder now reads

In (ξ) =
∑
x

∑
y

U′ (ξ − x)
[
vxδx,y + vxK

eff
xy vy + C indirect

xy

]
U′ (ξ − y) (29)

In fig. (6) in the appendix, we show these three contributions separately for the parameters used for fig. (3). The first
term stems from the single-neuron variances and is therefore also present without network (if present the variances
are effected by the network, though). The third is always negligible, which intuitively makes sense because it emerges
from the indirect h-dependence of the free energy via g and λ, which are both spatially unstructured. The second
term emerges from the (positive) local interactions and also contributes positively. In order to gain a better intuition
for where this term comes from, it is useful to re-derive the expression for the Fisher information using eq. (13),
limiting ourselves to the case without disorder. By some lines of rearrangements, shown in appendix B 2, we derive
that the vector of the derivatives of the tuning curves can be expressed as

T′ = V (1 +KeffV )U′. (30)
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FIG. 2: Panel a: tuning curves for a network without disorder in the connectivity for different strengths of local
interactions. Panel b: corresponding change in the Fisher information; the dotted lines show eq. (31) with the term

V KeffV in the middle part, constituting C−1, removed. Parameters: g = 0, wtwo point = 0.1, Uinp = 0.2,
wone point = 0.07, f = 0.15.

Combining this expression with eq. (13) and C = V +V KeffV , we are getting back eq. (29) (without the contribution
of the disorder) after canceling a factor (V + V KeffV ), as expected. However, it is also insightful to write down the
expression before this cancellation,

In =

=(T′)
T︷ ︸︸ ︷(

U′
)T

(V + V KeffV )

=C−1︷ ︸︸ ︷
[V + V KeffV ]

−1

=T′︷ ︸︸ ︷
(V + V KeffV )U′, (31)

because it gives an intuition about how the local connectivity shapes the Fisher information: first, it modifies the
tuning curves, which is captured by the term V KeffVU′, second it introduces cross-covariances, which is captured by
the term V KeffV contributing to the covariance. As apparent from fig. (2), panel a, the tuning curves are sharpened
with increasing Krec, which is reflected by the fact that the direct contribution of the cross-covariances to the Fisher
information is positive, see fig. (6). The cross cavariances, in turn, are detrimental in our case: they reduce the Fisher
information, as apparent from panel b in fig. (2).
We can study further eq. (29) analytically, which amounts to examining the saddle-point equations (18) to (20). In
particular, we can do this in the limiting case g → 0. In this limit, the Gaussian integrals get trivial. As detailed in
appendix A 3, we can use for the study of the derivatives of q, φ and λ that, in eqs. (18) to (20), these quantities are
(implicitly) given by

0 =
∂

∂ [{φx}x , λ, q]
Gg (g, q, φ, λ) , (32)

with G as given in eq. (17) and therefore, by the implicit-function theorem,

∂

∂g

{φx}xλ
q

 = −

(
∂2

∂ [{φx}x , λ, q]
2Gg [q,φ, λ]

)−1
∂2

∂g∂ [{φx}x , λ, q]
Gg [q,φ, λ] . (33)

For a reasonable choice of the parameters, also guaranteeing the stability of the saddle-point solution, ∂2

∂[{φx}x,λ,q]
2Gg

is invertible (which we as well check numerically by computing it explicitly in appendix B). The partial derivative
of ∂{φx}x,λ,qG with respect to g vanishes in the limit g → 0, as we show in appendix A 3. Therefore, the derivatives
of q, φ and λ with respect to g go to 0 for vanishing g. This results carries over to higher-order cumulants and to
the cumulant-generating functional itself. Because the Fisher information depends on g only via these quantities, its
derivative vanishes in the limit of g → 0:

lim
g→0

∂

∂g
In (ξ) = 0. (34)

The derivatives with respect to the strength of the local interaction, Krec, however, in general do not vanish for
vanishing connectivity. Therefore even small connection strengths will have a (beneficial) effect, as seen before.
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FIG. 3: The Fisher information per neuron in dependence of the disorder, comparison with Monte-Carlo simulations.
In panel a, the network is strongly input driven, and in panel b only weakly. Parameters, panel a: Krec = 5,
wrec = 0.1, Uinp = 2.25, winp = 0.07, f = 0.15; panel b: Krec = 20, Uinp = 0.2, other parameters as in panel a.

III. NUMERICAL VALIDATION OF MEAN-FIELD RESULTS AND APPLICATIONS

A. Monte Carlo simulation

To validate our computation derived for the thermodynamic limit, we perform Monte-Carlo simulations for multiple
sets of parameters, see fig. (3).We use a standard Metropolis algorithm, taking into account the condition of a fixed
total activity by flipping always two spins, in opposite direction, as suggested in [17]. The code for these simulations,
alongside with the implementation of the mean-field results is provided in [21]. The results confirm our mean-field
result that the disorder diminishes the Fisher information, but quite slowly if the disorder is on a moderate level, as
predicted by eq. (34) and visible in fig. (3).

B. Influence of the network on the Fisher information

In an attractor network, disorder may result from the presence of other maps stored in the same network. Therefore
it scales in the same way as the spatially dependent part of the connectivity. It is thus interesting to examine the
behavior of the Fisher information when both parts of the connectivity are scaled by the same factor r:

K → r ·K, J → r · J. (35)

Because the derivative of the expression for the Fisher information with respect to the disorder strength g vanishes
for g = 0, the effect of the local part of the connectivity dominates for small synaptic strength: the Fisher information
initially increases. This can be understood from what we have derived before: increasing the local connectivity
sharpens the tuning curves and therefore increases the signal. This effect is diminished (but not cancelled) by the
introduction of covariances between the neurons (see also [12]). For larger scaling factors, however, this overall
beneficial effect is wiped out by the disorder, whose detrimental effect eventually dominates, fig. (4), panel a.

Finally, we ask if we can keep the Fisher information constant by increasing the recurrent weights when the input
gets weaker. We have plotted lines of constant Fisher information for varying strength of the input and the recurrent
connections in fig. (4), panel b. We can indeed make up to a decrease in the input by strengthening local connections,
even though of course only in a limited range.

C. Linear readout

To put our results into context and convey a more intuitive understanding, we briefly discuss what one can learn
from the Fisher information about the accuracy of a linear readout.
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FIG. 4: Interplay of feedforward, local and disordered recurrent input shaping the Fisher information. For panel a,
we scale the synapses according to eq. (35), keeping the other parameters fixed, for panel b, we keep the the Fisher
information constant, varying Uinp and Krec concertedly. Parameters, panel a: Kmax

rec = 8, wrec = 0.1, Uinp = 0.2,
winp = 0.07, f = 0.15, gmax = 0.16 panel b: g = 5, other parameters as in panel a.
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FIG. 5: Inverse residual of a linear fit of the neural activity to estimate ξ, averaged over ξ ∈ [0.4, 0.6]. Only for small
g (approximately the first two data points at 0.1 and 0.5), this estimate is approximately unbiased and therefore

only there, the Cramér-Rao bound guaranties that the Fisher information is an upper bound. Note that in this plot,
different to all the others, we are plotting the total Fisher information for all 100 neurons, not the averaged,

single-neuron analog. Parameters as in fig. 3, panel a.

We have fitted a readout vector w to the activity as measured after the thermalization process (so the random
initial conditions should not play a role) and computed the squared residual error as

〈res (ξ)〉ξ := min
w

〈〈
‖w · n− ξ‖22

〉
n

〉
ξ

=
〈
ξ2
〉
ξ
− 2wT

trainC
test
ξ,n +wT

trainC
test
n,nwtrain (36)

where wtrain =
[
Ctrain
n,n + λ · 1

]−1
Ctrain
ξ,n , (37)

where 〈. . . 〉n and 〈. . . 〉ξ denote the thermal average over the configurations n and the average over the distribution
of the stimulus ξ, respectively and λ denotes the strength of the L2 regularization that we impose. We might expect
to obtain an upper bound for the accuracy of the linear estimator by the Cramér-Rao bound. However, due to the
periodic boundary conditions, the estimate from the linear readout ξest. = w · n will be biased. This is particularly
apparent at the borders 0 and 1, where the estimate will always be 1

2 , corresponding to random guessing. The farther
away from the them the stimulus is situated, the less pronounced the effect becomes. We have therefore limited the
fitted stimuli to ξ ∈ [0.4, 0.6]. However, even in this regime, the linear readout gets biased in the highly disordered
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regime, so that there the Cramér-Rao bound only applies in its generalized form [13], their eq. (12.333):

〈
(w · n− ξ)2

〉
n
≥ (1 + b′ (ξ))2

In (ξ)
+ b (ξ)

2
, (38)

where b (ξ) := 〈w · n〉ξ− ξ is the bias of the linear estimator. In case of random guessing, in particular, b′ (ξ) = −1, so
that the error is solely determined by the square of the bias. Therefore, the bound given by the Fisher information in
fig. (5) is only meaningful for small disorder (g ∼ 0.1, 0.5), whereas for greater disorder, it is invalidated by the bias,
up to the point where the linear readout basically generates a random guess (for g ∼ 2). In the low-disorder regime,
however, we observe that the error of the linear readout is not far from the optimal case given by the Cramér-Rao
bound.

IV. DISCUSSION AND OUTLOOK

In this work, we have studied an attractor-inspired neural network with a connectivity consisting of two parts: (1)
excitatory couplings between neurons that are similarly tuned to stimuli, and (2) a quenched random background
without local tuning. We have studied the influence of both of these contributions on the information about the
stimulus contained in the neural activity through the analytical computation of the Fisher information. As expected
the local part of the connectivity enhances the information content, whereas the disordered part degrades it. However,
the latter effect is mild. By fitting a linear readout to estimate the driving stimulus we show that the Fisher information
is not only a formal estimate of the information contained in the neural activity, but also gives a useful bound on how
much of it can be extracted with simple decoders.

It has been recognized for a long time that the presence of disorder in the interactions could impact the information
stored in attractor networks in the form of patterns. In the case of CANNs this translates into a breaking of the
translational symmetry of bump-like solutions, see for instance [3] and box 3 in [22]. However, despite the loss of
translation invariance, noise in the neural activity (controlled here by the inverse of the coupling strength, playing
the role of temperature in statistical mechanics) may be sufficient to move the bump [23]. We here show that the
disorder does not wipe out all information in the attractor network. In particular, the Fisher information is robust to
the introduction of disorder, staying constant to first order in g. Consequently, globally enhancing the connectivity
strength (the local and the disordered part by the same factor, as in eq. (35)) initially always has a beneficial effect,
which is overtaken by the effect of the disorder only for larger connectivity. In real biological networks, the connectivity
is not fixed, but builds up during development, partially through learning [24]. One might therefore speculate if this
process is optimized for the synaptic strengths to eventually match this sweet spot.

Similarly, we can ask for the information-theoretical implication of the development of tuning curves as observed
in the visual cortex. In young animals, recurrent connections between similarly tuned neurons get enhanced, other
weakened [25], and the orientation selectivity is sharpened [26]. According to our analysis, these changes in recurrent
connectivity could compensate a decrease in strength of sensory inputs [27], see fig. (4)(b).

While our model allows for this kind of qualitative considerations, it is minimal in the sense that it contains the
ingredients needed to study the effects we are interested in in their simplest form. This of course limits biological
plausibility and calls for enhancements. From a technical point of view, we did of course not consider all possible
scenarios. We give below an outlook on possible further directions, starting with the technical aspects.

The results we have obtained here hold for binary-valued neurons. From a neuroscience perspective, this assumption
can be interpreted as follows. Consider the neural population activity in a time-bin of duration ∆t. If ∆t is small
enough (in practice, not larger than the inverse of the typical firing rate), it is likely that each neuron i has fired at
most once in a time bin. We can therefore represent its activity through a binary variable ni equal to 0 in the absence
of spike, or to 1 if a spike has been emitted. This point of view was adopted in data-driven models of the hippocampal
activity [7]. If the duration ∆t is large, the binary hypothesis breaks down and continuous models, taking into account
the real-value nature of firing rates, should be considered. Continuous-attractor models with real-valued neurons show
similar - albeit for some parameters a bit richer [28] - behavior as models with binary neurons [3], so we do not expect
our conclusions to be qualitatively modified in that setting. In addition, binary patterns represent an important
limiting case: they may maximize the retrievable information, in the case of random memories, as compared to more
complex ones [29].

Then, we have limited ourselves to a parameter regime far away from phase transitions. In particular we have not
considered the low-temperature/high-connectivity regime. The analysis of this case (without the computation of the
Fisher information) was carried out by one of us and collaborators in a series of papers [17, 23, 30], in the specific
case of background noise due to a extensive number αN of alternative attractors embedded in the network. Although
the quenched noise distribution in this case was not Gaussian we do not expect the phase diagram to significantly



10

change. Based on these previous works we can thus build educated guesses on what to expect in terms of information
theory. Note that, in terms of scaling, the square of the disorder strength used here, g2, roughly corresponds to the
load α in [17] (compare, e.g. their saddle-point equations, eq. (28) to ours, eqs. (18) to (20)).

Analog to [17], we expect a glassy phase for large disorder and weak local connectivity, a ferromagnetic (”bump”)
phase for weak disorder and strong local connectivity and a paramagnetic phase in case both contributions are small
(large-temperature regime). In the present study, we have basically stayed in the latter regime (however, the activity
was still bump-like due to the feed-forward input). This limitation has also allowed us to stick to the replica-symmetric
solution of the saddle-point equations - an assumption that might not be satisfied at very low temperature and strong
enough disorder; however, the comparison with the results of Monte-Carlo simulations in fig. (3) led to reasonable
results. This is expected; for spin-glass models, the effect of replica-symmetry breaking is typically rather limited,
in particular close to the Almeida-Thouless line. In order to study the glassy regime, corresponding to a network
load α beyond the critical value, we expect that replica symmetry breaking has to be considered. However, as for
the Fisher information, we expect it to be approximately zero in the glassy state because the activity would not
show any dependence on space anymore (besides a residual one due to the input), and the disorder-averaged single-
neuron variances vanish for large disorder (and all other cumulants as well). As for the paramagnetic to ferromagnetic
transition, we expect a qualitative change in the shape of the neural activities, with considerably sharper bumps on
the ferromagnetic side of the transition. Due to the mechanisms discussed around eq. (13), we expect a corresponding
steep increase in the Fisher information.

On a more biological side, we have made, for convenience, several unrealistic assumptions that could be waived.
The receptive fields in our setup, for example, have all the same shape and size and are evenly spaced - in reality there
is of course variability in shape and they are scattered in the environment. In particular, place fields may cluster near
new objects [31], suggesting the importance of taking into account inhomogeneous densities. These features could
rather easily be included in our framework, at least if the probability distributions for the single-neuron properties are
independent. The additions suggested above only require another average over them (see also appendix D). Then,
though we have here studied a one-dimensional stimulus, the features determining the Fisher information, such as the
sharpness of the tuning curve, can also be defined in higher dimensions, and we expect qualitatively the same results
in that case. Last of all, it would be interesting to better understand how much of the information we have estimated
can be extracted from the neural population in practice, beyond the linear readout mechanism considered here.
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Appendix A: Computing the cumulant-generating function

As indicated in the main text, computing the Fisher information basically amounts to calculating the covariance
matrix of the activity, which we obtain from the disorder-average of the cumulant-generating functional defined in
eq. (14), or in other words, of the logarithm of the partition function. In the following, we will explain step by step
how to take into account its features, starting with the fixed total activity, then including the disordered part of
the connectivity and finally deriving and analysing the saddle-point equations for this case in order to compute the
cumulant-generating functional in the thermodynamic limit.

1. Effects of the fixed total activity and the space-dependent part of the coupling

As mentioned in the main text, we fix the summed activity of all neurons to a certain number M , mimicking the
effect of a global inhibition. This determines the partition function, which reads

ZM [h] =
∑

n,
∑
i ni=M

exp

∑
i<j,

Kijninj +

N∑
i=1

hini

 .
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Explicitly performing the spin sums under this limitation is difficult, so we introduce the Fourier series with ZM [j]
as coefficients:

Uk [h] :=

N∑
M=0

ei2πkMZM [h]

=

N∑
M=0

ei2πkM
∑
n

δM,
∑
i ni

exp

∑
i<j,

Kijninj +

N∑
i=1

hini


=
∑
n

exp

∑
i<j,

Kijninj +

N∑
i=1

hini

 N∑
M=0

ei2πkMδM,
∑
i ni

=
∑
n

exp

∑
i<j,

Kijninj +

N∑
i=1

(hi + i2πk)ni

 .

Applying the transform to obtain the Fourier coefficients from a periodic function, we get

ZM [h] =

∫ 1

0

dk e−i2πkMUk [j]

=

∫ 1

0

dk
∑
s

exp

∑
i<j,

Kijninj − i2πk

(
M −

N∑
i=1

ni

)
+

N∑
i=1

hini

 .

For N � 1, we can evaluate the k-integral in saddle-point approximation, so that in this limit, we replace the partition
function by its “grandcanonical” counterpart

Zf,gc [h] := inf
λ

∑
n

exp

∑
i<j,

Kijninj +

N∑
i=1

hini + λ

(
N∑
i=1

ni −Nf

) ,
where we have introduced f := M

N and λ = i2πk. Note that even though the stationary value of λ is real, we are
integrating it along the imaginary axis (using what is known as Bromwich contour, see e.g. [32], appendix C), as
always when the integration variable has been introduced as Lagrance multiplyer. Varying λ, we are therefore looking
for the infimum, not the supremum. We obtain the “grand-canonical” cumlant-generating function that we will work
with:

Wλ [h] := ln

∑
s

exp

∑
i<j,

Kijninj +

N∑
i=1

[hini + λ (ni − f)]


λh,j,K (f) such that

∂Wλ [h]

∂λ
= Nf.

Now we decouple the interacting term by means of a Gaussian helping field

exp

1

2

∑
i 6=j,

Kijninj


=

1

(2π)
N
2
√

det (K)

∫
dφ e−

1
2φ

TK−1φ+
∑
i φini

and replace the φ-integral by another saddle-point approximation:

W [h] = sup
φ

inf
λ

[
−1

2
φTK−1φ+

∑
i

(
ln
(
1 + ehi+λ+φi

)
− λf

)]
For the examples shown in the figures, we are assuming a rectangular shape for K,

K (ri − rj) =

{
Krec, for |ri − rj | ≤ wrec

0, else,
(A1)

but this choice is only made for convenience, the theoretical results extend to general shapes.
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2. Incorporating disorder

Drawing random connections in addition to the spatially ordered ones additionally modifies the extremizing prob-
ability distribution and introduces more contributions to the pairwise covariances. We would like to compute the
quenched average of the cumulant-generating functional, so

〈W (h)〉J =

∫
dJ P (J) ln

[∑
n

e
1
2

∑
i6=j(Jij+Kij)ninj+

∑
i(niU(ξ−ri)+hini)

]
(A2)

= lim
n→0

∫
dJ P (J)

[
−1 +

∑
n1,...,nn e

∑
i6=j(Jij+Kij)

∑n
α=1 n

α
i n

α
j +

∑
i n

α
i (U(ξ−ri)+hi)

n

]
, (A3)

where we have used the replica trick to represent the logarithm [19]. As indicated in the main text, eq. (2), we assume
that the couplings are uncorrelated and Gaussian, so that, after the standard procedure of introducing appropriate
helping fields, we obtain∫

dJ P (J) e
∑
i6=j Jij

∑n
α=1 n

α
i n

α
j (A4)

= exp

−1

2

g2

N

∑
i

∑
α,β

nαi n
β
i

∏
α

[ √
N

g
√

2π

∫
dq̄α exp

(
−1

2

N

g2
q̄2
α + q̄α

∑
i

nαi

)]
(A5)

×
∏
α 6=β

[ √
N

g
√

2π

∫
dqαβ exp

(
−1

2

N

g2
q2
αβ + qαβ

∑
i

nαi n
β
i

)]
. (A6)

We combine this result with the contribution from the network without disorder, but local connectivity and solve
the resulting integral, assuming replica-symmetry in q and φ. The validity of the assumption of replica symmetry
is validated numerically by comparing our theoretical results with the outcomes of Monte-Carlo computations and
discussed in sec. IV. Dropping subleading terms in N , we solve the integrals in saddle-point approximation and
obtain for W :

〈W (h)〉J = lim
n→0

extr
q,q̄,φ

[
− 1

n
+
e−

1
2Ng

2n(n−1)q2− 1
2Ng

2nq̄2e−
1
2nφ

TK−1φ

n
(A7)

×

∏
l,γ

1∑
nγl =0

(∏
k

eg
2q

∑
α6=β n

α
kn

β
k

)
e
∑
i g

2q̄
∑
i

∑
α n

α
i +

∑n
α=1 n

α
i φ

i+
∑
i

∑n
α=1 n

α
i (U(ξ−ri)+hi)

 (A8)

=
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φTK−1φ (A9)

+
∏
k

1√
2π

∫
dtk e

− t
2
k
2

∑
i

ln
[
1 + eφ

i+tig
√

2q+U(ξ−ri)+g2(q̄−q)+hi
]
. (A10)

Taking now into account the restriction on the total activity in addition, the mean-field cumulant-generating functional
reads

〈W (h)〉J = extr
q,q̄,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φTK−1φ−Nλf (A11)

+
∏
k

1√
2π

∫
dtk e

− t
2
k
2

∑
i

ln
[
1 + eφ

i+tig
√

2q+(U(ξ−ri))+g2(q̄−q)+λ+hi
]}

. (A12)

Because we are evaluating this quantity only at its extremal values, we are free to express it in shifted coordinates,
λ+ g2 (q̄ − q)→ λ, in order to simplify our expressions and to get rid of q̄, so that we obtain

〈WI (h)〉J = extr
q,q̄,ψ,φ,λ

{
1

2
Ng2q2 − 1

2
Ng2q̄2 − 1

2
φTK−1φ−N

(
λ− g2 (q̄ − q)

)
f. (A13)

+
∏
k

1√
2π

∫
dtk e

− t
2
k
2

∑
i

ln
[
1 + eφ

i+tig
√

2q+U(ξ−ri)+λ+hi
]}

(A14)

=:Gg (h,φ, q, λ) , (A15)
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which leads to the saddle-point equations

q = f +

∫
dx

∫
Dt

 1[
1 + e−(φx+txg

√
2q+U(ξ−x)+λ+hx)

]2 − 1[
1 + e−(φx+txg

√
2q+U(ξ−x)+λ+hx)

]
 (A16)

q̄ = f (A17)

f =

∫
dx

∫
Dt

1

1 + e−(φx+txg
√

2q+U(ξ−x)+λ+hx)
dx (A18)

φ (x) =

∫
K (x− y)

∫
Dt

1

1 + e−(φy+tyg
√

2q+U(ξ−y)+λ+hy)
dy. (A19)

Drawing the limit of N →∞, we have turned the sums over neuron sites into integrals over space, which we indicate
by renaming the indices to x and y instead of i and j. Finally, setting h = 0 and using eq. (A18) to simplify eq. (A16),
we obtain the final saddle-point equations as given in the main text, eqs. (18) to (20). Note that this simplification
is valid for the saddle-point values q, {φx}x and λ - however, when taking further derivatives of G with respect to h
(as necessary to determine covariances), we have to assume general q, {φx}x and λ (not as given in the saddle point)
and therefore have to use the right-hand side of eq. (A16), and not of eq. (18).

3. Analysis of the saddle-point equations in the limit g → 0

The quantities q, φx and λ are implicitly given by

0 =
∂

∂ [{φx}x , λ, q]
Gg [q,φ, λ] . (A20)

For g = 0, the integrands in the saddle-point equations (18) to (20) get independent of t and we can perform the
Gaussian integrals, so that we obtain

q =

∫
dx

1[
1 + e−(φx+U(ξ−x)t)+λ)

]2 , (A21)

φx =

∫
dyK (x− y)

1

1 + e−(φy+U(ξ−y)+λ)
. (A22)

f =

∫
dx

1

1 + e−(φx+U(ξ−ri)+λ)
, (A23)

the latter two corresponding to eqs. (12) - (13) in [17]. In particular, all auxiliary fields have a well-behaved limit for
g → 0. Furthermore, from eq. (A20), we obtain the derivatives of the auxiliary variables with repect to g to be given
by

∂

∂g

{φx}xλ
q

 =

(
∂2

∂ [{φx}x , λ, q]
2G [q,φ, λ]

)−1
∂2

∂g∂ [{φx}x , λ, q]
Gg [q,φ, λ] . (A24)

Further differentiating ∂

∂[{φx}x,λ,q]
Gg [q,φ, λ] with respect to g yields

∂2

∂g∂ [{φx}x , λ, q]
Gg [q,φ, λ] =

 {∫ dyKxy

∫
Dty ty

√
2q ·my (1− 2my)

}
x∫

dy
∫
Dty ty

√
2q ·my (1− 2my)∫

dx
∫
Dty ty

√
2q ·my (1− 2my) (1−my)

 g=0
= 0, (A25)

with mx as introduced in eq. (27). The last equality in eq. (A25) holds because for g = 0, mx is independent of
tx and the remaining tx-integrand is antisymmetric. To obtain the derivatives of the order parameters at g = 0, we
therefore only have to check that differentiating ∂{φx}x,λ,qG with respect to q, φx and λ once more yields a regular
Hessian. We obtain

∂2

∂ [{φx}x , λ, q]
2Gg [q,φ, λ] =

−
(
K−1

)
xy

+ δxyvy vx g2κ3
x

vy
∫
dz vz g2

∫
dz κ3

z

g2κ3
y g2

∫
dz κ3

z g2 + g4
∫
dz κ4

z

 , (A26)
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where we have omitted the tx-dependence of mx for brevity and have introduced the higher-order cumulants

κ3
x :=

∂2mx

∂φ2
x

=

∫
Dtmx (1− 2mx) (1−mx) (A27)

κ4
x :=

∂3mx

∂φ3
i

=

∫
Dtmx (1−mx)

(
1− 6mx + 6m2

x

)
, (A28)

(the fourth-order one for later use). It is not apparent why the Hessian should have a zero mode - indeed, this would
mean in particular that the saddle-point approximation is not well-defined. So as long as we trust the saddle-point
approximation, we also know that the derivatives of the order-parameters with respect to g vanish for g = 0. Also, in
appendix B, we numerically confirm that the Hessian does not have zero modes for g → 0.

Appendix B: Computing the Fisher information

First, we convince ourselves that computing the Fisher information simply amounts to computing the covariance
matrix. Consider the probability distribution for the neural network state n, conditioned on the stimulus ξ, P (n|ξ),
given by

P (n|ξ) =
1

ZJ (ξ)
e
∑
i niU(ξ−ri)+

∑
i<j(Jij+Kij)ninj ,

and

ZJ (ξ) =
∑
n

e
∑
i niU(ξ−ri)+

∑
i<j(Jij+Kij)ninj .

For the Fisher information, we need the second derivative of the logarithm of P with respect to ξ:

− ∂2

∂ξ2
ln (P (n|ξ)) =− ∂2

∂ξ2

∑
i

niU (ξ − ri) +
∂2

∂ξ2
lnZJ (ξ)

=− ∂

∂ξ

∑
i

niU
′ (ξ − ri) +

∂

∂ξ

∂
∂ξZJ (ξ)

ZJ (ξ)

=−
∑
i

niU
′′ (ξ − ri) +

∂2

∂ξ2ZJ (ξ)

ZJ (ξ)
−

(
∂
∂ξZJ (ξ)

ZJ (ξ)

)2

.

Upon averaging over the neurons states of the neuron ni, we obtain

In (ξ) =

〈
− 1

ZJ (ξ)

∑
n

e
∑
i niU(ξ−ri)+

∑
i<j Jijninj

∑
i

niU
′′ (ξ − ri)

+
1

ZJ (ξ)

∑
n

e
∑
i niU(ξ−ri)+

∑
i<j Jijninj

∑
i

niU
′′ (ξ − ri) +

(∑
i

niU
′ (ξ − ri)

)2


−

(
1

ZJ (ξ)

∑
n

e
∑
i niU(ξ−ri)+

∑
i<j Jijninj

∑
i

niU
′ (ξ − ri)

)2〉
J

(B1)

=
∑
i,j

U′ (ξ − ri)
〈[
〈ninj〉n − 〈ni〉n 〈nj〉n

]〉
J

U′ (ξ − rj) , (B2)

where we have used the usual thermal average

〈f (n)〉n :=
1

ZJ (ξ)

∑
n

f (n) e
∑
i niU(ξ−ri)+

∑
i<j Jijninj . (B3)

As indicated before, to determine the Fisher information, we therefore just have to compute the covariance matrix,
which we achieve by differentiating the cumulant-generating functional twice with respect to h, considering all indirect
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dependencies via the auxiliary fields (evaluated at their respective saddle-point values). Taking into account both the
fixed total activity and the disorder, the cumulant-generating functional is given by eq. (A15). Formally differentiating
this expression yields

d2

dh2
〈Wf (h)〉J =

∂2G

∂h2
+ 2

∂2G

∂h∂φ

∂φ

∂h
+ 2

∂2G

∂h∂q

∂q

∂h
+ 2

∂2G

∂h∂λ

∂λ

∂h
(B4)

+
∂2G

∂q2

(
∂q

∂h

)2

+
∂2G

∂λ2

(
∂λ

∂h

)2

+
∂φ

∂h

∂2G

∂φ2

∂φ

∂h
(B5)

+ 2
∂2G

∂q∂λ

∂q

∂h

∂λ

∂h
+ 2

∂2G

∂q∂φ

∂q

∂h

∂φ

∂h
+ 2

∂2G

∂λ∂φ

∂λ

∂h

∂φ

∂h
. (B6)

We obtain the derivatives of q and φ by taking the total derivatives of their defining equations, i.e. (A16) and (A19),
which yields

0 =
d

dh

∂

∂q
G (h,φ, q, λ) =

∂2G

∂q2

∂q

∂h
+

∂2G

∂λ∂q

∂λ

∂h
+

∂2G

∂φ∂q

∂φ

∂h
+

∂2G

∂q∂h
(B7)

0 =
d

dh

∂

∂λ
G (h,φ, q, λ) =

∂2G

∂q∂λ

∂q

∂h
+
∂2G

∂λ2

∂λ

∂h
+

∂2G

∂φ∂λ

∂φ

∂h
+

∂2G

∂λ∂h
(B8)

0 =
d

dh

∂

∂φ
G (h,φ, q, λ) =

∂2G

∂q∂φ

∂q

∂h
+

∂2G

∂λ∂φ

∂λ

∂h
+
∂2G

∂φ2

∂φ

∂h
+

∂2G

∂φ∂h
, (B9)

so that we obtain after inserting into (B6)

d2

dh2
〈Wf (h)〉J =

∂2G

∂h2
−


∂2G
∂h∂φ
∂2G
∂h∂q
∂2G
∂h∂λ


T

∂2G
∂φ2

∂2G
∂φ∂q

∂2G
∂φ∂λ

∂2G
∂q∂φ

∂2G
∂q2

∂2G
∂q∂λ

∂2G
∂λ∂φ

∂2G
∂λ∂q

∂2G
∂λ2


−1

∂2G
∂φ∂h
∂2G
∂q∂h
∂2G
∂λ∂h

 . (B10)

In order to compactly write down the entries of the matrix and the vectors above, we introduce the effective local
connectivity

(
K−1

eff

)
xy

:= − ∂2G

∂φx∂φy
⇔

[(
∂2G

∂φ∂φ

)−1
]
xy

= − (Keff)xy , (B11)

which fulfills the Dyson equation whose concrete form we obtain by performing the derivatives of G explicitly:(
K−1

eff

)
xy

=
(
K−1

)
xy
− δxyvx (B12)

⇔ Keff
xy = Kxy +

∫
KxzvzK

eff
zy . (B13)

Using the identities derived in appendix C, in particular eq. (C9), we can note the final form of the covariance matrix:

C = V + V KeffV − (1N + V Keff)
(
gκ3, v

)
S−1

(
gκ3

v

)
(1N +KeffV ) , (B14)

where V is the diagonal matrix with the disorder-averaged variances vi and

S =

(
N + g2

∑
i κ

4
i g

∑
i κ

3
i

g
∑
i κ

3
i

∑
i vi

)
+

(
gκ3

v

)
Keff

(
gκ3, v

)
(B15)

The Fisher information, finally is then given by

In (ξ) =
∑
x,y

U′ (ξ − x)CxyU′ (ξ − y) . (B16)

The last term from B14 contributes to the Fisher information with a term containing (twice) the expression(
gκ3

v

)
(1N +KeffV )U ′ (B17)
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FIG. 6: The Fisher information per neuron in dependence of the disorder, contributions from different parts of
covariance as defined in eq. (23). Parameters as in fig. (3).

The space-dependence of the contribution from the covariance is mostly determined by the shape of U (multiplications
by K or Keff merely smear it out), so that multiplication with its derivative with U ′ is well approximated by a spatial
derivative and summation over space and therefore yields a contribution close to 0. This part of the covariance therefore
only yields subleading contributions to the Fisher information (see fig. (6)) and we can neglect it in the analysis.
This makes sense because it emerges from the source-dependence of q and λ, the auxiliary variables representing the
disorder and the global inhibition, which are global quantities. It is therefore expected that their contribution to the
spatial information is negligible.

1. Analysis of the covariance matrix

Having an analytical expression for the covariance matrix at hand, we can investigate its behavior for special cases,
in particular around g = 0. Because it depends on g only via the cumulants v, κ3 and κ4, we primarily have to
examine their behavior near g = 0. We observe that

d

dg
vx =

∂

∂g
vx +

∂vx
∂q

∂q

∂g
+

∫
dy

∂vx
∂φy

∂φy
∂g

+
∂vx
∂λ

∂λ

∂g
(B18)

=
∂

∂g

∫
Dtmx (1−mx) =

∫
Dt t

√
2q mx

(
1− 3mx + 2m2

x

) g=0
= 0, (B19)

where we have used the result from appendix (A 3) that the derivatives of the auxiliary variables with respect to
g vanish as g goes to 0. Again because mx does not depend on tx for g = 0 and the remaining integral over tx
is antisymmetric, it also yields 0. With the same argument, the derivatives of the other cumulants vanish as well.
Therefore, the linear orders of all g-dependent quantities, that the covariance C depends on, vanish. Thus, the
derivatives of the covariances and of the Fisher information equal 0 for g = 0 as well, as apparent from the plots in
figure (3).

2. Relating inputs and tuning curves by means of Keff

Without disorder, the tuning curve T in the thermodynamic limit is given by

Tx =

∫
dyK (x− y)

1

1 + e−(φy+U(ξ−y)+λ)
(B20)

φy =

∫
dxK (y − z) Tz (B21)
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and therefore, we can write for its derivative

T′ = T (1−T)
(
U′ +KT′

)
(B22)

⇔ [1−T (1−T)K]T′ = T (1−T)U′ (B23)

T′ = (1− V K)
−1
VU′ =

(
V −1 −K

)−1
U′ (B24)

⇔ T′ = V
(

1 +K
(
V −1 −K

)−1
)
U′, (B25)

where we have abbreviated Vij = δijfi (1− fi). We furthermore have

Keff = K +KVKeff (B26)

⇔ (1−KV )Keff = K (B27)

⇔ Keff = (1−KV )
−1
K = V −1

(
V −1 −K

)−1
K (B28)

⇔ Keff = K
(
V −1 −K

)−1
V −1 (B29)

⇔ KeffV = K
(
V −1 −K

)−1
, (B30)

where we obtained the second-to-last equivalence by transposing. Inserting this expression into eq. (B25), we arrive
at eq. (30).

Appendix C: Matrix-vector calculus

1. Inversion of a matrix with blocks on the diagonal of the sizes N and M

Assume we have a matrix of the form

U :=

(
A b
bT a

)
, (C1)

where

A ∈ RN×N , b ∈ RN×M , a ∈ RM×M , (C2)

a and A are symmetric and A is invertible. To invert it, we make the ansatz

V :=

(
C d
dT c

)
. (C3)

Multiplying U and V , we obtain the conditions

AC + bdT = 1N (C4)

Ad+ bc = 0 (C5)

bTC + adT = 0 (C6)

bTd+ ac = 1M (C7)

Solving (C5) for d and inserting into (C7), we obtain

c =
(
a− bTA−1b

)−1

and d = −A−1b
(
a− bTA−1b

)−1
.

Solving (C4) for C and inserting the results gained until here, we obtain

C = A−1 +A−1b
(
a− bTA−1b

)−1 (
A−1b

)T
.
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Plugging these results into the left-hand side of (C6), which we did not use so far, we obtain

bT
(
A−1 +A−1b

(
a− bTA−1b

)−1 (
A−1b

)T)− a [A−1b
(
a− bTA−1b

)−1
]T

=
((
A−1b

)T
+
(
bTA−1b− a+ a

) (
a− bTA−1b

)−1 (
A−1b

)T)− a (a− bTA−1b
)−1 (

A−1b
)T

=a
(
a− bTA−1b

)−1 (
A−1b

)T − a (a− bTA−1b
)−1 (

A−1b
)T

= 0,

therefore our ansatz is consistent. Summarizing, we can write the inverse of U as

U−1 =

(
A−1 0

0 0

)
+

(
−A−1b

1M

)(
a− bTA−1b

)−1
(
−
(
A−1b

)T
,1M

)
. (C8)

2. Vector-matrix-vectors multiplication

Calculating cross-covariances, we are interested in calculating objects of the type

(
B b

)(A b
bT a

)−1(
B
bT

)
.

Making use of (C8), we then obtain

(
B b

)(A b
bT a

)−1(
B
bT

)
=BA−1B +

(
1N −BA−1

)
b
(
a− bTA−1b

)−1
bT
(
1N −A−1B

)
(C9)

Appendix D: Relating Fisher and mutual information for uncoupled neurons with inhomogeneously
distributed place fields

Here, we consider independent neurons, but allow variability in the tuning curves T. The probability distribution
of the neural population is then given by

P (n) =

N∏
i=1

[niTi (ξ) + (1− ni) (1− Ti (ξ))]Pξ (ξ) . (D1)

To compute the mutual information, we first need to compute the entropy of this distribution, which is given by

huncond = − lim
N→∞

1

N

∑
n

〈P (n) ln (P (n))〉T ,

where we denote by 〈. . . 〉T the average over the variability of the tuning curves. The tricky part here is that we
average over a logarithm, a complication that we deal with by introducing replicas (n+ 1 in this case because of the
prefactor P (n), compare [33]), which leads to

huncond =− lim
N→∞

1

N
lim
k→0

1

k


∫ k∏

α=0

(dξαPξ (ξα))

(〈[
k∏

α=0

T (ξα) +

k∏
α=0

(1− T (ξα))

]〉
T

)N
− 1

 (D2)

=− lim
N→∞

1

N
lim
k→0

1

k

{∫ k∏
α=0

(dξαPξ (ξα)) (GT (ξ))
N − 1

}
, (D3)

where we have introduced

GT (ξ) :=

〈[
n∏
α=0

T (ξα) +

n∏
α=0

(1− T (ξα))

]〉
T

.
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An obvious idea is now to evaluate eq. (D3) in saddle-point approximation, as also shown in [14, 15]. This is indeed
what we will do, but with a small twist because one of the eigenvalues of the Hessian of GT vanishes for n → 0.
However, this replicon mode can be identified to be the one corresponding to the replica-symmetric direction. This
allows us to transform the n + 1-dimensional integral over the ξα such that the first coordinate corresponds to the
replica-symmetric direction (1, . . . , 1) and the other n are orthogonal to it. Like this, we can perform the integral
over the first coordinate exactly and only the orthogonal directions are evaluated in saddle-point approximation.
Having determined the unconditioned entropy in this way, we obtain the mutual information MI = huncond − hcond

by subtracting

hcond = − lim
N→∞

1

N

∑
n

∫
dξ 〈P (n|ξ) ln (P (n|ξ))〉T (D4)

from the unconditioned entropy. Performing the limit of k → 0 in eq. (D3), we see that, to zeroth order, huncond

equals hcond, so that the mutual information is, to first order, given by the one-loop correction

IMI =

∫
dξPξ (ξ)

[
1

2
ln

(
−
Nλ1,k=0

T (ξ)

2π

)
− 1

2
− ln (Pξ (ξ))

]
+O

(
1

N

)
, (D5)

where λ1,k=0
T is the n-fold degenerate eigenvalue of GT at k = 0 (see below). Note that our computation neither

requires the introduction of helping fields to perform the average over the state space of the neural population, as
[15], nor do we assume it to be normally distributed, as in [14]. However, in return, we are assuming the neurons to
be independent, which limits the applicability of our approach.
What is left to do is the computation of the Hessian of GT. On the replica-symmetric line, we only have two values
for its entries, the diagonal and the off-diagonal. We calculate

∂2GT

∂ξ2
α

∣∣∣∣
ξ0=···=ξn=ξ

=
∑
n=0,1

〈
k∏

γ=0,γ 6=α
[nT (ξγ) (1− n) (1− T (ξγ))] (2n− 1) T′′ (ξα)

〉
r

∣∣∣∣∣∣
ξ0=···=ξn=ξ

(D6)

=
∑
n=0,1

(2n− 1)
〈

[nT (ξ) + (1− n) (1− T (ξ))]
k

T′′ (ξ)
〉
r

(D7)

k=0
= 0. (D8)

and

∂2GT

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

(D9)

=
∑
n=0,1

〈
k∏

γ=0,γ 6=α,β
[nT (ξγ) + (1− n) (1− T (ξγ))] (2n− 1)

2
T′ (ξα) T′ (ξβ)

〉
r

∣∣∣∣∣∣
ξ0=···=ξn=ξ

(D10)

=
∑
n=0,1

〈
[nT (ξ) + (1− n) (1− T (ξ))]

k−1
[T′ (ξ)]

2
〉
r

(D11)

k=0
=

〈[
1

T (ξ)
+

1

1− T (ξ)

]
[T′ (ξ)]

2
〉
r

=

〈
[T′ (ξ)]2

T (ξ) (1− T (ξ))

〉
r

. (D12)

The eigenvalues of the Hessian of GT are given by

λ0 (ξ) =
∂2G

∂ξ2
α

∣∣∣∣
ξ0=···=ξn=ξ

+ n
∂2G

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

λ1 (ξ) =
∂2G

∂ξ2
α

∣∣∣∣
ξ0=···=ξn=ξ

− ∂2G

∂ξα∂ξβ

∣∣∣∣
ξ0=···=ξn=ξ

,
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where the first one is non-degenerate, whereas the second one is n-fold degenerate. Inserting eqs. (D8) and (D12), we
obtain that, for k = 0,

λ0 (ξ)
k=0
= 0 (D13)

λ1 (ξ)
k=0
= −

〈
[T′ (ξ)]2

T (ξ) (1− T (ξ))

〉
r

, (D14)

(D15)

where the latter expression equals minus the Fisher information In (ξ) for the stimulus ξ. Therefore, inserting this
result into eq. (D5), we finally obtain

IMI =
1

2

〈
ln

(
NIn (ξ)

2π

)〉
ξ∼Pξ

− 1

2
− 〈ln (Pξ (ξ))〉ξ∼Pξ +O

(
1

N

)
, (D16)

as expected according to [15].
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