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Abstract

The aim of this paper is to solve linear semidefinite programs arising from
higher-order Lasserre relaxations of unconstrained binary quadratic optimiza-
tion problems. For this we use an interior point method with a preconditioned
conjugate gradient method solving the linear systems. The preconditioner uti-
lizes the low-rank structure of the solution of the relaxations. In order to
fully exploit this, we need to re-write the moment relaxations. To treat the
arising linear equality constraints we use an £;-penalty approach within the
interior-point solver. The efficiency of this approach is demonstrated by numer-
ical experiments with the MAXCUT and other randomly generated problems
and a comparison with a state-of-the-art semidefinite solver and the ADMM
method. As a by-product, we observe that the second-order relaxation is often
high enough to deliver a globally optimal solution of the original problem.

Keywords: Binary quadratic optimization, Lasserre hierarchy, semidefinite optimization,
interior-point methods, preconditioned conjugate gradients, MAXCUT problem.
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1 Introduction

Unconstrained binary quadratic optimization problems (UBQP) represent a surpris-
ingly wide class of important optimization problems; see, e.g., the comprehensive
overview [1]. The famous MAXCUT problem is a typical representative of this
class. It is thus not surprising that they attract a great deal of attention among algo-
rithm and software developers. Some of the most efficient algorithms for finding a
global solution of UBQP combine branch-and-bound techniques with semidefinite
programming (SDP) relaxations to obtain good lower bounds. These are represented
by software like Biq Mac [2], BiqCrunch [3] and BigBin [4].

The SDP relaxations are typically based on Shor’s relaxation [5] which is equiv-
alent to the first-order Lasserre relaxation [6]. While higher-order relaxations would
deliver much tighter lower bounds (if not exact solutions), the dimensions of the
arising SDP problems are considered prohibitively large already for medium-sized
UBQPs. For this reason, many authors proposed various techniques to strengthen the
first-order relaxations; see, e.g., [7-9] and the references therein.

Our goal is to show that (at least) the second-order Lasserre relaxations are solv-
able by a specialized SDP software. We will also demonstrate that the second-order
relaxations are, indeed, superior to the first-order ones and, in many cases, already
deliver global solutions of the UBQP. This may allow one to avoid the branch-and-cut
machinery, whose behaviour is known to be sometimes unpredictable, and replace it
entirely by robust algorithms of known complexity.

Our aim is to solve UBQP

m%leQx subjectto z; €B, i=1,...,s (D)
reRs®

with a symmetric matrix Q € R®*®, where B is either the set {0,1} or the set
{=1,1}. We do not assume any sparsity in Q, it is a generally dense matrix. In order
to find a global optimum, we use Lasserre hierarchy of SDP problems—relaxations—
of growing dimension [6]. The SDP relaxations have the form

min qu 2
yeR™
n

subject to M (y) := ZyiMi — My = 0.
i=1

Here M is a so-called moment matrix, a (generally) dense matrix of a very specific
form. In particular, if the solution of (1) is unique and the order of the relaxation is
big enough, then rank M (y*) € {1, 2}, where y* is a solution of (2) (see Section 3
below).

These problems are known to be difficult to solve due to the quickly growing
dimension of the problem with the order of the relaxation; see, e.g., [10]. Since
we do not assume any sparsity in (), we cannot use sparse techniques, such as
those proposed in [11-13]. Instead, we propose to use our recently developed soft-
ware Loraine [14]. Loraine uses a primal-dual predictor-corrector interior-point (IP)
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method together with an iterative algorithm for the solution of the resulting lin-
ear systems. The iterative solver is a preconditioned Krylov-type method with a
preconditioner utilizing low rank of the solution.

Several authors observed and confirmed by numerical experiments that SDP re-
formulation of UBQP (the first-order relaxation) can be efficiently solved by an SDP
variant of the ADMM method, see [15]. We will show that not only this observa-
tion can be extended to higher-order relaxations but that inexact ADMM results can
be efficiently used as a warm start for the IP algorithm in Loraine. This is due to
the choice of the preconditioner used within the iterative solver in Loraine. Based on
this observation, we will propose a new, hybrid ADMM-Loraine algorithm that, for a
certain class of problems, will be superior to the single algorithms.

The paper is organized as follows. Section 2 introduces the low-rank SDP solver
Loraine and the assumptions needed for its efficiency. In Section 3 we discuss the
various forms of SDP relaxations of UBQP. Then, in Section 4 we briefly describe
the ADMM algorithm for SDP and introduce the new hybrid algorithm, using an
inexact ADMM result as a warm start for Loraine. The last Section 5 is devoted
to numerical experiments using instances of the MAXCUT problems and randomly
generated UBQPs.

Notation

We denote by S™, S'"* and ST, , respectively, the space of m x m symmetric matrices,
positive semidefinite and positive definite matrices. The notation “svec” and “smat”
refer to the symmetrized vectorization and its inverse operation, respectively. The
symbol e denotes the Frobenius inner product of two matrices, Ae B = trace(A'B).
Finally, the notation e,, (or just e) is used for the vector of all ones.

2 The solver Loraine

Loraine' is a general-purpose solver for any linear SDP developed by the authors and
implemented in MATLAB and Julia. Compared to other general-purpose SDP soft-
ware, it particularly targets at problems with low-rank solutions. To solve the arising
systems of linear equations, it uses the preconditioned conjugate gradient method, as
described in detail in [14]. The preconditioner, introduced in [16], is based on the as-
sumption that the solution matrix has a small number of outlying eigenvalues. The
user can choose between the direct and iterative solver, the type of preconditioner
and the expected rank of the solution.
Loraine was developed for problems of the type

min by (3)
yER™ SES™, sjj ERY

! github.com/kocvara/Loraine.m
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subject to Z%‘Ai +5=C
i=1
Dy + sin=d
S =0, sin>0

with the Lagrangian dual

max CeX+d “4)
Xesm, xi, ERY
SllbjCCt to Az o X + (DTIlin)i = bi, 1= 1, o,
X =0, zjin 2 0.

In the following, we call (3) a problem of primal form and (4) a problem of dual form.
Loraine is efficient under the following assumptions:

Assumption 1 Problems (3),(4) are strictly feasible, i.e., there exist X € ST, , i, € R 4,
y €ER™, S € ST, sjin € R, such that A; @ X + (D @yp)i = by, S0 yidi + S =C
and Dy + sy, = d (Slater’s condition).

Assumption 2 Define the matrix A = [svec A1, ...,svec Ap]. We assume that any matrix-
vector products with A and AT may each be computed in O(n) flops and memory.

Assumption 3 The inverse (D" D)~ exists and (D " D) ™! together with the matrix-vector
product with (D T D) ™! may each be computed in O(n) flops and memory.

Assumption 4 The dimension of X is much smaller than the number of constraints in (4), i.e.,
m < n.

Assumption 5 Let X ™ be the solution of (4). We assume that X * has k outlying eigenvalues,
i.e., that
0 MEXT) < S AMX )i KAX Jmiig1 <0 S AMX ),

where k is very small, typically smaller than 10 and, often, equal to 1. This includes the
particular case when the rank of X is very small.

The last Assumption 5 is not satisfied by problem (2) so, in the next section, we
will:
(1) re-write SDP relaxation (2) in the dual form (4) by introducing auxiliary
variables and additional linear equality constraints;
(ii) treat the new linear equality constraints by /;-penalty approach, in order to
replace equalities by inequalities, as required by the interior-point algorithm;
(iii) show that the matrix associated with the new linear inequality constraints is
block diagonal with blocks of very small size and thus satisfies Assumption 2;
(iv) show that Assumption 4 is naturally satisfied for the re-written problem.
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3 Forms of SDP relaxations

3.1 Lasserre hierarchy of moment problems

Let B = {—1,1}. By introducing a matrix variable X = zx ", problem (1) can be
equivalently written as the following SDP problem with a rank constraint:

)r(neléLQ.X 5)

subjectto X;; =1, ¢=1,...,s
X =0
rank X = 1.

Remark 1 For B = {0,1}, we first use the substitution £ = 2z — 1 to get a prob-

lem with objective function Z ' Qi + 2¢ ' QZ and constraints & € {—1,1}. Then we set

~ T ~ ~

Q= 0 e@ € S5, introduce a variable X € S°t!, X = % (1 a?T) and solve
Qe Q z

problem (5) with @, X replaced by @, X.

In view of the above remark, in the rest of the paper we will only consider the
case B={-1,1}.

Now, to each unique component of the matrix X = zx ' we assign a variable yy.
Considering the constraints X; ; = 1 and the symmetry of X, we thus have y € R"
with r = s(s — 1)/2. Replacing the variable X by y, the constraint X > 0 can then
be written as 2:21 M;y; + I = 0, where M; € S°® are suitable matrices; for details,
see [6].

By ignoring the rank constraint, we can now define the first-order Lasserre
relaxation of (5) as the following moment problem:

T

min qu (6)
yeRr

subject to Z My, +1~0,
i=1

where ¢ = svec Q).

. . . T
Example 1 For instance, for s = 3 we use the vector (monomial basis) (xl, T2, mg) ; then
r =3 and

010 001 000
Mi=(100),M2=({000|,M3=1]001
000 100 010
and the moment matrix Z,:-’ZI M;y; + I is associated with the original variables as
T
r 1y y2 z1\ (21 x? mimy 123
(M) =)Y Myi+T=|y1 1 ys| > |22 (22| = (2122 23 w013

i=1 y2 y3 1 z3 3 T1XT3 T2X3 mg
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The Lasserre hierarchy consists in adding higher-order monomials in the mono-
mial basis and, therefore, the higher-order relaxation problems will all be of the form
(6) only of growing dimension.

Example 2 The second-order relaxation in Example 1 will lead to a (6 x 6) moment ma-
trix associated with the dyadic product of the vector of monomials of order up to two
(z1, 2, 1’3,I%,l‘%, I§7CL‘11‘27561$3,$25L‘3)T with itself.

As some of the terms in the higher-order moment matrix are repeated and some
can be simplified using the constraint 3:? =1(e.g, mlxg is reduced to x1) and thus
even more terms are repeated, the number of variables in the higher-order relaxations
is smaller than the number of the elements of the upper triangle of the matrix (see
also Example 3 below).

Denote the order of the Lasserre relaxation by w.

Definition 1 The Lasserre relaxation of order w of the problem (1) is given by problem (6)
with general dimensions n, m, replacing r, s, respectively; i.e., y € R and M; € S™, i =
1,...,n.

The dimensions n, m grow quickly with the order of the relaxation. In particular,

we have . .

< s _ — $

<n<2°—1 and m—;(l) (7)
(The authors are not aware of any exact formula for n or the lower bound on n; the
lower bound in (7) is our estimate based on numerical experiments. Obviously, the
higher w the bigger n until it reaches the “saturation point” 2% — 1.)

The dimension of the problem makes it very challenging for standard SDP solvers
based on second-order methods, such as interior-point methods; see [10] and the
numerical examples in the last section of this paper.

It was shown by Fawzi et al. [17] and Sakaue et al. [18], and numerically con-
firmed in [10], that for this type of problems, the sequence of these approximations
is finite and the upper bound on the order of the relaxation to obtain exact solution
of (1) is [n/2]. Laurent [19] showed that this is also a lower bound for MAXCUT
problems with unweighted complete graphs.

To determine whether a relaxation of order w is exact, i.e., whether its solution
is the solution of (1), we use the rank of the moment matrix; see [6, Thm. 6.19]. In
particular, assuming that (1) has p global minimizers, the rank of the moment matrix
will be less than or equal to p. Therefore, if we assume that (1) has a unique solution,
then the moment matrix of the exact relaxation will be of rank one.

I\D‘Cn
g

Remark 2 Notice that, when B = {—1, 1}, every global minimizer = will have a “symmetric”
counterpart —x, as there are only quadratic terms in the problem. In this case, by unique min-
imizer, we understand “unique up to the multiple by —1” and the rank of the exact relaxation
will be two.
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Above, we spoke about an “exact relaxation” and a “rank of the moment matrix”.
When solving the problem by an interior point method, we can only speak about a
numerical rank defined below.

Definition 2 Consider A € ST with eigenvalues A;(A) and with the largest eigenvalue
Amax (A). Let £ > 0. The numerical rank of A is defined as

re(A) = |21, z:{ie{L,..,m}\%za}.

Definition 3 For problems with a unique solution and 3 = {—1, 1}, the relaxation of order w
is called exact if the numerical rank of the corresponding moment matrix is less than or equal
to two.

3.2 Re-writing the problem

As mentioned in the Introduction, problem (6) is in the “wrong” form for our solver

Loraine. While the solution M* := M (y*) of (6) has low rank (in particular,

rank M* = 2 when the solution of (1) is unique), Loraine expects the solution of an

SDP problem in the dual form (4) to have low rank. Our next goal is thus to rewrite

(6) in the dual form; in other words, to rewrite the dual to (6) in the primal form (3).
The dual to (6) is the problem

max —[ e Z
zZesm

subjectto M; ¢ Z =¢q;, i=1,....n
Z =0,

and, by vectorizing the matrices as z = svec Z and M = (svec My, ..., svec M,,) T,
M € R™*™, it can be further written as

min (svec 1) " z 8)
z€R™

subject to smat(z) > 0
Mz =gq

with 7 = m(m + 1)/2. Now, from the fact that the problem (8) is the dual problem
to (6), we have the following lemma:

Lemma 1 The vector y in (6) is the Lagrangian multiplier to Mz = q in (8).

Problem (8) is now almost in the right form for our solver: it is in the primal form
and the dual solution is a low-rank matrix. Notice that, despite () being possibly a
dense matrix, the data in (8) are always very sparse. One obstacle remains—the linear
equality constraints in (8). We are addressing it in the next section.
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3.3 Equality constraints by ¢, -penalty

Interior-point methods have been designed for optimization problems with inequality
constraints and cannot directly handle equality constraints. There are various ways
how to overcome this, starting with writing equality as two inequalities; see [20] for
an overview focused on SDP interior-point algorithms. In our algorithm, we treat the
equality constraints by the following ¢; -penalty approach.

Introducing ¢;-penalty for the linear equality constraints in (8), we obtain the
following problem

miq(svecI)Tz+M||MZ—Q||1 )

z€R™

subject to smat(z) > 0,

with a penalty parameter 1+ > 0. Recall that this penalty is exact, in the sense that
there exists ;o > 0 such that the solution of (9) with ;1 > pg is equivalent to the
solution of (8) (see, e.g., [21]).

We now introduce two new variables, r € R", s € R", satisfying

Mz—q=r—s, r>0,5>0.

After substitution, (9) reads as

n
min svec )Tz + i+ S; 10
zeRﬁ,reRn,seRn( ) . ;( ) (10)

subject to smat(z) = 0
Mz—-—q=r-—s
r>0,s>0.

Using the identity » = Mz — g + s to eliminate variable r, we arrive at our final
problem

min (svecI)Tz—k,uZ((Mz—q)i+23i) an

2€ER™ | s€R”™ Py

subject to smat(z) > 0
Mz—qg+s>0
s>0.

Problem (11) is now in the primal form (3).

By Lemma 1, we know that y in (6) is the Lagrangian multiplier to the equal-
ity constraint in (8). The question is how to obtain y from (11), the ¢;-penalty
reformulation of (8).
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Lemma 2 A solution y of (6) can be obtained from the solution of (11) asy; = p+ X, © =
1,...,n, inwhich w is the penalty parameter at the solution and X is the Lagrangian multiplier
to the constraint Mz — q + s > 0.

Proof We start with the optimality conditions of the problem (11). Using suitable matrices
&; € S™, we can write smat(z) = > ; & z;. The Lagrangian of (11) is then

n

Li1(z,8, T, n) =— <f(z) + “Z (Mz —q); + 2si)> —Te Z&zz
i=1 i=1

n

n n
—Z/\i ZMiij —q; +5; _Znisi»
i=1 j=1 i=1

where I' > 0 and A\,n7 > 0 are the corresponding Lagrangian multipliers and f(z) =
(svec I) " z. By using the KKT conditions at the solution we have

VZ£1(2*7S*7F*7>\*777*) =0:
n n
—(Vf(z")); *#ZMM *ZMM)\; —T"e& =0, j=1,...,n
i=1 i=1
and so
n
(VFE)); ==Y Mij(u+ X)) —T e&, j=1,... 7. (12)

i=1
Now, the Lagrangian of the problem (8) is

n n n
Lo(z,Ty)=—f(z) —TeY Ezi—» yi | Y Mijz—ai |,
i=1 =1

i=1

where, as above, I' > 0 and y > 0 are the corresponding Lagrangian multipliers. From the
KKT conditions, we have

Vz [:2(2*7’)/*7’!4*) =0:

n
=1
SO

n
(VF(E)); == Myl —T &, j=1,..7. (13)
i=1
Thus, from (12) and (13), y can be written as
yi=p+XA, i=1...,n (14)
and we are done. (]
The question remains how to initialize and update the penalty parameter p in

order to get an exact solution of problem (8) using our interior-point solver. There
are essentially two options.
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(A) For the current value of u, fully solve the penalized problem (11) by Loraine,
check the residuum of the equality constraint in (8) for the optimal solution
of (11) and, if bigger than a prescribed threshold, increase p and repeat this
process.

(B) Incorporate penalty update within the interior-point solver, following, e.g., [22]
and [23]. That is, run the IP algorithm with an initial 4 and, as soon as the
residuum of the equality constraint (8) gets bigger than a value dependent on
the IP barrier parameter, increase p and continue in IP iterations.

Option (A) is simple and robust but may also be expensive: we may need to solve
several SDP problems to full optimality. Option (B) is more attractive from the ef-
ficiency point of view but is also more sensitive to the choice of parameters. We
implemented (B) but had mixed experience with it so we returned to (A). The good
news is that a class of BQP problems usually requires a single choice of p in order
to guarantee convergence to an optimal point with the norm of the residuum of the
equality constraint smaller than a prescribed value; see the numerical experiments in
the last section. Needless to say that one cannot start with a too big value of i due to
the potential ill-conditioning of the resulting SDP problem and resulting difficulties
of the IP algorithm to solve the problem at all.

3.4 Loraine and problem (11)

Recall the definition of the matrix M = (svec My, ..., svec Mn)T with matrices M;
introduced at the beginning of this section. We have the following result.

Lemma 3 There exists a permutation matrix P € R™ %™ such that PM MP" is a block
diagonal matrix with small full blocks. In particular, M Misa sparse chordal matrix.

Proof Every matrix M; localizes the corresponding variables in the moment matrix
n

> M;y;+1 in (6), whereas the elements of the moment matrix are either ones or the variables
;7; ;1see also Example 1. As every M is associated with exactly one variable y;, the nonzeros in
this matrix are unique to the matrix. Therefore every column of matrix M will either contain all
zeros or a single nonzero number one at the ¢-th position, ¢ = 1,...,n. We can now re-order
the columns of M such that the first columns will only contain zeros, the next columns element
1 at the first position, the next ones element 1 at the second position, etc. This re-ordering will
define the permutation matrix P. The claims follow. O

Example 3 Consider a problem with s = 3 and relaxation order w = 2. Utilizing the con-
straints x? = 1, we only consider variables associated with the monomial basis b(z) =
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(21, @2, T3, T122, T223, T123):

CE% r1T2 r1T3 m%mQ r1T2x3 x%xg
X129 fl,'% Trox3 l’ll’% w%l?g Tr1Trox3
2 2 2
1T xrox xT xr1Trox xroT r1xT
X — b(I)bT(fZ') _ % 3 243 3 14243 243 143

TiT .%‘11‘% 12273 w%x% mlx%xg x%xgmg
T1X2T3 a;%:rg 1‘21‘% xlxgarg w%x% xlwgasg

x%xd T1T2T3 mw% x%mgxg :81172%:2;) :clx%

1 r1x2 r1xs3 T r1r2x3 xr3
xr1T2 1 Tox3 T T3  T1x2T3
. xr1T3 Trox3 1 r1x2T3 ) x1
o X9 X1 Tr1x2x3 1 xr1x3 xrox3
r1x2T3 I3 ) 123 1 Tr1x2
T3 T1X2T3 T ToT3  T1X2 1

i.e., variables y € R7 corresponding to (x1, 2, T3, x1T2, T2T3, 13, T1T223), the unique
elements of X. The matrices M; simplify to

000000 000100 000010
000100 000000 000001
000001 000010 000100
Mi=1o10000"™=|100000| M =]001000
000000 001000 100000
001000 000000 010000

and thus

000000O01000000O0O0O0O1000O0
0000001000001 000000O00O0
000000000001 000100000O0
M=]010000000000000000010
0000100000000000O000O01O00O0
0001000000000100000O00O0
00000000101 000001T0O0O00O0
and
0000001100000000000O00O0
000000001100000000O0O00O0
000000000011000000000O0
MP ' =]|000000000000110000000
000000O00O0O0O0OD0O0O0O1T100000O0
0000000000O00O0O0O0O0O0O1I1000O0
00000000O0O0O0O0O0OOO0OOOT1I11

with a suitable permutation matrix P. Then PMTMPT is block diagonal with block sizes 2
and 3.

Remark 3 The size of the blocks in the matrix PM ' MP | is given by the count of the cor-
responding variables in the upper triangle of the moment matrix. This number grows with the
relaxation order.

Theorem 4 Assume that (1) has a unique solution and that Lasserre hierarchy is exact for
order w > 1. Then problem (11) corresponding to w satisfies Assumptions 1-5.
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Proof A strictly feasible point for (11) can be found, e.g., by choosing z as a unit vector and
s positive, arbitrarily large. Similarly, the moment problem (6) is trivially strictly feasible by
choosing y = 0. Hence Assumption 1 holds. Every matrix &£; contains at most two nonzero
elements, hence Assumption 2 is trivially satisfied. Assumption 3 holds by Lemma 3: because
the matrix M | M is chordal and sparse, sparse Cholesky factorization leads to zero fill-in and
is thus very efficient. Assumption 4 is satisfied by construction of the problem, as the number
of variables 7 is proportional to the square of the size of the matrix inequality m. Finally, under
the assumption of unique solution to (1) and exact relaxation, the dual variable associated with
the matrix inequality in (11) has rank at most two. Hence Assumption 5 is satisfied. (]

4 ADMM for SDP relaxations

The Alternating Direction Method of Multipliers (ADMM) is a popular alterna-
tive to the interior-point methods for convex optimization problems. Its extension to
semidefinite optimization was introduced in [15]. It proved to be efficient for certain
SDP problems, among others many UBQPs ([15, Sec 4.3]). We thus briefly describe
this algorithm and offer a numerical comparison with Loraine. Furthermore, we will
introduce a new “hybrid” approach combining ADMM with Loraine.

4.1 The ADMM-SDP algorithm

The method consists of minimizing the augmented Lagrangian of the problem

n 2

n 1
‘CP(yaSaX)__b y+X.<Zy1Az+S C>+2P s

i=1

F

alternately, first with respect to y, then with respect to .S, and then updating X by

n (k+1)
X+ = x (k) 4 Dic1 Yi A; + Sk _ ¢ .
p

While the minimization with respect to y leads to an unconstrained problem and
the minimum is obtained by solving the first-order optimality system of (linear)
equations, the minimization of £, with respect to S can be formulated as a projection
of the matrix C — >, y; A; — pX onto the semidefinite cone St

For Z € S™, let A(Z) be a vector with elements A; @ Z,i = 1,...,nand [Z]
the projection of Z on the semidefinite cone. With a penalty parameter p > 0 and a
relaxation parameter o € (0, “’2\/5), the update of the primal-dual point (y, S, X) in
the k-th iteration of ADMM is defined in Algorithm 1.

For details, in particular the choice and update of p, see [15]. In the numerical
experiments below, we use our MATLAB implementation?® of the algorithm.

2https:// github.com/kocvara/ADMM _for_SDP
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Algorithm 1 ADMM for SDP
Given an initial point (y(o), SO x (0)), parameters p and o, and a stopping parame-
ter € apam-

1: fork=0,1,2,...do

2 Update y by y* 1) = —(AAT) 7! (p(A(XP) —b) + A(SP) — O))

. Update S by § —Cc_ ZZL:I y§k+1)Ai _ pX(k’), Gk+1) — {5}
+

& Update X by X =1 ($®+D = 8) X+ = (1) X 4 0%
5 Update p

6: Check convergence

7. end for

4.2 ADMM as a warm starter for Loraine

When testing the ADMM algorithm with the MAXCUT problems considered in this
paper, we have made the following two observations:

(i) The method is more efficient when solving the reformulated (bigger) problem
(11) than the smaller one (6). Moreover, for problem (11), the convergence is
very fast in the first iterations, before it slows down: the algorithm gets quickly
a “good” approximation of the solution, both primal and dual.

(ii)) Due to the nature of the ADMM method (projections on the semidefinite
cone), the rank of the approximate solution is always “numerically exact”; in
particular, the rank of X (*) is low when we are close enough to the solution.

The fact that a low-rank approximation of the solution can be obtained relatively
quickly, together with the fact that ADMM is a primal-dual algorithm leads to the
following idea: use a low-precision ADMM solution as a warm start for Loraine.
Presuming that the ADMM approximation of X is already of the expected low rank
(or very close to it), the preconditioner H, will be extremely efficient during the
remaining iterations of Loraine. We therefore propose the following hybrid ADMM-
Loraine Algorithm 2.

Algorithm 2 ADMM-Loraine
1: Solve (11) by ADMM with stopping tolerance €,puy. Save the primal-dual
approximate solution (y, S, X ) apum-
2. Solve (11) by Loraine with
— initial point (y, S, X) apu
— initial value of the stopping criterion for the CG method reduced to 1076.

Notice that, in order to get a primal-dual approximation of the solution, we have
to solve the same problem formulation by ADMM and Loraine, i.e., formulation (11)
with the ¢;-penalty and the same value of the penalty parameter p, despite the fact
that ADMM could directly handle the linear equality constraints.
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S Numerical experiments

In this section we report the results of our numerical experiments with relaxations
of MAXCUT problems and randomly generated UBQPs. The presented algorithms
will be compared with the state-of-the-art SDP solver MOSEK [24] that is relying
on the interior-point method and uses a direct linear solver for the Schur complement
equation.

The stopping criterion for our implementations of Loraine and ADMM was based
on the DIMACS errors [25] that measure the (normalized) primal and dual feasibility,
duality gap and complementary slackness. The algorithms were stopped when all
these errors were below 1076, MOSEK was used with default settings.

All problems were solved on an iMac desktop computer with 3.6 GHz 8-Core
Intel Core 19 and 64 GB 2667 MHz DDR4 using MATLAB R2022b.

5.1 MAXCUT problems

For the first set of numerical experiments, we use MAXCUT problems, the standard
test problems for UBQP algorithms. Let I' be an undirected n-node graph and let
the arcs (¢, j) be associated with nonnegative weights a;;. The MAXCUT problem is
formulated as the following UBQP:

R .
m;;xx{4Zaij(l—xixjﬂxz?:l,z:l,...,n} (15)

ij=1

and can be thus solved by the techniques presented above. The solution of the SDP
relaxation (2) is of rank two whenever the relaxation is exact and the solution to (15)
is unique. (Recall that uniqueness of = means uniqueness up to the multiple by —1.)

Obviously, a complete unweighted graph (with a;; € {0,1}) may have many
“symmetric” solutions. Therefore we generated two sets of problems of increasing
size. Firstly, to avoid the non-uniqueness, we generated undirected, weighted, gen-
erally complete graphs with weights randomly distributed between 0 and 12 with
20-50 nodes, using the MATLAB command graph. It turned out that for all these
problems the relaxation order two in the Lasserre hierarchy is already high enough to
deliver the optimal solution of the MAXCUT problem (15). Secondly, we generated
a set of problems of the same sizes but for unweighted graphs. The dimensions of the
corresponding SDP problems for relaxation order two are shown in Table 1.

We first present the results for the weighted problems, see Table 2. These prob-
lems are relatively “simple”: the ADMM method is rather efficient, and MOSEK
converges in a very small number of iterations, six to eight. However, the sheer size
prevents MOSEK with a direct solver to solve larger problems. We present results for
ADMM applied to both problem formulations, the original one (6) and the re-written
one of larger dimension and with ¢;-penalty (11). Perhaps surprisingly, ADMM is
more efficient for the latter problem, despite the bigger dimension. Moreover, un-
like for ADMM applied to (6), the number of iterations of ADMM applied to (11)
is almost independent of the problem size. The last four columns of Table 2 show
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Table 1 Problems MAXCUT-<n>, relaxation order w = 2: dimensions for formulations (6) and (11)

problem (6) problem (11)

problem variables ~ matrix size variables ~ matrix size  lin. constr.
MAXCUT-20 6196 211 28561 211 12390
MAXCUT-25 15275 326 68576 326 30550
MAXCUT-30 31930 466 140741 466 63 860
MAXCUT-35 59535 631 258931 631 119070
MAXCUT-40 102090 821 439521 821 204180
MAXCUT-45 164220 1036 701386 1036 328440
MAXCUT-50 251175 1276 | 1065901 1276 502350

the results for the hybrid ADMM-Loraine algorithm: we present the number of itera-
tions of ADMM plus Loraine (‘iter’), the time of ADMM (‘timeA’), time of Loraine
(‘timel’) and the total time of the hybrid method. For these experiments, we have
used the stopping tolerance of ADMM ¢e,puy = 5 - 1073 (problems 20-25) and
Eaomu = 51074 (problems 30-50).

Table 2 Loraine, MOSEK, ADMM and ADMM-Loraine in weighted MAXCUT~-<n> problems,
relaxation order w = 2

MAXCUT Loraine for (11) MOSEK (6) ADMM for (6) ADMM for (11) ADMM-Loraine for (11)

problem iter CGit time time iter time iter time iter  timeA  timeL  time
20 18 559 3.8 9 3615 10 | 3042 13 | 628+4 39 0.8 4.7
25 20 728 11 78 4732 33 | 2735 28 181+5 2.5 29 5.4
30 21 1032 28 607 6770 99 | 3537 80 | 795+5 20 5.8 26
35 23 2183 96 2911 5255 164 | 3030 126 | 863+4 42 11 53
40 27 2275 186 mem 9611 500 | 1280 92 | 914+7 73 132 205
45 25 2521 335 16901 1400 | 2639 358 | 755+4 104 33 137
50 24 2540 528 19521 2951 | 3296 745 | 72745 162 58 220

To better demonstrate the behaviour of the hybrid method, in Figure 1 we show
the output of both codes. We can see that the ADMM method, indeed, gets very
quickly a good approximation of objective value, while Loraine uses the warm start
very efficiently.

Next we will try to solve the unweighted MAXCUT problems. Recall that these
problems often have nonunique solutions, in particular problems with almost dense
graphs. Moreover, relaxation order w = 2 may not be high enough to obtain an exact
solution. We thus cannot expect the preconditioner to be efficient in those cases. This
is, indeed, demonstrated in Table 3. This table, in addition to columns identical to
Table 2, shows also the rank of the solution of the order-2 relaxation. As expected,
Loraine is less efficient for problems with higher solution rank, in particular problems
MAXCUT-30 and MAXCUT-50. Still, it can solve these problems reliably. Again,
the hybrid method is superior for these problems. The convergence behaviour of the
algorithms and their estimated complexity are further illustrated in Figure 2.
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ADMM for SDP

Number of LMI Constraints: 1
Number of Variables: 1065901
Maximal Constraint Size: 1276

iter p-infeas d-infeas d-gap error objective
100 0.00058292 0.08603023 0.00093126 0.086030 1981.22444814
200 0.00018776 0.02554937 0.00034476 0.025549 2028.80448106
300 0.00018959 0.01054250 0.00063882 0.010542 2037.35317708
400 0.00010212 0.00991976 0.00025128 0.009920 2025.69453823
500 0.00005383 0.00972192 0.00013810 0.009722 2038.21968191
600 0.00002508 0.00891292 0.00001945 0.008913 2026.90960413
700 0.00002609 0.00281354 0.00010411 0.002814 2037.33886004
727 0 0 0 0

.00047182 .00012837 .000472 2039.90970508

Total ADMM iterations: 727; Final precision: 4.72e-04; CPU Time 162.59s

*x% Loraine v0.1l #x%
Number of variables: 1065901

Matrix size(s) : 1276

Linear constraints : 502350

*x% IP STARTS

it objective error cg_iter CPU/it
1 2.03994277e+03 3.77e-03 36 9.39
2 2.03999424e+03 2.32e-03 33 9.55
3 2.03999941e+03 2.50e-04 20 7.71
4 2.03999992e+03 3.84e-05 9 5.80
5 2.03999999%9e+03 5.96e-06 8 5.54

«%x Total CG iterations: 106

*x% Total CPU time: 58.24 seconds

Figure 1 The printout of low-precision ADMM and warm-started Loraine for the weighted MAXCUT-50.

Table 3 Loraine, MOSEK, ADMM and ADMM-Loraine in unweighted MAXCUT—-<n> problems,

relaxation order w = 2

MAXCUT Loraine for (11) MOSEK (6) ADMM for (11) ADMM-Loraine for (11)
problem iter CGit time time iter time iter  timeA  timeL  time | rank
20 17 735 43 9 | 1981 8 738+7 34 1.5 49 2
25 18 858 14 82 805 9 328+4 35 2.8 6.3 4
30 23 6482 145 635 | 2218 53 566+8 13 135 148 57
35 21 2604 128 3357 5251 229 1222+8 48 15 63 2
40 22 3538 305 mem | 7137 575 | 185547 142 35 177 2
45 22 3225 536 6794 845 | 1081+4 139 49 188 4
50 25 12599 2593 5723 1162 | 1677+5 361 365 726 13

X Loraine V¥ Mosek M Hybrid © ADMM X Loraine ¥ Mosek M Hybrid ® ADMM

y = 1.429E-6x1:432 y = 2.004E-7x1.6487

y = 1.762E-11x26256 y = 1.083E-11x26738

1000

y = 1.239E-5x1:2234 1000 Y = 4.92E-6x1.3389

100
100

1 1
1E+04 1E+05 1E+06 1E+04 1E+05

1E+06

Figure 2 CPU times in log-log scale for weighted (left) and unweighted (right) MAXCUT problems.

Loraine (blue), MOSEK (brown), ADMM (green) and hybrid ADMM-Loraine (red).
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5.2 Randomly generated problems

We further conducted numerical experiments with matrices () randomly generated.
We are aware of the fact that problems with random data may not always be represen-
tative and may sometimes lead to false conclusions regarding algorithm behaviour.
However, we believe that these results still well demonstrate the efficiency of our
approach.

It has been observed in [10] that problems with rank-one matrix () may require
relaxation order of up to w = [s/2] to reach the exact solution; a typical example
isQ = ee' . On the other hand, for problems with matrix @ of rank 3, w = 2 was
always sufficient in experiments performed in ([10, Fig.4]). We have thus considered

two main classes of problems:
(A) problems with B = {—1,1} and with rank @ = 1 generated by the following
MATLAB code
rng(0); g = randn(s,1); Q = g*q’;

(B) problems with B = {—1,1} and with a full-rank indefinite @ generated by the
following MATLAB code
rng(0); g = randn(s,1); Q = gxq’;
for k=1l:s-1
if ceil (k/2) %2 ==
g = randn(s,1); Q = Q - g*q’;
else
Q

g = randn(s,1); =Q + gxq’;

end
end

Apart from random numbers generated with normal distribution, we also performed
tests with uniform distribution (function rand) and lognormal distribution (function
logncdf); in both cases the results and conclusions were rather similar to the above
choice and are thus not reported here.

The exactness of the relaxation was measured by the numerical rank of the dual
solution to the matrix inequality in problem (11)—when the rank was equal to 1
or 2 (depending on the set 3) the relaxation order was considered sufficient; see
Definition 3.

Remark 4 For (Q constructed as in (B), relaxation order w = 2 was sufficient to get an exact
solution of (1). This observation, though, cannot be extended to any full-rank matrix Q). For
instance, for Q = ee’ +Diag(d),d € R?, the lowest relaxation order will be w = [s/2]. This
is because xzz = 1 and thus the diagonal elements of @) will be irrelevant in the optimization

process and the resulting problem will be equivalent to that with a rank-one matrix @ = eel.

5.2.1 Full-rank @) and relaxation order w = 2

Using the MATLAB code from point (B) above, we generated problems of grow-
ing dimension s = 10. .. 50 and solved the corresponding SDP relaxations for order
w = 2. The dimensions of the generated problems are reported in Table 4; the table
shows problem sizes for the original SDP relaxation (6) and for the re-written prob-
lem (11). The computational results are presented in Table 5 and clearly demonstrate
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Table 4 Randomly generated UBQP problems, relaxation order w = 2: dimensions for formulations (6)
and (11)

problem (6) problem (11)

UBQP size variables matrix size variables matrix size lin. constraints
10 385 56 1596 56 770
15 1940 121 7381 121 3880
20 6195 211 22366 211 12390
25 15275 326 53301 326 30550
30 31930 466 108811 466 63 860
35 59535 631 199369 631 119070
40 102090 821 337431 821 204 180
45 164220 1036 537166 1036 328440
50 251175 1276 814726 1276 502350

the efficiency of Loraine. The computational complexity of Loraine (applied to (11))
and MOSEK and ADMM (applied to (6)) is further illustrated in Figure 3. We do not
report on the hybrid ADMM-Loraine algorithm. That is because ADMM applied to
problem (11) (as required by the hybrid method) appears to be much less efficient
than for the MAXCUT problems and so the hybrid algorithm is not even competitive
to ADMM applied to (6).

Table 5 Randomly generated UBQP problems, relaxation order w = 2: Loraine, MOSEK and ADMM

Loraine for (11) MOSEK for (6) ADMM for (6)
UBQP size iter  CGiter time iter time iter time
10 10 256 0.1 6 0.2 1006 0.4
15 10 725 1.3 5 1.1 1928 22
20 11 423 24 6 9.3 2888 9.7
25 13 294 55 7 81 5622 48
30 13 326 14 7 496 8498 147
35 15 530 43 memory 11672 396
40 14 730 106 14362 880
45 16 896 230 14320 1369
50 16 1114 431 21701 3251
X Loraine ¥ Mosek ® ADMM

y = 2.205E-6x1-3816

10000
y = 1.148E-9x2.2681

1000
y = 1.448E-6x1-55
100

0.1
1E+03 1E+04 1E+05 1E+06 1E+07

Figure 3 CPU times in log-log scale for random BQP problems. Loraine (blue), MOSEK (brown) and
ADMM (green).
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5.2.2 Rank-one @) and higher relaxation order

Let us recall from (7) the dependence of problem sizes on the relaxation order: for
the original moment problem (6), we have

4 w s
<2°~1 and m= :
n<2 1wt m=3 (%)

=1

[\9‘ ®
=~
QA

On the other hand, in the re-written problem (11) with ¢;-penalty term, we have
7 +n variables with m = m?2, LMI of size m and 2n linear inequality constraints;
see Table 6. This table, in particular, shows that the number of variables grows much

Table 6 Problem dimensions for formulations (6) and (11) as functions of the relaxation order; here s is

s
the number of variables in BQP (1) and w the relaxation order and 21 n<2°-1

problem (6)
variables matrix size

problem (11)
variables matrix size lin. constraints

S0 (B0 20

i=1 i=1 =1

more quickly for problem (11) than for the original problem (6) where it, eventually,
reaches the finite limit 2° — 1. Therefore we cannot expect Loraine with iterative
solver applied to (11) to be as efficient for higher-order relaxations as it is for w = 2.
This is clearly demonstrated in Table 7 comparing Loraine with a direct solver ap-
plied to problem (6) (this code was slightly faster than MOSEK for these problems,
due to direct handling of the rank-one data matrices) with Loraine with the iterative
solver applied to problem (11).

Table 7 Randomly generated UBQP problem, n = 9, relaxation order w = 2, . . ., 5: problem
dimensions and CPU times for Loraine-direct and Loraine-iterative

Loraine-direct for (6) Loraine-iterative for (11)
w vars matrix size time vars matrix size lin constr CG iter time
2 255 46 0.09 1081 46 510 99  0.08
3 465 130  0.77 8515 130 930 203 0.97
4 510 256  2.87 | 32896 256 1020 302 15.7
5 511 382 7.04 | 73153 382 1022 701 129

6 Conclusions

Our numerical experiments demonstrate the ability of an interior point method with
a specially designed solver of the linear system to solve higher-order Lasserre relax-
ations of UBQP. The approach is particularly efficient for relaxation order two which,
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for most of the tested problems, was high enough to deliver either the exact solution
of the UBQP or a good approximation of it.

We have also introduced a new, hybrid algorithm that uses an approximate so-
lution obtained by ADMM as a warm start for the used interior point method. This
algorithm is rather efficient for problems for which ADMM itself is relatively effi-
cient, such as the MAXCUT problems. On the other hand, it may be inefficient once
ADMM fails to converge quickly to an approximate solution.
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