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ABSTRACT
The aim of this paper is to introduce a new code for the solution of large-and-sparse linear
Semidefinite Programs (SDPs) with low-rank solutions and/or low-rank data. We propose to
use a preconditioned conjugate gradient method within an interior-point SDP algorithm and
an efficient preconditioner fully utilizing the low-rank information. The efficiency is demon-
strated by numerical experiments using the truss topology optimization problems, Lasserre
relaxations of the MAXCUT problems and the sensor network localization problems.
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1. Introduction

The first efficient solvers for semidefinite optimization emerged more than twenty years ago.
All of the general purpose solvers have been using second-order algorithms, predominantly
the interior-point (IP) method. In every iteration of such an algorithm, one has to solve a
system of linear equations Hx = g of size n× n, where n is the dimension of the unknown
vector x in the linear semidefinite programming (SDP) problem

min
x∈Rn

c>x subject to
n

∑
i=1

xiA
(k)
i −B(k) < 0 , k = 1, . . . , p

with A(k)
i , B(k) ∈ Rm×m. The assembly and solution of this linear system is a well-known

bottleneck of these solvers. This is the case even for problems with sparse data and sparse
linear systems when the assembly of the system requires O

(
pnm3

)
flops, and the solution by

sparse Cholesky factorization O (nα) flops with some α ∈ [1,3].
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On the other hand, many real-world applications lead to large-scale SDP, often unsolvable
by current general-purpose software. There are, essentially, three ways how to approach this
conundrum:

(1) Reformulating the problem to make it more suitable for general-purpose solvers. This
can be done, for instance, by facial reduction [21, 29, 42] or by decomposition of large
matrix inequalities (and thus reducing m) into several smaller ones [18, 19].

(2) Using a different algorithm, such as spectral bundle [14], ADMM [28], augmented
Lagrangian [25, 41], optimization on manifolds [17], randomized algorithms [38] or
techniques of nonlinear programming [8, 9].

(3) Using one of the second-order algorithms with Cholesky factorization replaced by an
iterative method for the solution of the linear systems Hx = g; see, e.g., [20, 33, 39].

The last approach is particularly attractive whenever n�m, and addresses both bottlenecks
of a second-order SDP solver.

• The assembling of the system matrix: an iterative solver only needs matrix-vector mul-
tiplications, and so the matrix does not have to be explicitly assembled and stored.
• The solution of the linear system itself: an iterative solver can handle very large sys-

tems, as compared to a sparse Cholesky solver, under the assumption of good condi-
tioning of the matrix or existence of a good preconditioner.

When the data matrices A(k)
i are of very low rank (such as rank one), the complexity of

the linear system assembling can be substantially reduced by using this fact. This is particu-
larly true for rank-one dense matrices. This fact is, however, rarely utilized in standard SDP
software, due to the complications related to a different data input.

Our goal in this paper is to introduce Loraine, a new general-purpose interior-point SDP
solver targeted to problems with low-rank data and low-rank solutions. It employs special
treatment of low-rank data matrices and, in particular, an option to use an iterative Krylov
type method for the solution of the linear system. As the choice of an efficient preconditioner
in a Krylov type method is problem dependent, in particular, in the context of optimization
algorithms. We will focus on problems with expected very low-rank solutions.

SDP problems with low-rank solutions are common in relaxations of optimization prob-
lems in different areas such as combinatorial optimization [4], approximation theory [10, 22],
control theory [22], structural optimization [31], and power systems [24].

It is not our goal to find a low-rank solution in case of non-unique solutions; indeed, it
is well-known that an interior-point method will converge to a maximal complementary so-
lution. However, if the method will converge to a low-rank solution, we will use this fact
to improve its computational complexity and memory demands. The preconditioner is not
only limited to problems with (theoretically exactly) low-rank solutions, it can be efficiently
applied when the solution has a few outlying eigenvalues.

There is one major difference to other algorithms for SDP problems with low-rank solu-
tions, such as SDPLR [8, 9], optimization on manifolds [17] and other approaches [3, 38].
All these methods require the knowledge of a guaranteed (possibly tight) upper bound on the
rank of the solution. If the estimate of the rank was lower than the actual rank, the algorithm
would not find a solution. In our approach, the rank information is merely used to speed up a
standard, well-established algorithm. If our estimated rank is smaller than the actual one, we
will only see it in possibly more iterations of the Krylov solver; the convergence behaviour of
the optimization algorithm will be unchanged.

The actual optimization algorithm used in Loraine is a “standard” primal-dual interior-
point method. The algorithm mimics the reliable primal-dual algorithm with Nesterov-Todd
direction, as used, e.g., in the SDPT3 solver [32, 33].
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Our preconditioner is motivated by the work of Zhang and Lavaei [39]. They present a
preconditioner for the CG method within a standard IP method that makes it more efficient
for large-and-sparse low-rank SDPs. We partly follow their approach though there are some
major differences: we abandon a crucial assumption on the sparsity of the data matrices (As-
sumption 2 in [39]); our method allows for SDPs with more than one LMI and with (simple)
linear constraints; the complexity of computing our preconditioner is substantially lower; we
can also efficiently solve problems with a few outlying eigenvalues in the optimal solution.

To test Loraine and the underlying algorithms, we have generated a library of problems
arising from truss topology optimization, sensor network localization and Lasserre relaxations
of the MAXCUT problem. These problems are characterized by very low-rank solutions and
scalability, in the sense that one can generate a range of problems of various dimension but
of the same type. By comparing Loraine with other SDP solvers, we will demonstrate the
efficiency of our approach.

The paper is organized as follows. Section 2 introduces the SDP problems we want to solve
and some basic assumptions. In Sections 3 an IP method is briefly presented. Next, in Sec-
tion 4, we introduce the preconditioners used with the iterative solvers. Section 5 presents the
solver Loraine. Sections 6–8 describe our applications, truss topology optimization problems,
the sensor network localization problem and Lasserre hierarchies of the MAXCUT problem.
Finally, in Section 9, we present the results of our numerical experiments. We also give com-
parisons with other existing SDP software and demonstrate the high efficiency of our solver.

Notation We denote by Sm,Sm
+ and Sm

++, respectively, the space of m×m symmetric ma-
trices, positive semidefinite and positive definite matrices. The eigenvalues of a given ma-
trix X ∈ Sm

++ are ordered as λ1(X) ≤ ·· · ≤ λm(X), and its condition number is defined as
κ(X) = λ1(X)/λm(X). The notation “vec” and “⊗" refer to the (non-symmetrized) vector-
ization and Kronecker product, respectively, while “svec” and “smat” refer to symmetrized
vectorization and its inverse operation. With this notation the following identity holds true:
vec(AXB>) = (A⊗B)vec(X). The symbol • denotes the Frobenius inner product of two ma-
trices, A •B = tr(A>B). Finally, ei ∈ Rn is a vector with one on the i-th position and zeros
otherwise.

2. Low-rank semidefinite optimization

While Loraine is a general-purpose SDP solver, its main feature is the ability to efficiently
solve SDP problems with low-rank solutions. The first part of the paper is thus focused on
this feature.

We consider a (primal) semidefinite optimization problem with matrix variables Xi ∈
Smi , i = 1, . . . , p, and with linear constraints

min
X1,...,Xp,xlin

p

∑
i=1

Ci •Xi +d>xlin (1)

subject to
p

∑
i=1

A(i)
j •Xi +(D>xlin) j = b j, j = 1, . . . ,n

X < 0, xlin ≥ 0

3



together with its Lagrangian dual

max
y,S1,...,Sp,slin

b>y (2)

subject to
n

∑
j=1

y jA
(i)
j +Si =Ci, i = 1, . . . , p

Dy+ slin = d
Si < 0, i = 1, . . . , p
slin ≥ 0 .

Here A(i)
j ∈ Smi , j = 1, . . . ,n, i = 1, . . . , p, Ci ∈ Smi , i = 1, . . . , p, b ∈Rn, D ∈Rν×n, d ∈Rν

are data of the problem.

Basic assumptions

We make the following assumptions.

Assumption 2.1. There exist strictly feasible Xi ∈ Smi
++, xlin ∈ Rν

++, y ∈ Rn, Si ∈ Smi
++, slin ∈

Rν
++, i = 1, . . . , p satisfying the equality constraints in (1) and (2) (Slater’s condition).

Assumption 2.2. Define the matrices Ai = [vecA(i)
1 , . . . ,vecA(i)

n ], i = 1, . . . , p. We assume that
matrix-vector products with Ai and A>i may each be computed in O(n) flops and memory.

Assumption 2.3. The inverse (D>D)−1 and matrix-vector product with (D>D)−1 may each
be computed in O(n) flops and memory.

Assumption 2.4. The dimensions of Xi, i = 1, . . . , p, are much smaller than the number of
constraints, i.e., mi� n.

Remark 1. Assumption 2.3 is satisfied, for instance, in case of box constraints on variable y
in the dual formulation. Assumption 2.4 is not really needed as a “mathematical” assumption,
the iterative methods presented in the paper would work without it. However, the complex-
ity of these methods would then be comparable with standard software using Cholesky fac-
torization. The presented methods will be only superior to the standard software under this
assumption.

Low-rank assumption

As mentioned in the Introduction, our approach is focused on linear systems with matrices
having few large outlying eigenvalues. This, of course, includes matrices with very low rank
but also matrices with “approximate” low rank. These matrices frequently appear in optimiza-
tion algorithms, such as interior-point methods, when the “exact” low rank is only attained at
the (unreached) optimum. Moreover, the approach allows us to solve problems with matrices
of high rank but with a few large outlying eigenvalues, such as the problems in Section 7.

Because our approach covers SDP problems with (genuinely) low-rank solutions and for
the lack of better terminology for the larger class of matrices with outlying eigenvalues, we
still call our main assumption “low-rank” and the problems we are targeting “SDP problems
with low-rank solutions”.

Our main assumption used in the design of an efficient preconditioner concerns the eigen-
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value distribution of the solution X∗ = (X∗1 , . . . ,X
∗
p) of (1). We assume that X∗ has a very

small number of large outlying eigenvalues. This includes problems where X∗i are of a very
low rank.

Assumption 2.5. Let X∗ be the solution of (1). We assume that, for i = 1, . . . , p, X∗i has k
outlying eigenvalues, i.e., that

(0≤) λ1(X∗i )≤ ·· · ≤ λ (X∗i )mi−k� λ (X∗i )mi−k+1 ≤ ·· · ≤ λ (X∗i )mi ,

where k is very small, typically smaller than 10 and, often, equal to 1.

Remark 2. In order to emphasize the difference between our algorithm and other “low-rank
algorithms", such as SDPLR [8] and the low-rank preconditioner introduced in [39]—that
otherwise served as our motivation—we include the following remarks.

(1) We do not assume anything about the distribution of the first (mi−k) eigenvalues of X∗i ;
they may not be equal to zero, they may not be clustered.

(2) We make no assumption about the “rank” of the solution x∗lin of (1), i.e., about the
number of active constraints in Dy≤ d in (2). This can be arbitrarily large or small.

(3) We do not assume that the matrix A>A is easily invertible. Indeed, it is not in our
application in Section 6, contrary to examples in [39] where this matrix is diagonal.

3. Interior-point method

In this section, we will describe a primal-dual predictor-corrector interior-point method for
SDP which is using the Nesterov–Todd (NT) direction, as implemented in Loraine. We will
closely follow the articles by Todd, Toh and Tütüncü [32] and by Toh and Kojima [34] and
only repeat formulas needed to present the structure of the matrix that is required to develop
the preconditioners in Section 4. The basic framework of our interior-point solver thus, more
or less, mimics that of the software SDPT3.

We use the notation of problems (1) and (2); however, for the sake of simplicity, we ignore
the linear constraints in the following development and consider only one matrix variable, i.e.,
p= 1. Linear constraints and several matrix variables can, of course, be formally included into
a single linear matrix inequality.

3.1. Basic framework

Let A be an m2×n matrix defined by

A := [vecA1, . . . ,vecAn].

Our algorithm follows the standard steps of a primal-dual interior-point method. We write
down optimality conditions for (1) with relaxed complementarity condition:

A>vec(X) = b, (3)
Ay−S =C,

XS = σ µI ,
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where µ = X•S
m and σ is a centering parameter to be specified below. This system of nonlinear

equations is solved repeatedly until convergence.

3.2. Newton direction

The system (3) is solved approximately by Newton’s method, where in every iteration of the
method we solve the following system of linear equations in variables (∆X ,∆y,∆S):

A>vec(∆X) = rp, (4a)
A∆y+vec(∆S) = vec(Rd), (4b)

HW (X∆S+∆XS) = σ µI−HW (XS) . (4c)

Here

rp := b−A>X , Rd :=C−S−
n

∑
i=1

yiAi,

and HW is a linear transformation guaranteeing symmetry of the resulting matrix, in particular

HW (M) =
1
2

(
WMW−1 +W−>M>W>

)
with some invertible matrix W ∈ Sm

++ known as the scaling matrix [40]. By assuming (X ,y,S)
to be the current iterate, we define the so-called Nesterov-Todd (NT) scaling matrix

W = S−
1
2

(
S

1
2 XS

1
2

) 1
2

S−
1
2 = X

1
2

(
X−

1
2 SX−

1
2

) 1
2

X
1
2

satisfying X =WSW and S =WX−1W . This is the scaling matrix used in Loraine.
Instead of solving the linear system of 2m2+n equations (4a)–(4c) directly, we can solve a

Schur complement equation (SCE) involving only ∆y. The general bottleneck of any interior-
point method for SDP is assembling and solving this SCE

H∆y = r. (5a)

Here H is the Schur complement matrix with elements

Hi j = Ai •WA jW, i, j = 1, . . . ,n, (5b)

and

r = rp +A>vec(WRdW +WSW ) . (5c)

For details of computing W , r, ∆X and ∆S efficiently for the NT scaling, see [34].
By considering (5a) and (5b), we have the following linear system

(H∆y)i = Ai •

[
W

(
n

∑
j=1

∆yi A j

)
W

]
= ri, i = 1, . . . ,n. (6)
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Finally, vectorizing the matrix variables allows (6) to be written as(
A>(W ⊗W )A

)
∆y = r . (7)

4. Preconditioners

As we mentioned before, the general bottleneck of the algorithm defined above is the assem-
bling and solving of the Schur complement equation (7). One way to solve this equation is
using an iterative method, in particular, a Krylov-type method such as the method of conjugate
gradients (CG) or the minimum residual method (MINRES).

The Schur complement matrix H is large and the assembling of it may be expensive. Be-
sides, and more importantly, it becomes increasingly ill-conditioned as the IP method makes
progress toward the solution. So a successful CG-based solution of our linear systems must
rely on an efficient preconditioner. In this section, we introduce two preconditioners imple-
mented in Loraine and targeted pro-SDP problems with low-rank solutions.

4.1. Rank of H

The Schur complement matrix H can be written as a sum

H =
p

∑
i=1

H i
lmi +Hlin ,

where Hlin is associated with linear constraints. Recall from (7) that each H i
lmi is computed as

H i
lmi = A>i (Wi⊗Wi)Ai , (8)

where Wi is the NT scaling matrix.
In the next three Lemmata 4.1–4.3, we will omit the subscript, for simplicity, before re-

turning to the full notation in Theorem 4.4. The next lemma shows that W has the same rank
as X . So, as X is low-rank, W will be low-rank. Later in this section, we will use this low-rank
property of W to present the preconditioners.

Let (X ,S) be a pair of solutions to (1). By complementarity, we know that XS = 0, and
rank(X) + rank(S) = k + σ ≤ m. Assume k + σ = m, i.e., strict complementarity. From
XS = 0, X < 0, S � 0, we know that X and S are simultaneously diagonalizable, i.e., there
exists U such that X =UΛXU>, S =UΛSU>, where ΛX and ΛS are the diagonal matrices of
eigenvalues and U>U = I.

Lemma 4.1. Let X ,S be as above. Let W ∈ Sm be any matrix such that X = WSW. Then
rank(W ) = rank(X).

Proof. Assume, without loss of generality, that eigenvalues of X and S are sorted such that
ΛX = Diag(λ1, . . . ,λk,0, . . . ,0) and ΛS = Diag(0, . . . ,0,µ1, . . . ,µm−k). Then X = WSW is
equivalent to UΛXU> =WUΛS U>W , and so, as U>U = I, ΛX =U>WUΛS U>WU . Define
Z =U>WU , so that ΛX = Z>ΛS Z. Because (ΛX)i,i = 0 for i > k, it must hold that z>:,iz:,i = 0,
i > k, where z:,i is the i-th column of Z. As Z is positive semidefinite, it means that Zi, j = 0
for i, j > k, i.e., the leading k× k submatrix of Z is a rank-k non-zero matrix and the rest of
the matrix is zero. Hence, rank(Z) = k and, as W =UZU>, so is the rank of W .
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The proof of the next lemma is straightforward.

Lemma 4.2. Let X ∈ Sm such that rankX = k, k ≤ m. Then rank(X⊗X) = k2.

Lemma 4.3. Let Y ∈ Sm such that rankY = k, k ≤ m, and A ∈ Rn×m, n < m. Then
rank(AYA>)≤ k.

Proof. Because rankY = k, we have Y = ∑
k
i=1 y(i)(y(i))> with some y(i) ∈ Rm, i =

1, . . . ,k. Hence AYA> = A
(

∑
k
i=1 y(i)(y(i))>

)
A> = ∑

k
i=1 z(i)(z(i))> with z(i) = Ay(i). Therefore

rank(AYA>) = rank∑
k
i=1 z(i)(z(i))> ≤ k. A strict inequality occurs, trivially, when n < k. It can

also occur when z(i), i = 1, . . . ,k, are linearly dependent.

By combining the above results we get the following theorem.

Theorem 4.4. Let, for some i ∈ {1, . . . , p}, Wi be the scaling matrix from Section 3 and let
rankWi = k. Let further H i

lmi be defined as in (8). Then rankH i
lmi ≤ k2.

Remark 3. All results in this section have been presented under the assumption of the exact
rank of the involved matrices. This is, of course, only the limit case in our algorithms. The ac-
tual matrices have outlying eigenvalues and converge to the low-rank matrices. The message
of Theorem 4.4 remains the same, though: when Wi has k outlying eigenvalues, then H i

lmi will
have at most k2 outlying eigenvalues. This is the fact on which we build the preconditioner.

4.2. Hα preconditioner

The preconditioner introduced in this section has been motivated by the work of Zhang and
Lavaei [39] and, in its derivation, we partly follow their paper; however, the new precondi-
tioner differs in a substantial detail, as explained below. Also, our assumption about the matrix
W is weaker.

In Section 3, we introduced the scaling matrix W . This matrix becomes progressively ill-
conditioned as the IP method approaches the solution. This ill-conditioning of W is a result
of Lemma 4.1. Assuming that the solution matrices X∗i , i = 1, . . . , p, have ranks ki, the rank
of matrices Wi will also tend to ki.

The main idea of the preconditioner is to utilize Assumption 2.5 and decompose matrices
Wi accordingly to their expected rank as follows:

Wi =
[
V s

i V l
i

][Λs
i 0

0 τiI

][
V s

i V l
i

]>
︸ ︷︷ ︸

W 0
i

+V l
i (Λ

l
i− τI)(V l

i )
>︸ ︷︷ ︸

UiU>i

(9)

with τi satisfying λ1(Wi)≤ τi < λmi−ki(Wi). Here Ui are mi× ki matrices of full column rank.
Recall now the form of the Schur complement matrix for problem (1):

H =
p

∑
i=1

A>i (Wi⊗Wi)Ai +D>XlinS−1
lin D, (10)

in which Xlin = diag(xlin) and Slin = diag(slin).

Remark 4. Formally, we could treat the linear constraints, if present, as matrix constraints
with diagonal matrices and perform the above decomposition for these constraints, too. How-
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ever, it is rather unlikely that the corresponding part of the solution, vector xlin would be “low
rank”, i.e., that only a very few of the linear constraints would be active. This fact could then
ruin the whole idea. Here we propose to treat the linear constraints as “full rank” and add
the matrix D>XlinS−1

lin D to the preconditioner as is. In two of our applications, truss topology
optimization and sensor network localization, the linear constraints only consist of upper and
lower bounds (in the dual formulation), hence the matrix D>XlinS−1

lin D is diagonal and satis-
fies Assumption 2.3. In the third application, relaxation of the MAXCUT problem, the matrix
D>XlinS−1

lin D is chordal and sparse ([13, Lemma 2.4]), so sparse Cholesky factorization leads
to zero fill-in and is thus very efficient.

By substituting the splittings (9) for i = 1, . . . , p into the matrix (10), we get

H =
p

∑
i=1

A>i
(

W 0
i ⊗W 0

i +UiU>i ⊗W 0
i +W 0

i ⊗UiU>i +UiU>i ⊗UiU>i
)

Ai +D>XlinS−1
lin D.

Using the identity A>(Φ⊗Ξ)A=A>(Ξ⊗Φ)A for any Φ,Ξ∈Rmi×mi with A defined as above
([39, Lemma 6] and [15, Chap. 4.2, Problem 25]), we obtain

H =
p

∑
i=1

A>i (W
0
i ⊗W 0

i )Ai +
p

∑
i=1

A>i (Ui⊗Γi)(Ui⊗Γi)
>Ai +D>XlinS−1

lin D,

where Γi is any matrix satisfying ΓiΓ
>
i = 2W 0

i +UiU>i . Next we define Vi = A>i (Ui⊗Γi) for
i = 1, . . . , p. Then,

H =
p

∑
i=1

A>i (W
0
i ⊗W 0

i )Ai +D>XlinS−1
lin D+ṼṼ> , (11)

where Ṽ = [V1, . . . ,Vp].
We now approximate A>i (W 0

i ⊗W 0
i )Ai by τ2

i I in (11), to define the Hα preconditioner,
which is

Hα =

(
p

∑
i=1

τ
2
i I +D>XlinS−1

lin D

)
︸ ︷︷ ︸

Aα

+ṼṼ> . (12)

By using the Sherman-Morrison-Woodbury (SMW) formula, its inverse will be

H−1
α = A−1

α (I−Ṽ Θ
−1Ṽ>A−1

α ) , (13)

where Θ= I+Ṽ>A−1
α Ṽ is the Schur complement. Notice that, by Assumption 2.3, the inverse

of Aα is inexpensive.

Complexity of the PCG

• We compute the Schur complement

Θ = I +[A>1 (U1⊗Γ1) . . .A>p (U1⊗Γp)]
>A−1

α [A>1 (U1⊗Γ1) . . .A>p (Up⊗Γp)],
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Algorithm 1 Solution of the linear system H∆y = r by PCG
Given data k > 0 (solution rank), Wi ∈ Sm

++, i= 1, . . . , p, r ∈Rn (right-hand side) and an initial
iterate ∆y0.

1: procedure SETTING UP PRECONDITIONER Hα

2: for i = 1, . . . , p do . computing the decomposition (11)
3: Compute eigenvalue decomposition Wi =ViΛiV>i and set τi = λmin(Wi).
4: Form the matrices W 0

i and Ui by (9).
5: Compute the Cholesky factorization ΓiΓ

>
i = 2W 0

i +UiU>i .
6: end for
7: Compute the Schur complement Θ = I + Ṽ>A−1

α Ṽ and its Cholesky factorization
Θ = LL>.

8: end procedure
9: procedure PCG

Use standard PCG algorithm to solve H∆y = r until ‖H∆y− r‖/‖r‖ ≤ εCG.
At each PCG iteration:

10: Compute the matrix-vector product with H using (6).
11: Compute the matrix-vector product with H−1

α by means of the SMW in (13), using
Θ−1 = L−>L−1.

12: end procedure

block-wise, with the (i, j)-block Θi j = B>i B j, where Bi = R−1A>i (Ui⊗Γi), i = 1, . . . , p,
and R is the Cholesky factor of Aα . Then, we multiply (Ci =)R−1A>i , which is O(n)
flops. The sparsity of Ai is maintained in Ci, and so Cid is still O(n) flops for an arbi-
trary vector d. Hence, as (Ui⊗Γi) has miki columns, the product Ci(Ui⊗Γi) requires
O(nmiki) flops. Finally, we compute B>i B j, which requires O(mim jkik j) flops, if Bi and
B j are sparse as well. If this is not the case, the complexity would be O(mim jkik jn),
however the additional factor n in the complexity formula can be avoided by re-
ordering calculations appropriately. Define m̂ = max

i=1,...,p
mi and k̂ = max

i=1,...,p
ki. Form-

ing and factorizing the Schur complement (i.e., forming the preconditioner) requires
O
(

p2m̂2k̂2 + pnm̂k̂+ m̂3k̂3
)

flops; the last term comes from the Cholesky factorization
of Θ.
• Each iteration of the PCG method is dominated by the matrix-matrix product in

(6) requiring O
(
∑

p
i=1 m3

i
)

flops and application of the preconditioner (13) requiring
O
(
∑

p
i=1 miki

)2
+O

(
n∑

p
i=1 miki

)
flops.

• The number of PCG iterations is a little unpredictable, in particular, when approaching
the solution of the problem. However, our experience shows that this number is usually
well below 10 and does not exceed 100 in the worst problems. Dropping the lower-
order terms and assuming n ≈ m̂2, we will need O

(
m̂3k̂3

)
flops in the preconditioner

and O
(
m̂3k̂

)
flops in one PCG iteration. We come to the conclusion that the cost of the

preconditioner is about the same as the cost of the solution of the linear system by the
PCG method.
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4.3. Hβ and hybrid preconditioner

Recall the definition of the matrix H:

H =
p

∑
i=1

A>i (W
0
i ⊗W 0

i )Ai +ṼṼ>+D>XlinS−1
lin D .

It turns out that, in our numerical examples, the last term is dominating in the first iterations
of the IP algorithm, before the low-rank structure of W is clearly recognized. This is demon-
strated in Figure 1 that shows distribution of eigenvalues of matrices D>XlinS−1

lin D (in red)
and ∑

p
i=1 A>i (W 0

i ⊗W 0
i )Ai + ṼṼ> (in blue) in iterations 2, 17, 30 (final) in problem tru7e

(see Section 9). This observation lead to the idea of a simplified preconditioner called Hβ and

Figure 1. Problem tru7e; eigenvalues of D>XlinS−1
lin D (red) and ∑

p
i=1 A>i (W 0

i ⊗W 0
i )Ai + ṼṼ> (blue) in iteration 2, 17 and 30

(left to right).

defined as follows

Hβ =
p

∑
i=1

τ
2
i I +D>XlinS−1

lin D, (14)

in which τi is defined as in the previous section. This matrix is easy to invert by Assump-
tion 2.3; in fact, the matrix is diagonal in many problems. It is therefore an extremely “cheap”
preconditioner that is efficient in the first iterations of the IP algorithm.

For relevant problems, we therefore recommend to use a hybrid preconditioner: we start
the IP iterations with Hβ and, once it becomes inefficient, switch to the more expensive but
more efficient Hα . See more details in Section 9.2 and an example in Section 9.4.2.

5. The code Loraine

Algorithms presented in the previous sections have been implemented in a code Loraine (for
LOw-RAnk INtErior point). The implementation was done in MATLAB and Julia program-
ming environments and is available as open source1.

5.1. Special features

Loraine is a general-purpose solver for any linear SDP with linear equality and inequality con-
straints. Compared to other general-purpose SDP software, it particularly targets two classes
of problems.

1github.com/kocvara/Loraine.m
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Problems with low-rank solutions

Loraine is using the preconditioned conjugate gradient method, as described in detail in Sec-
tion 4. In particular, the user can choose between the direct and iterative solver, the type of
preconditioner and the expected rank of the solution. The direct solver relies on the imple-
mentation of the (sparse or dense) Cholesky factorization provided by MATLAB or Julia.

Problems with low-rank data input

This feature is only useful when a direct solver is used. In this case, the bottleneck of an
interior-point algorithm is the computation of the Schur complement matrix in (5b) and (7).
When the data matrices Ai are of low rank (typically of rank one), the complexity of (5b) can
be drastically reduced. The user has a choice

– to provide vectors (a j
i )k, k = 1, . . . ,r, defining matrices A(i)

j = ∑
r
k=1(a

j
i )k(a

j
i )
>
k (field

Avec in the Data input section below);
– to indicate that the input matrices A(i)

j are all expected to be of rank one. Then their
decomposition to a vector-vector product can be automatically computed by Loraine.

5.2. Data input

The notation in the input file is related to the dual formulation of the problem (2) without
slack variables. The input for the MATLAB version of Loraine is a MATLAB structure with
the following fields:

type . . . ‘sdp’ [field used for future extensions]
name . . . ‘name of the problem’
nvar . . . number of variables n
c . . . objective vector b
nlmi . . . number of linear matrix inequalities p
msizes . . . dimensions of the LMIs m1, . . . ,mp
nlin . . . number of linear constraints ν

lsi_op . . . (optional) binary vector of length nlin, set to zero for equality constraints and one
for inequality constraints; if this vector is not present and ν > 0, inequality type con-
straints are assumed.

A . . . matrices A(i)
j stored in MATLAB sparse format as cells A{i,j}

Avec . . . vectors (a j
i )k, k = 1, . . . ,r, defining matrices A(i)

j = ∑
r
k=1(a

j
i )k(a

j
i )
>
k

C . . . matrix C of linear constraints
d . . . vector d of linear constraints

We also provide several converters, e.g., from SDPA input files. For the Julia version of Lo-
raine, the MATLAB structure can be exported and read by the Julia code.

5.3. Loraine options

The following parameters can be changed by the user:

kit = 1; % 0..direct solver; 1..iterative solver
tol_cg = 1e-2; % initial tolerance for iterative solver
tol_cg_up = 0.5; % tolerance update
tol_cg_min = 1e-6; % minimal tolerance for CG solver
cg_type = ’minres’;% ’minres’ or ’cg’ implemented
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eDIMACS = 1e-6; % epsilon for DIMACS error stopping criterion
prec = 1; % 0..no; 1..H_alpha; 2..H_beta; 4..hybrid
erank = 1; % estimated rank of the solution
mup = 1000; % initial penalty parameter mu for l1-penalization
verb = 2; % 2..full output, 1..short output, 0..no output
datarank = 0; % -1..A_i expected rank one; 0..full rank; 1..A_i by vectors
initpoint = 0;% 0..Loraine heuristics, 1..SDPT3-like heuristics

6. Application 1: Truss topology optimization

6.1. Truss notation

The notation used throughout Section 6 is specific to this application and unrelated to the rest
of the paper.

By truss, we understand a mechanical structure, an assemblage of pin-jointed uniform
straight bars made of elastic material, such as steel or aluminium. The bars can only carry
axial tension and compression. We denote by m the number of bars and by N the number of
joints. The positions of the joints are collected in a vector y of dimension ñ := dim ·N where
dim is the spatial dimension of the truss. The material properties of bars are characterized by
their Young’s moduli Ei, the bar lengths are denoted by `i and bar volumes by ti, i = 1, . . . ,m.

Let f ∈ Rñ be a load vector of nodal forces. The response of the truss to the load f is
measured by nodal displacements collected in a displacement vector u ∈ Rñ. Some of the
displacement components may be restricted: a node can be fixed in a wall, then the corre-
sponding displacements are prescribed to be zero. The number of free nodes multiplied by
the spatial dimension will be denoted by n and we will assume that f ∈ Rn and u ∈ Rn.

We introduce the bar stiffness matrices Ki and assemble them in the global stiffness matrix
of the truss

K(t) =
m

∑
i=1

tiKi =
m

∑
i=1

ti
Ei

`2
i

δiδ
>
i , i = 1, . . . ,m (15)

with “position vectors" δi ∈ Rn, i = 1, . . . ,m, and Young’s moduli Ei ∈ R, i = 1, . . . ,m, char-
acterizing the stiffness of the material. The truss must satisfy the equilibrium equation

K(t)u = f . (16)

Assumption 6.1. K(1) with 1 = (1,1, . . . ,1) ∈ Rm is positive definite and the load vector f
is in the range space of K(1).
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6.2. Truss topology problem, rank of the solution

Let 0≤ t i ≤ t i, i = 1, . . . ,m, and γ be a positive constant. The basic “minimum volume" truss
topology optimization (TTO) problem reads as follows:

min
t∈Rm

m

∑
i=1

ti (17)

subject to(
γ − f>

− f K(t)

)
< 0

t i ≤ ti ≤ t i, i = 1, . . . ,m .

The dual to (17) can be written as

max
X∈Sn+1

ρ∈Rm,ρ∈Rm

(
−γ f>

f 0

)
•X−

m

∑
i=1

ρ it i +
m

∑
i=1

ρ
i
t i (18)

subject to(
0 0
0 Ki

)
•X−ρ i +ρ

i
= 1, i = 1, . . . ,m

X < 0
ρ i ≥ 0, ρ

i
≥ 0, i = 1, . . . ,m .

Lemma 6.1. Problems (17), (18) satisfy Assumption 2.2 and Assumption 2.3.

Proof. Every vector δi has at most 4 non-zero elements (6 in 3D space) and thus every matrix
Ki has at most 16 (36) non-zero elements, independently of the size of the problem; hence
Assumption 2.2 is satisfied. Assumption 2.3 is trivially satisfied for box constraints on ti.

Using SDP complementarity, it is straightforward to prove the following result.

Theorem 6.2. There exists a solution (X∗,ρ∗,ρ∗)∈ Sn+1×Rm×Rm of the dual SDP problem
(18) such that the rank of X∗ is one. For t i > 0 this solution is unique.

6.3. Truss topology problem, vibration constraints

Formulation of the basic truss topology problem as an SDP is rather academic. It was shown,
e.g., in [16] that it is equivalent to a convex nonlinear programming problem that can be
solved very efficiently by interior point methods. The SDP formulation gains significance
once we add more, important and practical, constraints to the problem. In particular, it was
shown in [1, 2] that a constraint on natural (free) vibrations of the optimal structure leads to a
linear matrix inequality and that this is, arguably, the best way how to treat this constraint.

The free vibrations are the squares of the eigenvalues of the generalized eigenvalue problem

K(t)w = λ (M(t)+M0)w , (19)

where M(t) =
m
∑

i=1
tiMi is the so-called mass matrix that collects information about the mass

distribution in the truss. The matrices Mi are positive semidefinite and have the same sparsity
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structure as Ki. The non-structural mass matrix M0 is a constant, typically diagonal matrix
with very few nonzero elements.

Low vibrations are dangerous and may lead to structural collapse, hence a typical vi-
bration constraint is λmin ≥ λ for a given λ > 0 where λmin is the smallest eigenvalue
of problem (19). This constraint can be equivalently written as a linear matrix inequality
K(t)−λ (M(t)+M0)< 0. We will thus get the following SDP formulation of the truss topol-
ogy design with a vibration constraint:

min
t∈Rm

m

∑
i=1

ti (20)

subject to(
γ − f>

− f K(t)

)
< 0

K(t)−λ (M(t)+M0)< 0
t i ≤ ti ≤ t i, i = 1, . . . ,m .

It has been shown, e.g., in [31] that, when t i > 0, the rank of the optimal dual variable to
the second matrix inequality is equal to the multiplicity of the smallest eigenvalue of (19).
This multiplicity depends on the geometry of the optimal structure but is, typically, very low,
usually not bigger than 1 or 2. Problem (20) thus fits in our framework of SDPs with very
low-rank solutions.

7. Application 2: Sensor network localization with noisy data

7.1. The problem

Assume there are m distinct (sensor) points in xi ∈ Rd , whose locations are to be determined,
and ν other fixed (anchor) points, whose locations a1, . . . ,aν are known. The Euclidean dis-
tance di j between the ith and jth sensor point is known if (i, j) ∈ Ix = {(i, j) | ‖xi− x j‖ =
δi j ≤ ρ}, where ρ is a fixed parameter called the radio range. Similarly, the Euclidean distance
dk j between the kth anchor and jth sensor point is known if (k, j)∈Ia = {(k, j) | ‖ak−x j‖=
δi j ≤ ρ}. The sensor network localization (SNL) problem is to

Find xi ∈ Rd , i = 1, . . . ,m, for which (21)

‖xi− x j‖2 = δ
2
i j, (i, j) ∈Ix

‖ak− x j‖2 = δ
2
k j, (k, j) ∈Ia .

Typical networks of this type consist of a large number of densely deployed sensor nodes
which gather local data and communicate with other nearby nodes. The sensor data from
the nodes are relevant only if we know to what location they refer. The problem arises in
applications as different as the habitat monitoring system in the Great Duck Island, detecting
volcano eruptions, industrial control in semiconductor manufacturing plants, structural health
monitoring, battlefield surveillance, moving object tracking, asset location and the problem
of determining protein molecule structure [5].

Figure 2–left shows an example of a network with 9 anchors and 512 sensors.
In many applications the data δi j are noisy. Assume perturbation of δi j and δ ik by random
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noises εi j and εik, respectively:

δi j = δ̂i j|1+ εi j|, (i, j) ∈Ix

δ ik = δ̂ ik|1+ εik|, (i, j) ∈Ia

where δ̂i j are the true distances. Obviously, the problem (21) may now become infeasible.

Figure 2. Sensor network localization problem: initial data (left) and optimal solution of the SDP relaxation (right). Black:
anchors; magenta: exact positions of sensors; red (left): known distances between anchors and sensors; blue (left): known mutual
distances of sensors; blue (right): computed positions of sensors.

7.2. SDP relaxation

In a series of papers, Biswas, Ye and their co-authors [5, 6, 35] proposed a relaxation of
the problem based on the semidefinite programming formulation. The next lines follow the
development from Biswas and Ye [6].

Let X = [x1 x2 . . . xm] be a d×m unknown matrix. Then

‖xi− x j‖2 = (ei− e j)
T XT X(ei− e j)

‖ak− x j‖2 = (ak;−e j)
T
[

Id
XT

]
[Id X ](ak;−e j)

and the original problem (21) can be equivalently written as

Find xi ∈ Rd , i = 1, . . . ,m, for which (22)

(ei− e j)
T XT X(ei− e j) = δ

2
i j

(ak;−e j)
T
(

Id X
XT Y

)
(ak;−e j) = δ

2
k j

Y = XT X .

We now relax the equality Y = XT X to Y < XT X , which is equivalent to the linear matrix
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inequality

Z =

(
Id X
XT Y

)
< 0 .

The semidefinite optimization problem

min
Z,u,v ∑

(i, j)∈Ix

(ui j + vi j)+ ∑
(k, j)∈Ia

(uk j + vk j) (23)

subject to
Z1:d,1:d = Id

(0;ei− e j)
T Z(0;ei− e j)−ui j + vi j = δ

2
i j, (i, j) ∈Ix

(ak;−e j)
T Z(ak;−e j)−uk j + vk j = δ

2
k j, (k, j) ∈Ia

Z < 0
ui j,vi j ≥ 0, (i, j) ∈Ix , uk j,vk j ≥ 0, (k, j) ∈Ia

is called the full SDP relaxation (FSDP) of (21). It has been shown by So and Ye [30] that for
certain “good” problems with no data noise this relaxation is exact.

For larger sensor network localization problems, the FSDP relaxation is difficult to solve
numerically. The SDP problem has a large number of variables and the constraint matrix is
thus large and full. In order to solve the problem, one may exploit the sparsity of Ix and
Ia at the relaxation modelling level. Several approaches have been published on this subject.
A simple, yet powerful approach was proposed by Wang et al. [35] and called edge-based
relaxation (ESDP). However, ESDP does not maintain the localizability of FSDP: the solution
can have high rank even for uniquely localizable problems. For problems with no data noise,
Krislock and Wolkowicz [21] proposed a very efficient algorithm based on facial reductions.
This approach, however, cannot be extended to the problems with noisy data.

As mentioned above, for many noiseless problems the relaxation is exact, i.e., the rank of
the matrix Z is two. Then, for problems with small noise, Z is expected to have two large
eigenvalues and several, perhaps many, small nonzero ones. The problem thus satisfies our
low-rank Assumption 2.5 and can be efficiently solved by Loraine. This will be demonstrated
in Section 9.

8. Application 3: Lasserre relaxations of the MAXCUT problem

8.1. The problem

Let Γ be an undirected n-node graph and let the arcs (i, j) be associated with nonnegative
weights ai j. The task is to find a cut of the largest weight, that is, to partition the set of nodes
into two parts, S and S′ such that the total weight of all arcs linking S and S′ is as large as
possible.

The MAXCUT problem is formulated as a quadratic optimization problem

max
x

{
1
4

n

∑
i, j=1

ai j(1− xix j) | x2
i = 1, i = 1, . . . ,n

}
(24)
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or, equivalently, with X = xxT , as a linear SDP with a rank-one constraint:

max
X

{
1
4

n

∑
i, j=1

ai j(1−Xi j) | Xii = 1, i = 1, . . . ,n; rankX = 1; X � 0

}
. (25)

It is well-known that problem (24) is NP-hard. The celebrated result by Goemans and
Williamson [12] shows that the (Shor’s) relaxation of (25) by ignoring the rank constraints
will deliver a solution with objective function not bigger than 1

0.87865 times the global opti-
mum. The relaxation is, however, almost never exact which means that the solution X∗ of the
relaxed (25) has, typically, an unknown rank bigger than one.

Tighter approximations with low-rank solutions can be obtained by higher order relax-
ations, introduced by Lasserre [22]. The original problem (24) is a polynomial optimization
problem and we can just use the Lasserre machinery to obtain tight approximations of its
global solution. It was shown by Fawzi et al. [11] that for this type of problems, the sequence
of these approximations is finite and the upper bound on the order of the relaxation to ob-
tain exact solution of (24) is dn/2e. Laurent [23] showed that this is also a lower bound for
unweighted complete graphs.

The SDP relaxations can be written in the following form:

min
y∈Rs

y>q (26)

subject to
s

∑
i=1

Miyi + I < 0 .

Here, for the relaxation of order one, Q is the Laplacian matrix of the graph, q = svec(Q),
y = svec(X), s = n(n+ 1)/2, and Mi ∈ Rn+1×n+1 are the (pseudo-)Hankel matrices; in this
case (26) is just re-writing of the relaxed problem (25) (without the rank constraint). For
higher-order relaxations, the dimensions s and m get bigger by adding higher-order terms in
Mi and y; for details, see [22].

For an exact relaxation (i.e., relaxation delivering the global solution of (24)), the rank of
the optimal moment matrix M∗ := ∑

s
i=1 Miy∗i + I is equal to the number of global solutions;

in particular, if the global solution is unique, the rank of M∗ is one. So, while problem (26)
has a low-rank solution, it is in the “wrong” form for our IP solver. While the solution M∗ of
(26) is of low rank, our solver expects the solution of an SDP problem in the primal form (1)
to be of low rank. In [13] we show that the dual to (26) can be re-written in the dual form

max
z∈Rñ

(svec(I))> z (27)

subject to smat(z)< 0
Mz = q̃ ,

where ñ = m(m+ 1)/2 and M = (svec(M1), . . . ,svec(Ms))
T , M ∈ Rs×ñ. Now, due to com-

plementarity, we know that the dual solution to this problem (the Lagrangian multiplier to
the constraint smat(z) < 0 and the solution to (26)) is of low rank, assuming high enough
relaxation order and unique solution of (24). Also in [13] we show how to treat the equality
constraints in (27) in the interior point algorithm; in particular, we use the `1-penalty method
for this purpose.

Problem (27) now satisfies the assumptions needed for the low-rank preconditioner.
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9. Numerical experiments

9.1. Problem database

To test Loraine and the underlying algorithms, we generated a library of problems arising
from truss topology optimization, sensor network localization and Lasserre relaxations of
the MAXCUT problem. These problems are characterized by very low-rank solutions and
scalability, in the sense that one can generate a range of problems of various dimension but of
the same type.

9.1.1. TTO problems

We generated a set of truss topology optimization problems of various sizes, both with and
without the vibration constraint. All problems have the same geometry, boundary conditions
and loads and only differ in the number of potential nodes and bars. The geometry and loading
for TTO problems without vibration (formulation (17)) are as shown in Figure 3-left, while the
data for problems with the vibration constraint (formulation (20)) differ only in the horizontal
orientation of the load vector. We consider two groups of problems with the following naming
convention:

tru<n> standard TTO problem (17) with t = 0, discretized by n×n nodes;
vib<n> same as above but with the vibration constraint (20).

In each group, all nodes in the initial ground structure are connected by potential bars. Table 1
presents the dimensions of the generated problems.

Table 1. Problems tru<n> and problems vib<n>, number of variables n, size of the LMI constraint m and
number of linear constraints.

problem n m lin. constr.

tru3 36 13 72
tru5 300 41 600
tru7 1176 85 2352
tru9 3240 145 6480
tru11 7260 221 14520
tru13 14196 313 28392
tru15 25200 421 50400
tru17 41616 545 83232
tru19 64980 685 129960
tru21 97020 841 194040
tru23 139656 1013 279312
tru25 195000 1201 390000

problem n m lin. constr.

vib3 36 (13, 12) 72
vib5 300 (41, 40) 600
vib7 1176 (85, 84) 2352
vib9 3240 (145, 144) 6480
vib11 7260 (221, 220) 14520
vib13 14196 (313, 312) 28392
vib15 25200 (421, 420) 50400
vib17 41616 (545, 544) 83232
vib19 64980 (685, 684) 129960
vib21 97020 (841, 840) 194040
vib23 139656 (1013, 1012) 279312
vib25 195000 (1201, 1200) 390000

For illustration, Figure 3 shows optimal results for problems tru25 and vib19.

9.1.2. SNL problems

We consider SNL problems of growing dimension with nine anchors and n sensors randomly
distributed around the letters O and B; see Figure 2. The radio range ρ (see the beginning
of Section 7) was set to 1

5 of the maximal vertical distance of the anchors. The known dis-
tances between the sensors were perturbed by 1% Gaussian noise. Table 2 (left) shows the
dimensions of the generated problems.

9.1.3. MAXCUT problems

Recall that the solution of the MAXCUT problem is of rank one only if the problem has a
unique global solution. Obviously, a complete unweighted graph may have many “symmetric"
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Figure 3. Initial design for tru* problems (left); optimal results for problems tru25 (middle) and vib19 (right).

solutions. To avoid the non-uniqueness, we generated undirected, weighted, generally com-
plete graphs with weights randomly distributed between 0 and 12 with 20–50 nodes, using
the MATLAB command graph. It turned out that for all these problems the relaxation order
two in the Lasserre hierarchy is already high enough to deliver the optimal solution of the
MAXCUT problem. The dimensions of the corresponding SDP problems (27) (for relaxation
order two) are shown in Table 2 (right).

Table 2. Problems SNL-<n> and MAXCUT-<n>, number of variables n, size of the LMI constraint m and number
of linear constraints.

problem n m lin. constr.

SNL-16 1677 130 3348
SNL-32 6818 258 13630
SNL-48 14886 386 29766
SNL-64 26767 514 53528
SNL-80 40840 642 81674
SNL-96 58956 770 117906

SNL-112 82137 898 164268
SNL-128 109464 1026 218922

problem n m lin. constr.

MAXCUT-20 22366 211 12390
MAXCUT-25 53301 326 30550
MAXCUT-30 108811 466 63860
MAXCUT-35 199396 631 119070
MAXCUT-40 337431 821 204180
MAXCUT-45 537166 1036 328440
MAXCUT-50 814726 1276 502350

9.2. Loraine setting

The algorithms presented in this article were implemented in MATLAB and Julia codes. The
codes use DIMACS stopping criteria [26] with εDIMACS = 10−5.

The stopping parameter for the CG method εCG in Algorithm 1 has been set and updated
as follows: we start with εCG = 0.01 and multiply it after every major iteration by 0.5, until it
reaches the value 10−6; then we continue with this value till convergence of the optimization
algorithm.

Unless stated otherwise, we use the following hybrid preconditioner called Hhyb: we start
with Hβ (14) until the criterion below is satisfied and then switch to Hα (12):

Ncg_iter > kp
√

n/10 & Niter >
√

n/60 .

Here Niter is the current IP iteration and Ncg_iter the number of CG steps needed to solve the
corrector equation in this iteration. This criterion is, obviously, purely heuristic. We further
choose the value of τ in Hα and Hβ as

τ = λ1(Wi)+0.5mean(λ1(Wi), . . . ,λm−ki(Wi)) .
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To solve the problems, we used the default setting of Loraine parameters as shown in
Section 5, with the following exceptions, as explained in the respective paragraphs below:

SNL: tol_cg = 1e-1, eDIMACS = 1e-4, erank = 12, initpoint = 1
MAXCUT: eDIMACS = 1e-5

All problems were solved on an iMac desktop computer with 3.6 GHz 8-Core Intel Core i9
and 64 GB 2667 MHz DDR4 using MATLAB R2022b.

9.3. Other software

Later in this section, we present results obtained by Loraine, together with (sometimes brief)
comparison with other SDP software. For this comparison, we use the solver MOSEK [27]
which is also based on an interior-point algorithm. While this comparison may seem unfair,
as MOSEK uses a direct solver to solve the linear systems, we believe that it gives a good per-
spective of the clear advantage of iterative solvers with good preconditioners, when available
and when applicable. We further present a comparison with our MATLAB implementation of
the ADMM method, based on [36].

For the truss problems, we also offer a comparison with SDPNAL+ [37], an implementa-
tion of the semi-smooth Newton-CG augmented Lagrangian method; and SDPLR [8] using a
nonlinear programming algorithm based on low-rank factorization of the variables.

9.4. Numerical results

9.4.1. Truss topology problem

We now present results for all tru and vib problems using Loraine. These are shown in
Table 3. The table presents the number of iterations of the respective algorithm and the total
number of CG iterations using the hybrid preconditioner Hhyb. This is followed by CPU time
spent in the optimization solver and time per iteration. Notice that Loraine solves two linear
systems per iteration (predictor and corrector). For all problems we set the expected rank of
the dual solutions k = 1.

Table 3. Loraine in tru<n> and vib<n> problems

problem iter CG iter time time/iter

tru3 16 122 0.01 0.00
tru5 21 190 0.08 0.00
tru7 27 236 0.24 0.01
tru9 31 333 0.65 0.02
tru11 36 370 1.6 0.04
tru13 45 500 4.5 0.10
tru15 52 882 11 0.22
tru17 53 980 24 0.45
tru19 64 1310 51 0.80
tru21 65 1325 84 1.29
tru23 72 2450 189 2.63
tru25 87 2148 317 3.64

problem iter CG iter time time/iter

vib3 20 209 0.04 0.00
vib5 31 411 0.21 0.01
vib7 39 501 0.67 0.02
vib9 47 663 2.2 0.05
vib11 59 995 6.1 0.10
vib13 69 1153 16 0.23
vib15 80 1480 37 0.46
vib17 94 1781 92 0.98
vib19 108 2116 189 1.75
vib21 120 2844 401 3.34
vib23 130 2720 718 5.52
vib25 143 3752 1321 9.24

The next Table 4 presents results of Loraine with direct solver and rank-one input data,
MOSEK, SDPNAL+ and SDPLR; we again give the number of iterations of the solver, CPU
time and (for Loraine and MOSEK) CPU time per one iteration. The data matrices for the
truss problems are of rank one; see (15). While Loraine is much more efficient for these
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Table 4. Loraine direct and other solvers in tru<n> problems

Loraine direct MOSEK SDPNAL+ SDPLR
problem iter time time/iter iter time time/iter iter time iter time

tru3 16 0.01 0.001 14 0.22 0.02 440 0.5 15 0.01
tru5 21 0.09 0.004 15 0.23 0.02 9674 29 18 1.7
tru7 27 0.46 0.02 17 0.78 0.05 6324 55 19 21
tru9 31 4.3 0.14 20 5.6 0.28 47579 468 20 179
tru11 36 31 0.86 26 44 1.69 maxit 22 2469
tru13 45 239 5.31 29 235 8.10 maxit
tru15 52 1216 23.38 32 1079 33.72
tru17 51 4583 89.86 37 4671 126.24

Table 5. Loraine, MOSEK and ADMM in SNL-<n> problems

Loraine MOSEK ADMM
problem iter CG iter time iter time iter time

SNL-16 21 395 1.4 13 1.0 6239 12
SNL-32 25 532 7.4 15 21 19343 362
SNL-48 27 676 21 17 150 14328 1050
SNL-64 27 705 40 16 611 81938 17554
SNL-80 28 1064 84 21 2052 >50000
SNL-96 29 969 120 27 6579 time
SNL-112 30 1293 224 memory
SNL-128 30 1316 299

problems with an iterative solver, the goal of this comparison is to show that when handling
the rank-one data efficiently, we get a code that is (at least per one iteration) faster than other
software even with a direct solver.

We only present results for problems tru3–tru17; for the larger problems MOSEK ex-
ceeded the available 64GB RAM. SDPNAL+ and SDPLR were used with default stopping
tolerance. None of these codes can solve problems bigger than tru11 before reaching the
maximum number of iterations, either internal or global. While Loraine solutions satisfy DI-
MACS criteria with 10−5, other codes often finish with lower precision. The ADMM is not
included in this comparison as, even for the smallest problems, the method stagnated at a
point far from the solution.

In Figure 4-left we give a comparison of the CPU time per iteration for Loraine (iterative)
and MOSEK. While MOSEK actually exceeds the theoretical complexity with coefficient 2.2,
the complexity of Loraine is almost linear for these problems.

9.4.2. Sensor network localization problems

Recall from Section 7 that problems with noisy data lead to optimal solution Z∗ of (23) with
two outlying and a number of small, nonzero eigenvalues. Selecting k = 2 therefore did not
lead to an efficient preconditioner and we had to increase the estimate of the rank of Z∗. For
the problems we solved, k = 12 turned out to be a good compromise between the quality
of the preconditioner and the CPU time needed to apply it. Due to ill-conditioning of the
problems, we relaxed the stopping criterion to eDIMACS=1e-4; the same criterion was used
for the ADMM code.

Table 5 presents the results for Loraine, MOSEK and ADMM. While ADMM turned out
to be more successful than for the truss problems, it is still much slower than the two IP
codes. In this table, the number of CG iterations sums up the iterations with preconditioners
Hβ and Hα . For instance, in problem SNL-64, the average number of CG iterations with Hα

was 10 and the maximal number (in the last IP iteration) was 23. In Figure 4-right we give a
comparison of the CPU time per iteration for Loraine and MOSEK.
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Figure 4. Loraine (red) and MOSEK (blue) in tru∗ problems (left) and SNL∗ problems (right). CPU time per iteration vs
number of variables in log-log scale.

*** Loraine v0.1 ***
Number of variables: 40839 Preconditioner : 4
Matrix size(s) : 642 Expected rank : 12
Linear constraints : 81674
it obj error cg_iter time/iter
1 4.37357010e+02 3.32e+05 4 0.34
2 4.79694156e+02 7.79e+04 4 0.40
3 4.75844194e+02 8.44e+03 38 0.81
...
9 1.64854663e+00 7.24e+02 45 0.71
10 -4.55049809e+00 1.73e+02 69 0.91
11 -1.14083700e+01 2.25e+01 112 1.23
Switching to preconditioner 1
12 -1.95288379e+01 8.02e+00 14 2.74
13 -2.43383931e+01 4.02e+00 13 2.65
14 -2.97196245e+01 2.32e+00 14 2.70
...
25 -4.17128514e+01 1.71e-03 40 4.61
26 -4.17274123e+01 6.84e-04 58 5.95
27 -4.17345508e+01 2.33e-04 81 7.67
28 -4.17372049e+01 7.21e-05 111 9.71
*** Total CG iterations: 1064
*** Total CPU time: 80.70 seconds

Figure 5. Problem SNL-80 solved using the hybrid preconditioner.

For these problems, we also demonstrate the usefulness of the hybrid preconditioner (see
Sections 4 and 9.2). Figure 5 shows the iteration log for problem SNL-80; the first IP iterations
are solved using Hβ ; once it requires too many iterations, we switch to Hα .

9.4.3. MAXCUT problems

The results obtained for the MAXCUT problems are summarized in Table 6. These prob-
lems are relatively “simple": the ADMM method is rather efficient now (this is well-known
from other studies) and MOSEK converges in a very small number of iterations. However,
the sheer size prevents MOSEK with a direct solver to solve larger problems, while ADMM
is still about three times slower than Loraine. Moreover, the ADMM behaviour is rather un-
predictable, regarding the number of iterations.
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Table 6. Loraine, MOSEK and ADMM in MAXCUT-<n> problems

Loraine MOSEK ADMM
problem iter CG iter time iter time iter time

MAXCUT-20 18 559 3.8 6 9 3486 15
MAXCUT-25 20 728 11 7 78 4314 45
MAXCUT-30 21 1032 28 9 607 4837 105
MAXCUT-35 23 2183 96 9 2911 3030 126
MAXCUT-40 27 2275 186 memory 1280 92
MAXCUT-45 25 2521 335 7976 1034
MAXCUT-50 24 2540 528 8783 1832

10. Conclusions

We have demonstrated the efficiency of Loraine for three classes of well-known SDP prob-
lems. While we tested our software for other problems from standard libraries, we do not
report it here for one of the following reasons:

(1) The available collections, such as SDPLIB [7], are not representative enough in the
sense that they do not include enough problems of the same type. We did not want to
pick up single problems.

(2) Loraine mainly benefits from the use of an iterative solver for the linear system us-
ing a specific preconditioner targeted to problems with low-rank solutions. For many
such problems, however, no preconditioner is needed for the convergence of the itera-
tive method; these “easy" problems were not included in our testing. This is the case
of matrix completion problems [3, 39] or some problems arising in the relaxation of
combinatorial optimization. It is not the case of problems from Section 9; for those, the
preconditioner is essential for convergence.

(3) The problems do not satisfy our dimensional assumption n� m. For these problems,
the preconditioner is still very efficient (assuming low-rank solutions) but the use of
iterative methods does not bring any significant advantage to direct solvers. This is the
case of many problems found in SDPLIB.
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