See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/355196468

Characterizing spatio-temporal patterns of ground subsidence as an indicator of permafrost thaw in Tso Kar valley, Ladakh using SAR remote sensing

Presentation · September 2021 DOI: 10.13140/RG.2.2.31237.68321

citations 0		reads 369
2 author	s, including:	
0	Tara Tripura Mantha University of Bologna 2 PUBLICATIONS 0 CITATIONS	
	SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Dynamics of sedimentation and its impact on local resources in Upper North Bank of Brahmaputra View project

Coastal Ecosystems and Climate Change View project

Characterizing spatio-temporal patterns of ground subsidence as an indicator of permafrost thaw in Tso Kar valley, Ladakh using SAR remote sensing

Tara Tripura Mantha¹, Amartya Saikia², Santonu Goswami³

¹ University of Hyderabad, India ²DigiLab-Landesbetrieb Straßen, Brücken und Gewässer, Germany ³ Earth and Climate Science Area, NRSC, ISRO, India

ICIMOD Crosphere Forum 2021

Outline of presentation

- Brief introduction and background
- Study area
- Initial Results
- Concluding Remarks and Steps Forward

What is permafrost?

Permafrost is a subsurface earth region below 0°C for two consecutive years. It is considered to be perennially frozen (for many years).

Permafrost classification:

- Continuous: If 90-100 %
- Discontinuous: 50-90 %
- Sporadic: 10-50 %
- Isolated: 0-10%

Based on how much of the underlying landscape is permafrost.

Active Layer —

Permafrost in the HKH region

- Middle & Central Asia largest area of mountain permafrost. (A.P Gorbunov 1978)
- Heterogeneity in mountain permafrost
 region (Etzelmüler 2013)
- Major drivers of Climate change in HKH (The HKH Assessment 2019)
 - Globalization
 - Infrastructure development
 - Migration
 - Tourism
- Scarce data collections in HKH (Rastogi & Narayan 1999; Gruber et al 2017; Shiraiwa 1992; Klimeš and Doležal 2010)

Remote Sensing for Permafrost

a. Vachon, Paris W., et al. "Measurement of land subsidence due to wasting of tabular massive ground ice using differential JERS-1 SAR interferometry: Bylot Island test site." JERS-1 Science Program 99 (1997): 27-31.

b. Liu, Lin, Tingjun Zhang, and John Wahr. "InSAR measurements of surface deformation over permafrost on the North Slope of Alaska." *Journal of Geophysical Research: Earth Surface* 115.F3 (2010).

c. Zhang, Z.; Wang, M.; Wu, Z.; Liu, X. Permafrost Deformation Monitoring Along the Qinghai-Tibet Plateau Engineering Corridor Using InSAR Observations with Multi-Sensor SAR Datasets from 1997–2018. *Sensors* **2019**, *19*, 5306. https://doi.org/10.3390/s19235306

How SAR Interferometry works

- EM waves (microwaves) are emitted through the source which are backscattered due to topography. These waves are captured by the sensor.
- SAR produces fine-resolution images owing to its working principle. A sequence of acquisitions from a shorter antenna are combined to simulate a much larger antenna, thus providing higher resolution data.

SAR- Synthetic Aperture Radar

SAR interferometry in mapping permafrost subsidence

 $\rho + \delta \rho$

Z

- Phase: Number of cycles of oscillation between two points (satellite and ground).
- Phase as a measurement of distance.

Objectives of the Study

• Map land subsidence as a consequence of permafrost thaw using SAR interferometry.

 Quantify variation of land subsidence intra and interannual during a period of 2015 - 2021

• Investigate relationships between climatic parameters such as land surface temperature, precipitation with rate of change in land subsidence.

Study Area: Tso Kar in Ladakh

- Tso Kar Area, 33.31° N, 77.99° E, Ladakh, India
- Permafrost classification: Discontinuous
- Elevation: 3000 6500 m.a.s.l
- Areal span : 3160 sq km

"The Climate Data Guide: Global Permafrost Zonation Index Map." Retrieved from https://climatedataguide.ucar.edu/climate-dat a/global-permafrost-zonation-index-map.

Blue: In nearly all conditions Yellow: Only in favourable conditions

SAR Data Processing workflow in SNAP

6 subset 1 of S1A IW SLC 1SDV 20200727T005057 20200727T005127 033633 03E5E5 9687 Orb Stack Ifg Deb DInSAR ML Fit - [E\NRSC\add\SAR\Outputs\2020\iu] aug\pro2\subset 1 of S1A IW SLC 1SDV 20200727T005057 20200727T005057 20200727T005127 03363... X File Edit View Analysis Layer Vector Raster Optical Radar Tools Window Help Q- Search (Ctrl+I) [▽ ∅ •♪ Ш ⑧ № № ℤ Σ % 論 帯 & ☎ ● 🛸 翳 । • 🐬 ۹ ♀ ♀ ♀ ↓ マ 旦 🥎 Ο 論 ⇔ 🚿 🛊 ≽ आ - 🔲 [3] Intensity_IW1_VV × 📑 [5] Phase_ifg_IW1_VV_27Jul2020_20Aug2020 × 📑 [5] coh_IW1_VV_27Jul2020_20Aug2020 × 📑 [7] displacement_VV × Product Explorer × Pixel Info - I SIA IW SLC 1SDV 20200820T005058 20200820T005128 033983 03F190 3538 - 2 S1A IW SLC 1SDV 20200727T005057 20200727T005127 033633 03E5E5 96B7 [3] S1A_IW_SLC__1SDV_20200727T005057_20200727T005127_033633_03E5E5_96B7_Orb [4] S1A IW SLC 1SDV 20200820T005058 20200820T005128 033983 03F190 3538 Orb Image viewer [5] S1A_IW_SLC_1SDV_20200727T005057_20200727T005127_033633_03E5E5_96B7_Orb_Stack_Ifg_De G subset 1 of S1A IW SLC 1SDV 20200727T005057 20200727T005127 033633 03E5E5 96B7 Orb 🗄 📄 Metadata Vector Data Products Menu Graph Builder E Tie-Point Gr File Graphs 🖨 🔄 Bands i_ifg_VV_27Jul2020_20Aug2020 g_ifg_VV_27Jul2020_20Aug2020 Intensity ifa VV 27Jul2020 20Aua2020 db Phase ifg VV 27Jul2020 20Aug2020 topo_phase_VV_27Jul2020_20Aug2020 coh IW1 VV 27Jul2020 20Aug2020 Read Write [7] subset 1 of S1A IW_SLC_1SDV_20200727T005057_20200727T005127_033633_03E5E5_9687_Orb_ Right click here to add an operator Navigation - [3] Inten... Colour Manipulation -... Uncertainty Visualisa... World View **Graph Builder** World View-Read Write Pin Manager × Source Product Name: [3] S1A IW SLC 1SDV 20200727T005057 20200727T005127 033633 03E5E5 96B7 Orb 🕹 🏦 eesa Data Format: Any Format 7 SNAP Q" 6 https://scihub.copernicus.eu/ Off Globe No Network

SAR Data Processing workflow in SNAP

SAR Data Processing workflow in SNAP

Initial Results: Subsidence during May - Sept, 2020

Red: subsidence

Blue: uplift

- Areas of elevation between 3850 m - 6000 m show subsidence, both near the peaks and the valley.
- The maximum subsidence observed is 5.5 cm

July-Aug

Aug-Sept

Initial Results: Subsidence during May - Sept, 2020

Period	Max. subsidence (m)	Max. uplift (m)	uplift percentile	subsidence percentile
May- June 2020	0.055	0.062	98	2
June- July 2020	0.037	0.053	74	26
July- Aug 2020	0.036	0.064	99	1
Aug- Sept 2020	0.009	0.036	99	1

Land Surface Temperature didn't show any specific trends

Concluding Remarks and Way Forward

Observations:

• Our initial analysis shows that Tso Kar region is seeing ground subsidence.

Next Steps:

- Identification of inter and intra annual behaviour of ground subsidence.
- Investigate areas that show subsidence to analyze its effect.
- Explore other climate parameters to define permafrost degradation for arid alpine region.

Challenges:

- Lack of field data investigations to support the existing modelled and processed data.
- Widespread variability of local climate in mountain regions accompanied by scarcity of meteorological stations affects the reliability of the study.

Thank You!!