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ABSTRACT

Curved space—time geometric-optics maps derived from a deep photometric survey should contain information about the 3D
matter distribution and thus about cosmic voids in the survey, despite projection effects. We explore to what degree sky-plane
geometric-optics maps can reveal the presence of intrinsic 3D voids. We carry out a cosmological N-body simulation and place
it further than a gigaparsec from the observer, at redshift 0.5. We infer 3D void structures using the watershed algorithm.
Independently, we calculate a surface overdensity map and maps of weak gravitational lensing and geometric-optics scalars.
We propose and implement a heuristic algorithm for detecting (projected) radial void profiles from these maps. We find in
our simulation that given the sky-plane centres of the 3D watershed-detected voids, there is significant evidence of finding
corresponding void centres in the surface overdensity X, the averaged weak-lensing tangential shear Y, the Sachs expansion
0, and the Sachs shear modulus |o|. Recovering the centres of the 3D voids from the sky-plane information alone is significant
given the Sachs expansion 6, or the Sachs shear |o |, mildly significant given the weak-lensing shear ¥, and not significant for
the surface overdensity X. Void radii are uncorrelated between 3D and 2D voids; our algorithm is not designed to distinguish
voids that are nearly concentric in projection. This investigation shows preliminary evidence encouraging observational studies
of gravitational lensing through individual voids, either blind or with spectroscopic/photometric redshifts. The former case —

blind searches — should generate falsifiable predictions of intrinsic 3D void centres.

Key words: gravitational lensing: weak —methods: numerical —dark matter.

1 INTRODUCTION

Spectroscopic redshifts to determine the (comoving) 3D structures
of cosmic voids require much more telescope resources than photo-
metric surveys alone. While the simplest interpretation of a (single-
filter) photometric survey is that it shows only the projected galaxy
positions and shapes on the sky, the fact that the Universe is inho-
mogeneous implies that the photometric map contains information
on the 3D distribution of inhomogeneities, with effects that are
generically referred to as gravitational lensing. While arguments exist
in classical mechanics for expecting light rays to be deflected as if
they were massive particles (e.g. Schneider, Ehlers & Falco 1992,
Historical Remarks), general relativity better justifies the response
of light to gravity. Relativistic gravitational lensing theory was
developed many decades ago in its generic form of geometric optics
(Sachs 1961; Sasaki 1993). Some striking examples of gravitational
lensing include detection of the twin quasar QSO 09574561 A/B
in 1979 (Walsh, Carswell & Weymann 1979; Young et al. 1980;
Gorenstein et al. 1984, 1988) and giant luminous arcs (Paczynski
1987) and an Einstein cross (Adam et al. 1989) in the 1980s. For an
in-depth review, see Bartelmann & Schneider (2001). While these
are strong lensing effects, in this paper we focus on weak lensing,
which primarily causes changes in the shape and flux of background
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galaxies. Here, we argue that geometric-optics parameters that are
derived from a deep photometric extragalactic map should contain
information that can be used to detect some of the physical, 3D
cosmic voids in the map, despite the fact that the voids are projected
on the sky plane together with foreground and background voids.
By carrying out an N-body simulation and analysing it, using an
a priori reproducible software method, we aim to explore to what
degree maps of photometrically derived geometric-optics parameters
can reveal intrinsic 3D voids. We consider both the conventional
approximation of weak-lensing parameters and Sachs optical scalars
derived directly from the evolving gravitational potential.

The discovery of cosmic voids goes well back over 40 yr
(Gregory & Thompson 1978; Joeveer, Einasto & Tago 1978), from
galaxy surveys that indicated that large regions appear to be devoid
from galaxies, with galaxies being located primarily in structures
that are usually described as walls, filaments, and clusters. Modern
observations indicate that the comoving volume of our Universe is
dominated by cosmic voids. For example, measurements based on
the Sloan Digital Sky Survey (SDSS) indicate that a total fraction
of roughly 60 per cent of the volume consists of cosmic voids (Pan
et al. 2012). Cosmic voids have recently gained in interest, as they
provide different characteristics for testing cosmological models to
those provided by overdense structures. Li, Zhao & Koyama (2012)
use simulations to study voids in modified gravity models, namely
a fifth force that would affect the size and the density of voids.
Dark energy is suspected to influence the shape of a void (Bos et al.
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2012). Studying the shape, density profile, size, and abundance of
cosmic voids should yield crucial information about our Universe
(e.g. Peebles 2001; Nadathur & Hotchkiss 2014; Pisani et al. 2015).

Multiple strategies for detecting voids in either observations or
simulations exist. Since voids consist of the absence of luminous
matter rather than its presence, this is a challenging task. Several
different methods are commonly used for tracing these underdense
regions of the cosmic web. Early routines used the assumption of
spherical structures (e.g. Kauffmann & Fairall 1991) to detect voids.
This was justified from the theoretical description of a void evolving
out of a tophat-filtered density fluctuation; ellipsoidal initial density
profiles were found to generally evolve to become more spherical
(Gunn & Gott 1972; Lilje & Lahav 1991; Sheth & van de Weygaert
2004), and near-spherical void profiles were shown to be stable in the
absence of shell crossings (Sussman & Bolejko 2012). The watershed
void finders (e.g. Neyrinck 2008; Aragén-Calvo et al. 2010) make no
assumptions on the shape of a void and is close to being parameter-
free. This has become a de facto standard for determining the shapes
of cosmic voids. Watershed mechanisms detect local minima in
the density distribution of the cosmic web and identify underdense
structures by searching for successively higher density contours,
effectively finding the overdense edges of voids. The properties
of the resulting voids depend on the spatial number density of the
tracer particles used to represent the matter distribution. Nadathur &
Hotchkiss (2015b) show that randomly subsampling the density of
dark matter particles will tend to bias the void statistics, and suggest
the use of halo occupation distribution models instead. To apply a
watershed void finder to observational galaxy data, spectroscopic
redshifts are needed.

Sanchez et al. (2017) introduce a method of detecting voids from
a multifilter photometric survey by analysing redshift slices whose
thickness is based on the photometric redshift uncertainties. The first
detector variable that we analyse here results in a roughly comparable
method. We detect structures in the surface overdensity, which, under
the approximation of a constant mass-to-luminosity ratio, can be
inferred from the observed photometric survey.

However, we are primarily interested in other sky-plane variables
that can yield information on the large-scale structure of the Universe:
the gravitional lensing signal. Due to the nature of dark matter having
very weak interactions apart from gravity, we cannot measure the
dark matter distribution of the Universe directly from electromag-
netic surveys. Photometric galaxy surveys are generally thought to
provide a fair proxy for the real projected matter distribution, but
with many caveats. In contrast, the gravitational interaction of the
dark matter distribution with photons can be measured via lensing
effects. A light bundle that transverses a cosmological structure
will experience shear and expansion and in particular, cosmic voids
should leave an imprint on the shear and expansion. This should make
it possible to reconstruct the underdensity field of voids based on the
lensing signal, without no dependence on assumptions about baryon
cooling or star formation. Large-scale maps of the gravitational
lensing signal could thus, in principle, be used to detect cosmic voids.
This would provide a method independent of using the projected
spatial distribution of galaxies, since the lensing signal depends on
the full underlying mass density, no matter whether it is luminous or
not.

While in this work, we consider lensing parameters that are
measurable from source galaxies far beyond the voids that we aim
to detect, other observational methods of constructing the lensing
signal have been proposed. Lewis & Challinor (2006) argue that
since the cosmic microwave background (CMB) is lensed, the lensing
potential can be reconstructed based on the observed CMB power
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spectrum. Another method was proposed by Croft, Romeo & Metcalf
(2018) to use Lyman « forest observations to obtain lensing signals
in the foreground of redshift slices of the forest. While our interest
is in detecting lensing from individual voids, the lensing signal from
underdensities in deep projections has been detected in Dark Energy
Survey (DES) Science Verification data (Gruen et al. 2016), which
motivates the search for lensing from individual voids.

In this work, we consider an idealized scenario in which we
calculate detector variables without taking any detector errors into
account, to see if it is possible to detect individual voids by their
lensing signals. In reality, the derivation of the surface overdensity X,
the averaged weak-lensing tangential shear Y, the Sachs expansion
0, and the Sachs shear modulus || from observations involves many
sources of random and systematic error, which will need to be taken
into account in observational analyses. If our initial approach is
successful, then the next step will be to make tests taking realistic
observational noise and analysis into account.

We present a software pipeline (which aims to be fully repro-
ducible on any unix-like operating system with sufficient RAM and
disc space; Akhlaghi et al. 2021) to generate a cosmological N-
body simulation, to detect galaxies and voids in it, and to ray-trace
geometrics-optics parameters. The source package is provided as a
frozen record at zenodo.8103985' and in live? and archived® GIT
repositories. In Section 2.1 we briefly describe this overall pipeline,
which extends that used in Peper & Roukema (2021).

We describe our simulation geometry in Section 2.2. We first detect
intrinsic 3D voids using the watershed algorithm (Section 2.3.1). We
independently try to detect voids in projection, ‘photometrically’ (in
the absence of spectroscopic and photometric redshift information),
from either the surface overdensity, conventional weak-lensing,
or other geometric-optics signals. Our generic void profile search
algorithm is defined in Section 2.3.2. We compare the sky-plane
positions and radii of the photometric voids to those of the intrinsic
3D voids, using Monte Carlo simulations to check if this association
is better than random (Section 2.4). In Section 2.5 we present our four
detector variables, including a modification of our default void profile
search algorithm specific to the weak-lensing shear, in Section 2.5.2).
We present our results in Section 3, discuss these in Section 4, and
conclude in Section 5. This version of the paper was produced with
git commit d8952e7 of the source, after downloading, configuring,
compiling, and running on a computer with a Little Endian x86_64
architecture.

2 METHOD

2.1 Software pipeline

We use a highly reproducible software pipeline, following the
Maneage template for reproducibility (Akhlaghi et al. 2021), that
generates a realistic distribution of galaxies using a succession of
several different cosmological tools. The software pipeline extends
the galaxy formation pipeline presented in Peper & Roukema (2021).
The pipeline includes a full simulation chain, starting with the gen-
eration of initial conditions with MPGRAFIC and running an N-body
simulation with RAMSES (Teyssier 2002; Prunet et al. 2008). This
simulation is processed as in Roukema, Quinn & Peterson (1993),
Roukema et al. (1997), but using more recent software packages: dark

Thttps://zenodo.org/record/8103985
Zhttps://codeberg.org/mpeper/lensing
3swh:1:rev:169cb31e75babbcb69dd31741¢f53fcfc6795(91
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matter haloes are detected and their merger-history tree is built with
ROCKSTAR and CONSISTENT-TREES (Behroozi, Wechsler & Wu 2013a;
Behroozi et al. 2013b) and semi-analytical galaxy formation recipes
are applied with SAGE (Croton et al. 2016). We detect voids traced
by the resulting spatial distribution of galaxies using a watershed void
finder with REVOLVER (Nadathur et al. 2019). The coding of our sky-
plane void-profile search algorithm (Sections 2.3.2 and Section 2.5.2)
is original to this paper. The full details of the analysis are provided
in a live git repository? and a frozen Zenodo record.! We used fixed
pseudo-random seeds in most steps in the pipeline, as indicated in
the configuration files. A detailed discussion of the pipeline can be
found in Peper & Roukema (2021); here we primarily focus on new
steps that are added to the analysis.

2.2 Simulation geometry

We use a simulation for a standard ACDM model (cold dark
matter cosmological model with a cosmological constant A) with
Hubble constant Hy = 70.0, current dark energy parameter 2,0 =
0.7, and current matter density Qno = 0.3, Npax = 2563 parti-
cles, and a comoving box size Lpox = 120Mpch~!, where h :=
Hp/(100km s~' Mpc™!). This yields a dark matter particle mass of
mpm = 0.86 x 10'© Mg h™!. We require at least 10 particles to
detect a halo. Since our simulated volume is a standard 3-torus (7°%)
simulation, we detect dark matter haloes, generate a merger-history
tree, and detect intrinsic voids by interpreting the simulation’s spatial
section as T°.

For computational convenience, for the ‘observational’ steps in
which we detect voids in a sky-plane map of a detector variable,
we interpret the (projected or ray-traced) simulated volume as the
fundamental domain of a 2-torus (72 := §' x S' x R), where the
two multiply connected directions lie in the sky plane. We informally
refer to the fundamental domain as the ‘box’. The foreground and
background of the box, at lower and higher redshifts, respectively, are
implicitly assumed to be a homogeneous (structure-free), simply con-
nected ACDM background, i.e. they are assumed to be transparent
and flat, with no effect on gravitational lensing. This simplification
helps focus on the primary questions of our analysis; future analyses
should include the effects of the full past time cone. We assume that
this box is observed at high redshift, with its centre at redshift 7 =
0.5, corresponding to a comoving distance of x op :=1322.0 Mpc h~!
from the observer, which is a large distance compared to the box size.
We use both an observer-centred Euclidean comoving coordinate
system, with the observer at (x, y, z) = (0, 0, 0) and the centre of
the simulated volume on the y axis of the ACDM simply connected
space at (0, x oL, 0), and a simulation-centred system shifted by x oL.
To model light rays detected by the observer we convert (x, y, z)
to (x = xsinf'cosg, y = xsin@'sing’, z = xcosf'), where x, the
comoving radial distance, together with 8" € [0, 7] and ¢ € [0, 277]
are spherical coordinates of the spatial part of a flat ACDM model,
and the simulation’s centre is at (x = xoL, 0’ = 7/2, ¢’ = 7/2).
We compute each of our detector variables on a grid with Ny =
120% ‘pixels’ that we place on the middle plane of the box (y =
1322.0 Mpc i), at (x, ) positions in the grid. We model light rays
emitted from an observer-centred spherical surface near the back face
of the simulated box (72 slice), through to a second observer-centred
spherical surface close to the front face of the box. The light rays’s
spatial paths are assumed to be straight in the non-perturbed space,
i.e. with constant @ and ¢'. We avoid approximately 5 per cent of the
front and back parts of the box to minimize edge effects. Projected
variables for a given pixel are computed along the line of sight of a
light ray passing from the back spherical surface, through the pixel,
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to the front spherical surface. In other words, the grid approximately
corresponds to what is often referred to as ‘the sky plane’ for small
solid angles, although it is (in this construction) a genuinely flat plane
in comoving space. For brevity, we will use the term ‘sky plane’ as
equivalent to this grid.

For the optical scalar calculations (Section 2.5.3), we trace our
light rays geometrically under the assumption of a flat ACDM model,
but calculate the optical scalars with a longitudinal Newtonian gauge
approximation of an inhomogeneous model, with the line element

ds® = a* [—(1 +2®)dr” + (1 — 29) (dx* + x*dQ?)] , (1)

where 7 is conformal time, ® is a potential, and d2 is the solid
spherical angle element (d9')? + (cos8'dg’)?.

2.3 Void detection

2.3.1 Intrinsic 3D voids

We detect intrinsic voids traced by the galaxy population using
the void finder REVOLVER, which is based on the watershed void
finder zOoBOV (Neyrinck 2008; Nadathur et al. 2019). The watershed
mechanism in ZOBOV uses a Voronoi tessellation to estimate the
densities at the particles’ positions, is nearly parameter-free and
makes no assumptions on the shape of the void. To characterize
the size of a void, we use the effective radius R, which is based on
the sum over the volumes V; of all the Voronoi cells that constitute a
void, i.e. Rer := 2= (32, Vi) 3 We adopt the geometric centroid of
the set of cells that constitute an intrinsic void as the centre of that
void. This is called the ‘barycentre’ in the REVOLVER code, but is
mathematically the barycentre only if the void is assumed to be filled
with a uniform density fluid (Peper & Roukema 2021, Section 1).

2.3.2 Photometric void detection

We detect voids from variables in the sky plane that are, in principle,
observationally measurable in photometric surveys: the surface
overdensity X, and three geometric-optics related parameters. We
propose the following heuristically derived algorithm for detecting a
projected void in a map of the surface overdensity ¥ (defined below
in Section 2.5.1) or the Sachs (1961) expansion 6 or shear o (optical
scalars, defined below in Section 2.5.3). Our algorithm for detecting
voids from maps of the weak-lensing shear y is similar, but differs
in the ways that are described below in Section 2.5.2.

In contrast to the case for overdense extragalactic objects, we
expect the (azimuthally averaged) radial density profile of a void in
the sky plane, where the radiusis r := \/(x — x0)? + (z — zo)?in our
(x, z) grid for an object centre (xo, zo), to have its lowest values in the
centre of the void and a sharp maximum at the void’s edge. The Sachs
expansion 6 and shear o should also have a minimum at the centre
of a void and a maximum at the edge. While projection effects for
overdense structures are a perennial problem in astronomy (e.g. for
determining whether a galaxy group is dynamically real or a chance
projection), the projection effects can be expected to be much worse
for voids, since voids dominate the volume of the Universe, implying
stronger overlaps. In contrast to overdense objects, spectroscopic
redshift determination for the rare galaxies in voids is unlikely to be
effective in separating a chance projection of voids from a void that
is real in three spatial dimensions, and is likely to be a statistically
unstable way of dynamically characterizing a void. Moreover, voids,
in general, are not perfectly spherical objects, making detection via
templates unlikely to be easy. Nevertheless, projection along the line
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of sight should provide a modest effect of symmetrization, and by
appropriately averaging, we hypothesize that detection is feasible.

We define an isotropized (azimuthally averaged) variable X, i.e.
the average on a circle in the (x, y = xoL, z) grid plane, at radius r
and centred on a pixel j, i.e.

2
X;(r)= (271)*'/0 X(r,¢)do, 2

where ¢ is the angle around the circle centred on position j in the grid
and X is either the surface overdensity X, or one of the optical scalars
0 or o (for the weak lensing shear y, see equation (15) below). To
estimate X ;(r), we sample the grid values at even intervals around
a circle of radius r, with intervals that give at least one value per
Mpc i~!, we smooth the values with a third-order Savitzky—Golay
filter (Savitzky & Golay 1964), and integrate.

We also define a disc-averaged profile X on the disc internal to a
given radius (not weighted by the radius) by integrating equation (2)
and appropriately normalizing, i.e.

=\ for 02” X', p)dedr _ Jg X@)dr'

X(r) P ) 3)
Qm)~' [y [y dedr r
and a disc-averaged absolute slope,

where the index i indicates radial discretization in estimating X and
X = dX/dr.

Apart from the case of the weak-lensing shear y (Section 2.5.2),
we expect X (and thus X) to increase monotonically from the
centre at r = 0 outwards as r increases, though the projection
against other voids, voids’ asphericity, and noise will make this
monotonicity difficult to detect. For each pixel j in our sky plane, we
define a heuristic selection criterion nx motivated by the expected
monotonicity as follows.

(i) Ignore each pixel j with X(r = 0) > Xppedian, Where Xpegian 1S the
median over all pixels in the sky plane. The motivation is that for any
X, pixels with X(r = 0) > Xpegian are unlikely to correspond to the
centre of a void. The projected or ray-traced variables X should have
their minima at voids’ centres. This step should remove many pixels
unlikely to be void centres. In principle, this step might remove some
pixels that are genuinely the centres of intrinsic voids, especially in
the case of voids whose underdensities are shallow intrinsically or
in projection against foreground or background overdensities. At the
cost of increased computation time, removal of this step might lead
to detecting more voids. However, in practice we expect that the
gain would be minor, since these types of voids will rarely have the
projected void-like profiles that we aim to detect.

(ii) For a given pixel j, for each radial distance r; from the
pixel, calculate the circular average X as in equation (2), where
for simplicity we omit the subscript j. We set the interval in r; to
be smaller than 1 Mpch~! in order to be sensitive to small-scale
structure.

(iii) A persistently positive strong positive slope in X is detected
as follows. Find ij, the first radial position #, with respect to pixel j,
where all three of the conditions

X > [¥|e) )
o o - _ o\ 172

X0 = Xi-1) > fua <(X(rl~f> - X)) > | ©)
Y(ri) > fmean ?(l’,‘) (7)
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Table 1. Parameters used in our 2D void detection algorithm in equations (6)
and (7).

fSld f;nean
) 0.50 1.50
0 0.30 1.30
0.30 1.10

are satisfied over four successive steps i — 3,7 — 2,i — 1, i, where
(- ) is the mean and fyq and fiean are heuristically chosen fractions.
The aim of criteria (5) and (6) is to find a range of radii where the
slope X' has a stable and significant increase, i.e. where positive
second derivatives X > 0 are numerically persistent. Criterion (7)
aims to also require the slope X to be sufficiently positive. The
values adopted for fyq and fiean are given in Table 1.

(iv) Find i,, the first local maximum in X for i > i, i.e. the first
local maximum after the persistently strong positive slope condition
that determines i;.

(v) Define an initial void selection criterion %(j) := 1/ri,. The
radius 7;, is the estimated radius of the candidate void.

(vi) Steps (ii)—(v) are carried out for all pixels j accepted in step
(1) (with (iii), (iv) modified in the case of y; see Section 2.5.2).
In order to cope with the very noisy data, we define a smoothed
selection criterion for further use, nx(j), as a low-pass triangular filter
(weighted mean) of the 25 n%(j) values in a 5 x 5 grid of pixels
centred on pixel j.* We then find all local minima of the selection
criterion nx(j) over the pixels j as follows.

(vii) We select a void centred at pixel j if it dominates its local
region in the sense that nx(j) < nx(k), where k indexes pixels in a
square grid centred on pixel j and extending 5 pixels in each of the
+x and £z directions. As an extra credibility criterion, selection of a
void is only accepted if nx(j) < 0.90> nx(k)/> i1, where k indexes
all pixels in the map. This algorithm results in a list of projected
voids with centres j and radii r;,(j) that represent the largest locally
credible voids.

(viii) To avoid cases where a single genuine void is misidentified
as two slightly offset voids, we check if two or more centres are
closer to one another than

min {r;,(j1)/4, r;,(j2)/4, 10.0Mpch ™'} . (8)

In these cases, we merge these voids into a single void. The new
centre and radius of the merged void are defined as the mean of the
centres and radii of the unmerged voids.

2.4 Matches to intrinsic voids

To quantify whether the photometric detection of voids — 2D voids —
successfully finds the intrinsic 3D voids, we first define a heuristically
motivated matching criterion to find the best matches, and then
compare the set of best matches to an equivalent set of best matches
when the list of 2D void parameters is generated randomly (positions)
or randomly shuffled (radii). This aims at answering two different
questions: (i) given a detected set of 2D voids, are these better than
a random set of 2D voids at revealing true 3D voids? (i1) given a set
of intrinsic 3D voids, do the detected 2D voids better match these
(numerically) real voids better than a random set of 2D voids would?
The former question is interesting for observational detection of 3D
voids from photometric or other geometric-optics data; the latter is

4This step interprets the box as an isolated box, not T2, and sets 1x(j) near
the borders of the box to a high value to prevent finding minima there.
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interesting for using spectroscopically defined 3D voids to motivate
searches for gravitational lensing by voids.

2.4.1 Best matches and median sky-plane separation iy ,

We define the probability of the ith 2D void being a match to the
jth 3D (watershed) void by first defining the probabilities that the
x and z positions are close in the 72 sense and that the radii are
logarithmically close. We set a cumulative Gaussian probability that
the x and z positions for variable X € {X, y, 6, o } are closer to each
other than the estimated values,

d((x,z)x,(x.z)X)

X _ i J

P(x.z)l.j =1—er V20y; ’ ©)
where erf is the error function, d(.,.) is the 7> minimum distance in
the x—z plane, and o, . = 5.0 Mpc ™!, Similarly, we set

Py =1- erf Lo (K/85) | (10)

V2ouggr
where 010, g = 0.30. These are assumed, for simplicity, to be
independent probabilities, giving a heuristic overall probability that
the ith 2D void matches the jth 3D void
P = Pio, Pi, - (1n

For question (i) (Section 2.4), given a 2D void i, we find the 3D
void j with the highest matching probability Pi’_‘j , for detector variable
X. This does not exclude the possibility that two different 2D voids
best identify with the same 3D void. For a set of N,p detected 2D
voids, this gives us a matched set of Nop objects, which have both
2D and 3D sky position and radius information, presumed to match.

For each object in this set, we calculate the T2 distance between
the 2D and 3D (x, z) positions and from the distribution of these
values, calculate (i, .(3D|2D), the median distance for a 3D match
given a 2D match. In calculating this median, in cases where a single
3D void is the best match for two or more 2D voids, we only consider
the match in which P/¥; is maximized.

For question (ii), given a 3D void i, we find the 2D void j with the
highest matching probability P; ;. Again, this does not exclude the
possibility that two different 3D voids best identify with the same 2D
void. In practice, since we find fewer 2D voids to 3D voids, there are
necessarily cases where multiple 3D voids identify with a single 2D
void. For a set of N3p detected 3D voids, this gives us a matched set
of Nsp objects, which have both 2D and 3D sky position and radius
information, presumed to match.

For each object in this set, we calculate the T2 distance between
the 2D and 3D (x, z) positions and infer u, .(2D|3D), the median
distance for a 2D match given a 3D match, again using the highest
Pi’fj to reduce non—one-to-one matches.

2.4.2 Comparison to matches for random 2D voids

We generate a Monte Carlo simulation of 2D voids by choosing Nap
pairs (x, z) from a uniform random distribution within the x and z
ranges of the 2D grid. For both questions (i) and (ii) (separately), for
each Monte Carlo simulation, we find matched sets using the same
algorithm as above.

To answer question (i) we estimate u, ,(3D|2D) for a given
detector X, for both the original matched set and for each of the
simulated matched sets. This yields P;fz(3D|2D), the frequentist
probability that the original u, ,(3D|2D) is less than u, ,(3D|2D)
from the Monte Carlo simulations. In other words, Px)fz (3D|2D) is
the probability that, given the 2D voids, the matches with 3D voids
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in the sky plane are no better than those drawn from a Monte Carlo
simulation.

Similarly, for question (ii), the frequency with which the original
Wy, -(2D|3D) is less than the values of u, .(2D|3D) from the
simulations yields R{_‘Z(3D|2D), the probability that, given the 3D
voids, the matches with 2D voids in the sky plane are no better than
those drawn from a Monte Carlo simulation of sky positions.

Cases where 3D voids are concentric or approximately overlap in
projection will yield only a single 2D void using our algorithm, and
are likely to make estimation of the radii difficult. The range of values
of the radii are not as conveniently constrained as the (x, z) centres of
the voids. Rather than choosing an arbitrary range for a Monte Carlo
simulation, we use a non-parametric method. We define Pg (3D|2D)
as the two-sided probability that the Spearman p rank correlation
coefficient (Spearman 1904) of the matched set of N,p values RiX
and R;((l-) is stronger (positive or negative) than what it would be for
a set of paired values where one set is randomly permuted.

Similarly, we define P (2D|3D) as the two-sided probability that
the Spearman p ranking coefficient of the matched set of Nip values
RY¥ and Rf(,-) is stronger (positive or negative) than it would be under
random permutations.

2.5 Detector variables X, y, 0, o

Here we define and describe our detector variables X € {X, v, 0,
o'}, where here we write the generic forms of these variables for
simplicity; the more specific forms are given below. These detector
variables can, in principle, be derived from a photometric map, given
some minimal assumptions, such as a mass-to-light ratio in the case
of the surface overdensity X, or statistically isotropic distributions of
galaxy shape parameters in the case of the other three parameters. We
derive each of these from the particle distribution, not from the galaxy
distribution. We include ¥ since apart from requiring a mass-to-light
ratio assumption, it is the simplest to derive from a photometric map.

2.5.1 Surface overdensity ¥

We calculate the surface overdensity by integrating the overdensity
p — p along the line of sight, neglecting temporal evolution. (Tempo-
ral evolution is taken into account with the optical scalar modelling;
see Section 2.5.3 below.) Densities are constructed for each particle
using a Voronoi tessellation followed by linear interpolation. For a
flat model, the surface overdensity in direction 7 is

Xmax
() =/ (p(%, €2) — p)dx, 12)
Xmin

where X min = X(20) — 0.95Lpox/2 and Y max = x(20) + 0.95Lpox/2.
The 0.95 factor neglects the 5 per cent front and back parts of the box
to minimize edge effects (Section 2.2). Since we expect the surface
overdensity X to be negative in a void, we aim to detect it in places
where it is physically a surface underdensity, i.e. a projected mass
deficit.

Detection strategy with X.: Voids typically have strong underden-
sities in their interior, so the 2D projection of a void should still show
a strong underdensity in the interior after projection. Thus, we search
for local minima in X.

The projection of foreground and background voids and their
walls (in reality, clusters, filaments, and walls) will, to some degree,
obscure this search. To the extent that the obscuration can be
statistically neglected or removed, the azimuthally averaged radial
profile ¥ (equation 2) should show a slow increase in ¥ from the
centre of a projected void outwards until it nears the (projected)

MNRAS 525, 91-106 (2023)
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wall, when a rapid increase should occur, followed by a drop as %
asymptotes to the mean of the environment surrounding the void.
Thus, a local maximum in X at the wall that surrounds the void
should be sought. We expect that larger voids should yield clearer
signals.

Some pixels, likely containing galaxy clusters or projections of
galaxy filaments, were found to be highly overdense, misleading our
algorithm’s search for void walls because of these overdense pixels’
strong influence on X. To reduce the influence of these extreme
pixels, prior to step (i), we truncate X values at the 90th percentile
of their distribution.

Substructures of overdensities exist inside of voids, similar to the
larger scale overdensities of the cosmic web, but traced by dark
matter haloes of much lower mass (Gottlober et al. 2003). These
substructures contribute another obscuring factor that should weaken
our proposed detection algorithm (Section 2.3) using X.

2.5.2 Weak-lensing tangential shear

Weak gravitational lensing information is typically extracted from
observations by using the distortion of observed images that is
induced by cosmological inhomogeneity, with the aim of tracing
the spatial distribution of dark matter. We follow the mathematical
descriptions of Bartelmann & Schneider (2001), Krause et al. (2013),
and Kilbinger (2015). We derive the parameters of this idealized
model from the surface overdensity calculated in our cosmological
simulation.

We represent the lens plane (Bartelmann & Schneider 2001,
fig. 11) with two orthogonal spatial directions with indices a and
b; the direction of propagation of the light bundle as it would arrive
at the observer from the source if unlensed, represented as a vector
in the lens plane, ®g; and the direction at which the light bundle
reaches the observer after lensing, again a vector in the lens plane,
®p. Assuming that the rotation of the image vanishes, the Jacobian
matrix can be decomposed into the shear y and the convergence «
(Bartelmann & Schneider 2001, equation 3.11):

I—x—n "
A= . 13
( -, l—k+n a3

The convergence « at a generic position in the sky plane can be
evaluated as «(7) = gf’:?, where X = % v (?L °I§LS (Bartelmann &
Schneider 2001, equation 3.7). The values Dxx are the angular
diameter distances between the observer (O), the lens (L), and the
source (S). For simplicity, we assume the observer—lens and lens—
source radial comoving distances to be equal, i.e. x oL = xLs, giving
Xos = 2xoL. We do not attempt void detection with «, as the result
would be equivalent to using X.

For our detection strategy we use X(r, /i), the isotropized (ring
averaged) form of X (equation 2) with respect to a given centre 7i of a
possible void, applying a 90 per cent cut in the line-of-sight direction
as explained in 2.5.1, and subtract it from the surface overdensity
averaged within a disc centred on 7, yielding

AX(r, ) = 2(r, A) — 2(r, ), (14)

where f)(r, 71) is defined in equation (16). As in Krause et al. (2013,
equations 4 and 5) and also derived in Kilbinger (2015, equations 40—
47), the mean of the tangential component of the shear internal to a
ring at r can then be evaluated as

AX(r, i)

15
Ecn‘t ( )

]/T(}’,ﬁ) =
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The disc average ¥ calculated by integrating (2) over the radius,
using the usual weighting and now leaving the centre 72 implicit, is

o B pyrdpdr’ 2 [y 6 dr’

rop2m ’ Tr2
Jo Jo " r'dedr

2(r) = o

(16)

Detection strategy with  : By definition, 3, (r) should be close
to zero at r = 0, the centre of a void, and should decrease to a sharp
minimum where r is the radius of the void’s (statistical) wall. At
greater radii, both the azimuthally averaged surface overdensity ©
and the disc-averaged % should approach zero, so Y (r) should also
increase up to zero. The minimum in Y, (r) should reveal the edge of
the void.

Since this qualitative behaviour of ¥ (r) differs from the other
detector variables considered, we modify steps (iii) and (iv) of the
algorithm of Section 2.3.2 as follows.

Since 1 and 1 calculated according to (2) are noisy, we apply ex-
tra smoothing, replacing y1(r;) and V1 (r;) by (VL (7)) fmax(0.i3).....i+3)
and (Y1'(r;)) {max(0.i—3).....i+3}> respectively. This smoothing reduces
the role of local fluctuations in the dark matter distribution.

(1) After this smoothing, we search for the radial distance where
Y. starts dropping sharply, i.e. the index i; is the first value i where
Yilr) < yi(r).

(i1) The radial distance just past the wall is sought as the radial
distance where 7/, increases sharply, i.e. the index i is the first value
i> i) where y.(r;) > y.(r;).

(ii1) In addition, to remove choices of a void centre where the best
‘wall’ found this way has a weak density contrast, we dismiss the
candidate detection if ’y:J_‘ /max (|yL|) < 0.1. For patterns in y_that
have almost no significant features, this criterion avoids interpreting
a nearly flat curve Y (r;) as a candidate void.

If both r;, and r;, are detected, then we continue to step (v) as
above (Section 2.3.2). Even if pixel j is correctly centred on a void’s
centre, this algorithm for | can fail to detect r;, if the (projected)
environment just outside the void’s wall includes strong fluctuations.
In the case of failure to detect r;,, the pixel is considered invalid at
step (v) and dropped from further consideration.

2.5.3 Optical scalars 6 and |o |

We calculate optical scalars following Sasaki (1993). In principle, the
optical scalars should model the real Universe more accurately than
the weak-lensing scalars described above, since fewer assumptions
are required (Clarkson et al. 2012, Section III.B) — the real Uni-
verse is inhomogeneous rather than strictly Friedmann—-Lemaitre—
Robertson—Walker (FLRW). Clarkson et al. (2012) give a detailed
derivation of the relation between the optical scalars 6 and ¢ and the
usual weak-lensing scalars, in particular in their equations (41)—(43),
with slightly differing conventions. For example, the Sachs shear o
includes information not only from the weak lensing shear y, but
also from the evolution of y with respect to the affine parameter
along a null geodesic. While the differences in practice may not be
large, especially in the FLRW context, the advantage of modelling the
Sachs optical scalars is to prepare for future work that simultaneously
takes into account both structure formation and expansion of the
Universe (e.g. Heinesen 2023, and references therein). For simplicity,
in the weak lensing case we model the commonly studied tangential
weak lensing shear ¥, while in the Sachs optical scalar case we
model the shear modulus |o|, as explained below. In the Newtonian
approximation, the Ricci tensor can be written as

Ry =~ 871G pw? 17

20z Iudy £z uo 1senb Aq | 181€Z./16/1/GZS/l0INE/SEIUL/WO0"dNO"dILUBPEOE//:SA]Y WOI) POPEOJUMOQ



and the Weyl tensor components of interest are
Caopo ~ (2<D;AB — 8an 4’2) o’ (18)

= (20,.¢lely — 8458 P D, ele)) 0, (19)

(Sasaki 1993, equations 3.22 and 3.21) where G is the gravitational
constant; space and time units are related by ¢ = 1; p is density; ® is
the gravitational potential; w = —k,u" = 1 + Zydsn, for an observer
four-velocity u*, light propagation one-form k,,, and redshift z;cqsn;
{ea, ep} or {ec, ep} are a pair of dyad basis vectors; and § 45 is the
Kronecker delta (545 = 1 if A = B, 45 = 0if A # B). The dyad basis
vectors ey, ep span the space-like 2-plane that is orthogonal to the
spatial path of the light ray that points from the observer towards the
direction of a cell of the grid. We use the Gram—Schmidt method to
construct e4 and ep.

The optical scalars — the expansion 6 (real) and the shear o (com-
plex) — are related to each other and the Weyl tensor (equation 19)
via the coupled pair of differential equations

39 = —Ry —2|o]® — 192 (20)
dv 2

and

d .

@U = —(Cio10 +1Ci20) — 00 . (21)

For a visualization of the effect of 6 and o on a light bundle we refer
to Sasaki (1993, fig. 4), where 0 = o +1i0x.

Detection strategy with 0 and |o |: Both the expansion 0 and the
modulus of the shear,

lo| = /Re(o)2 + Im(0 )2 (22)

should be closely related to the surface overdensity, since integrations
along paths approximately (spatially) orthogonal to the lens plane
are performed in all three cases. However, these are not exactly
analogous. Not only are these distinct physical quantities, but the
overdensity integral is performed parallel to the y axis, while for
each pixel in our 2D grid plane, we estimate 6 and |o| along a
spatially straight path from the observer through the pixel, i.e. only
approximately parallel to the y axis.

In practice, initial numerical exploration shows that 6 and |o|
behave qualitatively like X, in that they start from a low value at the
centre of a void and increase to a sharp maximum at a void boundary.
Thus, we use the same search algorithm for finding voids in maps of
0 and |o| as indicated above in Section 2.3.2, with slightly adjusted
parameters (Table 1). While qualitatively similar in numerical terms,
the physical meanings of these parameters differ. The optical scalars 6
and |o |, if derived from observations, represent the underlying matter
distribution with no dependence on observed luminosity and without
the simplifying assumptions of the weak-lensing approximation. In
particular, the weak-lensing shear 3, (equation 15) is an average
defined with respect to a hypothesized void centre, while 6 and |o|
provide maps prior to assumptions about void centres.

3 RESULTS

3.1 Simulation

We performed an ab initio simulation and detected voids as described
above. As indicated in Table 2, we detected N3;p = 46 voids in the
galaxy population with the watershed mechanism, and smaller num-
bers of 2D voids using X, ¥, 6, and |o| from the projected density
distribution and by ray-tracing through the evolving gravitational
potential ®.
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Table 2. Numbers of intrinsic 3D voids detected with REVOLVER, N3p, and
in the 2D grid, szD, NZVD, NgD, and N3, using the surface overdensity X,
the weak-lensing shear Y, the Sachs expansion 6, and the modulus of the
Sachs shear |o|, respectively.

) y 6
N3p Nip Nop N3p N3p

46 28 29 34 39

Table 3. Probability that the matches between 3D and 2D voids for detector
variable X are no better than those of randomly generated 2D voids,
PX§(3D|2D) when given 2D voids; or PA§(2D|3D) when given 3D voids;
and probability that the Spearman rank correlation coefficient for the radii of
matched 3D and 2D voids for detector variable X could be that of a set of
randomly paired values, P,é‘ (3D|2D) when given a 2D void; and P,? (2D|3D)
when given a 3D void. See Section 2.4.2. Plain-text version available at
zenodo.8103985/void_match_analysis.dat.

X P, .3D|2D) P, .(2D|3D) Pr(3D|2D)  Pgr(2D|3D)
) 0.027 0.0038 0.89 0.94
YL 0.010 3.0 x 1073 0.85 1.0

0 0.00050 3.0 x 107° 0.25 0.16
lo| 0.00014 1.0 x 1072 0.27 0.61

Table 3 shows the probabilities, defined in Section 2.4.2, that
quantify the significance of: (i) a detected 2D void revealing the
existence of an intrinsic 3D void via its sky plane position or radius,
PX.(3D|2D) or P (3D|2D), respectively, and (ii) an intrinsic 3D
void implying that its 2D projection is detectable, PA_’,(Z(ZDBD) or
PX(2D|3D). In each case, these represent the probability that the
estimated correspondence between the populations could occur by
chance, given prior information on the number of 2D voids (for
positions) or non-parametrically (for radii).

Since voids in N-body simulations are characterized by small
numbers of particles, the detection of individual voids, whether
in the 3D galaxy distribution or by a 2D detector in variables
derived from the particle distribution, is in general numerically
sensitive to small changes in machine arithmetic. We performed a
small number of independent full-pipeline simulations, retaining the
same pseudo-random number seed, to investigate this qualitatively.
The re-simulated equivalent of the values listed in Table 3 shows
small variations with re-simulation on a given machine, and stronger
variation between different machines. We describe our results taking
into account our small-scale estimates of their reproducibility, and
use the word ‘robust(ly)’ to indicate cross-machine reproducibility.
In principle, cosmic variance can be explored by varying the random
seeds. In Appendix A, we show the equivalent of Table 3 for a small
number of full-pipeline simulations with alternative random number
seeds. The specific levels of significance vary somewhat with cosmic
variance.

We find sz(2D|3D) values (robustly) indicating significant
match distributions in all four cases, with sz (2D|3D) < 0.01, and
PX.(2D|3D) < 0.0001 for X € {¥L, 6, |o|}. Thus, we find that given
the 3D voids found with the watershed algorithm in the galaxy
distribution, the sky plane positions of the 2D voids found using
the surface overdensity X are significantly closer to the former
than they would be if the same number of 2D void positions were
chosen randomly. In other words, we have a significant response to
question (ii) for X. This is reassuring, because it shows that despite
the projection effects of multiple voids and their aspherical shapes,
the centres of the intrinsic 3D voids can be recovered in the 2D
distribution.
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Moreover, we find that for the weak-lensing tangential shear 7,
and for both the Sachs optical scalar expansion 6 and shear |o|,
the centres of the 2D voids represent the 3D void centres to high
significance. Thus, any of the four parameters should be usable to
re-detect the void centres known from the 3D voids.

In contrast, if we start with the 2D photometric map and predict
the centres of the 3D voids, we only find (Table 3) the weak-
lensing tangential shear Y, the Sachs expansion 6 and the Sachs
absolute shear |o| to significantly and robustly reveal underlying
3D voids, with P;’(Z(3D|2D)§ 0.01 in all three cases. Comparison
with sz,z(3D|2D) in Table 3, for the surface overdensity, shows
that discovering a 3D void thanks to its 2D signature is less likely
with X. In other words, in answering question (i), use of our
algorithm with any of the three geometrical optics parameters is
more likely to reveal the sky-plane position of the 3D void than
using X.

These results show that the intrinsic 3D void signal yields
detectable void centres with our algorithm in not only the projected
(2D) surface overdensity X, inferrable from photometric maps with
only a mass-to-light ratio assumption, but also in the 2D maps
of weak-lensing and Sachs optical shear parameters. If additional
information, such as spectroscopic or photometric redshift infor-
mation, is available, then combining that information with lensing
analyses of the data should lead to tighter constraints on the (partly
invisible) underdensity distributions, as opposed to using galaxies’
sky positions and redshifts alone.

Moreover, in the absence of galaxy redshift information, 2D maps
should yield constraints on the mass distribution, at least in the case
of Y1 and 6. However, while the void centres are detected, the radii
are poorly constrained from either 3D or 2D maps.

We examine these results and caveats more closely in the following
sections.

3.2 Surface overdensity X

The upper panel of Fig. 1 shows the map of the surface overdensity
¥, together with sky-plane centres of the intrinsic 3D voids of the
galaxy distribution and the 2D voids detected via ¥ as described
in Section 2.5.1. The correspondence between these, formalized in
Table 3, can be inspected qualitatively by judging if a 3D void centre
(white +) has a 2D void centre (red x) more close to it than a
randomly placed point. Of the N3p = 46 intrinsic galaxy voids, only
Nﬁ) = 28 2D voids are detected (Table 2). The fact that Nz% < N3p
is expected, since we did not design our algorithm to distinguish
voids that are nearly concentric when projected to the sky plane.

The lower panel of Fig. 1 shows the X profiles averaged over
all the 2D centres, and, independently, averaged over all the 3D
centres (projected by ignoring the y coordinate). Comparison of
these two curves (and their standard deviations, hatched) shows how
well we might expect our algorithm to perform. The profiles for the
3D centres are those that would be detected if the algorithm were
perfect in recovering the intrinsic voids, leaving aside the difference
that the 2D detection uses the full dark matter particle distribution,
while the 3D detection is galaxy based. It is clear that projection
effects are significant: the mean profile (blue curve) does not show
the sharp wall typical of voids. It is also clear that we have found
profiles in X (red curve) that are stronger in contrast from minimum
density to highest wall density than those of the intrinsic voids. This
suggests that improving the algorithm further based on the motivation
of optimizing a typical void-like profile, under the assumption of
spherical shapes, would be unlikely to help further: strongly void-
like profiles are already well detected.

MNRAS 525, 91-106 (2023)

The top two panels of Fig. 2 show the x and z coordinates (spanning
the sky plane) of corresponding void centres, where the 2D void
centres are those found to best match a given 3D void, as described
in Section 2.4. The existence of multiple 3D voids whose best match
is a single 2D void is clear in the diagram. We interpret this as
illustrating cases where 3D voids are nearly aligned in projection,
and thus detected as a single 2D void.

The bottom panel of Fig. 2 shows that void radii are very poorly
recovered, and generally underestimated. One factor is clearly the
difficulty in distinguishing nearly concentric voids. However, it is
also likely that substructure is misidentified as void walls, leading to
the underestimates. Overall, the bottom panel of Fig. 2 shows that the
radii of our intrinsic population of 3D voids detected with REVOLVER
are reduced by about 5 Mpc ~~!, in an uncorrelated way with a big
scatter, when redetected with X as 2D voids.

3.3 Weak-lensing shear Y,

Using v, we find NJ;, = 29 2D voids, i.e. roughly two thirds of the
number of intrinsic galaxy voids, Nap = 46 (Table 2). Fig. 3 shows
that the mean behaviour of a lensing profile in | using the centres of
the intrinsic 3D voids is that | starts near zero, decreases to negative
values in the void, and appears to (in the mean) reach a minimum at
the wall radius found by REVOLVER, before increasing to a maximum
at a somewhat greater radius. This is reasonable, given the definition
fo 1. Fig. 3 shows that the 2D voids also have a (mean) Yy profile
that decreases and then increases to zero, but the increase to zero
occurs at lower fractions of the void radius.

Together, these profiles could be interpreted to suggest that
applying a systematic correction factor to increase the void radius
found when f)(r, i) = X(r, ) (see equation 14) might yield radii
that better match those of the 3D voids. The lowest panel of Fig. 4
is qualitatively consistent with this suggestion, as it shows that the
2D voids that are best matched to the 3D voids have radii that are
all smaller than the 3D void radii. However, Table 3 shows that
correspondence between the radii is insignificant. As in the case
of X, the projection of nearly concentric intrinsic voids, as well as
obscuring effects from more distant overlapping voids, make the use
of a single scaling correction for radii poorly motivated, except as a
crude statistical correction.

The two upper panels of Fig. 4 show what is quantified in
Table 3: the sky-plane positions are recovered non-randomly to high
statistical significance. Moreover, for the reverse question (Table 3),
P!.(3D|2D) < 0.001 appears to be robust against re-calculation
and machine error, so the use of weak-lensing shear — on its own —
to infer the presence of intrinsic 3D galaxy-traced voids appears to
be promising.

3.4 Optical scalars 6 and |o|

3.4.1 Expansion 6

Fig. 5 shows a map of the Sachs expansion 6 and sky-plane centres
of both the intrinsic voids and those detected via 6. As indicated
in Table 3, given the 3D voids, the best-matched 2D (6) voids are
recovered to high significance via their sky-plane centres. The top
two panels of Fig. 6 show the sky-plane matches.

However, we only find N5, = 34 voids using 6, many less than the
intrinsic voids. As with ¥ and 7, a likely interpretation is projected
concentricity of several voids and obscuration by other cosmic web
structure. The lower panel of Fig. 5 can be interpreted consistently
with this hypothesis: the mean 6 profile of the full set of intrinsic voids
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Figure 1. Upper panel: surface overdensity X projected along the line of sight. White 4+ symbols represent the x, z centres of 3D voids found with REVOLVER.
The red x symbols represent the centres of 2D voids found in the surface overdensity (Section 2.5.1); the red circles represent the walls of these (circular,
by definition) voids. Some of the 3D void centres are projected close to one another in the sky plane; our algorithm is not designed to distinguish these as
independent voids. Lower panel: radial void profiles of the surface overdensity  (equation 2), normalized to the estimated void radius and then averaged, using
the set of all (projected) 3D void centres and radii (mean: blue curve; standard deviation: green ‘\\’ hatching; ‘Revolver centre’) or using the set of all 2D void

centres and radii (mean: red curve; standard deviation: red ‘//’ hatching).

detected with REVOLVER is very weak, which would be consistent
with both effects. The profile for 2D voids detected with 0 is very
strong, qualitatively resembling a typical void density profile, with a
sharp (mean) wall.

The lowest panel of Fig. 6 shows that the radii are again poorly
correlated. Again, this is consistent with the detections using ¥ and
1, with the difference that the radii estimated with 6 expand greatly
from the intrinsic voids’ range of around 15-25 Mpc ~~! to around
5-30 Mpc h~". While to some degree these disagreements are likely

to be induced by the problems of projection, it might also be possible
that radii that are gravitationally realistic in terms of the potential ¢
differ significantly from those traced by the 3D galaxy distribution.
This is a question open for further study.

3.4.2 Sachs shear |o|

The upper panel of Fig. 7 shows a map of the modulus of the Sachs
shear, |o|. Again, Table 3 shows that given an intrinsic void, the Sachs
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Figure 2. Top to bottom, respectively: Given a set of intrinsic 3D voids in the
galaxy distribution, sky-plane positions x and z and radii R of the voids, and
corresponding positions and radii of the 2D voids detected with the surface
overdensity 3 that best match these 3D voids. The median (x, z) 7> distance
for the best-matched voids, given a 3D void (Section 2.4), for detections with
S is 7.8 Mpc ™!, Equality is shown by a straight line in all three panels.
The radii match poorly, with 2D radii mostly being less than the intrinsic 3D
radii. Plain-text data available at zenodo.8103985/void_matches_mass_def_g
iven_3D.dat.
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Figure 3. Radial void profiles of the weak-lensing shear 31, as in the lower
panel of Fig. 1, for 3D (projected) and 2D (1) sets of void centres. A map
for 1 is not shown, since the map of weak-lensing mean tangential shear
y1(r, f1) is redetermined for each possible void centre 7.
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Figure 4. Top to bottom, respectively: For each intrinsic 3D void, sky-plane
positions x and z and radii R of the best-matched 2D void detected with the
weak-lensing shear Y, as in Fig. 2. The median (x, z) T2 distance for the
best-matched voids, given a 3D void (Section 2.4), for detections with Y
is 6.5 Mpc h~'. All 2D radii are lower than those of the 3D voids that they
correspond to. Plain-text data available at zenodo.8103985/void_matches_g
amma_given_3D.dat.

shear detects the voids’ positions to high significance using our algo-
rithm. The lower panel of Fig. 7 shows a qualitatively similar result to
the use of the expansion 0, in the sense that shear profiles for the full
set of 3D voids have a weak mean profile, while those for the voids
detected in the 2D map of || show a strong void-like profile. Taking
into account the good sky-plane matches and poor radial matches
shown in Fig. 8, a consistent interpretation is again that the 2D de-
tected profiles are those that bypass both general obscuration and the
confusion induced by voids that are nearly concentric in projection.

4 DISCUSSION

4.1 Void lensing studies when intrinsic voids are known

With the simulation presented here, we have shown that if intrinsic
3D voids are known, then the effects of geometric-optics parameters
should be detectable in the sky plane, enabling the study of the
role that gravitational lensing plays in the voids. In other words,
we have shown a relation between voids in 3D comoving space
with their imprints left on maps of the projected and ray-traced
variables. Moreover, the lensing patterns induced by a void should
provide feedback to better constrain the model of the void itself. As
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Figure 5. Upper panel: Sachs expansion 6, as for Fig. 1, computed using equations (20) and (21), with white + symbols for the x, z centres of 3D intrinsic
galaxy voids and red x symbols for the centres of 2D voids detected with 6. Lower panel: Radial void profiles of 6, as in the lower panel of Fig. 1, for 3D
(REVOLVER) and 2D (8) sets of void centres. A factor of 10~ in the vertical scale is indicated by ‘le—5" (and similarly in Fig. 7 below).

argued by Sanchez et al. (2017) using ¥ (and photometric redshifts
to statistically limit the radial depth of the projection), this would
confirm that a galaxy-traced void is a genuine underdensity of the
dark matter density field. Other weak gravitational lensing detectors,
such as the Lyman « forest (Croft et al. 2018), could also be compared
to foreground galaxy-traced voids to check for consistency.

4.2 Blind (redshift-free) searches for voids

Without knowledge of spectroscopic or photometric galaxy redshifts,
we currently can justify use of the azimuthally averaged tangential

weak-lensing shear | and of the Sachs expansion 6 or shear |o|
for analysis of a photometric survey with the intention of inferring
the presence of 3D voids, since all three of these robustly yield
Px)fz(3D|2D)§ 0.01 (Table 3). Our calculation would appear to be
the first time that the use of Sachs expansion maps has been shown
to have the ability to reveal underlying voids. Jeffrey et al. (2021)
studied the combined use of the usual weak-lensing convergence
and shear in DES photometry over 4143 deg?, which appears to be
equivalent to using ¥ and 7, to reveal underlying voids.

Our algorithms can very likely be improved further. For example,
combining all four parameters, ¥, ¥, 6, and |o|, could lead to
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Figure 6. Top to bottom, respectively: For each intrinsic 3D void, sky-plane
positions x and z and radii R of the best-matched 2D void detected with
the Sachs expansion 6, as in Fig. 2. The median (x, z) T2 distance for the
best-matched voids, given a 3D void (Section 2.4), for detections with 6 is
5.8 Mpch~!. The 2D radii have a much broader distribution than those of
the intrinsic 3D voids, with no obvious correlation. Plain-text data available
at zenodo.8103985/void_matches_exp-given_3D.dat.

complementary constraints on whether or not a putative void is real
or correctly identified. These would only be partially independent
from one another, since the four parameters are related to one
another, with 6 and |o| taking into account the evolution of the
gravitational potential. Deriving the weak-lensing parameters for
an initial approximation, and then using the Sachs optical scalars
for an analysis to higher accuracy could be one viable strategy.
Another extension would be to examine individual pairs of the best-
matching 3D and 2D voids from the current algorithm presented here
to understand how their match could be improved; or alternatively,
examine the worst-matching pairs to understand what obstructs the
match and search for ways of avoiding the obstruction.

There are several advantages in detecting voids via their sky-plane
effects. Some of the fainter galaxies defining the walls of a void may
be too faint to be detected in a given survey. The tracing of dark matter
by luminous matter is by a long chain of physical effects: baryonic
matter has to be associated with the dark matter, and star formation
history and feedback effects need to be modelled. Geometric optics
bypasses this causal chain, and should lead to inferences made with
fewer assumptions.

MNRAS 525, 91-106 (2023)

4.3 Projected void concentricity and obscuring cosmic web
structures

Projection of voids to be nearly concentric is expected in our simula-
tion, since we integrate over the full box size of Ly,x = 120 Mpc !
and the largest intrinsic voids detected with the watershed algorithm
have radii Ry ~ 30Mpch~'. Our algorithm’s only strategy that
relates to the problem of projected void concentricity is to prefer
larger to smaller radii (step (vii) in Section 2.3.2). Figs 2, 4, 6, and
8 show that despite this, the 2D void radii tend to be lower than the
intrinsic radii. This empirical result would tend to favour keeping
this step unchanged.

In our analysis we make the simplification that the light bundle
only experiences gravitational lensing while passing through the
simulated volume and that there is no lensing signal generated behind
or in front of the simulated volume. Obscuration over the full light
cone would clearly be worse than in our model.

Our algorithm already has many parameters. Extending it to allow
successive multiple detections of walls could, in principle, lead to
a higher rate of detecting the intrinsic voids. Ideally, this should
lead to a statistically significant correlation between the intrinsic and
photometric void radii; in this work, our correlations in radii are
insignificant (Table 3). However, detecting multiple concentric walls
would quite likely also lead to false detections.

Strategies for solving the problem of obscuring structures (in the
absence of redshift information) are not obvious. Gravitationally
dense objects occupy little volume and still suffer from projection
effects; voids dominate the volume and thus are strongly affected by
projection effects. A Bayesian approach as in Jeffrey et al. (2021)
would be worth exploring.

One class of changes to our algorithm worth considering would be
to switch equation (3) to include a weighting with the radius r . This
would make the noise characteristics uniform over the sky area, so
that the algorithm is less sensitive to noise in small numbers of pixels.
However, for void-like radial profiles, this would require modifying
the profile detection aspects of our algorithm to be less sensitive to
requiring the void-like shape to be accurate in the void centre.

Since our simulation homogenizes the foreground and background
of the simulated volume, a real observational survey will include
stronger levels of both projected void concentricity and obscuring
cosmic web structures.

4.4 Other extensions

This work presents an initial proof-of-concept for detecting cosmic
voids via geometric optics. The specific results will vary with
simulation size in the senses both of length scales and particle
resolution, and between the use of different tracer particles. Further
work could consider the dependence on the probability of voids being
real for a given choice of tracer particle (Neyrinck 2008), and on the
choice of tracers themselves (Nadathur & Hotchkiss 2015a).

5 CONCLUSION

In this work, we have studied the two questions of whether voids in
the cosmic web yield detectable information in projected variables,
the surface overdensity X, the azimuthal averaged weak lensing
shear y|, the Sachs expansion 6, and the Sachs shear |o|, and
vice versa, whether the sky-plane information can be used to infer
the existence of the intrinsic 3D voids. We performed this using a
cosmological N-body simulation starting from initial perturbations
generated according to a standard initial power spectrum. We carried
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Figure 7. Upper panel: Sachs shear |o|, as for Fig. 1, computed using equations (20) and (21), with white + symbols for the x, z centres of 3D intrinsic
galaxy voids and red x symbols for the centres of 2D voids detected with |o|. Lower panel: Radial void profiles of |o|, as in the lower panel of Fig. 1, for 3D

(REVOLVER) and 2D (|o|) sets of void centres.

out the analysis in a fully controlled software environment with
full information about the dark matter distribution as well as the
luminous matter distribution, which we modelled using galaxies built
from a halo merger tree using semi-analytical tools. We detected the
intrinsic voids in the 3D comoving spatial distribution of galaxies
using a watershed void finder (Section 2.3.1). The void detection
in the projected plane (Section 2.3.2) is based on the assumption
that the azimuthally averaged profiles of the four detector variables
for the voids have shapes with predictable qualitative behaviour. In
the case of the surface overdensity ¥ and the two Sachs optical
scalars 6 and |o|, this expected shape is to start from a minimum

at the centre of a void, gradually increase radially outwards, and
increase sharply at the void’s wall. The weak-lensing shear ¥ is
expected to start from zero, decrease, and increase to zero just past
the void’s wall. Using a heuristically parametrized algorithm for
detecting these profiles, adjusted individually for the four detector
variables, we found positions and radii of 2D voids traced by these
detectors.

We find roughly similar numbers of 2D voids traced by each of the
four different detector variables, and in all cases, fewer voids than in
the 3D galaxy-traced distribution, as can be seen in Table 2. There are
two likely explanations. First, when several intrinsic voids are nearly
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Figure 8. Top to bottom, respectively: For each intrinsic 3D void, sky-plane
positions x and z and radii R of the best-matched 2D void detected with the
Sachs shear modulus |o |, as in Fig. 2. The median (x, z) T? distance for the
best-matched voids, given a 3D void (Section 2.4), for detections with |o |
is 4.4 Mpch~!. The 2D radii again have a broad distribution, as in Fig. 6.
Plain-text data: zenodo.8103985/void_matches_sig_given_3D.dat.

concentric in projection on the sky, our algorithm only detects one of
these, since it is not designed to detect multiple walls. Secondly, the
foreground and background structures of the cosmic web, i.e. walls,
filaments, clusters, and other voids, obscure the signals associated
with any single intrinsic void, making detection difficult. The lower
panels of Figs 1, 3, 5, and 7 show that the voids detected by us in the
projected plane follow the assumed qualitative shapes well, giving
confidence that our algorithm works as expected. However, the same
panels show that the corresponding mean profiles, using the centres
and radial sizes of the 3D intrinsic voids, but the detector variables
in the projected plane, are weak.

We interpret these two effects — the detection of fewer 2D voids
than those known to exist in the 3D spatial distribution, together with
the weak mean profiles of the projected-plane detector variables
centred at the intrinsic voids’ locations — as consistent with the
undetected voids being (statistically) those that are either the most
obscured or are concentric with the detected voids.

Given knowledge of the 3D voids’ centres, we find (Table 3,
third column) that the detected 2D voids are significantly closer than
random to the 3D voids’ centres in the sky plane, for all four detector
variables. In other words, a survey with sufficient spectroscopic or
photometric redshift information to detect voids should be usable to
infer patterns of gravitational lensing through the voids that should
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be measurable using either weak-lensing shear or the Sachs optical
scalars (answering question (ii) of Section 2.4 positively).

Conversely, if we only have a photometric survey that is blind,
in the sense of having neither spectroscopic nor photometric
redshift information, then we have established (Table 3, second
column) that the 2D voids detected via weak-lensing tangential shear
Y1, Sachs expansion 6 or Sachs absolute shear |o| significantly
reveal the true underlying 3D void population (question (i) in
Section 2.4). Use of the surface overdensity ¥ provides weaker
evidence for revealing the sky-plane positions of the underlying void
population.

While these results follow from significant correlations of voids’
locations in the sky plane, we find no significant correlation for
the radii. The bottom panels of Figs 2, 4, 6, and 8, show that the
2D void radii tend to be lower than the intrinsic radii. The lack
of correlation and the generally lower radii are consistent with the
problem of near concentric projection of multiple voids into the sky
plane.

While our current results are exploratory, with several caveats
as stated above, it does appear that gravitational lensing through
individual voids should be observationally detectable. Moreover,
weak-lensing tangential shear and Sachs expansion and shear in
future blind photometric surveys — such as those provided by the
Rubin C. Observatory’s Legacy Survey of Space and Time (LSST;
Sheldon et al. 2023) — should reveal the existence of intrinsic 3D
voids, yielding predictions that will be falsifiable by spectroscopic
followup surveys such as those of the 4-m Multi-Object Spectroscopy
Telescope (4MOST; de Jong et al. 2012, 2019; Richard et al. 2019) or
the Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013;
Hahn et al. 2022).
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APPENDIX A: COSMIC VARIANCE

While a full calculation of cosmic variance would be computationally
heavy, we provide the results of using three alternative choices of
random-number—generator seeds in Table A1. This gives a qualitative
illustration of cosmic variance. The specific results in significance
differ somewhat from those for the simulation of this work (Table 3),
especially in the case of using 2D voids to discover the intrinsic
3D voids. Thus, the optimal choice of detector variable for an
observational programme will to some degree vary among surveys,
depending on the physical realization of primordial fluctuation
amplitudes and phases. Using a wide range of detector variables
is likely to be more successful in the analysis of real surveys rather
than restricting the analysis to only a few variables.
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Table Al. As for Table 3, probability that the matches between 3D and 2D
voids for detector variable X are no better than those of randomly generated
2D voids, for three examples of alternative random seeds.

X P, .3D|2D) P, .2D|3D) Pr(3D|2D)  Pr(2D|3D)
Alternative seed 1
> 0.013 20x 1073 0.58 0.33
VI 0.00035 0.00024 0.14 0.21
0 0.0018 5.0 x 1073 0.98 0.83
lo| 0.027 0.00033 0.69 0.98
Alternative seed 2
> 0.0059 8.0 x 1073 0.19 0.42
v 0.15 0.026 0.62 0.35
0 0.017 0.0037 0.0079 0.056
lo| 0.0031 40 x 1073 0.30 0.66
Alternative seed 3
> 0.0027 0.0018 0.79 0.67
Vi 20x 1075 1.0x 1073 0.52 0.44
6 0.12 0.014 0.0056 0.0084
lo| 0.058 0.0014 0.83 0.38
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