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A B S T R A C T 

Curved space–time geometric-optics maps derived from a deep photometric survey should contain information about the 3D 

matter distribution and thus about cosmic voids in the surv e y, despite projection effects. We explore to what degree sky-plane 
geometric-optics maps can reveal the presence of intrinsic 3D voids. We carry out a cosmological N -body simulation and place 
it further than a gigaparsec from the observer, at redshift 0.5. We infer 3D void structures using the watershed algorithm. 
Independently, we calculate a surface o v erdensity map and maps of weak gravitational lensing and geometric-optics scalars. 
We propose and implement a heuristic algorithm for detecting (projected) radial void profiles from these maps. We find in 

our simulation that given the sky-plane centres of the 3D watershed-detected voids, there is significant evidence of finding 

corresponding void centres in the surface o v erdensity �, the av eraged weak-lensing tangential shear γ⊥ 

, the Sachs expansion 

θ , and the Sachs shear modulus | σ | . Reco v ering the centres of the 3D voids from the sky-plane information alone is significant 
given the Sachs expansion θ , or the Sachs shear | σ | , mildly significant given the weak-lensing shear γ⊥ 

, and not significant for 
the surface o v erdensity �. Void radii are uncorrelated between 3D and 2D voids; our algorithm is not designed to distinguish 

voids that are nearly concentric in projection. This investigation shows preliminary evidence encouraging observational studies 
of gravitational lensing through individual voids, either blind or with spectroscopic/photometric redshifts. The former case –
blind searches – should generate falsifiable predictions of intrinsic 3D void centres. 

Key words: gravitational lensing: weak – methods: numerical – dark matter. 

1

S
o
m  

fi  

p  

m
o
g
i  

t  

H
o
d  

(
l  

i  

G  

1  

i  

a  

w

�

g
d
i  

c  

o
B  

a  

d
c
a
d

 

(  

g  

f  

t
o
d
t  

o  

e  

p
t  

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/91/7231811 by guest on 23 April 2024
 I N T RO D U C T I O N  

pectroscopic redshifts to determine the (comoving) 3D structures 
f cosmic voids require much more telescope resources than photo- 
etric surv e ys alone. While the simplest interpretation of a (single-
lter) photometric surv e y is that it shows only the projected galaxy
ositions and shapes on the sky, the fact that the Universe is inho-
ogeneous implies that the photometric map contains information 

n the 3D distribution of inhomogeneities, with effects that are 
enerically referred to as gravitational lensing. While arguments exist 
n classical mechanics for expecting light rays to be deflected as if
he y were massiv e particles (e.g. Schneider, Ehlers & Falco 1992 ,
istorical Remarks), general relativity better justifies the response 
f light to gra vity. Relativistic gra vitational lensing theory was 
ev eloped man y decades ago in its generic form of geometric optics
Sachs 1961 ; Sasaki 1993 ). Some striking examples of gravitational 
ensing include detection of the twin quasar QSO 0957 + 561 A/B
n 1979 (Walsh, Carswell & Weymann 1979 ; Young et al. 1980 ;
orenstein et al. 1984 , 1988 ) and giant luminous arcs (Paczynski
987 ) and an Einstein cross (Adam et al. 1989 ) in the 1980s. For an
n-depth re vie w, see Bartelmann & Schneider ( 2001 ). While these
re strong lensing effects, in this paper we focus on weak lensing,
hich primarily causes changes in the shape and flux of background 
 E-mail: marius.peper@astro.uni.torun.pl 
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alaxies. Here, we argue that geometric-optics parameters that are 
erived from a deep photometric extragalactic map should contain 
nformation that can be used to detect some of the physical, 3D
osmic voids in the map, despite the fact that the voids are projected
n the sky plane together with foreground and background voids. 
y carrying out an N -body simulation and analysing it, using an
 priori reproducible software method, we aim to explore to what
egree maps of photometrically derived geometric-optics parameters 
an reveal intrinsic 3D voids. We consider both the conventional 
pproximation of weak-lensing parameters and Sachs optical scalars 
erived directly from the evolving gravitational potential. 
The disco v ery of cosmic voids goes well back o v er 40 yr

Gregory & Thompson 1978 ; J ̃ oeveer, Einasto & Tago 1978 ), from
alaxy surv e ys that indicated that large re gions appear to be devoid
rom g alaxies, with g alaxies being located primarily in structures
hat are usually described as walls, filaments, and clusters. Modern 
bservations indicate that the comoving volume of our Universe is 
ominated by cosmic voids. For example, measurements based on 
he Sloan Digital Sky Survey (SDSS) indicate that a total fraction
f roughly 60 per cent of the volume consists of cosmic voids (Pan
t al. 2012 ). Cosmic v oids ha v e recently gained in interest, as the y
rovide different characteristics for testing cosmological models to 
hose provided by overdense structures. Li, Zhao & Koyama ( 2012 )
se simulations to study voids in modified gravity models, namely 
 fifth force that would affect the size and the density of voids.
ark energy is suspected to influence the shape of a void (Bos et al.
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012 ). Studying the shape, density profile, size, and abundance of
osmic voids should yield crucial information about our Universe
e.g. Peebles 2001 ; Nadathur & Hotchkiss 2014 ; Pisani et al. 2015 ).

Multiple strategies for detecting voids in either observations or
imulations exist. Since voids consist of the absence of luminous
atter rather than its presence, this is a challenging task. Several

ifferent methods are commonly used for tracing these underdense
egions of the cosmic web. Early routines used the assumption of
pherical structures (e.g. Kauffmann & Fairall 1991 ) to detect voids.
his was justified from the theoretical description of a void evolving
ut of a tophat-filtered density fluctuation; ellipsoidal initial density
rofiles were found to generally evolve to become more spherical
Gunn & Gott 1972 ; Lilje & Lahav 1991 ; Sheth & van de Weygaert
004 ), and near -spherical v oid profiles were shown to be stable in the
bsence of shell crossings (Sussman & Bolejko 2012 ). The watershed
oid finders (e.g. Neyrinck 2008 ; Arag ́on-Calvo et al. 2010 ) make no
ssumptions on the shape of a void and is close to being parameter-
ree. This has become a de facto standard for determining the shapes
f cosmic voids. Watershed mechanisms detect local minima in
he density distribution of the cosmic web and identify underdense
tructures by searching for successively higher density contours,
f fecti vely finding the overdense edges of voids. The properties
f the resulting voids depend on the spatial number density of the
racer particles used to represent the matter distribution. Nadathur &
otchkiss ( 2015b ) show that randomly subsampling the density of
ark matter particles will tend to bias the void statistics, and suggest
he use of halo occupation distribution models instead. To apply a
atershed void finder to observational galaxy data, spectroscopic

edshifts are needed. 
S ́anchez et al. ( 2017 ) introduce a method of detecting voids from

 multifilter photometric surv e y by analysing redshift slices whose
hickness is based on the photometric redshift uncertainties. The first
etector variable that we analyse here results in a roughly comparable
ethod. We detect structures in the surface o v erdensity, which, under

he approximation of a constant mass-to-luminosity ratio, can be
nferred from the observed photometric survey. 

Ho we ver, we are primarily interested in other sky-plane variables
hat can yield information on the large-scale structure of the Universe:
he gravitional lensing signal. Due to the nature of dark matter having
ery weak interactions apart from gravity, we cannot measure the
ark matter distribution of the Universe directly from electromag-
etic surv e ys. Photometric galaxy surv e ys are generally thought to
rovide a fair proxy for the real projected matter distrib ution, b ut
ith man y cav eats. In contrast, the gravitational interaction of the
ark matter distribution with photons can be measured via lensing
ffects. A light bundle that transverses a cosmological structure
ill experience shear and expansion and in particular, cosmic voids

hould leave an imprint on the shear and expansion. This should make
t possible to reconstruct the underdensity field of voids based on the
ensing signal, without no dependence on assumptions about baryon
ooling or star formation. Large-scale maps of the gravitational
ensing signal could thus, in principle, be used to detect cosmic voids.
his would provide a method independent of using the projected
patial distribution of galaxies, since the lensing signal depends on
he full underlying mass density, no matter whether it is luminous or
ot. 
While in this work, we consider lensing parameters that are
easurable from source galaxies far beyond the voids that we aim

o detect, other observational methods of constructing the lensing
ignal have been proposed. Lewis & Challinor ( 2006 ) argue that
ince the cosmic microwave background (CMB) is lensed, the lensing
otential can be reconstructed based on the observed CMB power
NRAS 525, 91–106 (2023) 
pectrum. Another method was proposed by Croft, Romeo & Metcalf
 2018 ) to use Lyman α forest observations to obtain lensing signals
n the foreground of redshift slices of the forest. While our interest
s in detecting lensing from individual voids, the lensing signal from
nderdensities in deep projections has been detected in Dark Energy
urv e y (DES) Science Verification data (Gruen et al. 2016 ), which
oti v ates the search for lensing from individual voids. 
In this work, we consider an idealized scenario in which we

alculate detector variables without taking any detector errors into
ccount, to see if it is possible to detect individual voids by their
ensing signals. In reality, the deri v ation of the surface o v erdensity �,
he averaged weak-lensing tangential shear γ⊥ 

, the Sachs expansion
, and the Sachs shear modulus | σ | from observations involves many
ources of random and systematic error, which will need to be taken
nto account in observational analyses. If our initial approach is
uccessful, then the next step will be to make tests taking realistic
bservational noise and analysis into account. 
We present a software pipeline (which aims to be fully repro-

ucible on any unix-like operating system with sufficient RAM and
isc space; Akhlaghi et al. 2021 ) to generate a cosmological N -
ody simulation, to detect galaxies and voids in it, and to ray-trace
eometrics-optics parameters. The source package is provided as a
rozen record at zenodo.8103985 1 and in live 2 and archived 3 GIT

epositories. In Section 2.1 we briefly describe this o v erall pipeline,
hich extends that used in Peper & Roukema ( 2021 ). 
We describe our simulation geometry in Section 2.2 . We first detect

ntrinsic 3D voids using the watershed algorithm (Section 2.3.1 ). We
ndependently try to detect voids in projection, ‘photometrically’ (in
he absence of spectroscopic and photometric redshift information),
rom either the surface o v erdensity, conv entional weak-lensing,
r other geometric-optics signals. Our generic void profile search
lgorithm is defined in Section 2.3.2 . We compare the sky-plane
ositions and radii of the photometric voids to those of the intrinsic
D voids, using Monte Carlo simulations to check if this association
s better than random (Section 2.4 ). In Section 2.5 we present our four
etector variables, including a modification of our default void profile
earch algorithm specific to the weak-lensing shear, in Section 2.5.2 ).
e present our results in Section 3 , discuss these in Section 4 , and

onclude in Section 5 . This version of the paper was produced with
it commit d8952e7 of the source, after downloading, configuring,
ompiling, and running on a computer with a Little Endian x86 64
rchitecture. 

 M E T H O D  

.1 Software pipeline 

e use a highly reproducible software pipeline, following the
aneage template for reproducibility (Akhlaghi et al. 2021 ), that

enerates a realistic distribution of galaxies using a succession of
e veral dif ferent cosmological tools. The software pipeline extends
he galaxy formation pipeline presented in Peper & Roukema ( 2021 ).
he pipeline includes a full simulation chain, starting with the gen-
ration of initial conditions with MPGRAFIC and running an N -body
imulation with RAMSES (Teyssier 2002 ; Prunet et al. 2008 ). This
imulation is processed as in Roukema, Quinn & Peterson ( 1993 ),
oukema et al. ( 1997 ), but using more recent software packages: dark

https://zenodo.org/record/8103985
https://codeberg.org/mpeper/lensing
https://archive.softwareheritage.org/browse/revision/169cb31e75ba6bcb69dd31741cf53fcfc6795f91/?origin_url=https://codeberg.org/mpeper/lensing
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atter haloes are detected and their merger-history tree is built with 
OCKSTAR and CONSISTENT-TREES (Behroozi, Wechsler & Wu 2013a ; 
ehroozi et al. 2013b ) and semi-analytical galaxy formation recipes 
re applied with SAGE (Croton et al. 2016 ). We detect voids traced
y the resulting spatial distribution of galaxies using a watershed void 
nder with REVOLVER (Nadathur et al. 2019 ). The coding of our sky-
lane void-profile search algorithm (Sections 2.3.2 and Section 2.5.2 ) 
s original to this paper. The full details of the analysis are provided
n a live git repository 2 and a frozen Zenodo record. 1 We used fixed
seudo-random seeds in most steps in the pipeline, as indicated in 
he configuration files. A detailed discussion of the pipeline can be 
ound in Peper & Roukema ( 2021 ); here we primarily focus on new
teps that are added to the analysis. 

.2 Simulation geometry 

e use a simulation for a standard � CDM model (cold dark
atter cosmological model with a cosmological constant � ) with 
ubble constant H 0 = 70.0, current dark energy parameter 	� 0 = 

.7, and current matter density 	m0 = 0.3, N part = 256 3 parti-
les, and a comoving box size L box = 120 Mpc h 

−1 , where h : =
 0 /(100 km s −1 Mpc −1 ). This yields a dark matter particle mass of
 DM 

= 0.86 × 10 10 M � h −1 . We require at least 10 particles to
etect a halo. Since our simulated volume is a standard 3-torus ( T 

3 )
imulation, we detect dark matter haloes, generate a merger-history 
ree, and detect intrinsic voids by interpreting the simulation’s spatial 
ection as T 

3 . 
For computational convenience, for the ‘observational’ steps in 

hich we detect voids in a sky-plane map of a detector variable,
e interpret the (projected or ray-traced) simulated volume as the 

undamental domain of a 2-torus ( T 2 : = S 1 × S 1 × R ), where the
wo multiply connected directions lie in the sky plane. We informally 
efer to the fundamental domain as the ‘box’. The foreground and 
ackground of the box, at lower and higher redshifts, respectively, are 
mplicitly assumed to be a homogeneous (structure-free), simply con- 
ected � CDM background, i.e. they are assumed to be transparent 
nd flat, with no effect on gravitational lensing. This simplification 
elps focus on the primary questions of our analysis; future analyses 
hould include the effects of the full past time cone. We assume that
his box is observed at high redshift, with its centre at redshift z 

′ =
.5, corresponding to a comoving distance of χOL : = 1322.0 Mpc h −1 

rom the observer, which is a large distance compared to the box size.
e use both an observer-centred Euclidean comoving coordinate 

ystem, with the observer at ( x , y , z) = (0, 0, 0) and the centre of
he simulated volume on the y axis of the � CDM simply connected
pace at (0, χOL , 0), and a simulation-centred system shifted by χOL .
o model light rays detected by the observer we convert ( x , y , z)

o ( x = χsin θ
′ 
cos ϕ 

′ 
, y = χsin θ

′ 
sin ϕ 

′ 
, z = χcos θ

′ 
), where χ , the

omoving radial distance, together with θ
′ ∈ [0, π ] and ϕ 

′ ∈ [0, 2 π ]
re spherical coordinates of the spatial part of a flat � CDM model,
nd the simulation’s centre is at ( χ = χOL , θ

′ = π/ 2 , ϕ 

′ = π/ 2).
e compute each of our detector variables on a grid with N grid =

20 2 ‘pixels’ that we place on the middle plane of the box ( y =
322.0 Mpc h −1 ), at ( x , z) positions in the grid. We model light rays
mitted from an observer-centred spherical surface near the back face 
f the simulated box ( T 

2 slice), through to a second observer-centred
pherical surface close to the front face of the box. The light rays’s
patial paths are assumed to be straight in the non-perturbed space, 
.e. with constant θ

′ 
and ϕ 

′ 
. We a v oid approximately 5 per cent of the

ront and back parts of the box to minimize edge effects. Projected
ariables for a given pixel are computed along the line of sight of a
ight ray passing from the back spherical surface, through the pixel, 
o the front spherical surface. In other words, the grid approximately
orresponds to what is often referred to as ‘the sky plane’ for small
olid angles, although it is (in this construction) a genuinely flat plane
n como ving space. F or brevity, we will use the term ‘sky plane’ as
qui v alent to this grid. 

For the optical scalar calculations (Section 2.5.3 ), we trace our
ight rays geometrically under the assumption of a flat � CDM model,
ut calculate the optical scalars with a longitudinal Newtonian gauge 
pproximation of an inhomogeneous model, with the line element 

 s 2 = a 2 
[−(1 + 2 
 )d τ 2 + (1 − 2 
 ) 

(
d χ2 + χ2 d 	2 

)]
, (1) 

here τ is conformal time, 
 is a potential, and d 	 is the solid
pherical angle element (d θ

′ 
) 2 + (cos θ

′ 
d φ

′ 
) 2 . 

.3 Void detection 

.3.1 Intrinsic 3D voids 

e detect intrinsic voids traced by the galaxy population using 
he void finder REVOLVER , which is based on the watershed void
nder ZOBOV (Neyrinck 2008 ; Nadathur et al. 2019 ). The watershed
echanism in ZOBOV uses a Voronoi tessellation to estimate the 

ensities at the particles’ positions, is nearly parameter-free and 
akes no assumptions on the shape of the void. To characterize 

he size of a void, we use the ef fecti ve radius R eff , which is based on
he sum o v er the volumes V i of all the Voronoi cells that constitute a
oid, i.e. R eff : = 

3 
4 π

(∑ 

i V i 

)1 / 3 
. We adopt the geometric centroid of

he set of cells that constitute an intrinsic void as the centre of that
oid. This is called the ‘barycentre’ in the REVOLVER code, but is
athematically the barycentre only if the void is assumed to be filled
ith a uniform density fluid (Peper & Roukema 2021 , Section 1). 

.3.2 Photometric void detection 

e detect voids from variables in the sky plane that are, in principle,
bservationally measurable in photometric surv e ys: the surface 
 v erdensity �, and three geometric-optics related parameters. We 
ropose the following heuristically derived algorithm for detecting a 
rojected void in a map of the surface o v erdensity � (defined below
n Section 2.5.1 ) or the Sachs ( 1961 ) expansion θ or shear σ (optical
calars, defined below in Section 2.5.3 ). Our algorithm for detecting
oids from maps of the weak-lensing shear γ is similar, but differs
n the ways that are described below in Section 2.5.2 . 

In contrast to the case for o v erdense e xtragalactic objects, we
xpect the (azimuthally averaged) radial density profile of a void in
he sky plane, where the radius is r : = 

√ 

( x − x 0 ) 2 + ( z − z 0 ) 2 in our
 x , z) grid for an object centre ( x 0 , z 0 ), to have its lowest values in the
entre of the void and a sharp maximum at the void’s edge. The Sachs
xpansion θ and shear σ should also have a minimum at the centre
f a void and a maximum at the edge. While projection effects for
 v erdense structures are a perennial problem in astronomy (e.g. for
etermining whether a galaxy group is dynamically real or a chance
rojection), the projection effects can be expected to be much worse
or v oids, since v oids dominate the v olume of the Universe, implying
tronger o v erlaps. In contrast to o v erdense objects, spectroscopic
edshift determination for the rare galaxies in voids is unlikely to be
f fecti ve in separating a chance projection of voids from a void that
s real in three spatial dimensions, and is likely to be a statistically
nstable way of dynamically characterizing a void. Moreo v er, voids,
n general, are not perfectly spherical objects, making detection via 
emplates unlikely to be easy. Nevertheless, projection along the line 
MNRAS 525, 91–106 (2023) 
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Table 1. Parameters used in our 2D void detection algorithm in equations ( 6 ) 
and ( 7 ). 
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f sight should provide a modest effect of symmetrization, and by
ppropriately averaging, we hypothesize that detection is feasible. 

We define an isotropized (azimuthally averaged) variable X , i.e.
he average on a circle in the ( x , y ≡ χOL , z) grid plane, at radius r
nd centred on a pixel j , i.e. 

 j ( r) = (2 π ) −1 
∫ 2 π

0 
X( r, ϕ) d ϕ , (2) 

here ϕ is the angle around the circle centred on position j in the grid
nd X is either the surface o v erdensity �, or one of the optical scalars
or σ (for the weak lensing shear γ , see equation ( 15 ) below). To

stimate X j ( r), we sample the grid values at even intervals around
 circle of radius r , with intervals that give at least one value per
pc h −1 , we smooth the values with a third-order Savitzky–Golay

lter (Savitzky & Golay 1964 ), and integrate. 

We also define a disc-averaged profile X on the disc internal to a
iven radius (not weighted by the radius) by integrating equation ( 2 )
nd appropriately normalizing, i.e. 

 ( r ) = 

∫ r 
0 

∫ 2 π
0 X( r ′ , ϕ) d ϕd r ′ 

(2 π ) −1 
∫ r 

0 

∫ 2 π
0 d ϕ d r ′ 

= 

∫ r 
0 X ( r ′ ) d r ′ 

r 
, (3) 

nd a disc-averaged absolute slope, 

X 

′ ∣∣∣( r i ) = 

∑ 

i ′ <i | d X / d r | ( r i ′ ) 
i−1 , (4) 

here the index i indicates radial discretization in estimating X and
 

′ 
: = d X / d r . 

Apart from the case of the weak-lensing shear γ (Section 2.5.2 ),

e expect X (and thus X ) to increase monotonically from the
entre at r = 0 outwards as r increases, though the projection
gainst other v oids, v oids’ asphericity, and noise will make this
onotonicity difficult to detect. For each pixel j in our sky plane, we

efine a heuristic selection criterion ηX moti v ated by the expected
onotonicity as follows. 

(i) Ignore each pixel j with X ( r = 0) > X median , where X median is the
edian o v er all pix els in the sk y plane. The moti v ation is that for any
 , pixels with X ( r = 0) > X median are unlikely to correspond to the
entre of a void. The projected or ray-traced variables X should have
heir minima at voids’ centres. This step should remo v e man y pix els
nlikely to be void centres. In principle, this step might remo v e some
ixels that are genuinely the centres of intrinsic voids, especially in
he case of voids whose underdensities are shallow intrinsically or
n projection against foreground or background o v erdensities. At the
ost of increased computation time, removal of this step might lead
o detecting more voids. Ho we ver, in practice we expect that the
ain would be minor, since these types of voids will rarely have the
rojected void-like profiles that we aim to detect. 
(ii) For a given pixel j , for each radial distance r i from the

ixel, calculate the circular average X as in equation ( 2 ), where
or simplicity we omit the subscript j . We set the interval in r i to
e smaller than 1 Mpc h −1 in order to be sensitive to small-scale
tructure. 

(iii) A persistently positive strong positive slope in X is detected
s follows. Find i 1 , the first radial position i , with respect to pixel j ,
here all three of the conditions 

 

′ 
( r i ) > 

∣∣∣X 

′ ∣∣∣( r i ) (5) 

 ( r i ) − X ( r i−1 ) > f std 

〈(
X ( r i ′ ) − X ( r i ′ ) 

)2 
〉1 / 2 

i ′ <i 

(6) 

 ( r i ) > f mean X ( r i ) (7) 
NRAS 525, 91–106 (2023) 
re satisfied o v er four successiv e steps i − 3, i − 2, i − 1, i , where
 · 〉 is the mean and f std and f mean are heuristically chosen fractions.
he aim of criteria ( 5 ) and ( 6 ) is to find a range of radii where the
lope X 

′ 
has a stable and significant increase, i.e. where positive

econd deri v ati ves X 

′′ 
> 0 are numerically persistent. Criterion ( 7 )

ims to also require the slope X 

′ 
to be suf ficiently positi ve. The

alues adopted for f std and f mean are given in Table 1 . 
(iv) Find i 2 , the first local maximum in X for i > i 1 , i.e. the first

ocal maximum after the persistently strong positive slope condition
hat determines i 1 . 

(v) Define an initial void selection criterion η0 
X ( j ) : = 1 /r i 2 . The

adius r i 2 is the estimated radius of the candidate void. 
(vi) Steps (ii)–(v) are carried out for all pixels j accepted in step

i) (with (iii), (iv) modified in the case of γ ; see Section 2.5.2 ).
n order to cope with the very noisy data, we define a smoothed
election criterion for further use, ηX ( j ), as a low-pass triangular filter
weighted mean) of the 25 η0 

X ( j ) values in a 5 × 5 grid of pixels
entred on pixel j . 4 We then find all local minima of the selection
riterion ηX ( j ) o v er the pixels j as follows. 

(vii) We select a void centred at pixel j if it dominates its local
egion in the sense that ηX ( j ) < ηX ( k ), where k inde x es pix els in a
quare grid centred on pixel j and extending 5 pixels in each of the
x and ±z directions. As an extra credibility criterion, selection of a

oid is only accepted if ηX ( j ) < 0.90 
∑ 

k ηX ( k )/ 
∑ 

k 1, where k inde x es
ll pixels in the map. This algorithm results in a list of projected
oids with centres j and radii r i 2 ( j ) that represent the largest locally
redible voids. 

(viii) To a v oid cases where a single genuine v oid is misidentified
s two slightly offset voids, we check if two or more centres are
loser to one another than 

min 
{
r i 2 ( j 1 ) / 4 , r i 2 ( j 2 ) / 4 , 10 . 0 Mpc h 

−1 
}

. (8) 

n these cases, we merge these voids into a single void. The new
entre and radius of the merged void are defined as the mean of the
entres and radii of the unmerged voids. 

.4 Matches to intrinsic voids 

o quantify whether the photometric detection of voids – 2D voids –
uccessfully finds the intrinsic 3D voids, we first define a heuristically
oti v ated matching criterion to find the best matches, and then

ompare the set of best matches to an equi v alent set of best matches
hen the list of 2D void parameters is generated randomly (positions)
r randomly shuffled (radii). This aims at answering two different
uestions: (i) given a detected set of 2D voids, are these better than
 random set of 2D voids at revealing true 3D voids? (ii) given a set
f intrinsic 3D voids, do the detected 2D voids better match these
numerically) real voids better than a random set of 2D voids would?
he former question is interesting for observational detection of 3D
oids from photometric or other geometric-optics data; the latter is
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nteresting for using spectroscopically defined 3D voids to moti v ate 
earches for gravitational lensing by voids. 

.4.1 Best matches and median sky-plane separation μx , z 

e define the probability of the i th 2D void being a match to the
 th 3D (watershed) void by first defining the probabilities that the
 and z positions are close in the T 

2 sense and that the radii are
ogarithmically close. We set a cumulative Gaussian probability that 
he x and z positions for variable X ∈ { �, γ , θ , σ} are closer to each
ther than the estimated values, 

 

X 
( x,z) i,j 

= 1 − erf 
d 
(

( x ,z) X 
i 

, ( x ,z) X 
j 

)
√ 

2 σx,z 
, (9) 

here erf is the error function, d (.,.) is the T 

2 minimum distance in
he x –z plane, and σx,z = 5 . 0 Mpc h 

−1 . Similarly, we set 

 

X 
R i,j 

= 1 − erf 

∣∣∣log 10 

(
R X 

i 
/R X 

j 

)∣∣∣
√ 

2 σlog 10 R 
, (10) 

here σlog 10 R 
= 0 . 30 . These are assumed, for simplicity, to be 

ndependent probabilities, giving a heuristic o v erall probability that 
he i th 2D void matches the j th 3D void 

 

X 
i,j = P 

X 
( x,z) i,j 

P 

X 
R i,j 

. (11) 

For question (i) (Section 2.4 ), given a 2D void i , we find the 3D
oid j with the highest matching probability P 

X 
i,j , for detector variable

 . This does not exclude the possibility that two different 2D voids
est identify with the same 3D void. For a set of N 2 D detected 2D
oids, this gives us a matched set of N 2D objects, which have both
D and 3D sky position and radius information, presumed to match. 
For each object in this set, we calculate the T 

2 distance between
he 2D and 3D ( x , z) positions and from the distribution of these
alues, calculate μx , z (3D | 2D), the median distance for a 3D match
iven a 2D match. In calculating this median, in cases where a single
D void is the best match for two or more 2D voids, we only consider
he match in which P 

X 
i,j is maximized. 

For question (ii), given a 3D void i , we find the 2D void j with the
ighest matching probability P i , j . Again, this does not exclude the 
ossibility that two different 3D voids best identify with the same 2D
oid. In practice, since we find fewer 2D voids to 3D voids, there are
ecessarily cases where multiple 3D voids identify with a single 2D 

oid. For a set of N 3D detected 3D voids, this gives us a matched set
f N 3D objects, which have both 2D and 3D sky position and radius
nformation, presumed to match. 

For each object in this set, we calculate the T 

2 distance between
he 2D and 3D ( x , z) positions and infer μx , z (2D | 3D), the median
istance for a 2D match given a 3D match, again using the highest
 

X 
i,j to reduce non–one-to-one matches. 

.4.2 Comparison to matches for random 2D voids 

e generate a Monte Carlo simulation of 2D voids by choosing N 2D 

airs ( x , z) from a uniform random distribution within the x and z
anges of the 2D grid. For both questions (i) and (ii) (separately), for
ach Monte Carlo simulation, we find matched sets using the same 
lgorithm as abo v e. 

To answer question (i) we estimate μx , z (3D | 2D) for a given
etector X , for both the original matched set and for each of the
imulated matched sets. This yields P 

X 
x,z (3D | 2D), the frequentist 

robability that the original μx , z (3D | 2D) is less than μx , z (3D | 2D)
rom the Monte Carlo simulations. In other words, P 

X 
x,z (3D | 2D) is

he probability that, given the 2D voids, the matches with 3D voids
n the sky plane are no better than those drawn from a Monte Carlo
imulation. 

Similarly, for question (ii), the frequency with which the original 
x , z (2D | 3D) is less than the values of μx , z (2D | 3D) from the

imulations yields P 

X 
x,z (3D | 2D), the probability that, given the 3D

oids, the matches with 2D voids in the sky plane are no better than
hose drawn from a Monte Carlo simulation of sky positions. 

Cases where 3D voids are concentric or approximately o v erlap in
rojection will yield only a single 2D void using our algorithm, and
re likely to make estimation of the radii difficult. The range of values
f the radii are not as conveniently constrained as the ( x , z) centres of
he voids. Rather than choosing an arbitrary range for a Monte Carlo
imulation, we use a non-parametric method. We define P 

X 
R (3D | 2D)

s the two-sided probability that the Spearman ρ rank correlation 
oefficient (Spearman 1904 ) of the matched set of N 2D values R 

X 
i 

nd R 

X 
j ( i) is stronger (positive or negative) than what it would be for

 set of paired values where one set is randomly permuted. 
Similarly, we define P 

X 
R (2D | 3D) as the two-sided probability that

he Spearman ρ ranking coefficient of the matched set of N 3D values
 

X 
i and R 

X 
j ( i) is stronger (positive or ne gativ e) than it would be under

andom permutations. 

.5 Detector variables �, γ , θ , σ

ere we define and describe our detector variables X ∈ { �, γ , θ ,
} , where here we write the generic forms of these variables for

implicity; the more specific forms are gi ven belo w. These detector
ariables can, in principle, be derived from a photometric map, given
ome minimal assumptions, such as a mass-to-light ratio in the case
f the surface o v erdensity �, or statistically isotropic distributions of
alaxy shape parameters in the case of the other three parameters. We
erive each of these from the particle distribution, not from the galaxy
istribution. We include � since apart from requiring a mass-to-light 
atio assumption, it is the simplest to derive from a photometric map.

.5.1 Surface overdensity � 

e calculate the surface o v erdensity by integrating the overdensity
− ρ̄ along the line of sight, neglecting temporal evolution. (Tempo- 

al evolution is taken into account with the optical scalar modelling;
ee Section 2.5.3 below.) Densities are constructed for each particle 
sing a Voronoi tessellation followed by linear interpolation. For a 
at model, the surface o v erdensity in direction ˆ n is 

( ̂  n ) = 

∫ χmax 

χmin 

( ρ( ̂  χ, 	) − ρ̄)d χ, (12) 

here χmin = χ ( z O ) − 0.95 L box /2 and χmax = χ ( z O ) + 0.95 L box /2.
he 0.95 factor neglects the 5 per cent front and back parts of the box

o minimize edge effects (Section 2.2 ). Since we expect the surface
 v erdensity � to be ne gativ e in a void, we aim to detect it in places
here it is physically a surface underdensity, i.e. a projected mass
eficit. 
Detection strategy with �: Voids typically have strong underden- 

ities in their interior, so the 2D projection of a void should still show
 strong underdensity in the interior after projection. Thus, we search
or local minima in �. 

The projection of foreground and background voids and their 
alls (in reality, clusters, filaments, and walls) will, to some degree,
bscure this search. To the extent that the obscuration can be
tatistically neglected or removed, the azimuthally averaged radial 
rofile � (equation 2 ) should show a slow increase in � from the
entre of a projected void outwards until it nears the (projected)
MNRAS 525, 91–106 (2023) 
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all, when a rapid increase should occur, followed by a drop as � 

symptotes to the mean of the environment surrounding the void.
hus, a local maximum in � at the wall that surrounds the void
hould be sought. We expect that larger voids should yield clearer
ignals. 

Some pixels, likely containing galaxy clusters or projections of
alaxy filaments, were found to be highly o v erdense, misleading our
lgorithm’s search for void walls because of these o v erdense pix els’
trong influence on � . To reduce the influence of these extreme
ixels, prior to step (i), we truncate � values at the 90th percentile
f their distribution. 
Substructures of o v erdensities e xist inside of voids, similar to the

arger scale o v erdensities of the cosmic web, but traced by dark
atter haloes of much lower mass (Gottl ̈ober et al. 2003 ). These

ubstructures contribute another obscuring factor that should weaken
ur proposed detection algorithm (Section 2.3 ) using �. 

.5.2 Weak-lensing tangential shear γ⊥ 

eak gravitational lensing information is typically extracted from
bservations by using the distortion of observed images that is
nduced by cosmological inhomogeneity, with the aim of tracing
he spatial distribution of dark matter. We follow the mathematical
escriptions of Bartelmann & Schneider ( 2001 ), Krause et al. ( 2013 ),
nd Kilbinger ( 2015 ). We derive the parameters of this idealized
odel from the surface o v erdensity calculated in our cosmological

imulation. 
We represent the lens plane (Bartelmann & Schneider 2001 ,

g. 11) with two orthogonal spatial directions with indices a and
 ; the direction of propagation of the light bundle as it would arrive
t the observer from the source if unlensed, represented as a vector
n the lens plane, � S ; and the direction at which the light bundle
eaches the observer after lensing, again a vector in the lens plane,
 O . Assuming that the rotation of the image vanishes, the Jacobian
atrix can be decomposed into the shear γ and the convergence κ

Bartelmann & Schneider 2001 , equation 3.11): 

 = 

(
1 − κ − γ1 −γ2 

−γ2 1 − κ + γ1 

)
. (13) 

he convergence κ at a generic position in the sky plane can be
 v aluated as κ( ̂  n ) = 

�( ̂ n ) 
� crit 

, where � crit = 

c 2 

4 πG 

D OS 
D OL D LS 

(Bartelmann &
chneider 2001 , equation 3.7). The values D XX are the angular
iameter distances between the observer (O), the lens (L), and the
ource (S). For simplicity, we assume the observer–lens and lens–
ource radial comoving distances to be equal, i.e. χOL = χLS , giving
OS = 2 χOL . We do not attempt void detection with κ , as the result
ould be equi v alent to using �. 
For our detection strategy we use � ( r, ̂  n ), the isotropized (ring

veraged) form of � (equation 2 ) with respect to a given centre ˆ n of a
ossible void, applying a 90 per cent cut in the line-of-sight direction
s explained in 2.5.1 , and subtract it from the surface overdensity
veraged within a disc centred on ˆ n , yielding 

�( r, ̂  n ) : = 

˜ � ( r, ̂  n ) − � ( r, ̂  n ) , (14) 

here ˜ � ( r, ̂  n ) is defined in equation ( 16 ). As in Krause et al. ( 2013 ,
quations 4 and 5) and also derived in Kilbinger ( 2015 , equations 40–
7), the mean of the tangential component of the shear internal to a
ing at r can then be e v aluated as 

⊥ 

( r , ̂  n ) = 

��( r , ̂  n ) 

� 

. (15) 
NRAS 525, 91–106 (2023) 

crit 
he disc average ˜ � calculated by integrating ( 2 ) over the radius,
sing the usual weighting and now leaving the centre ˆ n implicit, is 

˜ 

 ( r ) = 

∫ r 
0 

∫ 2 π
0 �( r ′ , ϕ) r ′ d ϕd r ′ ∫ r 

0 

∫ 2 π
0 r ′ d ϕd r ′ 

= 

2 π
∫ r 

0 � ( r ′ ) r ′ d r ′ 

πr 2 
. (16) 

Detection strategy with γ⊥ 

: By definition, γ⊥ 

( r) should be close
o zero at r = 0, the centre of a void, and should decrease to a sharp
inimum where r is the radius of the void’s (statistical) wall. At

reater radii, both the azimuthally averaged surface o v erdensity � 

nd the disc-averaged ˜ � should approach zero, so γ⊥ 

( r) should also
ncrease up to zero. The minimum in γ⊥ 

( r) should reveal the edge of
he void. 

Since this qualitative behaviour of γ⊥ 

( r) differs from the other
etector variables considered, we modify steps (iii) and (iv) of the
lgorithm of Section 2.3.2 as follows. 

Since γ⊥ 

and γ⊥ 

′ calculated according to ( 2 ) are noisy, we apply ex-
ra smoothing, replacing γ⊥ 

( r i ) and γ⊥ 

′ ( r i ) by 〈 γ⊥ 

( r i ) 〉 { max (0 , i−3 ) , ... , i+ 3 }
nd 〈 γ⊥ 

′ ( r i ) 〉 { max (0 , i−3 ) , ... , i+ 3 } , respectively. This smoothing reduces
he role of local fluctuations in the dark matter distribution. 

(i) After this smoothing, we search for the radial distance where
⊥ 

starts dropping sharply, i.e. the index i 1 is the first value i where
⊥ 

( r i ) < γ⊥ 

( r i ). 
(ii) The radial distance just past the wall is sought as the radial

istance where γ⊥ 

increases sharply, i.e. the index i 2 is the first value
 > i 1 where γ⊥ 

( r i ) > γ⊥ 

( r i ). 
(iii) In addition, to remo v e choices of a void centre where the best

wall’ found this way has a weak density contrast, we dismiss the
andidate detection if 

∣∣γ⊥ 

∣∣ / max ( | γ⊥ 

| ) < 0 . 1. For patterns in γ⊥ 

that
ave almost no significant features, this criterion avoids interpreting
 nearly flat curve γ⊥ 

( r i ) as a candidate void. 

If both r i 1 and r i 2 are detected, then we continue to step (v) as
bo v e (Section 2.3.2 ). Ev en if pix el j is correctly centred on a void’s
entre, this algorithm for γ⊥ 

can fail to detect r i 2 if the (projected)
nvironment just outside the void’s wall includes strong fluctuations.
n the case of failure to detect r i 2 , the pixel is considered invalid at
tep (v) and dropped from further consideration. 

.5.3 Optical scalars θ and | σ | 
e calculate optical scalars following Sasaki ( 1993 ). In principle, the

ptical scalars should model the real Universe more accurately than
he weak-lensing scalars described abo v e, since fewer assumptions
re required (Clarkson et al. 2012 , Section III.B) – the real Uni-
erse is inhomogeneous rather than strictly Friedmann–Lema ̂ ıtre–
obertson–Walker (FLRW). Clarkson et al. ( 2012 ) give a detailed
eri v ation of the relation between the optical scalars θ and σ and the
sual weak-lensing scalars, in particular in their equations (41)– (43),
ith slightly differing conv entions. F or e xample, the Sachs shear σ

ncludes information not only from the weak lensing shear γ , but
lso from the evolution of γ with respect to the affine parameter
long a null geodesic. While the differences in practice may not be
arge, especially in the FLRW context, the advantage of modelling the
achs optical scalars is to prepare for future work that simultaneously

akes into account both structure formation and expansion of the
niverse (e.g. Heinesen 2023 , and references therein). For simplicity,

n the weak lensing case we model the commonly studied tangential
eak lensing shear γ⊥ 

, while in the Sachs optical scalar case we
odel the shear modulus | σ | , as explained below. In the Newtonian

pproximation, the Ricci tensor can be written as 

 00 ≈ 8 πGρω 

2 (17) 
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Table 2. Numbers of intrinsic 3D voids detected with REVOLVER , N 3D , and 
in the 2D grid, N 

� 
2D , N 

γ

2D , N 

θ
2D , and N 

σ
2D , using the surface o v erdensity �, 

the weak-lensing shear γ⊥ , the Sachs expansion θ , and the modulus of the 
Sachs shear | σ | , respectively. 

N 3D N 

� 
2D N 

γ

2D N 

θ
2D N 

σ
2D 

46 28 29 34 39 

Table 3. Probability that the matches between 3D and 2D voids for detector 
variable X are no better than those of randomly generated 2D voids, 
P 

X 
xz (3D | 2D) when given 2D voids; or P 

X 
xz (2D | 3D) when given 3D voids; 

and probability that the Spearman rank correlation coefficient for the radii of 
matched 3D and 2D voids for detector variable X could be that of a set of 
randomly paired values, P 

X 
R (3D | 2D) when given a 2D void; and P 

X 
R (2D | 3D) 

when given a 3D void. See Section 2.4.2 . Plain-text version available at 
zenodo.8103985/void match analysis.dat. 

X P x , z (3D | 2D) P x , z (2D | 3D) P R (3D | 2D) P R (2D | 3D) 

� 0 .027 0.0038 0.89 0 .94 
γ⊥ 0 .010 3.0 × 10 −5 0.85 1 .0 
θ 0 .00050 3.0 × 10 −5 0.25 0 .16 
| σ | 0 .00014 1.0 × 10 −5 0.27 0 .61 
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nd the Weyl tensor components of interest are 

 A 0 B0 ≈
(

2 
 ; AB − δAB 
 

; C 
; C 

)
ω 

2 (18) 

= 

(
2 
 ; μνe 

μ
A e 

ν
B − δAB δ

CD 
 ; μνe 
μ
C e 

ν
D 

)
ω 

2 , (19) 

Sasaki 1993 , equations 3.22 and 3.21) where G is the gravitational
onstant; space and time units are related by c = 1; ρ is density; 
 is
he gravitational potential; ω = −k μu μ = 1 + z redsh , for an observer
our-velocity u μ, light propagation one-form k μ, and redshift z redsh ;
 e A , e B } or { e C , e D } are a pair of dyad basis vectors; and δAB is the
ronecker delta ( δAB = 1 if A = B , δAB = 0 if A �= B ). The dyad basis
ectors e A , e B span the space-like 2-plane that is orthogonal to the
patial path of the light ray that points from the observer towards the
irection of a cell of the grid. We use the Gram–Schmidt method to
onstruct e A and e B . 

The optical scalars – the expansion θ (real) and the shear σ (com- 
lex) – are related to each other and the Weyl tensor (equation 19 )
ia the coupled pair of differential equations 

d 

d � 
θ = −R 00 − 2 | σ | 2 − 1 

2 
θ2 (20) 

nd 

d 

d � 
σ = −( C 1010 + i C 1020 ) − σθ . (21) 

or a visualization of the effect of θ and σ on a light bundle we refer
o Sasaki ( 1993 , fig. 4), where σ = σ+ 

+ i σ×. 
Detection strategy with θ and | σ | : Both the expansion θ and the
odulus of the shear, 

 σ | = 

√ 

Re ( σ ) 2 + Im ( σ ) 2 (22) 

hould be closely related to the surface o v erdensity, since inte grations 
long paths approximately (spatially) orthogonal to the lens plane 
re performed in all three cases. Ho we ver, these are not exactly
nalogous. Not only are these distinct physical quantities, but the 
 v erdensity inte gral is performed parallel to the y axis, while for
ach pixel in our 2D grid plane, we estimate θ and | σ | along a
patially straight path from the observer through the pixel, i.e. only 
pproximately parallel to the y axis. 

In practice, initial numerical exploration shows that θ and | σ | 
ehav e qualitativ ely like �, in that the y start from a lo w v alue at the
entre of a void and increase to a sharp maximum at a void boundary.
hus, we use the same search algorithm for finding voids in maps of
and | σ | as indicated abo v e in Section 2.3.2 , with slightly adjusted

arameters (Table 1 ). While qualitatively similar in numerical terms, 
he physical meanings of these parameters differ. The optical scalars θ
nd | σ | , if derived from observations, represent the underlying matter
istribution with no dependence on observed luminosity and without 
he simplifying assumptions of the weak-lensing approximation. In 
articular, the weak-lensing shear γ⊥ 

(equation 15 ) is an average 
efined with respect to a hypothesized void centre, while θ and | σ |
rovide maps prior to assumptions about void centres. 

 RESULTS  

.1 Simulation 

e performed an ab initio simulation and detected voids as described 
bo v e. As indicated in Table 2 , we detected N 3D = 46 voids in the
alaxy population with the watershed mechanism, and smaller num- 
ers of 2D voids using �, γ⊥ 

, θ , and | σ | from the projected density
istribution and by ray-tracing through the evolving gravitational 
otential 
 . 
Table 3 shows the probabilities, defined in Section 2.4.2 , that
uantify the significance of: (i) a detected 2D void revealing the
xistence of an intrinsic 3D void via its sky plane position or radius,
 

X 
x,z (3D | 2D) or P 

X 
R (3D | 2D), respectively, and (ii) an intrinsic 3D

oid implying that its 2D projection is detectable, P 

X 
x,z (2D | 3D) or

 

X 
R (2D | 3D). In each case, these represent the probability that the
stimated correspondence between the populations could occur by 
hance, given prior information on the number of 2D voids (for
ositions) or non-parametrically (for radii). 
Since voids in N -body simulations are characterized by small 

umbers of particles, the detection of individual voids, whether 
n the 3D galaxy distribution or by a 2D detector in variables
erived from the particle distribution, is in general numerically 
ensitive to small changes in machine arithmetic. We performed a 
mall number of independent full-pipeline simulations, retaining the 
ame pseudo-random number seed, to investigate this qualitatively. 
he re-simulated equi v alent of the v alues listed in Table 3 shows
mall variations with re-simulation on a given machine, and stronger 
 ariation between dif ferent machines. We describe our results taking
nto account our small-scale estimates of their reproducibility, and 
se the word ‘robust(ly)’ to indicate cross-machine reproducibility. 
n principle, cosmic variance can be explored by varying the random
eeds. In Appendix A , we show the equivalent of Table 3 for a small
umber of full-pipeline simulations with alternative random number 
eeds. The specific levels of significance vary somewhat with cosmic 
ariance. 

We find P 

X 
x,z (2D | 3D) values (robustly) indicating significant 

atch distributions in all four cases, with P 

� 
x,z (2D | 3D) < 0 . 01 , and

 

X 
x,z (2D | 3D) < 0 . 0001 for X ∈ { γ⊥ 

, θ, | σ |} . Thus, we find that given
he 3D voids found with the watershed algorithm in the galaxy
istribution, the sky plane positions of the 2D voids found using
he surface o v erdensity � are significantly closer to the former
han they would be if the same number of 2D void positions were
hosen randomly. In other words, we have a significant response to
uestion (ii) for �. This is reassuring, because it shows that despite
he projection effects of multiple voids and their aspherical shapes, 
he centres of the intrinsic 3D voids can be reco v ered in the 2D � 

istribution. 
MNRAS 525, 91–106 (2023) 
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Moreo v er, we find that for the weak-lensing tangential shear γ⊥ 

,
nd for both the Sachs optical scalar expansion θ and shear | σ | ,
he centres of the 2D voids represent the 3D void centres to high
ignificance. Thus, any of the four parameters should be usable to
e-detect the void centres known from the 3D voids. 

In contrast, if we start with the 2D photometric map and predict
he centres of the 3D voids, we only find (Table 3 ) the weak-
ensing tangential shear γ⊥ 

, the Sachs expansion θ and the Sachs
bsolute shear | σ | to significantly and robustly reveal underlying
D voids, with P 

X 
x,z (3D | 2D) � 0 . 01 in all three cases. Comparison

ith P 

� 
x,z (3D | 2D) in Table 3 , for the surface o v erdensity, shows

hat disco v ering a 3D void thanks to its 2D signature is less likely
ith �. In other words, in answering question (i), use of our

lgorithm with any of the three geometrical optics parameters is
ore likely to reveal the sky-plane position of the 3D void than

sing �. 
These results show that the intrinsic 3D void signal yields

etectable void centres with our algorithm in not only the projected
2D) surface o v erdensity �, inferrable from photometric maps with
nly a mass-to-light ratio assumption, but also in the 2D maps
f weak-lensing and Sachs optical shear parameters. If additional
nformation, such as spectroscopic or photometric redshift infor-
ation, is available, then combining that information with lensing

nalyses of the data should lead to tighter constraints on the (partly
nvisible) underdensity distributions, as opposed to using galaxies’
ky positions and redshifts alone. 

Moreo v er, in the absence of galaxy redshift information, 2D maps
hould yield constraints on the mass distribution, at least in the case
f γ⊥ 

and θ . Ho we ver, while the void centres are detected, the radii
re poorly constrained from either 3D or 2D maps. 

We examine these results and caveats more closely in the following
ections. 

.2 Surface o v erdensity � 

he upper panel of Fig. 1 shows the map of the surface o v erdensity
, together with sky-plane centres of the intrinsic 3D voids of the

alaxy distribution and the 2D voids detected via � as described
n Section 2.5.1 . The correspondence between these, formalized in
able 3 , can be inspected qualitatively by judging if a 3D void centre
white + ) has a 2D void centre (red ×) more close to it than a
andomly placed point. Of the N 3D = 46 intrinsic galaxy voids, only
 

� 
2D = 28 2D voids are detected (Table 2 ). The fact that N 

� 
2D < N 3D 

s expected, since we did not design our algorithm to distinguish
oids that are nearly concentric when projected to the sky plane. 

The lower panel of Fig. 1 shows the � profiles averaged over
ll the 2D centres, and, independently, av eraged o v er all the 3D
entres (projected by ignoring the y coordinate). Comparison of
hese two curves (and their standard deviations, hatched) shows how
ell we might expect our algorithm to perform. The profiles for the
D centres are those that would be detected if the algorithm were
erfect in reco v ering the intrinsic v oids, lea ving aside the difference
hat the 2D detection uses the full dark matter particle distribution,
hile the 3D detection is galaxy based. It is clear that projection

ffects are significant: the mean profile (blue curve) does not show
he sharp wall typical of voids. It is also clear that we have found
rofiles in � (red curve) that are stronger in contrast from minimum
ensity to highest wall density than those of the intrinsic voids. This
uggests that improving the algorithm further based on the moti v ation
f optimizing a typical void-like profile, under the assumption of
pherical shapes, would be unlikely to help further: strongly void-
ike profiles are already well detected. 
NRAS 525, 91–106 (2023) 
The top two panels of Fig. 2 show the x and z coordinates (spanning
he sky plane) of corresponding void centres, where the 2D void
entres are those found to best match a given 3D void, as described
n Section 2.4 . The existence of multiple 3D voids whose best match
s a single 2D void is clear in the diagram. We interpret this as
llustrating cases where 3D voids are nearly aligned in projection,
nd thus detected as a single 2D void. 

The bottom panel of Fig. 2 shows that void radii are very poorly
eco v ered, and generally underestimated. One factor is clearly the
ifficulty in distinguishing nearly concentric voids. Ho we ver, it is
lso likely that substructure is misidentified as void walls, leading to
he underestimates. Overall, the bottom panel of Fig. 2 shows that the
adii of our intrinsic population of 3D voids detected with REVOLVER

re reduced by about 5 Mpc h −1 , in an uncorrelated way with a big
catter, when redetected with � as 2D voids. 

.3 Weak-lensing shear γ⊥ 

sing γ⊥ 

, we find N 

γ

2D = 29 2D voids, i.e. roughly two thirds of the
umber of intrinsic galaxy voids, N 3D = 46 (Table 2 ). Fig. 3 shows
hat the mean behaviour of a lensing profile in γ⊥ 

using the centres of
he intrinsic 3D voids is that γ⊥ 

starts near zero, decreases to ne gativ e
alues in the void, and appears to (in the mean) reach a minimum at
he wall radius found by REVOLVER , before increasing to a maximum
t a somewhat greater radius. This is reasonable, given the definition
o γ⊥ 

. Fig. 3 shows that the 2D voids also have a (mean) γ⊥ 

profile
hat decreases and then increases to zero, but the increase to zero
ccurs at lower fractions of the void radius. 
Together, these profiles could be interpreted to suggest that

pplying a systematic correction factor to increase the void radius
ound when ˜ � ( r, ̂  n ) = � ( r, ̂  n ) (see equation 14 ) might yield radii
hat better match those of the 3D voids. The lowest panel of Fig. 4
s qualitatively consistent with this suggestion, as it shows that the
D voids that are best matched to the 3D v oids ha ve radii that are
ll smaller than the 3D void radii. Ho we ver, Table 3 sho ws that
orrespondence between the radii is insignificant. As in the case
f �, the projection of nearly concentric intrinsic voids, as well as
bscuring effects from more distant o v erlapping voids, make the use
f a single scaling correction for radii poorly moti v ated, except as a
rude statistical correction. 

The two upper panels of Fig. 4 show what is quantified in
able 3 : the sky-plane positions are recovered non-randomly to high
tatistical significance. Moreo v er, for the rev erse question (Table 3 ),
 

γ
x,z (3D | 2D) � 0 . 001 appears to be robust against re-calculation
nd machine error, so the use of weak-lensing shear – on its own –
o infer the presence of intrinsic 3D galaxy-traced voids appears to
e promising. 

.4 Optical scalars θ and | σ | 

.4.1 Expansion θ

ig. 5 shows a map of the Sachs expansion θ and sky-plane centres
f both the intrinsic voids and those detected via θ . As indicated
n Table 3 , given the 3D voids, the best-matched 2D ( θ ) voids are
eco v ered to high significance via their sky-plane centres. The top
wo panels of Fig. 6 show the sky-plane matches. 

Ho we ver, we only find N 

θ
2D = 34 voids using θ , many less than the

ntrinsic voids. As with � and γ⊥ 

, a likely interpretation is projected
oncentricity of several voids and obscuration by other cosmic web
tructure. The lower panel of Fig. 5 can be interpreted consistently
ith this hypothesis: the mean θ profile of the full set of intrinsic voids
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Figure 1. Upper panel: surface o v erdensity � projected along the line of sight. White + symbols represent the x , z centres of 3D voids found with REVOLVER . 
The red × symbols represent the centres of 2D voids found in the surface o v erdensity (Section 2.5.1 ); the red circles represent the walls of these (circular, 
by definition) voids. Some of the 3D void centres are projected close to one another in the sky plane; our algorithm is not designed to distinguish these as 
independent voids. Lower panel: radial void profiles of the surface o v erdensity � (equation 2 ), normalized to the estimated void radius and then averaged, using 
the set of all (projected) 3D void centres and radii (mean: blue curve; standard deviation: green ‘ \\ ’ hatching; ‘Revolver centre’) or using the set of all 2D void 
centres and radii (mean: red curve; standard deviation: red ‘//’ hatching). 
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etected with REVOLVER is very weak, which would be consistent 
ith both effects. The profile for 2D voids detected with θ is very

trong, qualitatively resembling a typical void density profile, with a 
harp (mean) wall. 

The lowest panel of Fig. 6 shows that the radii are again poorly
orrelated. Again, this is consistent with the detections using � and 
⊥ 

, with the difference that the radii estimated with θ expand greatly 
rom the intrinsic voids’ range of around 15–25 Mpc h −1 to around
–30 Mpc h −1 . While to some degree these disagreements are likely
 s  
o be induced by the problems of projection, it might also be possible
hat radii that are gravitationally realistic in terms of the potential 

iffer significantly from those traced by the 3D galaxy distribution. 
his is a question open for further study. 

.4.2 Sachs shear | σ | 
he upper panel of Fig. 7 shows a map of the modulus of the Sachs
hear, | σ | . Again, Table 3 shows that given an intrinsic void, the Sachs
MNRAS 525, 91–106 (2023) 
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Figure 2. Top to bottom, respecti vely: Gi ven a set of intrinsic 3D voids in the 
galaxy distribution, sky-plane positions x and z and radii R of the voids, and 
corresponding positions and radii of the 2D voids detected with the surface 
o v erdensity � that best match these 3D voids. The median ( x , z) T 2 distance 
for the best-matched voids, given a 3D void (Section 2.4 ), for detections with 
� is 7.8 Mpc h −1 . Equality is shown by a straight line in all three panels. 
The radii match poorly, with 2D radii mostly being less than the intrinsic 3D 

radii. Plain-text data available at zenodo.8103985/void matches mass def g 
iven 3D.dat. 

Figure 3. Radial void profiles of the weak-lensing shear γ⊥ , as in the lower 
panel of Fig. 1 , for 3D (projected) and 2D ( γ⊥ ) sets of void centres. A map 
for γ⊥ is not shown, since the map of weak-lensing mean tangential shear 
γ⊥ ( r, ̂  n ) is redetermined for each possible void centre ˆ n . 

Figure 4. Top to bottom, respectiv ely: F or each intrinsic 3D void, sky-plane 
positions x and z and radii R of the best-matched 2D void detected with the 
weak-lensing shear γ⊥ , as in Fig. 2 . The median ( x , z) T 2 distance for the 
best-matched voids, given a 3D void (Section 2.4 ), for detections with γ⊥ 
is 6.5 Mpc h −1 . All 2D radii are lower than those of the 3D voids that they 
correspond to. Plain-text data available at zenodo.8103985/void matches g 
amma given 3D.dat. 
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hear detects the voids’ positions to high significance using our algo-
ithm. The lower panel of Fig. 7 shows a qualitatively similar result to
he use of the expansion θ , in the sense that shear profiles for the full
et of 3D voids have a weak mean profile, while those for the voids
etected in the 2D map of | σ | show a strong void-like profile. Taking
nto account the good sky-plane matches and poor radial matches
hown in Fig. 8 , a consistent interpretation is again that the 2D de-
ected profiles are those that bypass both general obscuration and the
onfusion induced by voids that are nearly concentric in projection. 

 DI SCUSSI ON  

.1 Void lensing studies when intrinsic voids are known 

ith the simulation presented here, we have shown that if intrinsic
D voids are known, then the effects of geometric-optics parameters
hould be detectable in the sky plane, enabling the study of the
ole that gravitational lensing plays in the voids. In other words,
e have shown a relation between voids in 3D comoving space
ith their imprints left on maps of the projected and ray-traced
ariables. Moreo v er, the lensing patterns induced by a void should
rovide feedback to better constrain the model of the void itself. As

https://zenodo.org/record/8103985/files/void_matches_mass_def_given_3D.dat
https://zenodo.org/record/8103985/files/void_matches_mass_def_given_3D.dat
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Figure 5. Upper panel: Sachs expansion θ , as for Fig. 1 , computed using equations ( 20 ) and ( 21 ), with white + symbols for the x , z centres of 3D intrinsic 
galaxy voids and red × symbols for the centres of 2D voids detected with θ . Lower panel: Radial void profiles of θ , as in the lower panel of Fig. 1 , for 3D 

( REVOLVER ) and 2D ( θ ) sets of void centres. A factor of 10 −5 in the vertical scale is indicated by ‘1e −5’ (and similarly in Fig. 7 below). 
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rgued by S ́anchez et al. ( 2017 ) using � (and photometric redshifts
o statistically limit the radial depth of the projection), this would 
onfirm that a galaxy-traced void is a genuine underdensity of the 
ark matter density field. Other weak gravitational lensing detectors, 
uch as the Lyman α forest (Croft et al. 2018 ), could also be compared
o foreground galaxy-traced voids to check for consistency. 

.2 Blind (r edshift-fr ee) sear ches for voids 

ithout knowledge of spectroscopic or photometric galaxy redshifts, 
e currently can justify use of the azimuthally averaged tangential 
eak-lensing shear γ⊥ 

and of the Sachs expansion θ or shear | σ |
or analysis of a photometric surv e y with the intention of inferring
he presence of 3D voids, since all three of these robustly yield
 

X 
x,z (3D | 2D) � 0 . 01 (Table 3 ). Our calculation would appear to be

he first time that the use of Sachs expansion maps has been shown
o have the ability to reveal underlying voids. Jeffrey et al. ( 2021 )
tudied the combined use of the usual weak-lensing convergence 
nd shear in DES photometry o v er 4143 de g 2 , which appears to be
qui v alent to using � and γ⊥ 

, to reveal underlying voids. 
Our algorithms can very likely be improved further. For example, 

ombining all four parameters, �, γ⊥ 

, θ , and | σ | , could lead to
MNRAS 525, 91–106 (2023) 
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M

Figure 6. Top to bottom, respectiv ely: F or each intrinsic 3D void, sky-plane 
positions x and z and radii R of the best-matched 2D void detected with 
the Sachs expansion θ , as in Fig. 2 . The median ( x , z) T 2 distance for the 
best-matched voids, given a 3D void (Section 2.4 ), for detections with θ is 
5.8 Mpc h −1 . The 2D radii have a much broader distribution than those of 
the intrinsic 3D voids, with no obvious correlation. Plain-text data available 
at zenodo.8103985/void matches exp given 3D.dat. 
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omplementary constraints on whether or not a putative void is real
r correctly identified. These would only be partially independent
rom one another, since the four parameters are related to one
nother, with θ and | σ | taking into account the evolution of the
ravitational potential. Deriving the weak-lensing parameters for
n initial approximation, and then using the Sachs optical scalars
or an analysis to higher accuracy could be one viable strategy.
nother extension would be to examine individual pairs of the best-
atching 3D and 2D voids from the current algorithm presented here

o understand how their match could be impro v ed; or alternativ ely,
xamine the worst-matching pairs to understand what obstructs the
atch and search for ways of a v oiding the obstruction. 
There are se veral adv antages in detecting voids via their sky-plane

ffects. Some of the fainter galaxies defining the walls of a void may
e too faint to be detected in a giv en surv e y. The tracing of dark matter
y luminous matter is by a long chain of physical effects: baryonic
atter has to be associated with the dark matter, and star formation

istory and feedback effects need to be modelled. Geometric optics
ypasses this causal chain, and should lead to inferences made with
ewer assumptions. 
NRAS 525, 91–106 (2023) 
.3 Projected void concentricity and obscuring cosmic web 

tructures 

rojection of voids to be nearly concentric is expected in our simula-
ion, since we integrate over the full box size of L box = 120 Mpc h −1 

nd the largest intrinsic voids detected with the watershed algorithm
ave radii R eff ∼ 30 Mpc h −1 . Our algorithm’s only strategy that
elates to the problem of projected void concentricity is to prefer
arger to smaller radii (step (vii) in Section 2.3.2 ). Figs 2 , 4 , 6 , and
 show that despite this, the 2D void radii tend to be lower than the
ntrinsic radii. This empirical result would tend to fa v our keeping
his step unchanged. 

In our analysis we make the simplification that the light bundle
nly experiences gravitational lensing while passing through the
imulated volume and that there is no lensing signal generated behind
r in front of the simulated volume. Obscuration o v er the full light
one would clearly be worse than in our model. 

Our algorithm already has many parameters. Extending it to allow
uccessive multiple detections of walls could, in principle, lead to
 higher rate of detecting the intrinsic voids. Ideally, this should
ead to a statistically significant correlation between the intrinsic and
hotometric void radii; in this work, our correlations in radii are
nsignificant (Table 3 ). Ho we ver, detecting multiple concentric walls
ould quite likely also lead to false detections. 
Strategies for solving the problem of obscuring structures (in the

bsence of redshift information) are not obvious. Gravitationally
ense objects occupy little volume and still suffer from projection
ffects; voids dominate the volume and thus are strongly affected by
rojection effects. A Bayesian approach as in Jeffrey et al. ( 2021 )
ould be worth exploring. 
One class of changes to our algorithm worth considering would be

o switch equation ( 3 ) to include a weighting with the radius r 
′ 
. This

 ould mak e the noise characteristics uniform o v er the sk y area, so
hat the algorithm is less sensitive to noise in small numbers of pixels.
o we ver, for void-like radial profiles, this would require modifying

he profile detection aspects of our algorithm to be less sensitive to
equiring the void-like shape to be accurate in the void centre. 

Since our simulation homogenizes the foreground and background
f the simulated volume, a real observational surv e y will include
tronger levels of both projected void concentricity and obscuring
osmic web structures. 

.4 Other extensions 

his work presents an initial proof-of-concept for detecting cosmic
oids via geometric optics. The specific results will vary with
imulation size in the senses both of length scales and particle
esolution, and between the use of different tracer particles. Further
ork could consider the dependence on the probability of voids being

eal for a given choice of tracer particle (Neyrinck 2008 ), and on the
hoice of tracers themselves (Nadathur & Hotchkiss 2015a ). 

 C O N C L U S I O N  

n this work, we have studied the two questions of whether voids in
he cosmic web yield detectable information in projected variables,
he surface o v erdensity �, the azimuthal averaged weak lensing
hear γ⊥ 

, the Sachs expansion θ , and the Sachs shear | σ | , and
ice versa, whether the sky-plane information can be used to infer
he existence of the intrinsic 3D voids. We performed this using a
osmological N -body simulation starting from initial perturbations
enerated according to a standard initial power spectrum. We carried

https://zenodo.org/record/8103985/files/void_matches_mass_def_given_3D.dat
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Figure 7. Upper panel: Sachs shear | σ | , as for Fig. 1 , computed using equations ( 20 ) and ( 21 ), with white + symbols for the x , z centres of 3D intrinsic 
galaxy voids and red × symbols for the centres of 2D voids detected with | σ | . Lower panel: Radial void profiles of | σ | , as in the lower panel of Fig. 1 , for 3D 

( REVOLVER ) and 2D ( | σ | ) sets of void centres. 
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ut the analysis in a fully controlled software environment with 
ull information about the dark matter distribution as well as the 
uminous matter distribution, which we modelled using galaxies built 
rom a halo merger tree using semi-analytical tools. We detected the 
ntrinsic voids in the 3D comoving spatial distribution of galaxies 
sing a watershed void finder (Section 2.3.1 ). The void detection 
n the projected plane (Section 2.3.2 ) is based on the assumption
hat the azimuthally averaged profiles of the four detector variables 
or the voids have shapes with predictable qualitative behaviour. In 
he case of the surface o v erdensity � and the two Sachs optical
calars θ and | σ | , this expected shape is to start from a minimum
t the centre of a void, gradually increase radially outwards, and
ncrease sharply at the void’s wall. The weak-lensing shear γ⊥ 

is 
xpected to start from zero, decrease, and increase to zero just past
he void’s wall. Using a heuristically parametrized algorithm for 
etecting these profiles, adjusted individually for the four detector 
ariables, we found positions and radii of 2D voids traced by these
etectors. 
We find roughly similar numbers of 2D voids traced by each of the

our different detector variables, and in all cases, fewer voids than in
he 3D galaxy-traced distribution, as can be seen in Table 2 . There are
w o lik ely explanations. First, when several intrinsic voids are nearly
MNRAS 525, 91–106 (2023) 
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M

Figure 8. Top to bottom, respectiv ely: F or each intrinsic 3D void, sky-plane 
positions x and z and radii R of the best-matched 2D void detected with the 
Sachs shear modulus | σ | , as in Fig. 2 . The median ( x , z) T 2 distance for the 
best-matched voids, given a 3D void (Section 2.4 ), for detections with | σ | 
is 4.4 Mpc h −1 . The 2D radii again have a broad distribution, as in Fig. 6 . 
Plain-text data: zenodo.8103985/void matches sig given 3D.dat. 
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oncentric in projection on the sky, our algorithm only detects one of
hese, since it is not designed to detect multiple walls. Secondly, the
oreground and background structures of the cosmic web, i.e. walls,
laments, clusters, and other voids, obscure the signals associated
ith any single intrinsic void, making detection difficult. The lower
anels of Figs 1 , 3 , 5 , and 7 show that the voids detected by us in the
rojected plane follow the assumed qualitative shapes well, giving
onfidence that our algorithm works as expected. Ho we ver, the same
anels show that the corresponding mean profiles, using the centres
nd radial sizes of the 3D intrinsic v oids, b ut the detector variables
n the projected plane, are weak. 

We interpret these two effects – the detection of fewer 2D voids
han those known to exist in the 3D spatial distribution, together with
he weak mean profiles of the projected-plane detector variables
entred at the intrinsic voids’ locations – as consistent with the
ndetected voids being (statistically) those that are either the most
bscured or are concentric with the detected voids. 
Gi ven kno wledge of the 3D voids’ centres, we find (Table 3 ,

hird column) that the detected 2D voids are significantly closer than
andom to the 3D voids’ centres in the sky plane, for all four detector
ariables. In other words, a surv e y with sufficient spectroscopic or
hotometric redshift information to detect voids should be usable to
nfer patterns of gravitational lensing through the voids that should
NRAS 525, 91–106 (2023) 
e measurable using either weak-lensing shear or the Sachs optical
calars (answering question (ii) of Section 2.4 positively). 

Conversely, if we only have a photometric survey that is blind,
n the sense of having neither spectroscopic nor photometric
edshift information, then we have established (Table 3 , second
olumn) that the 2D voids detected via weak-lensing tangential shear
⊥ 

, Sachs expansion θ or Sachs absolute shear | σ | significantly
eveal the true underlying 3D void population (question (i) in
ection 2.4 ). Use of the surface o v erdensity � pro vides weaker
 vidence for re v ealing the sk y-plane positions of the underlying void
opulation. 
While these results follow from significant correlations of voids’

ocations in the sky plane, we find no significant correlation for
he radii. The bottom panels of Figs 2 , 4 , 6 , and 8 , show that the
D void radii tend to be lower than the intrinsic radii. The lack
f correlation and the generally lower radii are consistent with the
roblem of near concentric projection of multiple voids into the sky
lane. 
While our current results are exploratory, with several caveats

s stated abo v e, it does appear that gravitational lensing through
ndividual voids should be observationally detectable. Moreo v er,
eak-lensing tangential shear and Sachs expansion and shear in

uture blind photometric surv e ys – such as those provided by the
ubin C. Observatory’s Le gac y Surv e y of Space and Time (LSST;
heldon et al. 2023 ) – should rev eal the e xistence of intrinsic 3D
oids, yielding predictions that will be falsifiable by spectroscopic
ollowup surv e ys such as those of the 4-m Multi-Object Spectroscopy
elescope (4MOST; de Jong et al. 2012 , 2019 ; Richard et al. 2019 ) or

he Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013 ;
ahn et al. 2022 ). 
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PPENDIX  A :  COSMIC  VA R I A N C E  

hile a full calculation of cosmic variance would be computationally
eavy, we provide the results of using three alternative choices of
andom-number–generator seeds in Table A1 . This gives a qualitative
llustration of cosmic variance. The specific results in significance
if fer some what from those for the simulation of this work (Table 3 ),
specially in the case of using 2D voids to disco v er the intrinsic
D voids. Thus, the optimal choice of detector variable for an
bservational programme will to some degree vary among surv e ys,
epending on the physical realization of primordial fluctuation
mplitudes and phases. Using a wide range of detector variables
s likely to be more successful in the analysis of real surv e ys rather
han restricting the analysis to only a few variables. 
NRAS 525, 91–106 (2023) 
able A1. As for Table 3 , probability that the matches between 3D and 2D
oids for detector variable X are no better than those of randomly generated
D voids, for three examples of alternative random seeds. 

 P x , z (3D | 2D) P x , z (2D | 3D) P R (3D | 2D) P R (2D | 3D) 

Alternative seed 1 

 0.013 2.0 × 10 −5 0.58 0.33 

⊥ 0.00035 0.00024 0.14 0.21 
0.0018 5.0 × 10 −5 0.98 0.83 

 σ | 0.027 0.00033 0.69 0.98 

Alternative seed 2 

 0.0059 8.0 × 10 −5 0.19 0.42 

⊥ 0.15 0.026 0.62 0.35 
0.017 0.0037 0.0079 0.056 

 σ | 0.0031 4.0 × 10 −5 0.30 0.66 

Alternative seed 3 

 0.0027 0.0018 0.79 0.67 

⊥ 2.0 × 10 −5 1.0 × 10 −5 0.52 0.44 
0.12 0.014 0.0056 0.0084 

 σ | 0.058 0.0014 0.83 0.38 
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