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ABSTRACT

Self-supervised learning (SSL) has allowed substantial progress in
Automatic Speech Recognition (ASR) performance in low-resource
settings. In this context, it has been demonstrated that larger self-
supervised feature extractors are crucial for achieving lower down-
stream ASR error rates. Thus, better performance might be sanc-
tioned with longer inferences. This article explores different ap-
proaches that may be deployed during the fine-tuning to reduce the
computations needed in the SSL encoder, leading to faster infer-
ences. We adapt a number of existing techniques to common ASR
settings and benchmark them, displaying performance drops and
gains in inference times. Interestingly, we found that given enough
downstream data, a simple downsampling of the input sequences
outperforms the other methods with both low performance drops and
high computational savings, reducing computations by 61.3% with
an WER increase of only 0.81. Finally, we analyze the robustness of
the comparison to changes in dataset conditions, revealing sensitiv-
ity to dataset size.

Index Terms— Speech recognition, self-supervised learning.

1. INTRODUCTION

Self-supervised learning (SSL) has emerged as the main approach
for leveraging unlabelled data to achieve significant performance im-
provements in a wide range of downstream tasks. This is particularly
beneficial as it reduces the need for expensive and imprecise man-
ual annotation. Various approaches have been introduced in the lit-
erature, including predictive coding, [1], multi-task learning [2, 3],
auto-encoding techniques [4] or contrastive learning [5].

However, recent trends in SSL for speech have shown that the
improvements in terms of performance are often driven by larger
architectures, leading to potentially long inference times [6]. For
instance, Sanyuan et al. [6], have shown that switching from WavLM
Large to WavLM Base halved the observed word error rate (WER)
on a held-out English ASR task. Preserving reasonable inference
times while increasing the capacity of the model is of critical interest
to maximize the impact of this new technology on real-life products.

As a matter of fact, several approaches have been proposed to
shorten inference times using SSL models. Some attempted to dis-
till state-of-the-art models by using shallower or thinner networks
[7, 8] or through downsampling the inputs [9, 10]. However, while
the downstream performance of distilled student models is compa-
rable to larger teacher models on most speech classification tasks, a
large gap is still witnessed for more complex tasks such as ASR [11].
Also, low-bit quantization during pretraining has recently emerged
as a successful approach for faster inference times [12]. Compared

to our proposed methods, these two approaches bear the advantage of
leading to generalist models usable for multiple downstream tasks.
However, they have two major downsides. First, they necessitate ac-
cess to the very large pretraining dataset, which may or may not be
publicly and commercially available, such as for recent and large-
scale state-of-the-art speech recognition models [13]. Second, even
if the pretraining set is available, applying quantization or distillation
to these large models remains a particularly challenging and costly
task due to the original dataset and model sizes. For instance, aca-
demic attempts for distilling SSL models have been solely applied
to Base models (i.e less than 100M parameters), and are generally
restricted to a thousand hours of speech pretraining data, compared
to 94k hours for 317M parameters WavLM Large.

In contrast, by focusing on a given downstream task of inter-
est, our approach allows for reducing the inference time using off-
the-shelf large self-supervised models, directly training only on the
small considered downstream dataset. This is achieved by benefiting
from the fine-tuning phase to reduce the inference time. More pre-
cisely, this article considers three families of techniques originating
from the recent SSL literature: i) layer dropping or replacement, ii)
early-exiting, and iii) input sequence downsampling. The fine-tuning
phase allows the models to adapt to a shrunk architecture, or shorter
inputs while maximizing the downstream performance. Thus, our
contributions are twofold: i)We compare a number of recent shrink-
ing approaches (Section 2) used while fine-tuning large SSL models
on an ASR task providing inference speed metrics, and ii) we ana-
lyze the robustness of these methods to changes in the dataset and in
the annotated data quantity (Section 3). The SpeechBrain code base
is released for replication and further advancements [14]. 1

2. SETTING AND METHODS

This section outlines the global setting for comparing the considered
techniques before providing a detailed description of the approaches
and their motivations.

2.1. Benchmarking setting

The study is conducted under the two strong yet realistic following
conditions. First, we suppose that we do not have access to the pre-
training dataset that would enable, for instance, extensive distillation
or quantization approaches. Second, we limit ourselves to using only
the annotated training data of the target dataset during fine-tuning,
eliminating transfer-learning based approaches. The second condi-
tion is relevant when the target domain is rare and specific enough

1https://github.com/salah-zaiem/speeding_
inferences
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not to take advantage of transfer learning from classic large anno-
tated datasets. This is generally true in two popular cases where
using self-supervised models is privileged: low-resourced languages
and speech datasets with specific acoustic conditions [15].

We use the released pre-trained and non fine-tuned WavLM
Large [6] as the SSL model, as it tops speech self-supervised learn-
ing benchmarks and exhibits resilience to noisy conditions [11].
In all the experiments of this section, we use the train-clean-100
split of LibriSpeech [16] as our training set, the dev-clean split
for validation and finally the test-clean split for testing. Following
common practices [17], we freeze the convolutional front-end and
only fine-tune the transformers part of WavLM Large consisting of
24 transformers layers. The self-supervised encoder outputs a frame
vector of dimension 1, 024 for every segment of 320 speech samples
which corresponds in the case of a 16-kHz sampling rate to 20 ms
of audio signal. Two fully connected layers with a hidden size of
1, 024 map each frame vector to the probabilities of the considered
characters. Connectionist Temporal Classification (CTC) [18] loss
is used for training.

During inference, the decoding of the probabilities of the char-
acters is completed in two ways: with or without using a Language
Model (LM). In the experiments labeled as Without LM, greedy
decoding is applied, outputting the character with the maximal
probability at each step before applying CTC-based reformatting
to get the predicted words. In the With LM experiments, we use
the Librispeech official 4-gram language model, trained using the
KenLM library [19], and decode the sentence using shallow fusion
[20] considering the language modelling score of a beam of the
most acoustically probable sequences. An n-gram model is chosen
over more complex language modelling approaches to reduce word
error rates while keeping low inference times. This is done using
the PyCTCDecode 2 library with default parameters. To understand
the impact of this aspect on the results tables, it is crucial to note
that this decoding is performed on CPU and that the decoding time
is prolonged when the model is uncertain about its predictions. In-
deed, PyCTCDecode proceeds to prune elements of the beam that
are scored too low by the language model compared to the maxi-
mal beam score. It leads in this work to a penalty for models with
high error rates before the LM addition, as they systematically had
longer decoding times. With the stage of the comparison set, we will
proceed to the descriptions of the selected candidates

2.2. Layer dropping and replacement

With multiple studies on layer-wise probing of self-supervised mod-
els showing that phonetic content is divided among the layers of the
transformers [21], removing layers has emerged as a possibility for
faster inferences. Experiments led mainly on text language models
have shown that dropping higher level layers is preferable to avoid
heavy performance drops [22]. In a first experiment, we will study
the effect of fine-tuning the SSL model after having removed a num-
ber of layers. In a second one, given the fact that WavLM has been
trained with layerdrop [23], i.e random layer omission during train-
ing, we fine-tune it with layerdrop probability equal to q = 0.5 and
study the effect of keeping various layerdrop rates during test.

2.3. Early-exiting

Similarly, early-exiting is a relevant approach to reduce computa-
tions during inference [24, 25]. It consists in allowing the model to

2https://github.com/kensho-technologies/
pyctcdecode

use an early layer representation and feed it directly to the decoder,
saving the computation of further layers. During fine-tuning, start-
ing from the twelfth layer, a specific downstream decoder is learned
on top of every layer. During inference, a heuristic metric computed
after each layer indicates whether the model should output a decoded
sequence using the current layer or go further. Given well calibrated
heuristics, early-exiting should reduce the mean exit layer and, thus,
the mean inference time. Furthermore, studies on what has been
called “overthinking” [24] have shown that SSL models could bene-
fit from early exiting both inference time and performance. Inspired
by previous works, two heuristics are tested: the entropy of the de-
coder outputs, and a measure of similarity between the representa-
tions of consecutive layers.

As described in Section 2.1, each downstream decoder consists
of two linear layers outputting logit probabilities after each time
frame of 20 ms. Each layer i of the transformer outputs a repre-
sentation Ri of size [N,A] with N the number of signal time frames
and A the hidden dimension of WavLM Large (A = 1, 024). Oper-
ating on this representation through the decoder Di, the vectors of
logits probabilities Li are of size [N,P ] with P the number of dif-
ferent characters in the dataset (in our case P = 31). The entropy
Ei of the output of layer i is defined as:

Ei = −
1

NP

N∑
j=1

P∑
k=1

Li,j,k log(Li,j,k). (1)

with Li,j,k being the probability of the character k at time frame
j predicted by decoder Di. During fine-tuning, to learn the weights
of every decoders weights, we pass through all the layers of the
model and sum the CTC losses over the outputs of all decoders. Dur-
ing inference, after each layer i starting from the twelfth, Ri is de-
coded and Ei is computed. If Ei is lower than a fixed entropy thresh-
old, we do not go further in the SSL transformer, and decode the logit
probabilities into words. Hence, reducing the entropy threshold in-
creases the confidence required for exiting, leading systematically in
this work to later exits and thus, higher inference times. The second
exiting heuristics is layer representation similarity. For each layer
i ≥ 12, we compute the cosine similarity between Ri and Ri−1.
Similarly to the first approach, if the similarity is higher than a fixed
threshold at layer i, the model exits to Di and decodes the logits into
a word sequence. This second approach is slightly faster as it does
not involve computing the decoding into logits at each layer.

2.4. Sequence Downsampling

Inspired by works on distilling speech models with smaller sampling
rates [8, 10], and given the quadratic memory bottleneck of trans-
formers architectures as a function of input lengths, we assess the
capacity of the SSL model, trained on 16-kHz audio inputs, to adapt
to lower sampling rates. Given a speech file x consisting in T speech
samples x = (xi)i∈[1,T ] and a downsampling factor k, a function f ,
learned or unlearned depending on the chosen method, downsamples
x to x′ = f(x) = (x′i)i∈[1,bT/kc], a sequence of size bT/kc. The
downsampled sequence x′ is then fed to the SSL feature extractor
instead of x. Three methods for downsampling the input sequences
are evaluated. The first one is signal decimation (i.e. classic signal
downsampling). Second, we test a learned downsampling strategy,
through a one-dimensional (1D) convolution layer of kernel size 160
and a stride equal to the downsampling factor, ran on the input wave-
form. Finally, we test an averaging 1D downsampling with a fixed
window of size 16 (i.e. a constant convolution).

https://github.com/kensho-technologies/pyctcdecode
https://github.com/kensho-technologies/pyctcdecode


Technique WER ↓ GPU (s) CPU (s) WER-LM ↓ GPU-LM (s) CPU-LM (s) MACs (G)

Baseline Full Model 4.09 134 1121 3.31 152 1128 386.53

Layer Drop Drop Prob

0.5 11.28 96 721 5.89 156 776 244.19
0.4 8.32 102 816 4.58 145 844 272.28
0.3 6.56 109 888 3.84 157 913 300.98
0.25 5.91 113 932 3.72 148 950 314.24

Layer Removal Num. Kept Layers

12 14.39 93 726 8.64 127 739 236.64
16 8.16 109 852 5.53 131 861 286.60
20 5.14 117 988 3.62 142 989 336.57

Early Exit : Entropy Threshold Mean Exit Layer

0.06 13.80 12.08 96 757 9.25 122 765 252.36
0.03 17.61 7.67 116 974 6.55 137 976 326.28
0.025 20.52 6.66 128 1127 5.87 149 1132 364.92
0.01 23.98 6.20 142 1275 5.49 165 1280 386.53

Early Exit : Layer Sim. Threshold Mean Exit Layer

0.92 15.97 10.23 99 812 8.17 123 819 274.11
0.95 17.18 8.78 104 850 7.35 126 864 291.68
0.965 21.44 6.79 120 1070 5.93 131 1073 358.85
0.98 24.00 6.20 1280 1153 5.49 149 1153 386.51

Two Steps EE : Layer Sim. Threshold Mean Exit Layer

0.96 14.52 21.95 102 866 8.75 180 938 285.68
0.97 21.46 6.17 126 1138 4.34 152 1167 382.00
0.98 23.0 4.54 130 1175 3.87 151 1196 386.54

Downsampling Technique Downsampling Factor

Convolutional Downsampling 2 4.61 84 582 3.48 98 600 192.97
3 5.47 69 414 4.12 91 436 134.86
4 21.88 67 335 14.60 106 340 96.11

Averaging Downsampling 2 4.93 80 570 3.66 98 578 192.97
3 6.01 64 406 4.27 90 422 134.86
4 26.84 60 326 18.02 115 385 96.11

Signal Downsampling 2 4.85 86 569 3.58 97 575 192.97
3 5.83 72 427 4.08 89 458 134.86
4 16.08 63 330 11.10 97 369 96.11

DistilHuBERT Linear Decoder 30.74 56 240 16.20 130 311 101.74
BiLSTM Decoder 16.30 95 545 10.57 128 613 161.06

Table 1. Word error rates and inference metrics on LibriSpeech test-clean split for the considered approaches and various parameters per
method. All models are finetuned on LibriSpeech train-clean-100. “GPU” and “CPU” indicate the inference times in seconds on GPU and
CPU. “-LM” suffixes indicate that the decoding uses a language model. “Drop Prob” is the probability of randomly dropping layers during
inference. Early-exiting experiments come with an exiting threshold and a resulting mean exit layer computed over the test set.

Each one of the techniques is evaluated with 3 downsampling
factors: 2, 3 and 4. For instance, this corresponds for the first ap-
proach to downsampling the signals from 16 kHz to, respectively,
8000, 5333, and 4000 Hz. As explained in Section 2.1, the SSL
model outputs a character every 320 audio samples, which corre-
sponds to 20 ms of audio with a 16-kHz sampling rate. With lower
sampling rates, the number of output characters may become lower
than the lengths of the corresponding textual sequences. This is why,
when dealing with downsampling factors 3 and 4, the size of the de-
coder output layer is doubled. It is then reshaped to fit the number
of considered characters, before being fed to the classifier softmax
function. This allows every frame of audio to output two characters
instead of one.

3. RESULTS AND ROBUSTNESS STUDY

Table 1 shows the results obtained with the different techniques. Re-
ported GPU inference times are for a Nvidia Tesla V100 SXM2 32
Go GPU, while CPU inferences are using one Intel Cascade Lake
6248 processor with a 27.5 MB cache and 2.50 GHz clock speed.
The inference times and MACs are those for running inference on
the whole 5.4 hours of the test-clean split.
Layer removals. The results of the layer removal and dropping ap-
proaches are displayed in the upper part of Table 1. Surprisingly,
for a given proportion of layers dropped, keeping the layerdrop per-
forms better than training with the reduced number of layers. For
instance, randomly dropping 50% of the layers during the test leads
to 11.28 of WER, compared to 14.39 when dropping the last 12 lay-
ers during fine-tuning(i.e. again 50% of the layers). It suggests that
while training systematically with the same layers adapts the models

directly to inference conditions, removing the information contained
in the last layers of the model harms too severely the performance.

Early-exiting. The middle part of Table 1 shows the obtained re-
sults using early-exiting with different values of entropy and sim-
ilarity thresholds. Increasing the entropy threshold (or decreasing
the similarity one) leads naturally to earlier exits (lower “Mean Exit
Layer” values) and reduced inference times but higher WERs. Re-
sults show that using our two considered heuristics to control exiting
does not prevent significant performance drops in the case of earlier
exits. We can also observe that even when using the whole network
(i.e low entropy cases), this technique leads to lower performances
compared to the full model trained without early exiting. We suggest
the following explanation: since early exits encourage the model to
push the phonetic content required for decoding towards early lay-
ers, it undermines the ability of the model to learn hierarchical fea-
tures, ultimately resulting in poorer performance even when exiting
later in the model. To verify this explanation, we propose a two-step
approach where the SSL model weights are first fine-tuned without
early-exits, before freezing them when learning the early-exit de-
coders. As shown in Table 1, this leads to good performances in
case of late-exiting, but with the cost of steeper drops when exit-
ing earlier. This suggests that successful early-exiting should decou-
ple hierarchical feature extraction and decoding preparation. In both
cases, early exiting lags behind layer-removal techniques in terms of
ratio inference gains / performance drop.

Downsampling. Results of the downsampling experiments are
shown in the last part of Table 1. Downsampling by factors 2 and
3 lead to high gains in inference times without significant drops in
performance. For instance, compared to running the full model,
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Fig. 1. WER and inference metrics with or without language modelling for the presented techniques fine-tuned on LibriSpeech-100h. The
best techniques, characterized by both low Word Error Rates (WERs) and inference times, are Factor2 and Factor3 downsamplings, located in
the bottom left of the figures. The full model is indicated by a blue diamond, while DistilHubert baselines are represented by orange squares.
Inference time measurements are shown as a proportion of the measure done with the full model.
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Fig. 2. WER with LM decoding and MACs for the considered methods on WSJ, Buckeye and LibriSpeech-10h sets. While WSJ exhibits
results similar to LibriSpeech,reducing the quantity of fine-tuning data causes significant performance drops for the downsampling methods.

signal downsampling with a factor 3 using a language model for
decoding, leads to 61.34% relative CPU inference time reduction,
with an absolute increase of only 0.81 in WER. Downsampling
with factor 4, while naturally leading to further gains in inference
times, results in intolerable performance costs. The three considered
downsampling strategies are very similar in terms of error rates and
computational savings, with a slight advantage for convolutional
downsampling when sequences lengths are reduced with factors 2
and 3. For comparison with baselines, we add two experiments using
DistilHuBERT [7]. When using the simple linear decoder used in
this benchmark, DistilHuBERT shows performances largely below
the ones in the original paper. For a fair comparison, we produced an
experiment with a BiLSTM decoder. While improving largely the
performance, this comes at a high cost in terms of inference times.

Figure 1 presents a visual comparison between all the presented
methods. Clearly, factor 2 and 3 downsampling techniques are the
best performing methods with low WER, jointly with low GPU and
CPU inference times. While being the fastest, higher downsampling
factors and DistilHuBERT suffer from high error rates.

3.1. Robustness to changes in the downstream dataset
Finally, we test the robustness of these conclusions to changes in the
characteristics of the downstream dataset. Three datasets are con-
sidered. We tested the same methods with a 100-hour subset of the
Wall Street Journal (WSJ) dataset [26] 3 . We also test the robustness

3We combined WSJ0 and WSJ1, 70-hour long each, and removed all ut-
terances that contain non-letter symbols in their transcriptions. Then, we
extracted a 100-hour random subset of the remaining sentences

of the approach to dataset size variation by reducing the fine-tuning
dataset to LibriSpeech-10h train set in first experiment and training
on a small spontaneous English dataset, the Buckeye corpus [27]
containing 11 hours of data, in a final one.

Figure 2 shows the performance obtained with the presented
methods on the three datasets. While WSJ shows very similar pat-
terns to the first set of experiments, we can see in the case of less
fine-tuning data that the downsampling method performance drops
significantly. Downsampling with factor 3, while suffering a rel-
ative WER augmentation of only 33.7% for Librispeech-100h and
39.1% for WSJ, witnesses a drop of 384.9% with Buckeye and
571.7% with LibriSpeech-10h compared to the full model perfor-
mance. In contrast, the other methods seem more resilient to reduced
data quantity. Despite this, downsampling the sequences by a factor
2 using a learned convolution remains a good option for highly re-
duced inference times without unacceptable performance drop.

4. CONCLUSION

In this work, we explored different methods to reduce speech recog-
nition inference times using large self-supervised models through
fine-tuning. The comparison of these methods indicates that se-
quence downsampling is the best performing option allowing sub-
stantial computation gain with low performance drops. Experiments
led on other downstream datasets show that the size of the down-
stream dataset is critical to avoid high error rates.
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