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We analyze the dynamics of a light scalar field responsible for the μ term of the Higgs potential and
coupled to matter via the Higgs-portal mechanism. We find that this dilaton model is stable under radiative
corrections induced by the standard model particle masses. When the background value of the scalar field is
stabilized at the minimum of the scalar potential, the scalar field fluctuations only couple quadratically to
the massive fields of the standard model preventing the scalar direct decay into standard model particles.
Cosmologically and prior to the electroweak symmetry breaking, the scalar field rolls down along its
effective potential before eventually oscillating and settling down at the electroweak minimum. These
oscillations can be at the origin of dark matter due to the initial misalignment of the scalar field compared to
the electroweak minimum, and we find that, when the mass of the scalar field is less than the electron volt
scale and acts as a condensate behaving like dark matter on large scales, the scalar particles cannot
thermalize with the standard model thermal bath. As matter couples in a composition-dependent manner
to the oscillating scalar, this could lead to a violation of the equivalence principle aboard satellites such as
the MICROSCOPE experiment and the next generation of tests of the equivalence principle. Local
gravitational tests are evaded thanks to the weakness of the quadratic coupling in the dark matter halo, and
we find that, around other sources, these dilaton models could be subject to a screening akin to the
symmetron mechanism.

DOI: 10.1103/PhysRevD.107.095015

I. INTRODUCTION

Dark matter (DM) is a basic constituent of our standard
cosmological model. A large number of astrophysical
observations constrain the amount of such a component up
to the percent level. However, there is little information
about its nature. Thanks to measurements of large scale
structures, we know that the pressure or kinetic energy
of DM is negligible. In this sense, it is said that DM is
cold (CDM). However, there are observations associated
with small scales that challenge this standard approach
and emphasize potential issues such as the cusp-core
problem [1–6].
In order to explore the properties of DM from the point

of view of particle physics, it is interesting to study its
relation with the electroweak sector. This sector is

associated with the mass generation of elementary particles
through the Higgs mechanism. Indeed, the electroweak
scale is the highest one in the Standard Model (SM) of
particles and interactions, and also corresponds almost to
the limit of the energy range that can be probed by present
particle colliders; i.e. current particle experiments only
probe energies slightly larger than the electroweak scale. In
addition, this sector suffers from hierarchy problems that
need to be understood better from a theoretical point of
view (see for instance [7]). In part motivated by these
issues, a large number of DM models expressed in terms of
weakly interacting massive particles (WIMPs) have been
proposed in the past decades. These candidates have the
advantage of being produced in the early universe with the
observed order of magnitude for the DM abundance
through the so-called freeze-out mechanism. However,
no experimental evidence has been found for the existence
of WIMPs (see [8] for instance for a recent review).
In this work, we consider an alternative DM model

directly related to the electroweak sector. In our case, DM
arises from the coherent oscillations of a light scalar field
responsible for the μ term of the Higgs potential. In this
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sense, it has similarities with relaxion models, discussed in
Refs. [9–13]. The first proposals about coherent bosonic
DM date back to the late 1970s in terms of QCD-axion
models [14–20]. In general, a coherent DM framework can
be parametrized, from an effective-field-theory point of
view, by the DM particle masses and its self-interactions
[21]. The simplest case relies on a massive oscillating scalar
field without self-interactions [20,22–25]. This type of
generic coherent DM theories are typically indistinguish-
able from cold DM in relation to the formation of large-
scale structures [23,26–32]. However, distinctive features
at smaller scales can arise from many different causes
[1–6,30,31,33–40]. Generically, coherent dark matter
requires the DM particle mass to be less than the electron
volt scale [41]. We will see that the electron volt scale plays
a significant role in our scenario; e.g. screening of the Sun
is only valid for masses larger than 10 eV.
As the new scalar field determines the Higgs potential,

it is coupled to the SM via the Higgs portal. This fact
determines its coupling with the ordinary matter content of
the standard model. As such, this light scalar resembles a
dilaton field associated with the breaking of conformal
symmetry [42]. As we have commented above, our
scenario has similarities with relaxion models [9–12]
although there are notable differences. For instance, at
the electroweak minimum of the dilaton potential, the linear
coupling to matter vanishes and only the quadratic coupling
remains. This structure is stable under radiative corrections
and the phenomenological signatures change drastically.
For instance, we find that the scalar DM cannot thermalize
with the standard model bath when the DM mass is lower
than the electron volt scale.
The lack of linear coupling leads to another distinctive

feature of the model. Matter couples naturally with a
different strength depending on its nature. Therefore, we
analyze the possible observational constraints associated
with violations of the equivalence principle in experiments
such as MICROSCOPE and the prospects for the next
generation of experiments. We find that Solar System
constraints are evaded due to the weakness of the coupling.
But in other environments the quadratic coupling induces
a screening mechanism reducing the constraints on the
parameters of the model [43–46]. In other contexts the
scalar field could behave in ways reminiscent of scalariza-
tion [47]. The constraints on quadratic couplings of ultra-
light dark matter fields have recently been thoroughly
explored in Refs. [48,49].
The paper is arranged as follows. In Sec. II, we introduce

the model based on a new scalar degree of freedom. We
describe the low energy action, its stability against radiative
corrections, and the coupling of the scalar field to the SM.
In Sec. III, we analyze the cosmological evolution supported
by the dynamics of this scalar field. The main phenomeno-
logical consequences of the model are studied in Sec. IV.
In particular, we discuss the violation of the equivalence

principle and the Eötvös parameter in Sec. V. Finally, we
summarize the main conclusions of our work in Sec. VI.

II. SCALAR-DEPENDENT μ-TERM

A. The low energy action

We consider a simple model of electroweak symmetry
breaking where one real Higgs field h gives a mass to one
Dirac fermion ψ . This model is meant to reproduce in a toy-
model fashion some aspects of the physics of the electro-
weak symmetry breaking. We will be interested in the
regime where the scalar field ϕ is much lighter than the
Higgs field h, i.e. mϕ ≪ mh. The Lagrangian of the full
theory is given by

L ¼ −
1

2
ð∂ϕÞ2 − 1

2
ð∂hÞ2 þ μ2ðϕÞ

2
h2 −

λ

4
h4 − VðϕÞ

− iψ̄=∂ψ − λψhψ̄ψ : ð1Þ
The electroweak scale is determined by the μ2ðϕÞ mass
term in the broken phase which depends on the light field ϕ.
As long as μ2ðϕÞ < 0, the Higgs field does not acquire a
vacuum expectation value (VEV) and no symmetry break-
ing occurs. The potential VðϕÞ is chosen such that the
scalar field induces a change from values where μ2 < 0 to
μ2 > 0. In the following we will assume that as long as
μ2 < 0 and large, the μ2 function is mostly linear and the
field massless. More precisely, we write the μ2ðϕÞ term as

μ2ðϕÞ ¼ −Λ2
0 þ Λ2

ϕ

f
þM2μI

�
ϕ

f

�
; ð2Þ

where μI is a subdominant term that we can take to vanish
at the transition point μIðΛ2

0=Λ2Þ ¼ 0. The scales Λ0, Λ,
and M are lower than the cutoff scale of the model Λc. We
assume that the following hierarchy is realized:

v ≪ Λc: ð3Þ
This corresponds to requiring that the electroweak sym-
metry breaking happens at low energy compared to the
cutoff scale of the theory. The scale f determines the
dynamics of ϕ. This could be for instance the VEV of a
Uð1Þ breaking field if ϕ were a pseudo-Goldstone mode.
Notice that we assume that the correction μI is present in
the whole range of validity of the effective field theory. In
particular, it does not only appear when the electroweak
symmetry takes place, and we will assume that the effective
description is valid from inflation down to lower energies.
We also assume that the field ϕ couples to the inflaton in

the Jordan frame through the metric

gJμν ¼ A2ðϕÞgμν; ð4Þ

where gμν is the Einstein frame metric. This implies that the
scalar potential of the scalar is corrected and becomes [50]
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VeffðϕÞ ¼ VðϕÞ − T½AðϕÞ − 1�; ð5Þ

where we choose

AðϕÞ ¼ 1þ ðϕ − ϕeÞ2
2m2

Pl

; ð6Þ

and T is the trace of the energy momentum tensor of the
inflaton. During inflation T ¼ −4V inf where V inf is the
potential energy leading to a de Sitter phase. This coupling
forces the scalar field to a value ϕ ≃ ϕe at the end of
inflation, which then provides an initial condition for the
evolution of the field in the postinflationary universe. Other
mechanisms could be invoked to regulate the early universe
behavior of the field and slow it down after inflation. Here we
consider this simplified description as a proxy for potentially
more complex mechanisms which are beyond the scope
of this paper (see for instance [41]). We will discuss the
cosmological evolution of the model, including the dynamics
of the scalar field during inflation, further in Sec. III.

B. The Higgs phase

After inflation, the field will evolve until a point where
μ2ðϕÞ > 0, and the Higgs field acquires a large mass
compared to that of the scalar field ϕ, as a result one
can “integrate out” the Higgs field using the classical
equations of motion

λh2ðϕÞ ¼ μ2ðϕÞ − λψ
hðϕÞ ψ̄ψ : ð7Þ

This method of removing the Higgs degree of freedom is
valid as the Higgs-scalar mass matrix does not have a
massless eigenvalue [51]. Let us first work at the classical
level by solving Eq. (7) to lowest order in a perturbative
expansion in ψ̄ψ and obtain

hðϕÞ ¼ μðϕÞffiffiffi
λ

p −
λψ

2μ2ðϕÞ ψ̄ψ : ð8Þ

At lowest order this gives the VEV of the Higgs field as

v ¼ μðϕ̄Þffiffiffi
λ

p ; ð9Þ

where the dilaton field ϕ is stabilized at ϕ ¼ ϕ̄ with a mass
mϕ. We can also obtain the effective Lagrangian for ϕ at the
classical level

L ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ þ μ4ðϕÞ

4λ
− iψ̄=∂ψ − λψ

μðϕÞffiffiffi
λ

p ψ̄ψ :

ð10Þ

This Lagrangian contains the classical part of the potential
for ϕ

VclasðϕÞ ¼ VðϕÞ − μ4ðϕÞ
4λ

; ð11Þ

which determines the dynamics of ϕ after electroweak
symmetry breaking. In the following, we will see that the
term in μ4 can be neglected.

C. Radiative corrections

A potential for the dilaton field VðϕÞ is naturally present
as it can be induced by radiative corrections of the Higgs
field h. Closing the Higgs loop in the coupling provided by
Eq. (1), i.e. μ2ðϕÞh2=2, gives

Vone loopðϕÞ ⊃
Λ2
c

32π2
μ2ðϕÞ; ð12Þ

where Λc is the scale at which the Higgs quadratic
divergence gets cut off. In the spirit of effective field
theories where allowed couplings should be present, we
will assume that the potential for the scalar ϕ is corrected at
the one loop level by the Higgs loop to

VðϕÞ ¼ V0ðϕÞ − a
Λ2
c

32π2
μ2ðϕÞ; ð13Þ

where a is a dimensionless constant. We will assume that
a > 0 in order to ensure that this contribution to the scalar
potential decreases from the symmetric phase to the
electroweak breaking one. We will also simplify the model
by taking V0ðϕÞ ¼ V0 which makes sure that the vacuum
energy vanishes at the minimum of the potential.
There are also logarithmic corrections to the potential.

As the mass of the Higgs field is m2
h ¼ 2μ2ðϕÞ when the

electroweak symmetry is broken, the corrections to the
scalar potential are proportional to μ4ðϕÞ. At the one loop
level this yields for the total effective potential

VeffðϕÞ ¼ VðϕÞ − μ4ðϕÞ
4λ

þ μ4ðϕÞ
16π2

ln
Λ2
c

2μ2ðϕÞ ; ð14Þ

where Λc is the UV renormalization scale of the Higgs-
scalar theory. This is the usual Coleman-Weinberg correc-
tion at one loop calculated in dimensional regularization
[52]. The corrections due to the masses of matter particles
have the same form. Indeed, the masses are all proportional
to μðϕÞ and therefore lead to the same type of one loop
corrections. Higher order loops should also contribute to
the effective potential in μ4 as μ is the only mass scale in
the theory below the cutoff. In Eq. (14) we see that the
corrections in μ4 can be incorporated in a redefinition of the
self-coupling λ which becomes λðvÞ due to the logarithmic
corrections
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λ → λðvÞ ¼ λ

�
1þ λ

4π2
ln

Λ2
c

2λv2

�
; ð15Þ

and similarly for loops coming from matter fields. Loops
induced by the scalar field itself will scale in m4

ϕ which is
assumed to be very small compared to μ4. Hence we neglect
the self-loops of ϕ in the following and work at the classical
level when it comes to the scalar field ϕ. The self-coupling
will always be taken to be the renormalized one λðvÞ at the
electroweak scale.
In the following, we will focus on a scenario where the

scalar field ϕ evolves cosmologically toward the minimum
ϕ̄ of the scalar potential and eventually oscillates around
this extremum, such that oscillations are described by
φ ¼ ϕ − ϕ̄. In particular, we will focus on models where

VðϕÞ ¼ −gΛ2
cμ

2ðϕÞ þ V0; ð16Þ

where g ¼ a
32π2

> 0. The minimum of the scalar potential in
the radiation era corresponds to

∂ϕμ
2ðϕ̄Þ ¼ 0: ð17Þ

The contribution in −μ4=4λ from the Higgs phenomenon
does not change this result and is always negligible as
μ ≪ Λc close to the electroweak transition.

D. Couplings to bosons

So far we have only considered the coupling of the scalar
φ to fermions via the Higgs portal. Couplings to photons
and gluons are induced by triangular anomalous diagrams
where massive fermions run in the loop. This affects the
low energy theory of the dark matter field each time a
particle of the standard model decouples [42]. This induces
an effective interaction Lagrangian of the type

δL ¼ −
αFðEÞe2

4

φ2

Λ2
f

FμνFμν −
αGðEÞg23

4

φ2

Λ2
f

GμνGμν; ð18Þ

where αF;GðEÞ are numerical constants depending on the
charges of the decoupled fermions, i.e. fermions more
massive than E, under the electromagnetic Uð1Þ symmetry
and the quantum chromodynamics (QCD) SUð3Þ group;
see for instance [42,53] for an explicit discussion.1 The
coupling constant e and g3 are the electromagnetic and
QCD coupling, respectively, evaluated at the energy scale
E. The sign of the interaction Lagrangian is given by the

sign of the interaction between the scalar and fermions. In
the following we will be interested in the low energy effects
of the coupling to photons at energies well below the
electron mass. As a result, the coefficient αF will take into
account the decoupling of all the standard model particles.
On the other hand, the coupling to the gluons is relevant
to determining the QCD condensation scale. In this case,
αG depends on the decoupling of the heavy quarks c, b,
and t. Wewill return to the consequences of these couplings
in Sec. V C.

E. Backreaction

Using the effective Lagrangian, Eq. (10), we can see that
in the Higgs phase, when standard model fermions have
acquired a mass, the scalar potential is modified by the
average fermion number

VmatterðϕÞ ¼ VeffðϕÞ þ
λψffiffiffi
λ

p μðϕÞnψ ; ð19Þ

where nψ ¼ hψ̄ψi is the fermion number density. This is
only valid when μ2 > 0, and we are in the Higgs phase.
When μ2 < 0, the matter effect disappears and the potential
is simply

Vno matterðϕÞ ¼ VeffðϕÞ: ð20Þ

This backreaction behavior is reminiscent of a coupling to
the trace of the energy momentum tensor for scalar-tensor
theories [50]. Close to the electroweak transition, the matter
term is much smaller than the effective potential as nψ ∼ T3

where T ∼ v and Λc ≫ v. This implies that in the vicinity
of the electroweak transition, the matter corrections are
negligible.
In addition to the coupling in Eq. (10), we could include

higher order couplings between the Higgs field and matter
of the type

δL ⊂ −
hn

Λn−1
h

ψ̄ψ ; ð21Þ

where Λh is a cutoff scale in the Higgs sector. Typically this
type of operator leads to a matter correction to the scalar
potential

δVmatter ⊂
vn

Λn−1
h

nψ ; ð22Þ

after the electroweak transition. This is always a negligible
contribution to the potential at the electroweak scale for
T ∼ v as v ≪ Λh ≲ Λc.
In the following, we will consider models where the field

ϕ can escape the vicinity of the minimum at ϕ̄ if the field ϕ
reaches values such as μ2 ≃ −M2 where M is a large scale
taken to be smaller than the cutoff scale Λc. Now the matter

1The coefficients are given by αFðEÞ ¼
PN>

f
i¼1

q2i
24π2

, where N>
f is

the number of particles and antiparticles of charges qi which have

decoupled at the energy E. Similarly we have αGðEÞ ¼
PN>

f
i¼1

TðRiÞ
12π2

,
where the fermions are in the representation Ri such that the Lie
algebra generators are normalized by TrðTaTbÞ ¼ TðRiÞδab.

BRAX, BURRAGE, CEMBRANOS, and VALAGEAS PHYS. REV. D 107, 095015 (2023)

095015-4



backreaction would stop the field from jumping over the
barrier associated with the potential VðϕÞ ¼ −gΛ2

cμ
2 if the

μ term were prevented from reaching a large value of order
M. We assume that the scale M is the natural scale M ≫ v
of jμðϕÞj far away in field space from the minimum of
the potential where μðϕ̄Þ ≪ M. In this case, this stopping
mechanism would be reminiscent of the Damour-Nordtvelt
effect [43,44] for the models considered here, whereby the
electroweak scale should be driven close to the zero of μ
cosmologically in an attractor fashion. The higher order
terms in Eq. (21) provide a stopping correction to the scalar
potential of the form

δVðϕÞ ≃ μnðϕÞ
Λn−1
h

v3; ð23Þ

where hðϕÞ ¼ μðϕÞ= ffiffiffi
λ

p
and nψ ≃ v3. This term dominates

compared to VðϕÞ when μ ∼M provided

�
M
Λh

�
n−2 ≳ Λ2

cΛh

v3
: ð24Þ

This can be realized if M ≫ Λh where higher and higher
corrections to the Higgs portal would backreact strongly on
the dynamics of the dilaton. Of course this is beyond the
realm of the effective field theory setup we have adopted
here as the full nonperturbative series has to be known. The
only conclusion we can draw is that a full analysis of the
Higgs sector and its coupling to matter is necessary to
probe the large μ2 > 0 region of the theory. In particular, it
is quite likely that after the electroweak phase transition the
effects of such matter couplings could be efficient enough
to stop the dilaton and guarantee that the field simply
oscillates around the minimum where μ ∼ v close to μ ¼ 0.
A full discussion of this issue goes beyond the present
paper, and we refer the reader to Ref. [41]. In addition to the
higher order corrections to the Higgs coupling, thermal
effects must be taken into account, as it has been discussed
in Ref. [45]. As the coupling of the scalar field is propor-
tional to the trace of the energy-momentum tensor, it is
commonly assumed to vanish during the radiation domi-
nated epoch in the early universe. However, finite radiative
corrections to the coupling impact generically on the
evolution of the field, modifying the allowed region of
its parameter space, changing the abundance of different
cosmological relics and producing early phases of con-
tracting evolution (in the Jordan frame) [45]. In the
following, we will analyze the dynamics of the theory
by neglecting these thermal effects, which will be taken
into account in future works.

F. The coupling to matter

The light scalar field ϕ couples to matter via the Higgs
portal. In the Higgs phase where matter fields acquire a

mass, one can expand the light scalar field ϕ ¼ ϕ̄þ φ to
obtain the resulting interaction between φ and matter

Lint ¼ −
β

mPl
mψφψ̄ψ −

mψ

2Λ2
f

φ2ψ̄ψ ; ð25Þ

where we have identified mψ ¼ λψv. The scalar has a
Yukawa type coupling

β≡mPl
∂ϕμðϕÞjϕ̄ffiffiffi

λ
p

v
¼ 0; ð26Þ

where the Higgs vev v was defined in Eq. (9) and a
quadratic coupling

1

2Λ2
f

¼ ∂
2
ϕμ

2μ
¼ −

m2
ϕ

4gμ2Λ2
c
; ð27Þ

which is composition independent at the fundamental
fermion level; i.e. it depends not on the fermion species
ψ . On the other hand, the coupling to nucleons will depend
on the species, and this could induce violations of the
equivalence principle. We will investigate this possibil-
ity below.
As a result the light scalar field φwhose mass is given by

m2
ϕ ¼ −

μ2∂2ϕμ
2

2λ
þ V 00jϕ̄ ð28Þ

is stable quantum mechanically; i.e. there is no decay into
two fermions at tree level in vacuum. The scalar mass is
dominated by

m2
ϕ ≃ −gΛ2

c∂
2
ϕμ

2 ¼ −2gΛ2
cμ∂

2
ϕμ; ð29Þ

where the last equality is valid at the minimum where
∂ϕμ ¼ 0. We will see below how this mass scale can be
much smaller than mh.
In the following we will be interested in φ as a candidate

for dark matter where φ is light, i.e. mϕ ≲ 1 eV [41].
In principle the coupling Eq. (25) could induce the thermal
equilibrium between ϕ and the standard model fields,
eventually leading to the freezing out of the ϕ abundance
which could then be adjusted to match the present amount
of dark matter in the universe. But as we will see in
Sec. III C, it is not possible for the scalar field in our model
to be in thermal equilibrium with the thermal bath. Another
possibility, as mϕ is small, could be that the scalar ϕ
decoupled when relativistic. The remaining abundance of
hot dark matter behaves as Ωϕh2 ≃ 10−3ð100g⋆ Þð

mϕ

1 eVÞ, where
g⋆ is the number of relativistic species at decoupling. For
very light scalars, the abundance of hot dark matter
becomes negligible.
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So the scalar field in our model can only play the role of
dark matter in a nonthermal fashion and decouples from
quarks and leptons at the electroweak symmetry breaking.
In this case, decoupling happens before the scalar acquires
a mass and therefore causes no issue with the abundance of
dark matter, whether hot or cold. In the following we will
consider the natural situation where the scalar field rolls
down along its potential from small values before oscillat-
ing around its minimum. This mechanism is similar to the
misalignment mechanisms used for axion [18,20,54–56] or
scalar dark matter models such as fuzzy dark matter [25].
The abundance of dark matter in these cases is related to the
amplitude of the oscillations around the minimum.

G. An explicit dilaton model

As we expect fluctuations of the scalar around the
minimum of its potential to play the role of dark matter,
we now return to finding the minimum of the scalar
potential and imposing that electroweak symmetry break-
ing takes place at the scale v. For this, let us notice that in
the radiation dominated era the minimum of the effective
potential, Eq. (16) with μ defined in Eq. (2), is such that

dμIðyÞ
dy

����
ȳ
¼ −

2Λ2

πM2
; ð30Þ

in terms of the rescaled scalar field y ¼ πϕ=ð2fÞ and its
VEV ȳ. The electroweak scale is determined by imposing
that at the minimum we have μ2ðϕ̄Þ ¼ λv2 which implies
that

μIðȳÞ − ȳ
dμI
dy

����
ȳ
¼ Λ2

0

M2
þ λ

v2

M2
: ð31Þ

As a typical example we choose a correction to the μ2 term
of the axion type where

μIðyÞ ¼ cos y; ð32Þ

where we have assumed that Λ0 ¼ Λ. The axionic con-
tribution vanishes for y ¼ π=2 so that the transition from
μ2 < 0 to μ2 > 0 takes place where both the linear part of
μ2 and μI vanish. Explicitly we have

μ2ðϕÞ ¼ Λ2

�
ϕ

f
− 1

�
þM2 cos

�
π

2

ϕ

f

�
: ð33Þ

We find that Eq. (30) implies that

sin ȳ ¼ 2

π

Λ2

M2
: ð34Þ

The tuning of the electroweak symmetry breaking,
Eq. (34), can be satisfied provided

cos ȳþ ȳ sin ȳ ¼ λ
v2

M2
þ Λ2

0

M2
: ð35Þ

This can easily be analyzed by expanding the μ2 term
around y ¼ π=2 using ȳ ¼ π=2ð1þ δÞ. This gives

μ2ðϕÞ ¼
�
Λ2 −

π

2
M2

�
δþM2

6

�
π

2
δ

�
3

: ð36Þ

The minimum of the potential is then given by

δ2 ¼ 2

�
2

π

�
3
�
π

2
−

Λ2

M2

�
: ð37Þ

Imposing that μ2ðϕ̄Þ ¼ λv2 implies that

δ ¼ 3

2

λv2

Λ2 − π
2
M2

: ð38Þ

These two conditions, Eqs. (37) and (38), are compatible
provided the two scales Λ and M are related by

Λ2

M2
¼ π

2

�
1 −

�
3λv2

2
ffiffiffi
2

p
M2

�
2=3
�
: ð39Þ

This may appear as a tuning of the potential although we
have seen that radiative corrections preserve the shape of μ2

and therefore the ratio between Λ and M.
Defining

ϵ ¼
�

3λv2

2
ffiffiffi
2

p
M2

�
2=3

; ð40Þ

we find that the value of δ at the minimum of the potential is

π

2
δmin ¼ −

ffiffiffi
2

p �
3λv2

2
ffiffiffi
2

p
M2

�
1=3

¼ −
ffiffiffiffiffi
2ϵ

p
: ð41Þ

Notice that this extremum is a maximum of μ2. As a result
we get a minimum for the scalar potential and a mass for the
scalar field

m2
ϕ ¼ −g

�
π

2

�
3

δmin
M2Λ2

c

f2
: ð42Þ

This mass is reduced compared to the naive expectation of
the mass that one might obtain from considering Eq. (33)
and assuming cosðπϕ=2fÞ ∼ 1, which would give

m2
0 ¼ g

π2

4

M2Λ2
c

f2
: ð43Þ
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In fact the mass is reduced by a factor of δmin [9], i.e.

m2
ϕ ¼ −

π

2
δminm2

0 ¼
ffiffiffiffiffi
2ϵ

p
m2

0: ð44Þ

The mass m0 is suppressed compared to the cutoff scale
by a factor of f. Moreover the mass of the scalar fieldmϕ in
the shallow part of the potential close to the minimum is
reduced by a factor of ϵ1=4 which is also small (see Fig. 1).
This small mass will eventually be identified with the mass
of the scalar dark matter in the Universe. We are also
interested in the location of the field where the potential
vanishes. The potential vanishes where μ2 ¼ 0 correspond-
ing to δ ¼ 0 and also for

π

2
δ0 ¼ −

ffiffiffi
6

p �
3λv2

2
ffiffiffi
2

p
M2

�
1=3

¼ −
ffiffiffiffiffi
6ϵ

p
: ð45Þ

In the interval between δ0 and the origin, the mass of the
field is of order of mϕ. In this region, the potential is very
flat as can be seen in Fig. 1.

III. COSMOLOGICAL EVOLUTION

A. Inflation

During inflation, the electroweak symmetry is preserved
and hhi ¼ 0. The dynamics of ϕ are determined by

VeffðϕÞ ¼ −gΛ2
cμ

2ðϕÞ þ 6H2
infðϕ − ϕeÞ2 þ V0; ð46Þ

where the form of the coupling to the inflaton Hubble rate,
Hinf , is assumed to be given in Eq. (6). The large quadratic

term due to the coupling to inflation forces ϕ is close to ϕe
and stabilized. The minimum of the effective potential is
obtained for

ϕinf ¼ ϕe þ
gΛ2

c

12H2
inf

∂ϕμ
2jϕ¼ϕinf

: ð47Þ

This is of order

ϕinf − ϕe

f
∝
gΛ2

cM2

f2H2
inf

∼
m2

0

H2
inf

≪ 1; ð48Þ

which is very small as long as we assume that m0 ≪ Hinf ,
and in addition we will assume thatHinf ≪ Λc. In particular,
this implies that the field does not move at the end of
inflation until the Hubble rate goes down to H ≃m0 in the
postinflationary era, an expectation that is confirmed by our
numerical solutions (see Fig. 2). This is independent of the
choice of ϕe. Notice that during inflation the mass of the
scalar field is m2

inf ¼ 12H2
inf implying that the field is heavy

and no isocurvature fluctuations are generated.

B. Postinflation evolution

The equation of motion of the scalar field is the Klein-
Gordon equation

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð49Þ

–10 –5 5 10
y

–5

5

10

V(y)

FIG. 1. The normalized potential VðyÞ where y ¼ πϕ
2f for

ϵ ¼ 0.05. The oscillations of the dark matter field take place
on the flat part of the potential close to the first minimum on the
positive real axis. The field is first stabilized during inflation and
then released in the postinflationary era when the Hubble rate
drops below the mass of the scalar field. The oscillatory behavior
is guaranteed as long as the potential is not too flat. The mass on
the steep part of the potential is typically 1=

ffiffiffi
ϵ

p
larger than close

to the minimum. FIG. 2. The normalized y ¼ πϕ=2f field as a function of τ
for ϵ ¼ 0.01. The blue curve is the numerical solution. The red
one is the approximate solution. One can see that the slow roll
approximation is valid for a few Hubble times.
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with the specific potential

VðϕÞ ¼ −gΛ2
cμ

2 þ V0

¼ −gΛ2
c

�
Λ2

�
ϕ

f
− 1

�
þM2 cos

�
π

2

ϕ

f

��
þ V0: ð50Þ

It is useful to change the time variable to τ ¼ m0t, to obtain
the reduced equation in the radiation era

y00 þ 3

2τ
y0 þ sinðyÞ ¼ 1 − ϵ; ð51Þ

where, as before, y ¼ πϕ=ð2fÞ, ϵ was defined in Eq. (40),
and the primes denote derivatives with respect to the
rescaled time τ. This corresponds to the motion of the
particle yðτÞ in the potential VðyÞ ¼ −ð1 − ϵÞy − cosðyÞ
shown in Fig. 1.
The field starts rolling at the end of inflation, at time

τi ≪ 1, with zero velocity. In the limit τi → 0, there is a
regular solution with a Taylor expansion of the form

yðτÞ ¼ y0 þ y2τ2 þ y4τ4 þ y6τ6 þ � � � : ð52Þ

Substituting into the equation of motion gives the coef-
ficients

y2 ¼
1 − ϵ − sinðy0Þ

5
;

y4 ¼
cosðy0Þ½−1þ ϵþ sinðy0Þ�

90
;…; ð53Þ

and we can see that the field only moves significantly after
a time τ ≳ 1, that is, after H ≲m0.

2

In this paper, we assume that the field starts near the
first positive minimum, located at y ≃ π=2, that is,
−1≲ y0 ≲ π=2. Then, for ϵ > 0 not too small, because
of the Hubble friction, the field will remain trapped inside
this first shallow potential well and oscillate at late times
around the equilibrium value

ȳ ¼ arcsinð1 − ϵÞ ¼ π

2
−

ffiffiffiffiffi
2ϵ

p
þ � � � ;

V 00ðȳÞ ¼
ffiffiffiffiffi
2ϵ

p
þ � � � : ð54Þ

We show in Fig. 3 the trajectories obtained for different
values of the initial condition y0 with, in each case, the
smallest value of ϵ that keeps the field trapped in the first
local minimum. We see that as y0 is decreased from π=2,
the parameter ϵ must increase to enhance the barrier at the
right of the local minimum. However, thanks to the Hubble
friction, which slows down the rolling down the potential,
small values of ϵ≲ 0.1 are sufficient to keep the field in the
local potential well for a reasonably large range of initial
conditions, −1≲ y0 ≲ 1. From the definition of ϵ in
Eq. (40) we see that this is guaranteed as long as
M ≳ 1 TeV. For larger values of M, ϵ would be smaller,
and as a result the basin of attraction of the minimum would
shrink.
Writing y ¼ ȳþ π

2
δ, as before, we obtain for the late-

time small oscillations the equation of motion

δ00 þ 3

2τ
δ0 þ

ffiffiffiffiffi
2ϵ

p
δ ¼ 0: ð55Þ

This gives decaying oscillations of the form δ ¼
τ−1=4J�1=4ðð2ϵÞ1=4τÞ. As τ ≫ 1 this corresponds to har-
monic oscillations with an amplitude that slowly decays
as τ−3=4 ∝ a−3=2, where aðτÞ is the cosmological scale
factor. This gives an energy density ρϕ that decays as a−3,

FIG. 3. Scalar field trajectories yðτÞ ¼ πϕ
2f as a function of τ for the initial conditions y0 ¼ 1, 0, −1, and the smallest associated values

of ϵ that ensure the field remains trapped in the first local minimum.

2A more detailed study of the slow roll evolution of the field
after the end of inflation can be found in Appendix B.
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as for dark matter. The potential VðϕÞ of Eq. (50)
reads Vðϕ̄Þ þ gΛ2

cM2
ffiffiffiffiffiffiffi
ϵ=2

p ðy − ȳÞ2 þ � � �. The first local
maximum for y > ȳ is for ymax ¼ π=2þ ffiffiffiffiffi

2ϵ
p þ � � �. If the

scalar field first turns around at a value smaller but of the
order of ymax, we obtain that at τ ∼ 1=2 the dark matter
density is

H ∼m0∶ ρ ∼ gΛ2
cM2ϵ3=2 ∼ gλΛ2

cv2: ð56Þ

At later times this energy density evolves like cold dark
matter and decays as a−3. The initial dark matter density is
then

ρin ¼
1

2
m2

ϕϕ
2
0; ð57Þ

which is then redshifted up to now to become the dark
matter density in the present Universe ρ0.

C. Thermalization

We can now come back to the thermalization of the
scalar particles and impose that the scalar is never in
equilibrium with the particles of the Standard Model. This
requires that the decoupling temperature Tdec ≳ v. Let us
examine this scenario.
The coupling between the scalar and matter is quadratic

in the scalar with a coupling constant 1=Λ2
f of order

m2
ϕ=v

2Λ2
c. In the relativistic regime, the square of the

scattering amplitude ϕþ ϕ → ψ þ ψ behaves like3

jMj2 ≃ m2
ψ

4Λ4
f

ðuv̄Þ2; ð58Þ

where in the relativistic regime the external spinors are such
that uv̄ ≃ T. The cross section is of order

σ ≃
jMj2
s

; ð59Þ

where the Mandelstam variable s ≃ T2, which yields

σ ≃
m2

ψ

128π2Λ4
f

; ð60Þ

which is constant.4 In this regime the number of relativistic
species is given by g̃⋆ and the number density of massive

particles reads n ≃ g̃⋆ζð3ÞT3=π2 where g̃⋆ ¼Pbosons g
B
i þP

fermions
3
4
gFi and gB;Fi are the degeneracy factors for

bosons and fermions. The reaction rate is therefore

Γ ¼ g̃⋆ζð3Þ
π2

σT3 ≃
m2

ψ

4Λ4
f

T3; ð61Þ

and the Hubble rate is given by

H ≃

ffiffiffiffiffiffiffiffiffi
g⋆π2
30

r
T2

mPl
; ð62Þ

where g⋆ ¼Pbosons g
B
i þPfermions

7
8
gFi . The sum is taken

over all the particles of the Standard Model. Equilibrium is
maintained when Γ≳H which implies

T ≥ Tdec ≃
4Λ4

f

m2
ψmPl

; ð63Þ

where we have taken g̃⋆ ∼ g⋆ ∼ 100.
The scalar is never in thermal equilibrium when

Tdec ≳ v. We use this criterion as at higher temperatures
the electroweak transition has not occurred and the dilaton
field does not behave like dark matter. This corresponds to

mψ

2Λ2
f

≲ ðmPlvÞ−1=2; ð64Þ

or more appropriately

mϕ

v
≲ Λc

mPl

�
m3

Pl

m2
ψv

�
1=4

≃ 1013
Λc

mPl
; ð65Þ

where the final approximate equality arises when
mψ ∼ GeV corresponding to the b quarks. Indeed, the most
severe constraint comes from the heaviest quark with a mass
mψ of a few GeV. As the cutoff scale, Λc, must be larger
than 1 TeV, the bound in Eq. (65) is always satisfied as soon
as mϕ ≲ 1 GeV. This is always satisfied, as the range of
masses for which the occupation number of the oscillating
scalar is large enough to describe dark matter is mϕ ≲ 1 eV
[57]. As a result we conclude that the oscillating dilaton
scalar never thermalizes with the standard model and can
describe dark matter via the misalignment mechanism.

IV. VIOLATION OF THE EQUIVALENCE
PRINCIPLE

A. The coupling to matter

The oscillating scalar field around the minimum of the φ
scalar potential induces a quadratic coupling to fermions of
the type

3Note that in this expression v is a spinor, whereas elsewhere in
this article v refers to the vacuum expectation value of the Higgs
field.

4The cross section is given by σ ¼ m2
ψ

128π2Λ4
f

s−4m2
ψ

s

ffiffiffiffiffiffiffiffiffiffi
s−4m2

ψ

s−4m2
ϕ

r
.

Taking the limit s ∼ T ≳mψ ; mϕ, we find σ ¼ m2
ψ

128π2Λ4
f
.
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L ⊃
mψ

2Λ2
f

φ2ψ̄ψ ; ð66Þ

which implies a universal dependence of the fermion
masses,

mψðφÞ ¼ mψ

�
1 −

φ2

2Λ2
f

�
: ð67Þ

Notice that the coupling to matter tends to destabilize the
scalar field as in scalarization models [47]. As such the
weak equivalence principle is respected at the level of
elementary particles as each fermion couples universally to
the dilaton with a Jordan frame metric

gψμν ¼
�
1 −

φ2

2Λ2
f

�
2

gμν; ð68Þ

where gμν is the Einstein frame metric. On the other hand,
as macroscopic matter is composed of atoms themselves
comprising a nucleus and electrons, the coupling to a
particular species depends on the number of nucleons A and
the number of electrons Z of the material. This is important
as tests of the equivalence principle are carried out with two
different bodies with different numbers of electrons and
nucleons. The Klein-Gordon equation for the scalar φ in the
presence of matter species A of density ρA now reads

□φ ¼ m2
ϕφþ αAðφÞ

mPl
ρA: ð69Þ

The species-dependent coupling function is defined as

αAðφÞ ¼ mPlQA
∂φmψðφÞ

mψ
¼ −QA

mPl

Λ2
f

φ; ð70Þ

whereQA is a dimensionless phenomenological coefficient.
Concentrating on the contributions from the fermion
masses, QA is given by

QA ¼ Qþ ½Q0
A�m̂ þ ½Q0

A�me
þ ½Q0

A�δm; ð71Þ

where the couplings to the average mass of the u and d
quarks is ½Q0

A�m̂, the coupling to the electron mass is ½Q0
A�me

,
and the coupling to the u-d mass difference is ½Q0

A�δm.
They are tabulated for different metals [48]. The universal
coupling Q ≃ 0.093 is also phenomenological. Depending
on the sign of QA, the model will behave like a symmetron
(QA < 0) [46] or scalarization [47] (QA > 0). The effects of
the coupling to the gluons will be analyzed below.
The field at infinity oscillates as

φ∞ðtÞ ¼ φ0 cosðmϕtÞ; ð72Þ

and must be regular at the center of the ball of uniform
density ρA, mass MA, and radius RA. These boundary
conditions determine the field profile, which takes the
form [48]

φ ¼ φ0 cosðmϕtÞf�ðr=RAÞ: ð73Þ

The sign of the charge QA selects either the function fþ or
f−, with

QA < 0∶x < 1; fþðxÞ ¼
1

cosh u
sinh ux
ux

and for x > 1; fþðxÞ ¼ 1 −
1

x

�
1 −

tanh u
u

�
;

QA > 0∶x < 1; f−ðxÞ ¼
1

cos u
sin ux
ux

and for x > 1; f−ðxÞ ¼ 1 −
1

x

�
1 −

tan u
u

�
; ð74Þ

with

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQAj

ρAR2
A

Λ2
f

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jQAjΦA

6m2
Pl

Λ2
f

s
; ð75Þ

where we introduced the gravitational potential at the surface of the object, ΦA ¼ GNMA=RA. In both cases, outside the
object we have

r > RA∶ φ ¼ φ0

�
1 − sA

GNMA

r

�
cosðmϕtÞ ¼ φ∞ðtÞ −

βAðtÞ
4πmPl

MA

r
; ð76Þ

where we introduced the couplings sA and βAðtÞ, which are related by

βAðtÞ ¼
sAφ∞ðtÞ
2mPl

: ð77Þ
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In the unscreened regime, the couplings that give the amplitude of the fifth force outside of the objects are

unscreened∶ juj ≪ 1; sA ¼ 2QAm2
Pl

Λ2
f

; βAðtÞ ¼
QAmPlφ∞ðtÞ

Λ2
f

¼ αAðφðtÞÞ; ð78Þ

and the field is almost constant inside the object. This
coupling is the same as the one of a point particle; i.e. no
effect results from the finite size of the object.
On the other hand, in the screened regime associated

with large Newtonian potential ΦA, the couplings are

screened∶ juj ≫ 1; sA ¼ 1

ΦA
; βAðtÞ ¼

φ∞ðtÞ
2mPlΦA

;

ð79Þ

and the field shows a steep decay or fast oscillations inside
the object. Notice that objects with large Newtonian
potentials tend to be screened, a result reminiscent of
screening mechanisms in modified gravity [58]. We will
comment on this analogy below.
The coupling of the scalar to matter differs in the

screened and unscreened cases. It is only species dependent
in the unscreened regime, through the charge QA. On the
other hand, it is object dependent in the screened regime
through the dependence on the Newtonian potential ΦA.
Objects with various Newton potentials have differing
trajectories depending on the couplings βA ∝ 1=ΦA.

B. Screened modified gravity

The screening regime and the resulting screening mecha-
nism for the dark scalar is similar to the symmetron
screening mechanism, where the coupling to matter van-
ishes in regions of high density. Here and contrary to the
symmetron case, the solution outside the object is the
time-varying φ∞. The screening criterion juj ≫ 1 is analo-
gous to the one for all nonderivative screening mechanisms
[58], i.e.

jβscreenedA j ≤ jβunscreenedA j∶ jφ∞j
2mPlΦA

≤
mPljQAjjφ∞j

Λ2
f

: ð80Þ

This corresponds to requiring that the effective coupling βA
is less than the coupling αA that an unscreened object such
as a point particle would experience. For static objects, the
scalar force is proportional to the gradient of the scalar
field. Focusing on solar system tests where the test objects
such as the Cassini satellite have very small Newtonian
potentials and behave like point particles in the scalar dark
matter background, screening may occur if the Earth or the
Sun themselves are screened. Thus, if the Earth is screened,
the field gradient is suppressed and no deviation from
general relativity will take place in the vicinity of the Earth.
The Cassini bound [59] implies that

hβ⊕αSi ≤ 2 × 10−5; ð81Þ

where ⊕ denotes quantities evaluated for the Earth, S for
the satellite, Q⊕ ∼ 0.1 for a model of the Earth made of
silicon and iron, and QS ∼ 0.1 for a metallic satellite. We
have taken the average over the rapid oscillations of the
scalar field. This bound depends on the dark matter density
locally ρ0 ¼ m2

ϕφ
2
0=2, which is of the order of 10

6 times the
cosmological matter density. This becomes the numerical
constraint

QSρ0
m2

ϕΦ⊕Λ2
f

≤ 2 × 10−5: ð82Þ

Using Eq. (75), we see that the Earth is screened provided

Λf

mPl
≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q⊕Φ⊕

p
; ð83Þ

where Φ⊕ ≃ 10−9. For the typical H/He composition of the
Sun we have jQ⊙j ≃ 0.15 and Φ⊙ ∼ 10−6. We see that the
Sun is automatically screened if the Earth is screened.

C. The Eötvös parameter

The contribution to the acceleration of an unscreened
body A in the field φ due to the environment is given by

a⃗φA ¼ −
βAðφÞ
mPl

ð∇!φþ v⃗A _φÞ; ð84Þ

where v⃗A is the nonrelativistic velocity of body A. Here we
have

βAðφÞ
mPl

¼ QAφ

Λ2
f

: ð85Þ

The acceleration of the test body A due to the scalar field φ
generated by a distant massive body C is then given by

a⃗φA ¼ QA
φ2
0

Λ2
f

cos2ðmϕtÞ
�
1 − sC

GNMC

r

�

×

�
sC

GNMC

r3
r⃗ −mϕv⃗A

�
1 − sC

GNMC

r

�
tanðmϕtÞ

�
:

ð86Þ

This is only the acceleration due to the scalar to which the
gravitational acceleration should be added.
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Let us now consider two test bodies A and B at the same
location r from a distant object C, e.g. the two cylinders of
the MICROSCOPE experiment aboard a satellite at 710 km
from the Earth in a nearly circular orbit and falling in
the terrestrial gravitational field [60]. Then the difference
between their accelerations toward the third object C is
given by

a⃗φ
A− a⃗φ

B ¼ ðQA−QBÞ
φ2
0

Λ2
f

cos2ðmϕtÞ
�
1− sC

GNMC

r

�

×

�
sC

GNMC

r3
r⃗−mϕv⃗

�
1− sC

GNMC

r

�
tanðmϕtÞ

�
;

ð87Þ

where we have taken that the centers of mass of the two
objects coincide. We see that the factor ð1 − scGNMC=rÞ
modulates the Newtonian acceleration and vanishes when
r ¼ RC, the radius of object C, if object C is screened.
Hence the violations of the equivalence principle are
maximized for satellite experiments and minimized on
the Earth, which must be screened for usual modified-
gravity scenarios to pass terrestrial tests of gravity. There is
an extra modulation when the objects move around C with
a common velocity v⃗.
We define the Eötvös parameter

ηAB ¼ 2

���� a⃗A − a⃗B
a⃗A þ a⃗B

����≃
���� a⃗φA − a⃗φB

a⃗N

����; ð88Þ

where a⃗N ¼ −GNMCr⃗=r3 is the common Newtonian
acceleration of the two bodies. For quasicircular orbits
and on average this gives

ηAB ¼ φ2
0

2Λ2
f

jQA −QBjsC
�
1 − sC

GNMC

r

�
; ð89Þ

where r is the radius of the orbit. If the Earth is screened,
then for experiments such as MICROSCOPE we have
sC ¼ s⊕ ≃ 1=Φ⊕ ≃ 109. This implies that

ηAB ¼ φ2
0

Λ2
f

jQA −QBj
Φ⊕

�
1 −

R⊕

r

�
: ð90Þ

Moreover in this experiment two cylinders of platinum
and titanium alloys were used with QTi −Q ∼ −10−2 and
QPt −Q ∼ −7.5 × 10−3 and jQTi −QPtj ∼ 2.9 × 10−3. As a
result we get a bound from jηPt−Tij ≤ 5 × 10−15 [61] on the
amplitude

φ0

Λf
≤ 10−10: ð91Þ

This can be used to put bounds on the parameters of the
model as we can write

ffiffiffiffiffi
ρ0

p
mϕΛf

≤ 10−10; ð92Þ

which relates the cutoff of the theory, the mass of the dark
matter field, and the local density of dark matter. Fixing the
local dark matter density also implies

ffiffiffiffiffiffiffiffiffiffiffiffi
mϕΛf

p
> 10−5 GeV; ð93Þ

which correlates the suppression scale of the quadratic
coupling to matter and the scalar mass.

D. Constraints on the dilaton model parameters

1. Unscreened case

For scalar masses below 1 eV, it is straightforward to
check that the Earth and the Sun are both unscreened
implying that the scalar field behaves like a nearly massless
(when the range is large enough) field in the solar system
with an effective coupling to matter

βA ¼ QAmPlφ0

Λ2
f

: ð94Þ

Using φ0 ¼
ffiffiffiffiffiffiffi
2ρ0

p
=mϕ, the effective coupling is of order

βA ≃
QA

gλ

mϕmPl
ffiffiffiffiffi
ρ0

p
8
ffiffiffi
2

p
v2Λ2

c

∼ 10−24
1

gλ
QA

0.1

mϕ

1 eV

�
Λc

1 TeV

�
−2
: ð95Þ

This small value of βA guarantees that the MICROSCOPE
results are hardly affected by the scalar field.
Moreover, solar system tests are evaded when the

coupling is smaller than the Cassini bound of order 10−5

for β2A. This is easily satisfied due to the very small value of
the dark matter density and the smallness of the scalar
mass. Therefore, even when the scalar is very light and the
screening mechanism does not operate, the fact that the
coupling to matter is proportional to φ0 which is very small
implies that the scalar is effectively decoupled from matter.
The coupling becomes large enough to lead to possibly
detectable effects only if locally the density of dark matter
were to increase, for example due to the presence of a dark
matter clump, significantly above the dark matter halo
density [62]. The investigation of this possibility is left for
future work.

2. Screened case

To see where in the dilaton parameter space screening
might be relevant for terrestrial and satellite experiments,
we start from the quadratic coupling

1

Λ2
f

¼ −
∂
2
ϕμ

2

2μ2
; ð96Þ
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where we recall that the linear coupling vanishes as ∂ϕμ ¼ 0

at the minimum of the potential. Explicitly we obtain that

1

Λf
¼ π3=2

4

Mffiffiffi
λ

p
fv

ffiffiffiffiffiffiffiffiffiffiffi
−δmin

p
; ð97Þ

or in terms of the scalar mass

1

Λf
¼ 1

4
ffiffiffiffiffi
gλ

p mϕ

vΛc
: ð98Þ

We get the bound from Eq. (93),

ffiffiffiffiffi
gλ

p
Λc > 10−13 GeV: ð99Þ

This is always easily satisfied for theories with a cutoff scale
larger than the electroweak scale.
As a result, the MICROSCOPE bound can always be

respected due to the screening of the Earth if

mϕ > 1.9 × 108
ffiffiffiffiffi
gλ

p
Λc

mPl
GeV: ð100Þ

The lowest admissible cutoff scale from the particle physics
point of view is Λc ≳ 10 TeV which implies that

mϕ > 1 keV: ð101Þ

If the Earth were unscreened, the Sun could still be
screened itself. This happens typically when

mϕ > 10 eV; ð102Þ

as the Newtonian potential of the Sun is 103 stronger than
the Earth’s (but with a scalar charge that is 5 times larger).
Screening of the Sun would guarantee that the Cassini
experiment was insensitive to scalar interactions. In con-
clusion, we find that screening could only occur for large
scalar masses. Unfortunately, this is not allowed for scalar
fields generating dark matter via the misalignment mecha-
nism. If the scalar dark matter represented only a fraction of
the dark matter density, the constraint on its mass would be
relaxed and therefore one could envisage that the Earth
could be screened. In all cases, the dilaton studied here
turns out to be invisible gravitationally. We now turn to
other potential probes of the models under investigation.

V. FURTHER PHENOMENOLOGY

A. Atomic clocks

Oscillating dark matter fields coupled to matter could
lead to changes in atomic structure [48,63,64]. In particular,
tiny oscillations in the electron to proton mass ratio could
be detected using atomic clocks. The variation of the
atomic frequencies for various atomic transitions are

sensitive to the coupling of the scalar field to particles
such as the electrons and could probe very small couplings
for very light scalars of masses less than 10−18 eV. In our
model and in the background of the local dark matter
density, the coupling of the scalar to matter particles is
universal with a value5

β ¼ mPlφ0

Λ2
f

; ð103Þ

of order β ≃ 10−24ð mϕ

1 eVÞ which is very much lower than the
expected sensitivity of atomic clock experiments [48].

B. Large scale structure

The coupling of dark matter to baryons in cosmology
could lead to an increase in the rate of growth for baryonic
structures. Indeed and as long as the mass of the dark matter
scalar is small enough, structures characterized by their
wave number k would be affected as long as k=a≳mϕ,
where a is the scale factor of the Universe normalized to
unity now. Gravity would be enhanced corresponding to a
rescaling of Newton’s constant by a factor ð1þ 2β2ðρÞÞ
where the coupling is βðρÞ ¼ a−3=2β. As this coupling is
valid from the electroweak scale time characterized by a
redshift zEW, where a−1 ¼ 1þ z, zEW ≃ v=ΛDE ≃ 1014, we
find that the smallness of the coupling (103) cannot be
compensated by the large redshift-dependent factor. This
implies that no effects on the growth of structures is
expected.

C. Consequences of the coupling to bosons

The interactions between the light scalar and photons
and gluons in Eq. (18) induce a dependence of the electro-
magnetic and the QCD couplings on the scalar field as

1

e2ðφÞ ¼
1

e2
þ αFe2

φ2

Λ2
f

;

1

g23ðφÞ
¼ 1

g23
þ αGg23

φ2

Λ2
f

: ð104Þ

In the dark matter background this leads to linear couplings
to the scalar field proportional to β. As a result both the fine
structure constant and the QCD condensation scale, defined
as the point where the QCD gauge coupling becomes large,
become dependent on the scalar field. This leads to
contributions to the masses of the nucleons coming from
the electromagnetic and gluonic energies [66,67]. It turns

5The coupling to fermions in [63] di where i labels the
different fermions is universal in our model and equal to

ffiffiffi
2

p
β.

The same factor of
ffiffiffi
2

p
relates also the coupling to the QCD

condensate and photons in the parametrization of [48,65] and the
couplings ðβQCD; βγÞ; see below.
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out that the gluonic contribution dominates as the masses of
nucleons are mostly due to the gluon condensate, and we
now concentrate on this effect.
QCD condensation takes place below the c, b, t quark

masses in terms of energy scale at a value around 250 MeV.
As a result, we only take into account the quadratic
coupling of the scalar to the gluons when the heavy quarks
have been integrated out. Writing the renormalization
group equation for the QCD coupling between the charm
decoupling scale mc and a lower scale E we have

4π

g23ðEÞ
¼ 4π

g23ðφÞ
−
b3
2π

ln

�
mc

E

�
: ð105Þ

The coefficient b3 > 0 is the QCD beta function coefficient
due to the gluons and the u, d, s quarks. The QCD scale is
such that g3ðΛQCDÞ diverges leading to

ΛQCDðφÞ ¼ mce−8π
2=b3g23ðφÞ ≃ ΛQCD

�
1 −

8π2αGg23
b3

φ2

Λ2
f

�
;

ð106Þ

where in the last term g3 is the QCD coupling at the energy
scale mc. The quadratic dependence of the QCD scale on
φ2 can be tested using atomic clocks [48] and places the
constraint that for scalar masses mϕ ≲ 10−18 eV one must

require that Λf ≳mPl. This is easily achieved as Λf ≃
vΛc
mϕ

where the scalar mass is lower than 10−18 eV and the cutoff
scale is above the 10 TeV range.
In the dark matter background, the dependence on the

scalar variation δϕ of ΛQCD compared to the dark matter
background φ0 can be parametrized as

ΛQCDðδφÞ ¼ ΛQCD

�
1þ βQCD

δφ

mPl

�
; ð107Þ

where

βQCD ¼ −
16π2αGg23

b3
β: ð108Þ

As this coupling is also very small and proportional to β,
the conclusion that the scalar field hardly couples to matter
and is therefore invisible in gravitational experiments
remains.6

Finally the dark matter scalar can also decay to photons
where the coupling is induced at one loop. This can only
happen when the scalar field gets a VEV, which can occur

in the dark matter halo and also in the early universe. The
decay rate to photons due to fermion loops is given by

Γϕ→γγ ≃ β2γ
m3

ϕ

m2
Pl

; ð109Þ

where βγ ¼ αFe2
mPlφ0

2Λ2
f
. This is of order

Γϕ→γγ ≃ e4
mϕρ0
Λ4
f

∼ e4
m5

ϕρ0
v4Λ4

c
: ð110Þ

This should be much smaller than H0 ∼
ffiffiffiffi
ρ0

p
mPl

, leading to a
very weak bound on

mϕ ≲
�

v4Λ4
c

e4mPlρ
1=2
0

�
1=5

; ð111Þ

which is always satisfied easily for small mϕ ≲ 1 eV. Even
in the early universe where the constraint on a very slow
decay rate is obtained by substituting ρ0 → ρ, we find that
the decay is essentially nonexistent. This confirms that dark
matter for these models is stable.

VI. CONCLUSION

If we do not take into account the massive sector of
neutrinos, the SM of particles and interactions only has one
term with an explicit dimensional parameter. It is the μ
term, which determines the vacuum expectation value of
the Higgs field at low energies. In this work, we have
studied the phenomenology associated with a dynamical μ
term related to a new scalar degree of freedom. This field is
coupled through the energy-momentum tensor of the matter
content and can be identified with a dilaton associated with
the conformal symmetry breaking of the theory in the
matter sector only. We have discussed this framework by
assuming a Higgs singlet and modeling the matter content
with a unique fermion field. Interestingly, when the scalar
sector of the model is stabilized at its fundamental state,
the linear coupling of the dilaton to matter disappears. This
fact provides a very distinctive phenomenology for this new
scalar degree of freedom, whose main coupling is quad-
ratic. Another feature that we have explicitly discussed in
this work is the stability against radiative corrections of
this model.
After analyzing the main theoretical characteristics of

this dilaton model, we have studied its cosmological
evolution. The cosmological evolution leads the dilaton
to lie close to the minimum of its potential, and the
corresponding oscillations are described by an harmonic
approximation. In this limit, the energy-momentum tensor
of the dilaton behaves as DM if its value can be averaged
over many oscillations. In fact, this is what happens, and
we have found explicitly that this dilaton can be a candidate

6The coupling αA in the unscreened case is modified and is not
given by (70) anymore [48]. It becomes αA ¼ QAβ where QA ¼
− 16π2αGg23

b3
þ ð0.093þ ½Q0

A�m̂ þ ½Q0
A�me

þ ½Q0
A�δmÞð1þ 16π2αGg23

b3
Þ.
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for DM. As we have commented, the dilaton is coupled
quadratically to matter, so it is stable. In addition, the
strength of its coupling is typically suppressed, which
means that it does not thermalize for a broad range of the
parameter space of the model.
Finally, we have studied the phenomenological signa-

tures of the model. The quadratic coupling effectively
couples matter to the dilaton in a composition-dependent
way. We have explored signals related to experiments
measuring violations of the equivalence principle aboard
satellites such as the MICROSCOPE experiment and the
future generation of tests related to this signature. We have
found that the quadratic coupling provides naturally a type
of screening mechanism similar to those studied for string
motivated frameworks or symmetron models [43–46].
For masses below the electron volt, the Sun and other
planetary objects are not screened. Nevertheless, post-
Newtonian parameter tests are easily fulfilled due to
the weakness of the strength of the effective linear
coupling, even in the Solar System. This makes the dilaton
invisible. Visibility would be granted if the dark matter
density were locally much larger such as in a dark matter
clump. Such clumps could result from the balance between
the quantum pressure and the attraction due to the negative
quartic interaction of the dilaton close to the electro-
weak minimum. The study of this possibility is left for
future work.
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Quevillon, and Géraldine Servant for interesting sugges-
tions. This work was partially supported by the MICINN
(Ministerio de Ciencia e Innovación, Spain) Project
No. PID2019–107394 GB-I00/AEI (AEI/FEDER, UE)
and the COST (European Cooperation in Science and
Technology) Actions CosmicWISPers CA21106 and
CosmoVerse CA2136. C. B. is supported by a Research
Leadership Award from the Leverhulme Trust and by
the STFC under Grant No. ST/T000732/1. J. A. R. C.
acknowledges support by Institut Pascal at Université
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APPENDIX A: A POSSIBLE MODEL

We consider a model with a massive field X of large mass
m coupled to the Higgs field according to the Lagrangian

L ¼ −g0ðmX − uH2Þ2 − λ0Xψ̄HψH; ðA1Þ

where the fermions ψH are charged under a gauge group
which condenses in a similar way to QCD. At energies
E ≪ m, we can integrate out the field X according to

X ¼ uH2

m
; ðA2Þ

implying the Higgs field couples to the gauged fermions as

L ¼ −λ0u
H2

m
ψ̄HψH: ðA3Þ

Assuming that the fermions condense according to

hψ̄HψHi ¼ Λ3
He

iπ
2
ϕ
f ; ðA4Þ

at a scale ΛH ≪ m, we have at low energy a potential term

L ¼ −2λ0u
Λ3
H

m
H2 cos

π

2

ϕ

f
; ðA5Þ

of the type used in the main text. We will assume that this
transition happens before the end of inflation so that the cos
term is realized as soon as the field evolves at the end of
inflation.

APPENDIX B: SLOW ROLLING IN THE
RADIATIVE ERA

Initially, when the field is released at the end of inflation,
the field starts moving slowly. Let us look for a simplified
solution of the Klein-Gordon equation in this regime. We
assume that in this slow roll regime we have

H _ϕ ¼ αV 0; ðB1Þ

where α is nearly constant. This is what would happen in
the slow roll regime during inflation although here α will
not be equal to −1=3. Using this ansatz and identifying
m2 ¼ V 00 we get

ϕ̈

H _ϕ
¼ α

m2

H2
−

_H
H2

; ðB2Þ

and _H ¼ − 3ð1þωÞ
2

H2 where the equation of state in the
radiation era is ω ¼ 1=3. Now using the Klein-Gordon
equation ϕ̈þ 3H _ϕþ V 0 ¼ 0 we obtain
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m2

H2
α2 þ 9þ 3ω

2
αþ 1 ¼ 0: ðB3Þ

This implies that

α ¼ H2

m2

 
−
9þ 3ω

4
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
9þ 3ω

2

�
2

− 4
m2

H2

s !
: ðB4Þ

Obviously, this is only valid when m=H is small enough
and varies very slowly. In the slow roll regime as well as
having initially m=Hinf ≪ 1 implies that

α ≃ −
2

9þ 3ω
¼ −

1

5
: ðB5Þ

When the equation of state is close to −1 during inflation,
we retrieve that slow roll is realized with α ¼ −1=3. During
radiation domination the slow roll evolution is governed by

dx
dτ

¼ −
4α

π
τ

�
1 − ϵ − sin

π

2
x

�
; ðB6Þ

where we have denoted τ ¼ m0t ¼ m0

2H and the potential
reads

VðϕÞ ¼
�
2

π

�
2

m2
0f

2

�
π

2
ð1 − ϵÞð1 − xÞ − cos

π

2
x

�
: ðB7Þ

This differential equation (B6) fails when τ ¼ Oð1Þ.
The solution to (B6) with the initial condition

xðτ ¼ τiÞ ≃ xe where the slow roll regime starts is given by

xðτÞ ¼ 4

π
arctan

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ − ϵ2

p
X

1 − ϵ

�
; ðB8Þ

where

X ¼ aþ b
1 − ab

; ðB9Þ

and

a ¼ tanh

�
α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ − ϵ2

p
ðτ2 − τ2i Þ

�
;

b ¼ 1 − ð1 − ϵÞ tan πxe
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ − ϵ2
p : ðB10Þ

The field starts moving when τ ∼ 0.5 corresponds
to H ≃m0.

[1] J. P. Ostriker and P. J. Steinhardt, Science 300, 1909 (2003).
[2] D. H. Weinberg, J. S. Bullock, F. Governato, R. Kuzio de

Naray, and A. H. G. Peter, Proc. Natl. Acad. Sci. U.S.A.
112, 12249 (2015).

[3] A. Pontzen and F. Governato, Nature (London) 506, 171
(2014).

[4] M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Mon.
Not. R. Astron. Soc. 415, L40 (2011).

[5] B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn, J.
Stadel, and P. Tozzi, Astrophys. J. 524, L19 (1999).

[6] W. J. G. de Blok, Adv. Astron. 2010, 789293 (2010).
[7] C. Csáki and P. Tanedo, in 2013 European School of High-

Energy Physics (2015), pp. 169–268, arXiv:1602.04228.
[8] J. L. Feng, in Les Houches summer school on Dark Matter

(2022), arXiv:2212.02479.
[9] A. Banerjee, H. Kim, and G. Perez, Phys. Rev. D 100,

115026 (2019).
[10] A. Banerjee, D. Budker, J. Eby, H. Kim, and G. Perez,

Commun. Phys. 3, 1 (2020).
[11] A. Banerjee, E. Madge, G. Perez, W. Ratzinger, and P.

Schwaller, Phys. Rev. D 104, 055026 (2021).
[12] A. Chatrchyan and G. Servant, arXiv:2211.15694.
[13] R. Tito D’Agnolo and D. Teresi, J. High Energy Phys. 02

(2022) 023.
[14] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440

(1977).
[15] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[16] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[17] M. I. Vysotsky, Y. B. Zeldovich, M. Y. Khlopov, and V. M.

Chechetkin, Pis’ma Zh. Eksp. Teor. Fiz. 27, 533 (1978).
[18] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,

127 (1983).
[19] M. S. Turner, F. Wilczek, and A. Zee, Phys. Lett. 125B, 35

(1983); 125B, 519(E) (1983).
[20] M. S. Turner, Phys. Rev. D 28, 1243 (1983).
[21] L. A. Ureña López, Front. Astron. Space Sci. 6, 47 (2019).
[22] V. Sahni and L.-M. Wang, Phys. Rev. D 62, 103517 (2000).
[23] M. C. Johnson and M. Kamionkowski, Phys. Rev. D 78,

063010 (2008).
[24] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,

1158 (2000).
[25] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.

D 95, 043541 (2017).
[26] A. S. Sakharov and M. Y. Khlopov, Phys. At. Nucl. 57, 485

(1994).
[27] A. S. Sakharov, D. D. Sokoloff, and M. Y. Khlopov, Phys.

At. Nucl. 59, 1005 (1996).
[28] J.-c. Hwang and H. Noh, Phys. Lett. B 680, 1 (2009).
[29] C.-G. Park, J.-c. Hwang, and H. Noh, Phys. Rev. D 86,

083535 (2012).
[30] R. Hlozek, D. Grin, D. J. E. Marsh, and P. G. Ferreira, Phys.

Rev. D 91, 103512 (2015).
[31] J. A. R. Cembranos, A. L. Maroto, and S. J. Núñez Jareño,

J. High Energy Phys. 03 (2016) 013.

BRAX, BURRAGE, CEMBRANOS, and VALAGEAS PHYS. REV. D 107, 095015 (2023)

095015-16

https://doi.org/10.1126/science.1085976
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1038/nature12953
https://doi.org/10.1038/nature12953
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://doi.org/10.1086/312287
https://doi.org/10.1155/2010/789293
https://arXiv.org/abs/1602.04228
https://arXiv.org/abs/2212.02479
https://doi.org/10.1103/PhysRevD.100.115026
https://doi.org/10.1103/PhysRevD.100.115026
https://doi.org/10.1038/s42005-019-0260-3
https://doi.org/10.1103/PhysRevD.104.055026
https://arXiv.org/abs/2211.15694
https://doi.org/10.1007/JHEP02(2022)023
https://doi.org/10.1007/JHEP02(2022)023
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)91229-7
https://doi.org/10.1016/0370-2693(83)91229-7
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.3389/fspas.2019.00047
https://doi.org/10.1103/PhysRevD.62.103517
https://doi.org/10.1103/PhysRevD.78.063010
https://doi.org/10.1103/PhysRevD.78.063010
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1016/j.physletb.2009.08.031
https://doi.org/10.1103/PhysRevD.86.083535
https://doi.org/10.1103/PhysRevD.86.083535
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1007/JHEP03(2016)013


[32] J. A. R. Cembranos, A. L. Maroto, and S. J. Núñez Jareño,
J. High Energy Phys. 02 (2017) 064.

[33] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nat. Phys. 10,
496 (2014).

[34] T. Broadhurst, H. N. Luu, and S. H. H. Tye, Phys. Dark
Universe 30, 100636 (2020).

[35] J. A. R. Cembranos, J. L. Feng, A. Rajaraman, and F.
Takayama, Phys. Rev. Lett. 95, 181301 (2005).

[36] J. A. R. Cembranos, A. L. Maroto, S. J. Núñez Jareño, and
H. Villarrubia-Rojo, J. High Energy Phys. 08 (2018) 073.

[37] E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E.
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