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Abstract: This paper addresses the issue of the satellite image processing using GRASS GIS in the
mangrove forests of the Niger River Delta, southern Nigeria. The estuary of the Niger River Delta
in the Gulf of Guinea is an essential hotspot of biodiversity on the western coast of Africa. At the
same time, climate issues and anthropogenic factors affect vulnerable coastal ecosystems and result
in the rapid decline of mangrove habitats. This motivates monitoring of the vegetation patterns using
advanced cartographic methods and data analysis. As a response to this need, this study aimed to
calculate and map several vegetation indices (VI) using scripts as advanced programming methods
integrated in geospatial studies. The data include four Landsat 8-9 OLI/TIRS images covering the
western segment of the Niger River Delta in the Bight of Benin for 2013, 2015, 2021, and 2022. The
techniques included the ’i.vi’, ’i.landsat.toar’ and other modules of the GRASS GIS. Based on the
GRASS GIS ’i.vi’ module, ten VI were computed and mapped for the western segment of the Niger
River Delta estuary: Atmospherically Resistant Vegetation Index (ARVI), Green Atmospherically
Resistant Vegetation Index (GARI), Green Vegetation Index (GVI), Difference Vegetation Index (DVI),
Perpendicular Vegetation Index (PVI), Global Environmental Monitoring Index (GEMI), Normalized
Difference Water Index (NDWI), Second Modified Soil Adjusted Vegetation Index (MSAVI2), Infrared
Percentage Vegetation Index (IPVI), and Enhanced Vegetation Index (EVI). The results showed varia-
tions in the vegetation patterns in mangrove habitats situated in the Niger River Delta over the last
decade as well as the increase in urban areas (Onitsha, Sapele, Warri and Benin City) and settlements
in the Delta State due to urbanization. The advanced techniques of the GRASS GIS of satellite image
processing and analysis enabled us to identify and visualize changes in vegetation patterns. The
technical excellence of the GRASS GIS in image processing and analysis was demonstrated in the
scripts used in this study.

Keywords: image processing; West Africa; remote sensing; Niger River Delta; R language
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1. Introduction
1.1. Background

This paper presents a GRASS GIS-based mapping framework for computing and
visualization Vegetation Indices (VI). The GRASS GIS provides a principled way to calcu-
late the VI from the bands of the satellite images using special module ’i.vi’. We derived
experimental performance bounds of the GRASS GIS for remote sensing data analysis,
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and demonstrated its utility with a challenging task of environmental monitoring of man-
groves ecosystems located in the coastal area of the Niger River Delta in southern Nigeria,
West Africa.

Mangroves have a high environmental and socioeconomic value. They provide impor-
tant functions as a habitat for species that live in the intertidal environment [1] and services
for human well-being including economic, environmental, and social aspects [2]. At the
same time, recently mangrove ecosystems threatened with extinction which is proved
by the increasing rate of deforestation [3–6]. Identifying the conditions and dynamics of
mangrove ecosystems is possible through the comparison of the VI computed from the
bands of the satellite images [7–9]. The VI enable the investigation of the spatial-temporal
trends in the distribution of mangroves detected when comparing several images.

Remote sensing data and advanced programming methods provide a valuable com-
bination for monitoring mangrove distribution to evaluate the level of degradation [10].
This is possible due to the fundamental feature of the remote sensing data of different
absorption and reflectance of solar radiation by various land cover types: water, vegetation,
urban spaces, deserts, sands, bare soil, and rocks. Moreover, spectral reflectance of diverse
types of vegetation vary across various channels of satellite images. This enables us to
detect various patterns of vegetation and discriminate them from other land cover types.
The combination of spectral bands of a satellite image enables us to calculate and visualise
the distribution of vegetation patterns as characteristics of the Earth’s landscapes [11–13].

Comparison of the VI computed from the images taken for several consecutive years
enables us to evaluate the vegetation patterns [14,15]. This approach builds on quantifying
the difference between the values of pixels on bands in a satellite image. Since spectral
reflectance of pixels corresponding to vegetation varies in selected channels, e.g., Near-
Infrared (NIR) and Red, such properties can be used for discriminating healthy green plants.
For instance, the Normalized Difference Vegetation Index (NDVI) is a well known indicator
of vegetation health and is widely used for assessment of degradation in sensitive coastal
ecosystems through the ratio of NIR and Red [16,17]. Besides the NDVI, other indices have
been developed which differ in their computational approach, various combinations of
Red and NIR bands or addition of other bands, e.g., Green, Blue, SWIR [18,19].

Previous studies used the Geographic Information System (GIS) to quantitatively eval-
uate and map environmental degradation and decline of vegetation of mangroves [20–24].
However, there is a deficiency in functionality of the traditional GIS: slow-speed data
processing, manual operational workflow and subjectivity and biased data analysis. In con-
trast, using programming techniques support accurate computations and mapping [25–29]
presenting more advanced tools for environmental monitoring of mangroves. This paper
is a continuation of our previous work [30] on the use of GRASS GIS scripts for carto-
graphic data processing, where spatial data were processed by the GRASS GIS modules.
Herein, we provided an extended application of scripts towards satellite image analysis
and used GRASS GIS for computing the VI to achieve a better performance compared
to the traditional GIS in terms of both accuracy through automation of data processing,
and computational costs due to open source availability of the GRASS GIS. Specifically, we
computed several VI to evaluate their performance for monitoring mangrove ecosystems.

1.2. Study Focus

Mangroves are a unique halophyte type of the shrubs and forests that have a unique
complex root system with prop roots [31]. Mangroves exist only in the saline waters of the
intertidal coastal zone of tropics and subtropics. Southern Nigeria, located along the tropical
coasts of the Atlantic Ocean, has favorable environmental and climate setting for mangrove
distribution. In particular, the Niger River Delta has the most extensive area of mangroves
in West Africa [32], and it is the third largest wetland in the world [33]. A wide variety of
mangrove species are adapted to the environmental setting of Nigeria [34,35]. For instance,
the Niger River Delta (Figure 1) provides a habitat for Rhizophora which is the most common
species located along the coasts, or shrub genera Avicennia and Laguncularia that growth
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in the lagoon areas of southern Nigeria [36]. The dynamics of mangrove habitats and the
distribution of these species depend on various factors—salinity [37–39], distance from
coast, repeatability of tidal cycles and freshwater inflow. Other factors include landscape
characteristics that vary in the coastal ecosystems of southern Nigeria in the lagoon, mud
beach, the Niger River Delta and in the coastal areas that extend along the coasts of the
Bight of Benin in the Gulf of Guinea [40]. The mangrove forests have a year-round growing
season which continuous vegetation cycle in the mangrove development which includes
opening the forest canopy, growing rapidly young trees, and mature phase formed by the
large trees [41].

Figure 1. Topographic map of Nigeria with indicated study area. Yellow dots indicate cities, red
pentagram indicates a capital. Software: Generic Mapping Tools (GMT) version 6.1.1, ref. [42]. Data
source: GEBCO/SRTM [43,44]. Cartography source: authors.

The deforestation of mangrove forests in southern Nigeria has diverse reasons. The
most important are the effects from climate change such as temperature and rainfall
variability [45–47], because the Niger River Delta is the most vulnerable region to climate
issues in Nigeria [48,49]. Specifically, the decrease in precipitation and rise in temperatures
results in changed balance of the saline-fresh water with regard to hydrology, and variations
in the length of periods of dry and wet seasons with regard to soil-landscapes systems.
As a consequence, this results in land cover change and deforestation [50,51]. Furthermore,
environmental processes such as droughts, soil erosion, and the invasion of external species
also affect the health of mangroves ecosystems [52]. Finally, the impacts of wave variability
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and increased frequency of flash floods changed the shape of the coastlines and contributed
to sea level rise and land subsidence, which in turn affected mangrove habitats [53,54].

Another important threat to the distribution of mangroves is presented by the anthro-
pogenic activities such as oil and gas exploration in the Niger River Delta [55], which results
in environmental problems such as oil bunkering, oil spillage [56], refining of crude oil [57].
Related processes include air pollution due to gas flaring, fossil fuel burning and trans-
portation contribute to the degradation of the coastal landscapes [58]. Oil spillage increases
the concentration of the polycyclic aromatic hydrocarbons in the sediments [59]. In turn,
the dynamics of the suspended sediments is controlled by different density in fresh and salt
waters, energy of waves and tides [60]. In contrast to the turbulent waters, the pollution in
the Niger River Delta is aggravated by a more complex hydromorphological structure of
the tidal network [61].

Due to a dense pattern of fluvial and tidal channels, bars and inner lakes interspersed
in the lower plain of the Niger River Delta, polluted water remains stagnant. Furthermore,
clayey soil texture in the meander belt of the Niger River Delta [62] creates favorable
conditions for the accumulation of pollutants and toxic chemicals [63–65], and retains
heavy metals [66–68]. All these factors facilitate the spread of oil into stagnant waters of
delta and contribute to the decline of mangroves [69–71]. The habitats of mangroves are
also affected by industrial works such as road construction, housing, clearing waterfront
vegetation [72], and the development of seaports, which all affected the natural landscapes
of the Niger River Delta [73]. Finally, the use of aquaculture reagents in the Niger River
Delta lead to the pollution of waters which resulted in the decline of mangrove landscapes
by up to 35% since 1960s [74].

Losses in mangroves in the coastal landscapes at a global scale are reported to be
up to 62% between 2000 and 2016, as a result of the land-use change, expansion of the
aquaculture land, fishing, and agriculture plantations [75]. Such activities contribute to
the environmental changes in the coastal regions of West Africa [76–78]. Finally, timber
production, wood harvesting, expansion of agriculture and bio-fuel plantations, and coastal
development contribute to the extinction of mangroves [79]. The cumulative effects from
all these triggers lead to the decline of mangroves at high rates and reduce the number
of their remaining habitats. As a result, mangrove forests are nowadays among the most
vulnerable marine ecosystems in West Africa [80].

2. Materials and Methods

The distribution of the mangroves within the coastal landscapes of Nigeria was eval-
uated by using ten different vegetation indices, namely: Atmospherically Resistant Veg-
etation Index (ARVI), Green Atmospherically Resistant Vegetation Index (GARI), Green
Vegetation Index (GVI), Difference Vegetation Index (DVI), Perpendicular Vegetation Index
(PVI), Global Environmental Monitoring Index (GEMI), Normalized Difference Water Index
(NDWI), Second Modified Soil Adjusted Vegetation Index (MSAVI2), Infrared Percentage
Vegetation Index (IPVI), and Enhanced Vegetation Index (EVI). Technically, the methods of
computing the ten VI were implemented using the GRASS GIS scripts.

2.1. Data

Rapid growth of the satellite data derived from the Earth observation sensors enhances
the cartographic possibilities of the environmental monitoring of the coastal landscapes.
The Landsat 8-9 OLI/TIRS images have become a precious data source for a wide range of
geospatial applications, e.g., monitoring the coastal ecosystems that are difficult to access,
such as mangrove habitats in southern Nigeria. The advantages of the Landsat scenes
consist in multi-spectral characteristics and global temporal and spatial coverage which
enable to derive information on the Earth’s landscapes. The Landsat 8-9 OLI/TIRS images
have 11 spectral bands including visible, thermal, and panchromatic ones, which can be
used for the analysis of the reflectance spectra for a particular land cover types and their
spatial and spectral characteristics.
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Specifically for inaccessible areas of mangrove ecosystems in southern Nigeria, the
Landsat data provide a precious source of spatial information which enables accurate
mapping and analysis of the vegetation patterns. Processing the satellite images by the
advanced scripting technologies is an effective and profitable means of data analysis and
information retrieval. Due to such reasons, we used the Landsat 8-9 OLI/TIRS satellite
images to monitor the decline in mangrove habitats based on the computed and visualized
ten VI which cover the western segment of the Niger River Delta. The images were collected
for the following years: 2013, 2015, 2021, and 2022, see Figure 2.

The data capture was performed using the EarthExplorer repository of the USGS
(URL https://earthexplorer.usgs.gov/ (accessed on 3 March 2023)), with main metadata
summarized in Table 1.

(a) 2013 (b) 2015

(c) 2021 (d) 2022
Figure 2. Landsat 8-9 OLI/TIRS images of the Niger River Delta in RGB colors for four years:
(a) 20 December 2013, (b) 26 December 2015, (c) 18 December 2021, (d) 29 December 2022.

Among all the existing Landsat products, the Landsat OLI/TIRS sensor has improved
technical and spectral characteristics, such as narrower spectral bands including Red
and NIR channels which are crucial for calculation of the VI. Moreover, it has better
calibration, higher radiometric resolution and corrections signal for noise. A thorough
comparative analysis of the Landsat OLI/TIRS against earlier sensors is presented in [81].
Since the spectral characteristics of the older Landsat products (TM and MSS) have coarser

https://earthexplorer.usgs.gov/
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parameters, we only used the images obtained from the Landsat OLI/TIRS. At the same
time, the first Landsat 8 OLI/TIRS sensor was launched in 2013, which explains the choice
of the first image selected in this study. Another important parameter for data selection
was low cloudiness of the images and comparable span for a short time series.

The images were imported into the GRASS GIS software and processed for data
analysis and visualization using modules for satellite images and raster data processing.
The mapping of mangroves of Nigeria using satellite images and GIS techniques has
been attempted and reported earlier [82–85] with proven effectiveness of the satellite
data for monitoring mangroves. We continued these and similar studies by applying the
programming methods of the GRASS GIS scripts instead of the traditional approaches of
GIS for computing the VI of the landscapes in southern Nigeria.

While the Landsat 8-9 OLI/TIRS images formed the dataset for computing and vi-
sualizing the VI, the GEBCO/SRTM raster data were used for visualizing the base map
for this study using the techniques of the Generic Mapping Tools (GMT) scripts [86,87].
To determine the variation in a spatial extent of the mangroves in western segment of the
Niger River Delta, ten VI representing the distribution of healthy vegetation were computed
to discriminate the swamp forests from the other land cover types such as water, urban
areas and agricultural lands. The image processing was implemented using the GRASS
GIS, version 8.2.1, URL https://grass.osgeo.org/ (access date 3 March 2023). The GRASS
GIS scripts were used in the ’i.vi’ module, which was applied for computing the VI along
with auxiliary modules.

Table 1. Satellite images used for computing ten VIs: Landsat 8-9 OLI/TIRS from the USGS 1.

Date Spacecraft Landsat Product ID Scene ID Cloudiness

20 December 2013 Landsat 8 LC08_L1TP_189056_20131220_20200912_02_T1 LC81890562013354LGN01 6.46
26 December 2015 Landsat 8 LC08_L1TP_189056_20151226_20200908_02_T1 LC81890562015360LGN01 17.54
18 December 2021 Landsat 8 LC09_L1TP_189056_20211218_20220121_02_T1 LC91890562021352LGN01 32.32
29 December 2022 Landsat 9 LC08_L1TP_189056_20221229_20230104_02_T1 LC81890562022363LGN00 0.59

1 The Sensor ID is common for all the scenes: Landsat 8-9 OLI/TIRS (Operational Land Imager and Thermal
Infrared Sensor), Collection 2 Level-2. Path/row parameters are common for all the images: 189/56. Coverage:
Niger River Delta, southern Nigeria, the Bight of Benin. Image source: United States Geological Survey (USGS).

2.2. Data Preprocessing

The GRASS GIS code used for data preprocessing is presented in Listing A1. It includes
the steps of importing Landsat channels by the Geospatial Data Abstraction Library (GDAL)
and selected auxiliary modules. The GDAL library was applied to import raster images of
the subset with 11 Landsat bands into the GRASS GIS mapset using the r.in.gdal module.
After importing, the data were checked and listed using the g.list module which lists the
available files in a working folder. Then, the metadata of the selected random bands were
inspected using the gdalinfo module. The raster metadata were displayed using the r.info
module for further display of the raster maps.

The principal approach here was the conversion of the digital numbers (DN) of the
pixel values into the reflectance values which were used for computing the VI, as shown in
Listing A1. Afterwards, the 11 Landsat bands were reformatted and copied to match the
input structure of the i.landsat.toar through the g.copy module. The i.landsat.toar module
was used to remove the haze effect from the original scenes by correction of the top-of-
atmosphere radiance in the Landsat bands. The conversion of the DN pixel values into the
reflectance values was implemented by using the DOS1 method. Upon the completing of
the data preprocessing, the ten VI were computed using the processed bands by the i.vi
module, as described below in the relevant subsections.

2.3. Atmospherically Resistant Vegetation Index (ARVI)

The Atmospherically Resistant Vegetation Index (ARVI) is based on using the spectral
bands with wavelengths ranging between 0.650 µm and 0.865 µm. In the Landsat 8-9

https://grass.osgeo.org/
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OLI sensor, this corresponds to the Bands Red (0.64–0.67 µm) and NIR (0.85–0.88 µm).
Additionally, the Blue band with wavelength of 0.45–0.51 µm in the Landsat OLI/TIRS is
distracted from the Red band according to Equation (1), [88,89]:

ARVI =
NIR− (2.0× Red− Blue)
NIR + (2.0× Red− Blue)

. (1)

In the GRASS GIS, the ARVI was computed using Listing A2 presented in the
Appendix A.2.

The advantage of ARVI is that it reduces the role of the atmospheric scattering that
affects the images. Such effects are caused by the aerosols of both natural origin (e.g., rain
and fog) or urban air pollution (e.g., dust or smog). Initially proposed and developed for
the assessment of vegetation from the Earth Observing System (EOS) Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor, ARVI can also be applied for the Landsat
OLI/TIRS sensors since it contains necessary spectral bands: Blue, Red and NIR.

2.4. Green Atmospherically Resistant Vegetation Index (GARI)

The Green Atmospherically Resistant Index (GARI) is more perceptive to a wide range
of chlorophyll content in leaves of mangroves. This correlates with the difference between
the reflectance of Green, Red and NIR bands, since the Green band is used in the formula of
GARI, in addition to Red and NIR spectral bands. Adding the Blue spectral band makes it
less dependent on possible atmospheric effects such as aerosol conditions. The theoretical
computation of GARI is based on Equation (2), developed initially by [90]:

GARI =
NIR− (Green− (Blue− Red))
NIR + (Green− (Blue− Red))

. (2)

The computation of GARI in the GRASS GIS was performed according to the embed-
ded formula and performed by Listing A3, as shown in the Appendix A.3.

2.5. Green Vegetation Index (GVI)

The technique of the Tasselled Cap transformation in remote sensing was originally
developed by [91]. The Tasselled Cap GVI provides more detailed information on the
distinct features of the landscapes such as plant canopy, water bodies and bare land or
sandy areas. The method of the Tasselled Cap performs a transformation of the original
pixels in bands into a new 4D dimension where the following parameters are separated:
soil brightness index, green vegetation index (GVI), yellow stuff index, and those related to
atmospheric effects [92]. Of these, we used the GVI, which is based on the estimation of
greenness in leaves of mangrove canopies as information on values of the weighted sums
of pixels derived from the color composites of the Landsat bands. The computation of the
Tasselled Cap Green Vegetation Index (GVI) was based on Equation (3) developed by [93]:

GVI = −0.2848× Blue− 0.2435× Green− 0.5436× Red+

+0.7243× NIR + 0.0840× SWIR1− 0.1800× SWIR2.
(3)

We used Listing A4 for the computation of of the GVI, as shown in the Appendix A.4.

2.6. Difference Vegetation Index (DVI)

The advantage of the Difference Vegetation Index (DVI) consists in the discrimination
of soil from the vegetation biomass. However, the disadvantage is that it does not considers
the difference between the spectral reflectance and radiance of soil surface caused by the
atmospheric effects [94]. The use of the DVI is based on the ratio between the NIR and Red
spectral bands [95] as shown in Equation (4):

DVI = (NIR− Red). (4)
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This is the original formula used later in a modified version for computing the NDVI,
which is based on the DVI in the adjusted way and has been applied in many works [96–98]
as shown in Equation (5):

NDVI =
(NIR− Red)
(NIR + Red)

. (5)

The above formulae are embedded in the GRASS GIS in the function ‘dvi’ of the
module i.vi used for computing the DVI as illustrated in Listing A5.

2.7. Perpendicular Vegetation Index (PVI)

The use of the PVI is based on the formula originally developed by [99]. Sensitive to
the atmospheric variations, the PVI is intended to monitor the productivity of range, forest,
and croplands. Similar to DVI, it measures the perpendicular distance of the pixels from the
soil line, since it is based on the assumption that soil reflectance supplies the background
signal of the vegetated surfaces. The formula used for calculation of the PVI is presented in
Equation (6):

PVI =
1√

a2 + 1
× (NIR− aR− b), (6)

where a and b are constants indicating slope and gradient of the soil line and R is a Red
band (for the Landsat OLI/TIRS sensor, it is a spectral Band 4). However, the embedded
formula of GRASS GIS was slightly modified, because the calculation of the PVI here is
made using the concept of “isovegetation”. The isovegetation line shows the distribution
of area covered by equal types of vegetation. Therefore, the pixels in this case were parallel
to the soil line which was assigned to a = 1. Hence, the constants for soil were removed
and the computation of the PVI was adjusted. In this case, it included the sine and cosine
of the NIR and Red channels using the following formula shown in Equation (7), [100]:

PVI = sin(a)NIR− cos(a)Red. (7)

Using the syntax of GRASS GIS, we defined the PVI as follows in Listing A6, shown
in the Appendix A.6.

2.8. Global Environmental Monitoring Index (GEMI)

The Global Environmental Monitoring Index (GEMI) was originally developed by
Pinty and Verstraete in 1992 [101]. The formula of GEMI has a nonlinear nature and is more
complex compared to the previous indices, see Equation (8). It was designed for global
environmental monitoring using the remote sensing data, which explains its improved
performance, which better considers all types of vegetation.

GEMI =
(2× [(NIR× NIR)− (Red× Red)] + 1.5× NIR + 0.5× Red

NIR + Red + 0.5

)
×(

1− 0.25× 2× [(NIR× NIR)− (Red× Red) + 1.5× NIR + 0.5× Red]
NIR + Red + 0.5

)
− Red− 0.125

1− Red
. (8)

The algorithm for computing and plotting the GEMI is presented in Listing A7, shown
in Appendix A.7.

Although GEMI is, in general, comparable to NDVI, it shows less sensitivity to at-
mospheric effects. Instead, it is influenced by the brightness of the bare soil. For these
reasons, it does not work well in desert arid and semi-arid regions covered by sands,
rocks, and soil with sparse or no vegetation. For the case of southern Nigeria, however,
GEMI works well since tropical dense forests are suitable for the performance of this index.
Moreover, the decline of mangroves is well-depicted using a comparison of GEMI several
satellite images.
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2.9. Normalized Difference Water Index (NDWI)

The values of the Normalized Difference Water Index (NDWI) are strongly dependent
on the water content in the landscapes. Hence, the NDWI serves as an accurate indicator of
the water areas and water bodies (rivers, lakes, estuaries, deltas). The NDWI is derived
from the NIR and Green bands using the original formula developed by [102] as a ratio of
Green and NIR spectral bands, as seen in Equation (9):

NDWI =
green− NIR
green + NIR

. (9)

Another formula of the NDWI was proposed by [103], which is a different index
withthe same name, since both indices were developed simultaneously in 1996. The NDWI
by [103] focuses on the identification of water content in the plant leaves using the formula
presented in Equation (10):

NDWI =
NIR− SWIR
NIR + SWIR

. (10)

However, this is more for the semi-arid and arid regions covered by savannah. In this
study, we used the NDWI proposed by [102], using Green and NIR bands for detecting
areas covered by Niger River Delta, tributaries and lagoon. Using the embedded algorithm
in the GRASS GIS, we can identify the NDWI using its syntax by the script shown in
Listing A8 and demonstrated in Appendix A.8.

2.10. Second Modified Soil Adjusted Vegetation Index (MSAVI2)

The Second Modified Soil Adjusted Vegetation Index (MSAVI2) was adjusted to
provide accurate data in sparse vegetation or plant canopies with a deficit of chlorophyll.
Originally developed as Modified Soil Adjusted Vegetation Index (MSAVI) by Qi et al. in
1992 [104], MSAVI2 was slightly modified by Qi et al. in 1994 [105] with a novel developed
formula presented in Equation (11) which aims at better identifying the bare soil between
the seedlings during leaf development, which is useful for agricultural mapping.

MSAVI2 =
1
2
×
(

2× NIR + 1−
√
(2× NIR + 1)2 − 8× (NIR− red)

)
. (11)

According to the analysis of the parameters of MSAVI (NIR and Red bands in com-
plex combinations) and its documentation, it allows the precise detection of the seasonal
vegetation patterns since it includes a soil factor which varies in moisture by different
seasons in Nigeria. Moreover, MSAVI2 works well in the areas of the sparse and scattered
vegetation, for instance, occupied by urban infrastructure, covered by buildings and roads
in the agglomerations and urbanized areas, where it shows good correlation with the
NDVI [106]. Therefore, the MSAVI2 is useful for detecting urban growth in the rapidly
developing towns of southern Nigeria. In GRASS GIS, MSAVI2 was computed using i.vi
module by Listing A9.

2.11. Infrared Percentage Vegetation Index (IPVI)

The specifics of the Infrared Percentage Vegetation Index (IPVI) consist in the ratio-
based computationally fast approach with values ranging from 0 to 1. As one can see
from the formula in Equation (12), the IPVI is based on the ratio between the Red and
NIR spectral bands. In this regard, it is similar and linearly equivalent to the NDVI, yet is
implemented in a more straightforward way [107]:

IPVI =
NIR

(NIR + Red)
. (12)

To compute and plot the IPVI, we used the GRASS GIS script presented in Listing A10
in the Appendix A.10.
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2.12. Enhanced Vegetation Index (EVI)

The Enhanced Vegetation Index (EVI) was designed to quantify vegetation greenness
by the combination of NIR, Red, and Blue spectral bands. The extended formula of EVI
includes the corrections for the atmospheric conditions and considers the effects from the
canopy background. Due to such properties, EVI is well-adjusted to identify the areas
with dense vegetation which is suitable for mangrove mapping [108]. Similar to the NDVI,
the values of EVI range from −1 to +1, with the range indicating healthy vegetation located
between 0.2 and 0.8. The formula of EVI is presented in the Equation (13):

EVI = 2.5×
( NIR− Red

NIR + 6.0× Red− 7.5× Blue + 1.0

)
. (13)

In the GRASS GIS, EVI was technically implemented using Listing A11.

3. Results

In this section, we compare and discuss the results of the computed VI with regard
to their performance and suitability to identify mangrove habitats and to discriminate
them against other land cover types along the coasts of southern Nigeria. The results were
obtained using the GRASS GIS framework, which aimed at image processing and analysis.
Ten diverse vegetation indices were calculated with the aim of finding the variations in
the distribution of the vegetation patterns and, in particular, the mangrove habitats of the
coastal Nigeria. The VI were visualized in maps and evaluated over several years for the
target region in the western segment of the Niger River Delta. Sidewise histograms are
placed on the left of the legend in each of the images, demonstrating the data distribution
within the study area for each index.

Computing the vegetation indices using algorithms embedded in ‘i.ivi’ and scripting
approach was integrated consistently for the comparative analysis of time series of the
Landsat 8-9 OLI/TIRS images covering the Niger River Delta. The GRASS GIS modules
were used in the scripting approach for automation of data processing and accurate satellite
image analysis. To produce the color-consistent images and evaluate the spatio-temporal
changes, these maps were derived from the computed vegetation indices and visualized
in the identical color ranges for each set of the four images. The results demonstrated
that the scripting methods of the GRASS GIS are effective for mapping the VI in topical
regions. Specifically, the evaluation of the VI is useful for the comparative assessment
of vegetation patterns and environmental monitoring in coastal Nigeria where applying
and practically evaluating the programming methods for remote sensing data processing
supports research on mangrove distribution through advanced cartographic tools.

3.1. Difference Vegetation Index (DVI)

The DVI is visualized in Figure 3. The DVI (Figure 3) is a slope-based type of VI
which is more straightforward to compute compared to the NDVI, which is beneficial for
mangroves since they are located at the interface between land and sea. The DVI is sensitive
to the total content of vegetation and density of canopy. Moreover, it well-distinguishes the
areas between the bare soil and vegetation canopies in general and identifies urban areas in
the small settlements.

The majority of the values obtained for 2013 are located within the range of 0.06 to
0.18 since it is the index sensitive to variations in chlorophyll content. The interpretation is
as follows. The lowest values around zero indicate bare soil; slightly higher values from
0.10 to 0.12 stand for vegetation canopies, while negative values colored in blue show water
bodies. The values of 2015 show a similar data range with a slight increase of upper values
towards 0.20. The distribution of mangrove swamps is visible as a large slate-blue-colored
spot in the left low corner of the image. The comparison of several images of 2013 and 2015
to 2021 and 2022 shows the decrease in this areas with mangroves, replaced by the values
dominated by bare soils and other types of vegetation, colored in green. The bright red
colors indicate tropical forests located in the northern part of the area.
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(a) (b)

(c) (d)
Figure 3. DVI of the Landsat 8-9 OLI/TIRS of Niger River Delta: (a) 2013, (b) 2015 (c) 2021, (d) 2022.

3.2. Atmospherically Resistant Vegetation Index (ARVI)

The ARVI (Figure 4) was designed for regions of high atmospheric aerosol content as
a robust modification of the NDVI. Therefore, it corrects the image scenes for the effects
from the atmospheric scattering and air contamination related to dust and smog in the
industrial areas where a high concentration of atmospheric aerosols is presented due to the
oil exploration. The sideway histograms showing distribution of pixels on the images show
various values for the years 2013, 2015, 2021, and 2022. Thus, the histogram for 2013 shows
a classic bell-shaped data distribution with values ranging from −0.20 to +0.20, distributed
equally on the histogram with a prominent mound in the center and identical tapering to
the left and right flings of the histogram.

The data for 2015 are distributed from −0.10 to +0.60, showing a more oblique data
distribution with more data distributed within the positive interval which indicates the
increased areas covered by green healthy vegetation. The data for 2021 show variation with
the diapason from −0.20 to 0.80 and the data for 2022 from 0.00 to 0.85 with residuals in the
negative values that indicate water areas. This indicate the increase in the areas covered
by the tropical forests in the northern part of the area, while decreased area of mangroves.
As mentioned above, the advantage of using ARVI for Nigeria is that it reduces the impacts
of the aerosols such as such as rain, fog, dust, smoke, or air pollution by using the Blue
band in making atmospheric corrections on the Red band. This is beneficial for Nigeria
in the areas of industrial activities such as oil exploration where higher contamination
of air is reported. Another important factor is a high humidity, which is around 80% all
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year throughout for southern Nigeria, which makes ARVI beneficial specifically in these
regions since it makes corrections for atmospheric scattering caused by high humidity
and moisture.

(a) (b)

(c) (d)
Figure 4. ARVI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

3.3. Green Atmospherically Resistant Vegetation Index (GARI)

The results of the computed Green Atmospherically Resistant Vegetation Index (GARI)
(Figure 5) rely on the estimated chlorophyll content in plants linked to photosynthetic
activity. Therefore, this index demonstrates the higher positive values in the areas with
healthy and dense vegetation canopies, which is related to an increase in photosynthetic
activity of leaves, while negative values indicate water areas as seen as a sharp peak in the
histogram shape. For all four images, the results of Landsat OLI/TIRS images processing
with GARI algorithm produce pixel values ranging from −0.50 to +1.0. Based on the
GARI results, the peak values in data variations were analyzed to facilitate the visual
interpretation of the obtained maps, namely the range of values. Specifically for 2013,
the majority of positive values range from 0.15 to 0.45, for 2015—from 0.30 to 0.90 with
a more gentle gradual shape of histogram; for 2021, the histogram has a rather narrow
shape with values varying from 0.35 to 0.75, and for 2022, from 0.20 to 0.80, see Figure 5.
Such variations illustrate changes in vegetation coverage and the greenness of canopies in
mangroves and other vegetation types in the Niger River Delta.
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(a) (b)

(c) (d)
Figure 5. GARI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

In 2013, the mangrove forests were dominated by the high GARI values, i.e., between
0.15 and 0.20, while in the 2015, the low-medium values corresponding to the mangroves
are replaced by the higher values (0.80 to 1.00) that indicate the other vegetation types
(colored in red in Figure 5). Further, values of histograms increased which indicate the
replacement of the mangroves by other vegetation types (e.g., agricultural crop areas) with
bright green canopies that correspond to higher values of GARI. The mangrove habitats
with moderate values of GARI are represented by the relatively scattered areas in the
southern edge of the study area in the Niger River Delta.

This performance of GARI is explained by its high sensitivity to the nuances of chloro-
phyll content in plants since the computation of GARI is based on the use of Green, Blue
and NIR spectral bands. Similar to ARVI and in contrast to NDVI, it is less sensitive to
the atmospheric effects such as aerosol due to the rigorous optimization of its algorithm.
Moreover, GARI is sensitive to the vegetation fraction in the canopy as can be seen in the
interspersed pattern of diverse colors which represent different values of the index. As a
development of the present study, GARI can be further applied for the estimation of other
biophysical properties of mangrove canopy such as Leaf Area Index (LAI), ratio of absorbed
photosynthetically active radiation, and net primary production for the environmental
monitoring of the Niger River Delta.
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3.4. Green Vegetation Index (GVI)

The GVI is useful for classifying the land cover as it recognises the density and vigor
of plants in green vegetation (bright red areas in Figure 6), detects stressed plants (light
blue areas in Figure 6), and accurately identifies wetland areas (dark areas in Figure 6).
The values of GVI range from −0.20 to 0.60 for 2013, and then change to the range between
−0.20 and 0.50 in 2015, which indicates a slight decrease in values corresponding to the
green vegetation, while the urban spaces slightly increase; this can also be seen when
comparing the area covered by the Benin City for 2013 and 2015. Further analysis of the
GVI images for 2021 and 2022 shows the range in values varying from −0.20 to +0.50 for
2021 and from −1.00 to +0.50 for 2022 with the peaks in histogram in the narrow range
of −0.10 to +0.10 for 2021 and from −0.5 to 0.15 for 2022, respectively. Here, the mean
mangrove GVI values are around 10, with a maximum value of 15 and a minimum value
of 5.0.

(a) (b)

(c) (d)
Figure 6. GVI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

In the mangrove forest coverage in 2013, the obtained values of GVI have a range be-
tween 0.2 and 0.8, while for the later periods (2015, 2021 and 2022), they demonstrate lower
values which can be seen on the histograms. Such fluctuations in the values of GVI indicate
the environmental changes in the study area and, specifically, the decline of the spatial
extent of the mangrove swamps. The reasons for the decline of the mangroves areas include
the effects from climate changes and anthropogenic activities such as logging, industrial
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and oil exploration activities, farming, and fishing. The effects from oil exploration and
related engineering works, such as dredging, contribute to the decline of mangroves mostly
through water contamination. Moreover, the expansion of the urban areas and related air
pollution, as well as the effects from climate change, also create negative conditions for
mangrove habitats and all contribute to the gradual extinction of mangroves.

3.5. Perpendicular Vegetation Index (PVI)

The distance-based PVI index (Figure 7) computes the perpendicular distance of the
pixel from the soil line which linearly correlates with the area covered by the vegetation
canopy. Therefore, higher PVI values which are shown as red colors point at the effects from
brighter soil background in the agricultural areas in the Edo State of Nigeria. According to
the sidewise histograms, the majority of values for 2013 roughly range from 0.10 to 0.22;
for 2015, from 0.06 to 0.18; for 2021, from 0.05 to 0.18 with a less distinct peak; and for 2022,
from 0.06 to 0.22. The disadvantage of the PVI consists in the atmospheric effects, where it
performs less accurately compared to ARVI and GARI.

(a) (b)

(c) (d)
Figure 7. PVI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

The trend to broaden the range of values is visible in Figure 7 with the inclusion of
lower values. Thus, the green areas of the mangrove swamps have most values between
0.20 and 0.30 compared to the other types of vegetation (rain forests and woodlands) which
cover the higher values from 0.30 to 0.80. The decline in mangrove forests is visible in the
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decrease of dark blue-colored areas in the lower left segment of the images. The PVI corrects
for the difference between the soil background which, however, has a better performance
in arid and semiarid regions. As for tropical regions, such as Nigeria with its tropical
climate and dense swamp forests, PVI is less effective and suitable compared to IPVI and
MSAVI2. The latter two indices better show the difference in state of the mangrove forests.
Additionally, the PVI is strongly affected by the atmospheric effects which are significant
for this region, since southern Nigeria is located in the wet equatorial climate, where the
mean annual temperature is 26.9 °C and high relative humidity is above 88% for Lagos. It
is also characterized by a high cloudiness throughout the country.

3.6. Global Environmental Monitoring Index (GEMI)

The GEMI is visualized in Figure 8.

(a) (b)

(c) (d)
Figure 8. GEMI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

The visualized GEMI in Figure 8 shows the discrimination between the major vegeta-
tion classes and other land cover areas such as water bodies (dark purple areas of the Bight
of Benin and the Niger River with its tributaries), landscapes of the mangrove forests (lilac
color), fresh water swamps (cyan color), and rain forests near the area of the Benin City
(green color), as well as woodlands with tall grass savannah (bright red color).

According to the sidewise histograms, the majority of values for year 2013 roughly
range from 0.40 to 0.60; for 2015, from 0.35 to 0.60; for 2021, from 0.32 to 0.62; and for 2022,
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from 0.30 to 0.70. GEMI corrects the computation for atmospheric and soil-related changes,
mostly in the areas where bare soil is presented, which is identified by the dark pixels on
the images. Hence, the computed GEMI indicates the dynamics in vegetation activity and
the separated areas of the wetlands and the dry lands. Furthermore, GEMI highlights the
urban areas (dark blue) separated from the natural landscapes (red color), and other land
cover types such as water bodies (dark lilac color), mangroves with fresh water swamps
(light purple), and rainforests (cyan color). The sparse vegetation areas and agricultural
fields are colored in yellow to orange hues, while the exposed surfaces are colored green.

3.7. Normalized Difference Water Index (NDWI)

The values of the NDWI range from −0.90 to −0.70 in 2013, and from −0.90 to −0.50
according to the sideway histograms visualized in Figure 9.

(a) (b)

(c) (d)
Figure 9. NDWI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four
years: (a) 2013, (b) 2015 (c) 2021, (d) 2022.

As a general trend, this indicates a decrease in high values corresponding the green
vegetation canopies. Thus, for 2021 and 2022, the range of values lies within the interval
from−0.85 to−0.45 for 2021, and from−0.80 to−0.40 for 2022. For the latter, the histogram
has an oblique shape with a peak visibly inclined towards the lower values. Such variations
in values correspond to the environmental changes in the Niger Delta River and a gradual
decline in the distribution of the mangrove swamps. The identification of vegetation
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biomass relies on the contrast between the spectral reflectance of the land cover types
corresponding to the soil and vegetation. Therefore, the NIR and Red wavelengths surpass
other spectral bands of the Landsat images, which is beneficial for the discrimination of the
green canopies of mangroves.

As discussed above, the distribution and health conditions of mangroves in the Niger
River Delta exhibits complex characteristics due to the cumulative effects from climate and
anthropogenic factors. Several species might be presented, including the presence of other
vegetation species with similar spectral characteristics which complicate the discrimination
of mangroves from similar vegetation types. Furthermore, the distribution of mangroves is
controlled by variation in salinity. Therefore, as demonstrated above, the distribution of
mangrove habitats varies on the Landsat images taken for different years.

3.8. Second Modified Soil Adjusted Vegetation Index (MSAVI2)

The computed MSAVI2 is visualised in Figure 10.

(a) (b)

(c) (d)
Figure 10. MSAVI2 computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four
years: (a) 2013, (b) 2015 (c) 2021, (d) 2022.
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The general range of values of MSAVI2 varies from −1 to 1, which is similar to the
classic NDVI index, Figure 10. More specifically for the case of southern Nigeria, the data
in 2013 show that the majority of values range between 0.05 to 0.30 according to the
histogram; for 2015, from 0.05 to 0.40; for 2021, from 0.00 to 0.40 with small fluctuations
of the negative data range from −0.15 to 0.00; in 2022, the data mostly vary from −0.10 to
0.50, see Figure 10.

The values of MSAVI2 in the range 0.2–0.4 indicate areas covered with grasslands and
shrubs which are situated mostly in the urbanized parts of the settlements such as Onitsha,
Sapele, Warri, and the Benin City. Therefore, the use of the MSAVI2 index is profitable for
highlighting the heterogeneity of soil and vegetation patterns which are visible in such
areas. Mangrove forests on the maps of MSAVI2 are colored in the light orange color
(0.05 to 0.10); water areas—in dark orange tones (0.2 to 0.4); fresh water swamps—in light
green; rainforests—in blue colors (0.20 to 0.25), urban spaces—in orange (0.1 to 0.2); and
agricultural lands—in yellow colors (0.05 to 0.10). The range of the slightly negative values
(−0.20 to −0.10) indicates bare soil and areas of the exposed land, see Figure 10.

In contrast to Soil Adjusted Vegetation Index SAVI, MSAVI reduces the effects from
the bare soil, which is especially for the agricultural areas. Thus, it presents the improved
version of the SAVI. In turn, SAVI better adjusts the values in the areas with sparse vegetation
coverage and low density of the plant canopy, which helps to indicate the areas with the
decreased vegetation or high deforestation rates. Since MSAVI2 uses the combination of the
ratio of NIR (wavelength 0.85–0.88 µm) and Red (wavelength 0.64–0.67 µm), where the values
reflect the amount of the chlorophyll presented in the plant canopy, it is suitable for estimating
the biomass, grass/plant canopy or LAI, because healthy moist vegetation of mangroves
reflects high in the NIR spectrum while absorbs more in the Red. The contrast between these
values enables us to highlight the areas of the distribution of mangrove habitats.

3.9. Infrared Percentage Vegetation Index (IPVI)

The distinct feature of the IPVI (Figure 11) consists in its always-positive range. Thus,
the data vary from 0 to +1, unlike the typical range of −1 to +1 for the NDVI and other
indices. Specifically, according to the histogram, for the year 2013, the majority of the IPVI
values range from 0.50 to 0.70; for 2015, from 0.50 to 0.80 with a more sharp increase in
values; for 2021, from 0.70 to 0.90; and for 2022, from 0.60 to 0.90. Thus, one can note
the trend of the generally increasing higher values that indicate rainforests while the area
of mangroves declines. The mangroves are depicted by the dark blue colors, gradually
replaced by the areas of light green color when comparing the data for 2013 with other
years and, specifically, 2022, Figure 11.

Although the IPVI is functionally similar to the NDVI, it is better-adjusted for detecting
the vegetation in small villages and urban spaces due to a more fine gradation of the positive
values. Moreover, the analysis of values of the IPVI enabled us to better identify smaller
spots of urban vegetation coverage as well as mangrove wetlands in the Niger River Delta.
Further, IPVI is well-adjusted to classify urban ecosystems since the areas of the main cities
in the study area are distinguishable from the nature vegetation: Warri, Onitsha, and Benin
City as the largest cities, and minor settlements such as Agbor, Sapele, and Adanisievbe
villages in the Delta State.
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(a) (b)

(c) (d)
Figure 11. IPVI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

3.10. Enhanced Vegetation Index (EVI)

The values of EVI (Figure 12) quantify vegetation greenness in the Niger River Delta.
The general data range for this index is between the values of −1 and +1. However,
specifically for the case of Niger River Delta in southern Nigeria, most of the values are
distributed between 0.00 and 0.30 in 2013, while for 2015, the highest values increase up to
0.40. Negative values indicate water areas in all the cases, while mangrove fields colored
by the bright green correspond to values ranging from 0.10 to 0.15, see Figure 12.
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(a) (b)

(c) (d)
Figure 12. EVI computed from the Landsat 8-9 OLI/TIRS images of Niger River Delta for four years:
(a) 2013, (b) 2015 (c) 2021, (d) 2022.

3.11. Statistical Analysis

The statistical analysis of the size and number of pixels representing various classes
over the study area was performed in R using the K-means method applied for Landsat
bands 4-3-2 in natural color composites. Ten vegetation classes correspond to the coastal
landscapes of southern Nigeria, see Table 2. The results of the classification by K-means
clustering show that 10 distinct classes including mangrove classes can be derived from
the Landsat OLI/TIRS data. These include the following land cover classes: (1) mangrove
swamps; (2) water areas (river and shallow areas); (3) water areas (coastal areas of the Bight
of Benin); (4) forests; (5) built-up urban areas and settlements; (6) bare soil and exposed
land surfaces; (7) woodland; (8) agricultural areas; (9) farmland/grasslands; and (10) other
vegetation types. The classification is based on the modified existing studies [109–112].
The table is sorted by the ascending values of pixels.

The land cover analysis of the Niger River Delta was implemented in R using the
K-means clustering method of the unsupervised automatic classification. The approach of
the land cover types identification using this method was performed by the partition of
the images through sampling the pixels evaluated for their DN values and assigning them
to the target land cover classes. It shows a distribution of pixels by clusters of mangroves
and other land cover types using clustering of the four images in Landsat OLI/TIRS band
combinations 4-3-2, i.e., natural band composites. The land cover categories corresponding
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to the mangroves showed gradual losses from 535,828.3 in 2013 (ID Class 3 for 2013),
to 432,318.7 in 2018 (ID Class 4 for 2018), 408,108.2 in 2021 (ID Class 5 for 2021), and
416,219.5 in 2022 (ID Class 4 for 2022), Table 2.

Table 2. Results of the land cover class computations of the Landsat-8 OLI/TIRS satellite images 1.

Class 2013 2015 2021 2021

ID nr. of pixels cluster size nr. of pixels cluster size nr. of pixels cluster size nr. of pixels cluster size

1 0.0 1 99,304.0 2 0.0 1 0.0 1

2 24,202.5 2 793,875.9 3 179,803.3 3 324,638.7 1

3 535,828.3 4 768,423.9 3 249,647.7 6 367,419.8 3

4 686,438.4 8 432,318.7 4 305,940.8 11 416,219.5 6

5 740,729.6 9 426,391.2 8 408,108.2 11 556,665.7 9

6 783,803.7 9 291,778.8 10 603,527.3 12 647,066.0 9

7 906,337.9 10 263,588.5 14 628,916.8 12 750,900.1 12

8 915,597.2 16 259,272.9 16 629,041.5 13 984,741.4 13

9 999,878.2 18 1,483,831.7 20 645,075.3 14 1,162,375.3 18

10 2,292,524.5 23 1,094,319.1 20 1,372,956.2 17 1,516,837.6 18
1 The statistical summary is computed within cluster sum of squares by cluster using K-means performed in R
library ’raster’. The table is sorted by ascending values of the pixels in land cover types.

The heat map graph shows the confusion matrix plotted using Python showing the
probability cases for pixel distribution according to land cover classes (10 selected ID
classes) in the Niger River Delta, Nigeria, Figure 13.

(a) (b)

Figure 13. Correlation matrices of land cover classes (10 ID classes) in the Niger River Delta between
2013 and 2022, based on the Landsat 8-9 OLI/TIRS images: (a) Kendall correlation for average values;
(b) Spearman correlation for pixels by bands 4 (Red), 3 (Green) and 2 (Blue) used for classification of
land cover types. Visualization: Python. Source: authors.

The data were evaluated between 2013 and 2022, based on clustering of the Landsat
8-9 OLI/TIRS images and the results are presented Table 3. The Kendall correlation shows
the average values, while the Spearman correlation shows the pixels by bands 4 (Red),
3 (Green), and 2 (Blue) used for the classification of land cover types. The correlation plots
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showing probability cases for pixel distribution according to land cover classes (10 selected
ID classes) in the Niger River Delta are shown in Figure 13; they show the data between
2013 and 2022, based on the results of the clustering of the Landsat 8-9 OLI/TIRS images.

Table 3. Results of the land cover class classification by pixel content in Band 4 (Red), Band 3 (Green)
and Band 2 (Blue) of the Landsat-8 OLI/TIRS satellite images.

Class 2013 2018 2021 2022

ID B4 B3 B2 B4 B3 B2 B4 B3 B2 B4 B3 B2

1 9362.333 9803.222 8742.333 10,352.65 10,539.35 8699.400 9150.500 9643.167 8150.667 11,409.333 11,031.333 9693.000

2 9631.111 9699.000 8448.778 10,848.50 11,077.50 9607.300 11,394.000 11,449.667 9541.667 9672.556 9612.056 8631.333

3 12,549.750 12,197.500 10,335.750 10,879.55 10,833.90 8936.950 9900.929 10,211.571 8387.929 23,552.000 22,211.000 18,896.000

4 8920.261 9311.826 8221.783 9816.75 10,058.75 8333.625 10,262.692 10,408.692 8676.462 10,117.556 9809.111 8729.111

5 10,144.625 10,144.875 8946.250 9825.25 10,284.50 8776.500 9463.333 9956.667 8546.000 8466.667 8940.750 8148.417

6 8151.000 9824.000 8126.500 10,372.43 10,680.93 9107.500 10,811.182 10,739.182 8965.091 8179.333 8705.333 7906.833

7 8658.938 9129.000 8067.750 11,872.33 11,513.67 9631.333 9408.917 9741.917 8132.583 8887.889 9152.389 8166.667

8 8276.889 8930.222 8045.611 10,080.38 10,360.25 8400.188 15,769.000 14,325.000 12,446.000 9110.308 9375.154 8483.538

9 8939.500 9494.900 8524.100 11,897.50 11,900.00 10,818.000 9763.182 10,158.000 8879.636 10,554.909 10,198.455 9056.000

10 9217.000 10,015.000 5465.000 13,052.00 12,427.00 10,482.333 9559.706 9997.765 8030.059 9374.222 9420.889 8187.556

4. Discussion

This paper demonstrated that the scripting techniques of the GRASS GIS used with
freely-available Landsat OLI/TIRS satellite images are beneficial for evaluating the spatial
patterns in the vegetation areas of coastal Nigeria. The results obtained from the satellite
image processing and computing the VI for assessing mangrove distribution show that
MSAVI2 (Figure 10) and GVI (Figure 6) indices ranked the highest with the most accurate
presented areas of the mangrove fields, while EVI (Figure 12) and GEMI (Figure 8) were
judged to rank the lowest. Changes in mangrove fields for the four different time periods
estimated by the atmospherically adjusted indices ARVI and GARI are presented in Figure 4
and Figure 5, showing the VI corrected for the atmospheric effects. Here the distribution
of the mangrove fields (showed by the light orange colors) recorded the highest value
in 2013, while the lowest value was in 2022 due to the declined area of distribution of
mangrove habitats, as discussed above. The DVI (Figure 3) and PVI (Figure 7) indices
demonstrated the comparable results with visible reduction of mangroves, showed as the
reduced area in both the PVI and DVI. Nevertheless, the use of the DVI is less effective
for mapping mangroves and densely vegetated areas of tropical forests, since this index is
better identifies urban areas and settlements. The NDWI (Figure 9) and the IPVI (Figure 11)
also highlighted the decline of mangrove swamps as areas in the lower left segment of the
images colored in yellow-green for the NDWI and light blue for the IPVI.

The results of the classified images are also confirmed by the existing studies on
changes in mangrove habitats in southern Nigeria reporting the environmental degrada-
tion [113,114]. For instance, [115] confirms the losses in mangroves in southern Nigeria
since mid-1980s through the early 2000s due to the urbanization, dredging, and oil and
gas industrial activities. The effects from the rapid urbanization on deforestation are also
reported in other relevant works [116,117] and are reflected in the undertaken measures on
creating the sustainable green infrastructure [118]. Despite their environmental value, man-
grove forests along the West African coasts are subject to a range of natural threats which
motivate environmental monitoring. The environmental mapping of the coastal landscapes
of the Niger River Delta proposed and presented above using the application of the GRASS
GIS modules has provided the capability to integrate remote sensing of multi-temporal
data, covering a target region in southern Nigeria with scripting techniques.
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Given the level of mangrove degradation in the Niger River Delta, there is a need for
mangrove conservation in the coastal communities [119]. With this regard, the presented
cartographic framework based on the use of the GRASS GIS contributes to this issue by
presenting a case of computed and mapped VI showing recent changes in vegetation
communities of southern Nigeria. To evaluate these changes, we visualized ten vegetation
indices using the remote sensing data and scripting techniques of selected modules of the
GRASS GIS. To this end, we applied and proposed several modules of the GRASS GIS
including the ’i.vi’ which is specially adjusted for satellite image processing. Using these
tools, we performed an analysis of the vegetation patterns in the coastal regions of Nigeria
using the Landsat 8-9 OLI/TIRS scenes. The VI were computed on the western segment
of the Niger River Delta situated along the Bight of Benin in the Gulf of Guinea, southern
Nigeria. Ten computed and visualized VI were processed using GRASS GIS scripts. A com-
parative analysis of the environmental changes was applied for the following vegetation
indices: ARVI, GARI, GVI, DVI, PVI, GEMI, NDWI, MSAVI2, IPVI, and EVI. The use of the
advanced scripting methods for mapping changes in the VI within a western segment of
the Niger River Delta revealed declining mangrove swamp habitats in southern Nigeria.

5. Conclusions

Identifying spatiotemporal trends in the vegetation patterns is one of the fundamental
problems in environmental assessment. Using several satellite images for computing a
time series of VI helps to estimate the extent to which mangrove communities are de-
clining. The use of time series of the satellite-derived VI to perform change detection
in the distribution of mangroves through the comparative analysis of images has been
reported previously to show temporal variations in the Niger River Delta. In this paper, we
illustrated the benefits of using scripts for satellite image processing with a special aim of
computing and visualizing the vegetation indices in the mangrove landscapes of Nigeria.
Specifically, we applied the GRASS GIS for computing the VI, aiming to evaluate the health
and greenness of vegetation patterns in southern Nigeria.

The use of the GRASS GIS programming scripts is an efficient optimization method
of remote sensing data processing. Its benefits for computing the VIs consist in a superior
performance with respect to the speed and accuracy of mapping compared to the tradi-
tional GIS software. Using modules of the GRASS GIS, we have extracted information
from the Landsat OLI/TIRS images for the analysis of vegetation patterns in southern
Nigeria and compared the results over several years. The algorithms of the GRASS GIS
demonstrated powerful functionality in satellite image processing which resulted in an
accurately-produced series of maps based on the calculated VI in the western segment of
the Niger River Delta for the years 2013, 2015, 2021, and 2022, respectively. This allowed
for a better understanding of vegetation patterns derived from the analysis of the remote
sensing data.

Moreover, image processing implemented by the GRASS GIS scripts supports effective
environmental monitoring due to rapid and accurate mapping. As a result, this novel
cartographic results in a series of VI-based maps which can be used to support the protection
of sensitive ecosystems in the Niger River Delta. Thus, mapping the VI helps to evaluate
vegetation health, using the information for adaptive planning and identifying the decline
in the mangrove habitats which play a crucial role in the environmental sustainability
of Nigeria. The environmental monitoring of the coastal areas of West Africa supports
measures aimed at minimizing the threats to mangroves and maintaining the human–
nature balance for sustainable development in Nigeria.
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Abbreviations
The following abbreviations are used in this manuscript:

ARVI Atmospherically Resistant Vegetation Index
DN Digital Number
DVI Difference Vegetation Index
EOS Earth Observing System
EVI Enhanced Vegetation Index
GARI Green Atmospherically Resistant Vegetation Index
GDAL Geospatial Data Abstraction Library
GEMI Global Environmental Monitoring Index
GIS Geographic Information System
GMT Generic Mapping Tools
GRASS GIS Geographic Resources Analysis Support System GIS
GVI Green Vegetation Index
IPVI Infrared Percentage Vegetation Index
Landsat 8-9 OLI/TIRS Landsat 8-9 Operational Land Imager and Thermal Infrared
LAI Leaf Area Index
MODIS Moderate Resolution Imaging Spectroradiometer
MSAVI2 Second Modified Soil Adjusted Vegetation Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near Infrared
PVI Perpendicular Vegetation Index
SAVI Soil Adjusted Vegetation Index

Appendix A. GRASS GIS Scripts Used for Computing and Plotting the
Vegetation Indices

Appendix A.1. GRASS GIS Script for Correction of the Top-of-Atmosphere Radiance

Listing A1. GRASS GIS script for converting the DN pixel values to reflectance for correction of the
top-of-atmosphere radiance.

1 #!/bin/sh
2 r.info -r LC08_L2SP_189056_20131220_20200912_02_T1_SR_B1
3 gdalinfo LC08_L2SP_189056_20131220_20200912_02_T1_SR_B7.TIF
4 r.in.gdal LC08_L2SP_189056_20131220_20200912_02_T1_SR_B1.TIF out=L8_2013_01
5 r.in.gdal LC08_L2SP_189056_20131220_20200912_02_T1_SR_B2.TIF out=L8_2013_02
6 r.in.gdal LC08_L2SP_189056_20131220_20200912_02_T1_SR_B3.TIF out=L8_2013_03
7 r.in.gdal LC08_L2SP_189056_20131220_20200912_02_T1_SR_B4.TIF out=L8_2013_04
8 r.in.gdal LC08_L2SP_189056_20131220_20200912_02_T1_SR_B5.TIF out=L8_2013_05
9 # repeated likewise until Band 11

10 g.list rast
11 g.copy raster=L8_2013_01 ,lsat8_2013 .1
12 g.copy raster=L8_2013_02 ,lsat8_2013 .2
13 g.copy raster=L8_2013_03 ,lsat8_2013 .3
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14 g.copy raster=L8_2013_04 ,lsat8_2013 .4
15 g.copy raster=L8_2013_05 ,lsat8_2013 .5
16 # repeated likewise until Band 11
17 i.landsat.toar input=lsat8_2013. output=lsat8_2013_toar. sensor=oli8 \
18 method=dos1 date =2013 -12 -20 sun_elevation =51.85549756 \
19 product_date =2013 -12 -20 gain=HHHLHLHHL

Appendix A.2. GRASS GIS Script for Computing the ARVI

Listing A2. GRASS GIS script for computing the ARVI.

1 g.region raster=lsat8_2013_toar .3 -p
2 i.vi blue=lsat8_2013_toar .2 red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5 \
3 viname=arvi output=lsat8_2013.arvi --overwrite
4 r.colors lsat8_2013.arvi color=bcyr -e
5 d.mon wx1
6 d.rast lsat8_2013.arvi
7 d.legend raster=lsat8_2013.arvi range =-0.7 ,0.3 title="ARVI" title_fontsize

=14 font=Helvetica fontsize =12 -t -s -b border_color=white thin =12
label_step =0.1 -d

8 d.out.file output=Nigeria_ARVI_2013 format=jpg --overwrite

Appendix A.3. GRASS GIS Script for Computing the GARI

Listing A3. GRASS GIS script for computing the GARI.

1 g.region raster=lsat8_2013_toar .3 -p
2 i.vi blue=lsat8_2013_toar .2 green=lsat8_2013_toar .3 red=lsat8_2013_toar .4 \
3 nir=lsat8_2013_toar .5 viname=gari output=lsat8_2013.gari --overwrite
4 r.colors lsat8_2013.gari color=rainbow -e
5 d.mon wx2
6 d.rast lsat8_2013.gari
7 d.legend raster=lsat8_2013.gari range =-0.5 ,0.7 title="GARI" title_fontsize

=14 font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

8 d.out.file output=Nigeria_GARI_2013 format=jpg --overwrite

Appendix A.4. GRASS GIS Script for Computing the GVI

Listing A4. GRASS GIS script for computing the GVI.

1 g.region raster=lsat8_2013_toar .3 -p
2 i.vi blue=lsat8_2013_toar .2 green=lsat8_2013_toar .3 red=lsat8_2013_toar .4

nir=lsat8_2013_toar .5 band5=lsat8_2013_toar .6 band7=lsat8_2013_toar .7
viname=gvi output=lsat8_2013.gvi --overwrite

3 r.colors.stddev lsat8_2013.gvi
4 d.mon wx3
5 d.rast lsat8_2013.gvi
6 d.legend raster=lsat8_2013.gvi range =-1,0.7 title="GVI" title_fontsize =14

font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

7 d.out.file output=Nigeria_GVI_2013 format=jpg --overwrite

Appendix A.5. GRASS GIS Script for Computing the DVI

Listing A5. GRASS GIS script for computing the DVI.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi blue=lsat8_2013_toar .2 red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5

viname=dvi output=lsat8_2013.dvi --overwrite
3 r.colors lsat8_2013.dvi color=bgyr -e
4 d.mon wx4
5 d.rast lsat8_2013.dvi
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6 d.legend raster=lsat8_2013.dvi range =-0.1,0.3 title="DVI" title_fontsize =14
font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.02

border_color=white thin=8 -d
7 d.out.file output=Nigeria_DVI_2013 format=jpg --overwrite

Appendix A.6. GRASS GIS Script for Computing the PVI

Listing A6. GRASS GIS script for computing the PVI.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5 viname=pvi output=

lsat8_2013.pvi --overwrite
3 r.colors lsat8_2013.pvi color=bgyr -e
4 d.mon wx5
5 d.rast lsat8_2013.pvi
6 d.legend raster=lsat8_2013.pvi range =-0.1,0.3 title="PVI" title_fontsize =14

font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.02
border_color=white thin=8 -d

7 d.out.file output=Nigeria_PVI_2013 format=jpg --overwrite

Appendix A.7. GRASS GIS Script for Computing the GEMI

Listing A7. GRASS GIS script for computing the GEMI.

1 # Calculation of GEMI: Global Environmental Monitoring Index
2 g.region raster=lsat8_2013_toar .1 -p
3 i.vi red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5 viname=gemi output=

lsat8_2013.gemi --overwrite
4 r.colors lsat8_2013.gemi color=roygbiv -e
5 d.erase
6 d.rast lsat8_2013.gemi
7 d.legend raster=lsat8_2013.gemi range =-0.5 ,1.0 title="GEMI" title_fontsize

=14 font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

8 d.out.file output=Nigeria_GEMI_2013 format=jpg --overwrite

Appendix A.8. GRASS GIS Script for Computing the NDWI

Listing A8. GRASS GIS script for computing the NDWI.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi green=lsat8_2013_toar .3 nir=lsat8_2013_toar .5 viname=ndwi output=

lsat8_2013.ndwi --overwrite
3 r.colors lsat8_2013.ndwi color=viridis -e
4 d.mon wx0
5 d.rast lsat8_2013.ndwi
6 d.legend raster=lsat8_2013.ndwi range =-1.0 ,0.5 title="NDWI" title_fontsize

=14 font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

7 d.out.file output=Nigeria_NDWI_2013 format=jpg --overwrite

Appendix A.9. GRASS GIS Script for Computing the MSAVI2

Listing A9. GRASS GIS script for computing the MSAVI2.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5 viname=msavi2 output=

lsat8_2013.msavi2 --overwrite
3 r.colors lsat8_2013.msavi2 color=soilmoisture -e
4 d.mon wx0
5 d.rast lsat8_2013.msavi2
6 d.legend raster=lsat8_2013.msavi2 range = -1.0,0.5 title="MSAVI2"

title_fontsize =14 font="Helvetica" fontsize =12 -t -b bgcolor=white
label_step =0.1 border_color=white thin=8 -d
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7 d.out.file output=Nigeria_MSAVI2_2013 format=jpg --overwrite

Appendix A.10. GRASS GIS Script for Computing the IPVI

Listing A10. GRASS GIS script for computing the IPVI.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5 viname=ipvi output=

lsat8_2013.ipvi --overwrite
3 r.colors lsat8_2013.ipvi color=haxby -e
4 d.mon wx0
5 d.rast lsat8_2013.ipvi
6 d.legend raster=lsat8_2013.ipvi range =-1.0 ,1.0 title="IPVI" title_fontsize

=14 font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

7 d.out.file output=Nigeria_IPVI_2013 format=jpg --overwrite

Appendix A.11. GRASS GIS Script for Computing the EVI

Listing A11. GRASS GIS script for computing the EVI.

1 g.region raster=lsat8_2013_toar .1 -p
2 i.vi blue=lsat8_2013_toar .2 red=lsat8_2013_toar .4 nir=lsat8_2013_toar .5

viname=evi output=lsat8_2013.evi --overwrite
3 r.colors lsat8_2013.evi color=elevation -e
4 d.mon wx0
5 d.rast lsat8_2013.evi
6 d.legend raster=lsat8_2013.evi range =-1.0,1.0 title="EVI" title_fontsize =14

font="Helvetica" fontsize =12 -t -b bgcolor=white label_step =0.1
border_color=white thin=8 -d

7 d.out.file output=Nigeria_EVI_2013 format=jpg --overwrite
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