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Abstract—The advent of mobile computing has changed the
shape of distributed computing. Mobile devices now have enough
computational capabilities to take part of distributed computa-
tions. Thanks to their wireless networking interfaces, they can
have direct interactions with their peers, self-organize in dynamic
multi-hop networks, like the Internet of Things (IoT), the Edge,
Mobile Ad hoc Networks (MANETs), etc. Such networks exhibit
a number of inherent characteristics (mobility, unpredictability,
scarce connections, etc) which make it difficult the use of
their resources by (distributed) applications. Because existing
middleware for distributed computing was most often designed
to operate on clouds/grids/clusters, it can hardly be used in
these networks. IDAWI belongs to a new class of middleware
solutions which rely on decentralization to federate the resources
of dynamic multi-hop networks, to the purpose of facilitating
the design and implementation of distributed applications in
networks of mobile devices. IDAWI goes further by proposing
a collective stream-oriented computing model that matches the
very nature of such networks. This permitted us to design,
implement and describe in this article the architecture of a
specific decentralized Web backend exposing as a whole the
resources of a dynamic multi-hop network as a set of Web
services. In order to profit from the stream-oriented and collective
natures of IDAWI ’s computation model, these Web services make
a clever use of several standard Web technologies they rely on.
All the concepts presented in this paper can be found in an Open
Source reference implementation.

Index Terms—Decentralised systems, overlay networks, mid-
dleware, edge, fog, IoT, Java, distributed computing, idawi

Today, thanks to the advances of micro-electronics, de-
vices of very diverse natures are capable to perform com-
putations. The computational landscape, previously consisting
of only computers in grids or managed clusters, has been
augmented by newcomers. Indeed, mobile devices, such as
laptops/tablets/smartphones, which were previously restricted
to personal computing applications, now have computational
capabilities that enable them to take part of computation-
intensive distributed applications. In particular, considering
the computational power, laptops are now on par with mid-
range fixed workstations, and tablets and smartphones have no
less than half of their power. In this context, smartphones are
particularly worth considering. Indeed, billions of them have
been sold in years, making them the most common computing
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Fig. 1. An example of a network consisting of mobile nodes communicating
with each other through wireless links (dotted lines). They 4G broadband
connection enables them to connect to a gateway to the Internet, giving them
access to frontals of clouds/grids/clusters whose worker nodes are protected
by a firewall.

devices on the planet today.
All these computation-able devices are very heterogeneous

in terms of capacity, speed, memory, mobility, as well as in
their ability to interact with other devices. Those in cloud/clus-
ters usually communicate with each other via both Infiniband
and IP-over-Ethernet. While Infiniband provides computers in



clusters with a high-throughput low-latency communication
media, IP connects them to the Internet (and distant clusters),
via optical fiber connections. Mobile devices all use broadband
4/5G or Wi-Fi to connect to routers, and they can themselves
behave as routers by sharing their connection via Wi-Fi. Also,
they all use Bluetooth to communicate with the devices of
the IoT. Finally, the less known the Wi-Fi ad hoc mode and
Bluetooth enables them to have direct P2P connections to
each other. This paper considers such networks formed out
of the diversity of devices and networking technologies, that
serve as the hardware infrastructure of IoT application, Edge
computing, etc.

Distributed computing is inherently complex. The advent of
mobile devices made it even more complex, for it introduced
new constraints and new possibilities. To deal with them, we
need to change the way we envisage distributed applications
today, by rethinking the middleware that support them. Indeed,
existing middleware for distributed computing (like ProActive
[1], MPI, JXTA, JMS (Jakarta Messaging API), ActiveMQ
[2], JGroups [3], RMI, and Akka) is most often tailored
to grids, clouds or clusters. Middleware now needs to take
into serious consideration the development of applications
for networks involving mobile devices, like Mobile Ad hoc
Networks (MANETs), the IoT (Internet of Things), Delay
Tolerant Networks (DTNs), the Edge, etc. Existing middleware
was not designed to operate on these networks, and it poorly
accommodates their intrinsic properties. To solve this problem,
more flexible models and elastic tools have been proposed by
Researchers, like JavaCà&Là (JCL) [4], GoPrime [5], Paral-
lelTheater [6], ActorEdge [7], and EmbJXTAChord [8]. But in
spite of their numerous good features, in particular their wise
use of decentralization as a solution to dynamics/mobility,
these Research tools are often designed to solve particular sci-
entific problems, which make them hardly usable out-of-the-
box in projects involving practical distributed computations.
Adapting one of them would be a cumbersome work that has
no guarantee of success, as their source codes, when they are
fully available, are always very hard to embrace. To increase
difficulty, there is no consensus on the tool that is the most
appropriate to start this work from.

Because of this, in order to meet the requirements of our
lab applied Research projects in the fields of graph algo-
rithms [9], networking [10], decentralized protocols [11] for
MANETs and more recently the IoT, etc, we had initiated the
design and development of a new middleware called IDAWI
[12][13]. In IDAWI, we have designed, implemented and
arranged together many features like a structuring component-
oriented application model in the style of SOA, and automatic
decentralized deployment system [14], etc, as well as a flexible
stream-oriented collective computational model suited to the
requirements of IoT applications, and which is automatically
accessible to other applications via its Web interface. This
feature empowers IDAWI with deep ability to interoperate with
other tools, which is what this article is about.

This article tackles the problem of providing an unified
framework exposing the resources of mobile multi-hop net-

works (like the IoT) to applications. To solve it, we propose
an innovative decentralized Web service infrastructure, relying
on the IDAWI framework, to which it exploits many base fea-
tures such as its decentralized nature, SOA (Service Oriented
Architecture) design, and collective computing model. This
Web-service infrastructure exposes to exogenous applications
the resources of the underlying dynamic multi-hop network as
a unified set of Web services, which can be used regardless
of where they are called from in the network: the system
provides agnosticism to location. Unlike usual Web services
which conform to the RPC (Remote Procedure Call) model,
the system we propose makes a clever use of existing Web
standard technologies to achieve a stream-oriented mode of
operation, conforming the execution model of the IDAWI
framework.

All ideas and algorithms presented here have been imple-
mented in the Open Source IDAWI middleware.

Section I describes the concepts within IDAWI which are
required to comprehend the Web service infrastructure that is
then presented in Section II.

I. THE IDAWI MIDDLEWARE

IDAWI is an innovative framework for distributed comput-
ing in mobile multi-hop networks, like the IoT, the Edge,
MANETs, etc. It synergizes powerful concepts found in
existing tools, and many ideas we introduced all along its
design and development. As a result, its Open Source Java
reference implementation exhibits a number of unique features
which constitute effective solutions to problems not solved by
existing middleware, like automatic decentralized deployment,
operation through firewalls/NATs, and stream-based Web in-
terfacing, hence this article.

The source code of IDAWI is available at

https://i3s.univ-cotedazur.fr/∼hogie/idawi/

In a few words, the polished object-oriented design of
IDAWI proposes a SOA-like application model atop a fully
decentralized component system. It proposes flexible collec-
tive message-oriented communication and computation models
through an API supporting both reactive (asynchronous) and
imperative (synchronous) programming. In order to avoid
confusions, instead of introducing a specific taxonomy for our
elements of design, we foster the reuse of the concepts familiar
to Web-services communities, when possible.

IDAWI proposes a structuring model of distributed applica-
tions: meaning that applications must conform to a certain
organization defined by a specific Object-Oriented model
(OO). This ensures consistency of application source codes, it
severely reduces the risk of design errors (as most design work
is in the middleware), and it enables the development of high-
level functionalities such as ”deployment” which cannot be
implemented if applications do not follow a standard pattern.

This structuring model is described in the coming sections.

A. An overlay network of components
IDAWI defines a component model. Components represent

business entities. They form a multi-hop overlay network



providing agnosticism of the underlying network topology. In
this overlay, two given components are neighbors if they do
have direct interactions. Any two components can be neighbors
unless the underlying network infrastructure prevents it. This
may happen in the presence of NATs/firewalls, or because
of inherent constraints of wireless technologies like a limited
range, hidden nodes, etc. Two non-neighbors must then rely on
intermediary nodes to communication, which then behave as
routers. This overlay network of components is then multi-hop
by nature. It can be seen as a dynamic mixed multi-graph.

In the usual use case, there will be only one component
per device. The role of this component is then to represent
its host device: it acts as an agent. But, in order to enable
the simulation of large systems, components can deploy other
components in their Java Virtual Machine (JVM) or in any
other JVM in the same device. Emulation can then be achieved
by deploying multiple components to specific devices whose
role is to simulate parts of a large system.

B. An application model in the style of SOA

Components expose their functionality via services. A ser-
vice holds data and implements functionality about the specific
concern it is about. Services must communicate with other
services in other components by sending/receiving messages.
To this purpose, services have message queues. Services can
communicate with other services in the same component using
shared memory.

Services are the standard way to incorporate functionality
in an IDAWI system. In this regard, an application consists of
a set of services. System-level functionality is also brought by
specific built-in services like transport and routing services,
which enable components to send messages to their neighbors,
and to forward messages not targeted to them. Other built-in
system services endow components with abilities to deploy
other components, to shut down the entire system, to provi-
sion/discover services, to execute map/reduce computations,
etc.

Services expose their functionality via operations. Opera-
tions constitute the only way to execute code in an IDAWI
system. An operation is a routine that can be triggered re-
motely from any other one in the system. Just like a method,
it has an ID. This ID is a literal, whose validity is hence
guaranteed by the compiler. While a method is fed by a list of
parameters before its starts, an operation takes as input a queue
of messages. This queue provides a running operation with
new input (messages) on-the-fly. Similarly, while a method
returns a value after it has completed, an operation does not:
instead it (can) send output messages while it executes.

This example shows the standard form for declaring an
operation:

1 p u b l i c c l a s s MyOperat ion e x t e n d s O p e r a t i o n {
2

3 @Override
4 p u b l i c vo id exec ( MessageQueue i n p u t ) {
5 r e p l y T o (m, ” some o u t p u t ” ) ;
6 }
7 }

A specific kind of operation, called typed operation makes
more natural the expression of operations which conform
to the RPC model. The parameter list of these operations
provides a specification for their input. This makes it possible
automatic conversion of input data. For example, in our use-
case, parameters coming as a list of strings from an URL can
be automatically converted to instances of the types expected
by the operation. This is an example of declaring a typed
operation:

8 p u b l i c c l a s s MyOperat ion e x t e n d s TypedOpera t i on {
9 p u b l i c i n t sum ( i n t a , d ou b l e b ) {

10 r e t u r n a + b ;
11 }
12 }

Operations execute in parallel, in a JVM-local pool of
threads. The number of threads in this pool can be set by
the application. The default is ”as many threads as the CPU
cores”. This rule of thumb provides excellent scalability (in
the number of simultaneously running operations).

C. A many-to-many message-based communication model

At the lowest layer, (running) operations communicate
by explicitly sending/receiving messages of a bounded size.
Sending a message is always asynchronous (non-blocking).
It provides no guarantee of reception. A message has a
probabilistically unique random 64-bit numerical ID. It carries
a content (which can be anything), the route it took so far,
the ID of the target queue, and routing-specific information
like the recipients components, parameters, etc. When a mes-
sage arrives at destination, it is delivered into a message
queue. Queue are then fetched by running operations, in a
synchronous fashion.

A message queue is a thread-safe container of messages
exposing the following primitives: size() gets the number
of messages currently in the queue; take(timeout) retrieves
and removes the first message in the queue, waiting until the
timeout expires if the queue was empty; and add(timeout)
tries to add a message to the queue, possibly waiting (until
the timeout expires) for an available slot. The use of finite
timeouts ensures that no deadlocks will occur in the system.

IDAWI comes with a default routing protocol which suits
the very nature of mobile multi-hop networks: it defines a
destination address as a triplet (C, e, d) where C is a set
of component names (if C is not defined, the address is
considered to be a broadcast address); e is the expiration
date of the message, and d is the maximum number of
hops allowed to travel. This routing protocol is intrinsically
multicast/broadcast. Unicast comes naturally when one single
target component is specified in the set of recipient names.
This routing scheme permits components to send messages
to any/any set of/all components up to a given distance, and
reachable before a given deadline. In order to address node
mobility and scarce connectivity, messages are not dropped
after they are forwarded. Instead, they are stored until they
expire, and they reconsidered for re-emission each time a new
neighbor connects.



D. A collective computation model

IDAWI defines an innovative computing model, based atop
the communication model described herein before, from which
it inherits the collective nature. It defines a special message
called the exec message, whose reception triggers the execu-
tion of a particular operation. Just like any message, the exec
message can be targeted to multiple components. This enables
redundancy and parallelism.

When it is executed, an operation is provided with a
message queue that it uses to receive input data. This enables
operations to receive multiple messages at runtime. As there
is no theoretical limit in the number of messages a queue can
accept, operations can have unbounded input. An operation can
produce output (intermediary results, final result, warnings,
exceptions, progress information, etc) at any time by sending
messages. Just like their input, operations output is unbounded.
In most cases, output will be sent to the sender of the
exec message, whose return address is carried by the exec
message. But output messages can be sent to any queue in
the distributed component-system. To receive output messages,
the caller creates a new local queue, called the return queue
that aims at storing messages from the running operation(s).
This message queue can play the role of a future. Here again,
other running operations may obtain the address of the return
queue, and send directly messages to it. A running operation
may execute another one. This enables composition of services
and workflows.

From a programmatic point of view, The exec() primitive
makes it easy the remote execution of operations. It takes
as input the address of the operation to execute, as well as,
optionally, the address of a return queue and initial input
data. Just like sending a message (which it does behind the
scene), calling exec() is asynchronous, but synchronicity can
be achieved by invoking synchronous primitives on the return
queue. Calling exec() then immediately returns a proxy to the
remotely running operation. This proxy features the address
of the (remote) input queue of the running operation, as well
as a reference to the aforementioned return queue.

If the operation address describes multiple components,
the operation will be executed on all of them. In this case,
the caller may receive output messages from these multiple
executions. To deal with that, the collect algorithm can be
used to demultiplex messages according to where they come
from.

E. The collect algorithm

As described in Section I-C, obtaining messages can be
done using the synchronous (blocking) take(timeout) and
size() primitives of queues, which enable iterating over
queues’ content. The collect algorithm introduces an higher-
level approach by proposing an asynchronous/reactive/event-
driven API.

Its design is inspired by the iterator API in the HPPC
library [15], and by the stream APIs in the Java standard
library. More precisely, in order to enable an efficient way to
iterate over a container of primitive values, HPPC iterators do

not return ”boxed” objects, instead they return a single same
object, called cursor which carries (as one of its attribute) the
primitive value of the current element in the iteration process.
Following the elegant style of functional programming, the
stream API of Java proposes a way to iterate over the elements
in a stream by each time invoking a user code written in the
form of a lambda.

The collect algorithm employs these two ideas to what it
does: enabling the iteration over message lists. Every time a
new message is discovered in a queue, the algorithm calls a
business code provided by the developer. Instead of receiving
a reference to the current message, this code receives as input
a reference to the collector itself (which stands as its ”cursor”),
whose current state provides the (modifiable) list of messages
collected so far as well as technical information on how the
algorithm performs (timings). The collector also exposes its
parameters, which can be altered on-the-fly. This enables a
deep control of the runtime of the collect process.

The parameters of the collect algorithm are the following:
• endDate indicates the deadline at which the algorithm

will stop waiting for new messages
• timeout the longest tolerated duration when waiting for

the next message
• stop a boolean value for stopping the collect process

before endDate
• blackList a set of components whose messages are

simply ignored
• deliverProgress set if progress messages should be

delivered
• deliverError set if error messages should be delivered
• deliverEOT set if EOT messages should be delivered
In order to illustrate the use of the collect() algorithm, let

us consider a few examples. Let q be a queue of messages.
The following call to the collect algorithm prints every single
messages until the queue expires.

14 q . c o l l e c t ( c −> System . o u t . p r i n t l n ( ”new message : ” + c .
messages . l a s t ( ) ) ) ;

This second example only obtain the three first messages:
15 q . c o l l e c t ( c −> {
16 System . o u t . p r i n t l n ( ”new message : ” + c . messages .

l a s t ( ) ) ;
17 c . s t o p = c . messages . s i z e ( ) == 3 ;
18 }) ;

Third, let us consider a toy example in which each reception
of a message alters the timeout parameter by imposing that
the next message needs to arrive at least as fast as the current
one.

19 q . c o l l e c t ( c −> {
20 i f ( c . messages . s i z e ( ) > 1) {
21 v a r newMsg = c . messages . l a s t ( ) ;
22 v a r prev iousMsg = c . messages . l a s t ( 1 ) ;
23 c . t i m e o u t = newMsg . r e c e p t i o n D a t e − prev iousMsg .

r e c e p t i o n D a t e ;
24 }
25 }) ;

This last example obtains data frames from many source
components and reconstructs the merge data stream out of



them, by paying attention to not duplicate frames. A frame is
assumed to have an ID and to carry data. This collect process
stops when 1000 frames have been received.

26 v a r r e c e i v e d F r a m e s = new HashSet<Long>() ;
27

28 q . c o l l e c t ( i n i t i a l D u r a t i o n , i n i t i a l T i m e o u t , c −> {
29 v a r f = ( Frame ) c . messages . l a s t ( ) . c o n t e n t ;
30

31 i f ( ! r e c e i v e d F r a m e s . c o n t a i n s ( f . i d ) ) {
32 r e c e i v e d F r a m e s . add ( f . i d ) ;
33 p i p e . w r i t e ( f rame . d a t a ) ;
34 }
35

36 c . s t o p = r e c e i v e d F r a m e s . s i z e ( ) == 1000 ;
37 }) ;
38 }

The collect algorithm is the essence of IDAWI. It uses many
concepts the framework relies on, it gives full access to the
platform functionality via a coherent interface. The rest of this
article will explain the techniques which have been employed
to translate the behavior of the collect algorithm to the world
of Web services.

II. A WEB INTERFACE TO THE collect ALGORITHM

In IDAWI, services are automatically exposed to the Web
via services conforming to Web standards, using standard Web
technologies. This is done by a specific built-in service whose
it is the specific concern.

Web services endpoints in other systems usually work in
a RPC fashion: their input data are carried by the URL that
triggered them, similarly to a function/method that accepts a
list of parameters, and they respond (a result or an error) in
the form of a JSON document. IDAWI departs from this idea.
The aim of its Web interface is to reflect the operation of its
native services, and in particular to translate the ”stream of
messages”-oriented behavior of the collect() algorithm to the
Web. Thus, it enables to:
• process streams of data
• trigger any operation on any component
• feed it on-the-fly
• obtain responses as they get delivered
• terminate it
Each service is identified by a specific URL path. The

path specifies the target components, as well as the ID of the
operation which is to be invoked on these components. Once
the service is running, it can be fed on-the-fly via POST by
a stream of data. Responses then are obtained by using an ad
hoc protocol called Idawi Web Protocol (IWebP) over Server
Side Events (SSE). Because there may be multiple responses
coming from multiple components, or because components
may not reply as expected, the question of service termination
arises. IDAWI solves it by specifying the termination condition
in the URL of the Web service.

A. An IDAWI service

The Web functionality in IDAWI is provided by a native
service, available by default in each component. When a
component activates this service, it becomes a gateway: the
component will be able to receive HTTP requests from Web
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Fig. 2. Gateway components A, K and G run the Web service. An HTTP
client (such as a browser) connected to gateway component A will be able,
through A, to execute operations on any component in the system. Here, E
and M are targeted. Note that M can be reached (via the overlay network)
even though it is protected by a firewall. The client can then query M via
HTTP just like if it were directly connected to it. The bold edges indicate the
path of the operation execution request initiated by A.

clients and translate them to IDAWI’s world. To do that this
service executes an HTTP server on the device which hosts the
component. Executing the Web service entails the execution
of an operation into the component system: every operation in
the system can be invoked from the Web. The most crucial
notion here is that the request is received by the HTTP
service of a specific component, but the component that will
do the computation can be any component in the system,
according to what the routing section of the URL specifies.
A gateway component is in reality just an entry point to the
entire distributed system. It plays the role of a bidirectional
translator from/to the Web. This concept is illustrated by Fig.
3.

Except if it is described as one that will do the computation,
the gateway component does not play any other role than
translating and relaying input/output data. Whichever gateway
is used, the result reported to the Web client will be the same.
The only difference will be the way the input/output is routed
within the component system.

There is no fundamental need that all components expose
the Web service/behave as a gateway. Only one is enough
if this meets the need of the software ecosystem the user
application lives in. This said, more gateways are present, more
flexibility and redundancy will be exhibited.



Fig. 3. Components A, B and C form an overlay. A and C run the Web
service so they are gateways, translating requests from the Web clients to
component B, as specified by the second element of the path of the URL.

B. Passing data

The HTTP standard defines two ways to pass data to Web
services: either encoded in the URL, or provided as POST
data. The latter allows running operations to be fed at runtime
with new input.

1) Structure of the URL: The minimal URL for executing
an operation that has no parameter, on one single component,
follows this pattern:

http://host_name/api/r/s/o

Where:
• r is the routing information (targets, parameters, etc)
• s the ID of the recipient service on this component
• o the ID of the recipient operation on this service
In the following, the prefix http://host name/api/ will be

purposely omitted in all URLs.
The second path element of the URL describes the input

and parameters from the routing protocol that will be used
to deliver the message to components. The syntax of this
path element depends on the routing algorithm used by the
gateway component. Different routing protocols would use
a different language to describe the delivery process. When
using blind broadcasting, the path element must be left empty
as blind broadcast has no parameters nor specific destination.
For example, when using the default routing protocol which
comes as a built-in service in IDAWI, the following URL
requests the execution of the o operation on service s of both
components c1 and c2.

c1,c2/s

Currently, targeting multiple components can only be achieved
by mentioning their names in the URL. Specifying no name
at all implies the parallel execution of the operation on all
reachable components (broadcast). The maximum distance
from the source, as well as the deadline for message lifetime
are not yet supported by the parser. We are currently working

on defining a better Domain Specific Language (DSL) for
the expression of routing rules within a single URL path. In
parallel, we are studying the relevance of using base64 URLs
or of triggering an operation by sending POST data. In the
latter situation, the initial URL-based HTTP call would do
nothing but waiting for execution information from POST).

The third path element provides the name of the target
service. Here the fully qualified name of the service class is
expected. The fourth path element gives the name of target
operation is that service. The simple name of the operation
inner class is the service class is expected.

Subsequent path elements constitute the parameters of the
service as a list of strings. They apply when the target
operation is typed (see Section I-B. In the case of a non-typed
operation, the exec message carries no initial input. Input is
then transferred to the running service via new messages, out
of the POST data the gateway receives from the Web client.
A call to a typed service then follows this pattern:

c/s/o/p1/p2/.../pN

There is a type mismatch between URL path elements, which
are strings, and the parameters of a typed operation which are
instances of particular classes. To solve this problem, the Web
service benefits from the flexibility of the IDAWI middleware:
just before executing, operations attempt to convert the pa-
rameters they are given to instances of the types they expect
(as defined by their signature). In the specific case of the Web
system, parameters always are strings, so recipient operations
need to be able to convert from strings to objects. All primitive
types and many common classes are supported by default, and
application can provide specific converters from string to the
specific types their operations need.

Finally, the query section of the URL is used to pass
information to the Web server—not to the running service.
In particular, it is used to set the initial values for the:
• duration for the whole collect process
• the timeout for receiving the next message

For example:

c/s/o/\?duration=10\?timeout=1

2) Using POST data: IDAWI’s operations have native sup-
port for streams, as they accept an unlimited number of input
messages. In order to reflect this feature into the Web API,
the web service accepts data via POST. POST data arrives in
the form of a binary input stream. As the content of IDAWI
messages must be bounded in size, this stream of binary is
cut into chunks of a fixed size. The Web service then embeds
each of these chunks into a message that is sent to the running
operation.

C. Obtaining values

HTTP responses do not have to specify the size of the
body they carry. More technically, the HTTP standard does
not impose the server to specify a Content-Length. In
theory, this feature enables the client to receive a stream of
data, until the connection gets closed, or the client, which has



agreed upon an application-specific protocol, receives End Of
Transmission (EOT). Unfortunately, most Web clients have
been designed to receive a single bounded response from
Web services, and available APIs are also designe that way.
It turns out that the most client-side Web APIs make it
impossible to deal with multiple responses from the service.
This is surprising as their essentially reactive (event-driven)
nature is particularly well suited to dealing with multiple
responses. Moreover, they propose no way to deal with the
HTTP response in a synchronous fashion.

This technical restriction has been a serious problem as
IDAWI operations are likely to multiple output messages. An
obvious solution to this problem is to use Websockets. But
these have a number of disadvantages. First they require
their specific support by the Web server, but as far as our
knowledge, there is no Web server for Java that is both
lightweight and Websocket-compliant, so we could hardly
have it working within IDAWI. Second Websockets requires the
Web client to open a second connection to the Web server. In
our case where the networking infrastructure is likely to have
firewalls and NATs, opening an additional Web connection
could be impossible.

Another solution is to use a less known Web API called
Server Side Events (SSE). SSE enables servers to send
events back to clients, which are then notified in a re-
active way. The MIME type associated to such events is
text/event-stream, which indicates that events are
made of text. More specifically, an SSE event is a sequence
of lines. In order to enable the transfer of binary data back to
the client, we define a IDAWI SSE Event (ISSE) as an SSE
event consisting of 2 elements:
• a JSON header specifying:

– the semantics (a description)
– the syntax of the body
– a boolean indicating if the body is transcoded in

base64
• a body, encoding the content of the message in a given

syntax
An example event containing a result from the running

operation.

1 d a t a : { s e m a n t i c s : ” r e s u l t ” , s y n t a x : ” J a c k s o n JSON”}
2 d a t a : {v a l u e : ”42” , n b i t e r a t i o n s : ”100”}

An example event indicating that the running operation has
almost completed.

1 d a t a : { s e m a n t i c s : ” p r o g r e s s r a t i o ” , s y n t a x : ” t e x t ”}
2 d a t a : 0 . 9

This last example illustrates the ability to provide binary
data in a space-efficient format. A binary image is sent back
to

1 d a t a : { s e m a n t i c s : ” r e s u l t ” , s y n t a x : ”JPEG ” , base64 =” t r u e ”}
2 d a t a : GDTGEIERISEVDSVZGIERGIERIGER110CFKSEF995KJSDFKER
3 d a t a : MMSD65ZDFZEDFGGDFKZEIZE675Z49ZFDSAZJMMSD65ZDFZED
4 d a t a : 110CFKSEF995KJSDFKER9ZFDSAZJMMSD65ZDFZEDFGGDFKZE

1) Output format: The exec messages generated by the
gateway component (on request from the Web client) carry
the address of the return queue on this gateway component.
The enables output messages of the running operation to be
transferred back to the gateway. Upon the reception of such
output message, the gateway component will transcode it to a
text or binary output format and pass it to the Web client via
an ISSE. In order to provide the Web client with maximum
information, it is the message itself that will be passed, not
just its content.

IDAWI has an object-oriented design. In this regard, a
message is an object. But Java objects have no existence
in the Web. In order to convert messages to something
that can be manipulated by the Web client, IDAWI relies
on serialization. Wikipedia gives a very accurate definition
of it: ”serialization [...] is the process of translating a data
structure or object state into a format that can be stored
[...] or transmitted [...] and reconstructed later (possibly in a
different computer environment)”. IDAWI has built-in support
to serialize its internal messages to the following text for-
mats: Google JSON (GSON), Jackson JSON, JSONEx JSON,
Jackson XML, TOML, YAML. It also supports the following
binary formats: native Java serialization format (SER) and
FST. The output format can be set by the client by specifying
the name of the serializer in the query string of the URL.
Unfortunately, the binary formats can hardly be used out of
the Java world and none of the serialization tools we tried
enable a seamless automatic serialization of any Java object.
To solve this problem, we designed and implemented a specific
Java→JSON serializer called Jaseto [16]. Jaseto focuses on
a specific—yet classic—application of serializers: exposing
object models to Web applications written in JavaScript, using
JSON encoding. To this particular purpose, Jaseto features pro-
grammatic customization API (many other tools annotation-
based descriptive approaches), which enables highly flexible
and deeper customization abilities; and it supports cyclic
aggregation, making it possible to serialize graphs. Jaseto does
not consider deserialization as it does not aim a generating
Java objects out of JSON texts.

2) Stopping a running Web service: In the RPC model, a
procedure is known to have completed once it has returned a
value. This assumption cannot be used in IDAWI as:
• an execution request may trigger the same service on

multiple components, in parallel
• any single execution on one component may return

multiple values, thus the gateway may receive multiple
messages from multiple components

• it is possible that some (maybe all) output messages never
reach the gateway component

Because of this, the gateway has no way to determine if a
request it had triggered has completed or not. To solve this
problem, the termination condition of the collect algorithm
can be specified in the URL. It can hence be defined by
the Web client. Unfortunately, the textual expression of a
termination condition into a URL is severely constrained, and
defining a programmatic control of when the collect algorithm



should stop collection, IDAWI proposes a number of predefined
termination conditions, such as:

• wait an EOT message from all the component mentioned
in the routing section

• stop when the first result is received
• stop when the first message is received
• stop when the first error is received
• never stop

In any case, the collect algorithm will run until its initial
deadline has been reached or the timeout on message reception
has not been satisfied.

III. CONCLUSION

Dynamic multi-hop networks, like Edge networks and the
IoT, exhibit a number of inherent characteristics (like mobility,
unpredictability, scarce connections, etc) which make it diffi-
cult the use of the resources by distributed applications. We
presented in this article an advanced Web service infrastructure
to solves this problem. It relies on the architecture of the
IDAWI middleware whose key ideas is to use decentraliza-
tion to federate resources, to rely on a component-oriented
design in the style of SOA, and to run collective ”stream
of messages”-oriented asynchronous communication and com-
putation model. We managed to translate these features to
the Web world by using/extending appropriate Web standard
technologies. The ideas presented in this article have all
been validated by a reference implementation which has been
incorporated into the Open Source code of IDAWI.

Current and future works include the implementation of a
graphical demonstrator for the Web service functionality, the
definition of a better DSL (Domain Specific Language) for
deeper expressiveness of routing rules, the reuse of IWebP on
top of POST to provide running operations with new structured
input on-the-fly (currently only streams of byte are supported),
as well as the deployment of IDAWI-powered applications onto
recent Android devices.
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