
HAL Id: hal-04075823
https://hal.science/hal-04075823v1

Submitted on 20 Apr 2023 (v1), last revised 15 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An introduction to the Discrete Fourier Transform and
its applications in signal processing

Laurent Nony, Jean-Marc Themlin

To cite this version:
Laurent Nony, Jean-Marc Themlin. An introduction to the Discrete Fourier Transform and its appli-
cations in signal processing. Master. France. 2023. �hal-04075823v1�

https://hal.science/hal-04075823v1
https://hal.archives-ouvertes.fr

An introduction to the Discrete Fourier Transform and its
applications in signal processing

Laurent NONY & Jean-Marc THEMLIN, Aix-Marseille Université

April 20, 2023

This Jupyter notebook is meant to introduce the concepts of Discrete Fourier Transform (DFT) as
a fundamental tool of signal processing. The theoretical foundations of the Fourier transform are
introduced, however with a minimal mathematical formalism. The reader must have been intro-
duced to the Fourier transform concept and must have some mathematical background before
going through this document.

Here, the focus is rather brought on the technical implementation of the DFT, as well as on illus-
trations of the pratical use of the DFT by means of illustrative codes implemented in Octave1, a
free programming langage that is compatible with Matlab.

The outline of this notebook is as follows:

I- Foundations of the Fourier transform for continuous time signals

II- The Discrete time Fourier Transform (DtDFT)

III- The Discrete Fourier Transform (DFT)

IV- Computation of the DFT

V- DtFT & DFT: synopsis

VI- Applications

VII- DFT implementation using Octave: summary

VIII- References

1https://octave.org/

1

I- Foundations of the Fourier transform for continuous time signals

I-1- Definition and conventions

A Fourier transform (FT) is a mathematical transform that decomposes functions depending on
time, or space, into functions depending on temporal, or spatial, frequency. The Fourier transform
of a function (here a signal) is a complex-valued function representing the complex sinusoids
out of which the original function might be reconstructed. For each frequency, the magnitude of
the complex value (modulus) represents the amplitude of a constituent complex sinusoid with
that frequency, and the argument of the complex value represents that complex sinusoid’s phase
offset.

Here, the focus is brought to one-dimensional, time-dependent signals only, but the framework
can be extended to 2D and space-dependent signals.

Let’s assume a continuous time signal (i.e. analog signal) z(t), integrable in time (i.e. present-
ing no divergence), and its Fourier transform counterpart Z(f) = FT{z(t)}, forming a Fourier
transform pair:

z(t) ⇌ Z(f) (1)

By definition, Z(f) and z(t) are respectively derivable from each other according to :

Z(f) := FT{z(t)} =
∫ +∞

−∞
z(t)e−j2π f tdt (2)

and, upon inverse FT operation:

z(t) := FT−1{Z(f)} =
∫ +∞

−∞
Z(f)e+j2π f td f (3)

Note: Another definition of the Fourier transform using the pulsation ω = 2π f instead of the frequency
can be found in the text books:

Z(ω) :=
1√
2π

∫ +∞

−∞
z(t)e−jωtdt (4)

But unless specified, we won’t use this definition and we will stick to Z(f).

I-2- Fourier series & Fourier transform

The FT formalism applies to any kind of signal, including periodic AND non-periodic signals.
For periodic signals however, Fourier series are a valuable tool, whose formalism is easier than
the FT one. Besides, since one can always consider a single period T of any T-periodic signal
(frequency f := 1/T), the Fourier series formalism obviously also applies to finite-duration signals
of duration T.

Fourier series can represent T-periodic signals as the sum of sinusoids whose frequencies are in-
teger multiples of the fundamental frequency f = 1/T of the periodic signal. The modulus and

2

phase of the Fourier series coefficients represent the amplitude and phase of each harmonically-
related sinusoid. Hence the Fourier series coefficients spectrum of a T-periodic signal is dis-
crete and its constituting frequencies are harmonics (i.e. integer multiples) of the fundamental
frequency f = 1/T, whereas the Fourier transform spectrum of the same signal is continuous.

The table below summarizes the mathematical formalism for the Fourier series coefficients and
for the Fourier transform.

3

II- The Discrete time Fourier Transform (DtFT)

In most applications, the FT is to be computed out of discrete time sampled signals. Therefore,
it’s natural to introduce the discrete time Fourier Transform (DtFT).

II-1- Time sampling

Let Ts be the sampling period of the continuous time signal z(t), hence its corresponding sam-
pling frequency:

fs :=
1
Ts

(5)

The discrete time sampled signal is denoted zs(t). At that stage, we make no assumption on
the duration of its time support, that may be considered as infinite, hence an infinite number of
samples. zs(t) is derived out of the Dirac comb operator of temporal period Ts, which is the
sampling operator:

δTs(t) =
+∞

∑
n=−∞

δ(t − nTs), (6)

Therefore the continuous time t gets sampled according to:

t → ts[n] = tδTs(t)|n = nTs, ∀n ∈ Z (7)

and then the discrete time sampled version of the continuous time signal is:

zs(ts) = z(t)δTs(t) (8)

Hence, the value of the nth sample, with n ∈ Z, of zs(ts): zs(ts[n]) → zs[n].

The figure below summarizes the sampling process of a continuous time signal z(t) into its sam-
pled version zs(ts).

II-2- Formal expression of the DtFT

Let Zs(f) be the DtFT of the sampled signal zs(ts), forming the FT pair:

zs(ts) ⇌ Zs(f) (9)

The formal expression of Zs(f) can be derived as follows. As we are about to demonstrate it, a
straightforward consequence of the temporal sampling process is that the DtFT is fs-periodic in
the frequency space. Besides, it can be shown that the FT of a Ts-periodic Dirac comb operator in
time (Ts = 1

fs
), is a fs-periodic Dirac comb operator in the frequency space, weighted by fs. The

corresponding FT pair is:

4

[
δTs(t) = δ1/ fs(t)

]
⇌

[
fsδ fs(f) =

1
Ts

δ1/Ts(f)
]

(10)

Thus, using the convolution theorem, the FT of the sampled signal zs(ts) is:

Zs(f) := FT{zs(ts)} = FT{z(t)δTs(t)} = FT{z(t)} ∗ FT{δTs(t)} = FT{z(t)} ∗ fsδ fs(f) = Z(f) ∗ fsδ fs(f)
(11)

The sampling process turns the FT into a DtFT, now defined by the formal expression:

Z(f) → Zs(f) := Z(f) ∗ fsδ fs(f) (12)

Because the δ fs Dirac comb replicates Z(f) every fs, Zs(f) is fs-periodic.

II-3- Explicit expression of the DtFT

To derive a more explicit expression of Zs(f), we consider the discrete time expression of the FT
of a continuous time signal (equ.2):

Z(f) :=
∫ +∞

−∞
z(t)e−j2π f tdt → Z(f) =

+∞

∑
n=−∞

zs[n]e−j2π f nTs Ts (13)

That is, according to equ.12:

5

Zs(f) := Z(f) ∗ fsδ fs(f) = ∑+∞
n=−∞ zs[n]e−j2π f nTs Ts ∗ fsδ fs(f)

= ∑+∞
n=−∞ zs[n]e−j2π f nTs ∗ δ fs(f)

= ∑+∞
n=−∞ zs[n]e

−j2πn f
fs ∗ δ fs(f)

(14)

6

III- The Discrete Fourier Transform (DFT)

The discrete Fourier Transform (DFT) of a generic discrete time signal zs(ts) is an approximation
of its DtFT (equ.14) obtained by :

• truncating the summation over n
• discretizing the f parameter
• truncating the fs-periodization

III-1- Truncating the summation: temporal windowing

When dealing with realistic discrete time sampled signals, it is impossible to handle an infinite
number of samples. The discrete time sampled signal to be analyzed, zs(ts), always consists of
a finite number of samples. Let us assume that the sampling operation yields N samples of the
discrete time signal. Hence the truncation of the summation over n in equ.14.

The N samples are obtained by windowing operation of zs(ts), i.e. the multiplication of the signal
by a windowing function w(t) to form the windowed sampled signal:

zsw(ts) = zs(ts)w(t) (15)

w(t) may have a typical rectangular shape (but note that this definition is not exclusive), whose
width sets the windowing duration Tw, i.e. the duration of the time support of zsw(ts). w(t) and
its FT W(f) form a FT pair defined as:

w(t) =
{

1, ∀t ∈ [0; Tw]
0, anywhere else

⇌ W(f) = Tw
sin(πTw f)

πTw f
:= Twsinc(Tw f) (16)

By definition:

Tw := NTs (17)

Now, the nth sample, with n ∈ N, n ∈ [0; N − 1], of the windowed discrete time support ts is
ts[n] := nTs, and the corresponding sample of zsw(ts) is zsw(ts[n]) → zsw[n].

The figure below completes the former figure about the sampling process of a continuous time
signal z(t) into its sampled and windowed version zsw(ts).

7

Important note: Although the last sample of the windowed discrete time support is written as
(N − 1)Ts, the total duration of the signal is Tw = NTs. In other words, each sample covers a
duration of Ts in time (cf. figure below, item 5).

8

III-2- Resuming the expression of the DtFT

The effect of the windowing operation is not trivial to the DtFT, which forces us to reconsider its
expression (equ.14).

To that purpose, we resume the analysis of sections II-2 and II-3 out of the FT of the windowed
continuous time signal Zw(t) := FT{z(t)w(t)}, thus: z(t)w(t) ⇌ Zw(f). It is also reminded that:
w(t) ⇌ W(f).

We then have:

Zw(f) := FT{z(t)w(t)} = Z(f) ∗ W(f) → Zw(f) =
N−1

∑
n=0

zsw[n]e−j2π f nTs Ts ∗ W(f) (18)

That is, by analogy with equ.12:

Zsw(f) := Zw(f) ∗ fsδ fs(f) = ∑N−1
n=0 zsw[n]e−j2π f nTs Ts ∗ W(f) ∗ fsδ fs(f)

= ∑N−1
n=0 zsw[n]e−j2π f nTs ∗ W(f) ∗ δ fs(f)

= ∑N−1
n=0 zsw[n]e

−j2πn f
fs ∗ W(f) ∗ δ fs(f)

(19)

The previous equation constitutes the most complete expression of the DtFT of a continuous time
signal z(t), whose windowed and discrete time version is zsw(ts).

The figure below illustrates the influence of the temporal windowing, both in the time space and
in the frequency space, by FT pairing. It is important to notice that we have taken a symetric
interval of definition for the continuous time signal z(t).

III-3- Frequency sampling

III-3-a Sampled frequency
Both the Ts-sampling and the windowing in time force us to consider the sampling of the fre-

quency, too. As seen before, the Ts-sampling in time imposes a fs-periodization of the DtFT. In
order to keep the same number of samples in the frequency domain, N samples will be used to
sample the irreducible part (one period) of the DtFT. Therefore, the N samples of zs(ts) resulting
from the windowing operation feature a single fs period of its DtFT.

Hence a frequency sampling rate: δ f = fs/N.

Therefore the continuous frequency gets sampled according to:

f → fδ f [k] := f δδ f (f)|k = kδ f = k
fs

N
, ∀k ∈ Z (20)

To simplify the notations, we will write in the following: fδ f [k] → fk.

Then the discrete frequency sampled version of the continuous frequency DtFT signal is:

Zsw(fδ f [k]) = Zsw(fk) = Zsw(f)δδ f (f)|k (21)

9

Hence, out of equ.19:

Zsw(fk) =
N−1

∑
n=0

zsw[n]e
−j2πn fk

fs ∗ W(fk) ∗ δ fs(fk)× δδ f (f)|k (22)

where the symbol × represents a product.

III-3-b Spectral resolution
The frequency sampling rate δ f states the formal expression of the spectral resolution of the

DFT (or frequency resolution), i.e. the shortest separation in frequency between two subsequent
samples in the spectrum:

δ f := fk+1 − fk =
fs

N
=

1
NTs

=
1

Tw
(23)

10

III-3-c Important consequence on the DtFT
Because δ f = 1

Tw
, the FT pair δδ f (f) ⇌ 1

δ f δ1/δ f (t) may be written as:

δδ f (f) ⇌ TwδTw(t) (24)

Thus, we can establish the FT pair between the discrete frequency DtFT and the windowed
discrete time signal as:

[Zsw(fk) = Zsw(f)δδ f (f)] ⇌ zsw(ts) ∗ TwδTw(t) (25)

The windowed discrete time signal is replicated every Tw duration, which means that it is actu-
ally Tw-periodic! Nevertheless, this operation affects the amplitude of zsw(ts) as the signal is now
scaling with Tw. To avoid this, Zsw(fk) is to be normalized by Tw.

Zsw(fk) →
Zsw(fk)

Tw
(26)

Hence, out of equ.22:

Zsw(fk) =
1

Tw

N−1

∑
n=0

zsw[n]e
−j2πn fk

fs ∗ W(fk) ∗ δ fs(fk)× δδ f (f)|k (27)

Introducing the explicit expression of W(fk) for a rectangular windowing (equ.16), we have now:

Zsw(fk) =
N−1

∑
n=0

zsw[n]e
−j2πn fk

fs ∗ sinc(Tw fk) ∗ δ fs(fk)× δδ f (f)|k (28)

The consequence of the frequency sampling has properly been taken into accout, we get rid from
the sampling operator δδ f (f)|k to lighten the previous equation, while keeping the frequency sam-
pling in mind:

Zsw(fk) =
N−1

∑
n=0

zsw[n]e
−j2πn fk

fs ∗ sinc(Tw fk) ∗ δ fs(fk) (29)

The figure below completes the previous one and illustrates the above elements.

III-4- Truncating the fs-periodization

It was mentioned above that the N samples of zs(ts) resulting from the windowing operation
feature a single fs period of its DtFT. Thus, the fs-periodization is truncated to the frequency
range fk ∈

[
− fs

2 ; fs
2

[
.

The discrete frequency support of the DFT is then defined as:

fk := − fs

2
+ k

fs

N
, ∀k ∈ N, k ∈ [0; N − 1] (30)

11

or equivalently, using the spectral resolution δ f :

fk := − fs

2
+ kδ f , ∀k ∈ N, k ∈ [0; N − 1] (31)

Because the frequency range is restricted to fk ∈
[
− fs

2 ; fs
2

[
, the convolution with the Dirac comb

operator δ fs(f) can be removed from the expression of the DtFT (cf. equ.29):

Zsw(fk) =
N−1

∑
n=0

zsw[n]e
−j2πn fk

fs ∗ sinc(Tw fk), with fk := − fs

2
+ k

fs

N
, and k ∈ N, k ∈ [0; N − 1] (32)

An equivalent expression is obtained when introducing the dimensionless frequency:

k̂ :=
fk

fs
(33)

Hence, k̂ ∈
[
− 1

2 ;+ 1
2 −

1
N

]
. The expression of Zsw(fk) now becomes:

Zsw(fk) =
N−1

∑
n=0

zsw[n]e−j2πnk̂ ∗ sinc(Tw fk), with k̂ := −1
2
+

k
N

, and k ∈ N, k ∈ [0; N − 1] (34)

The previous equation constitues a possible definition of the DFT, however the regular algorithm
implemented in most of softwares to compute the DFT does not perform the straight implemen-
tation of equ.34. To earn computation time, a further step is considered.

III-5- Pre-implementation step

In equ.34, the summation is performed over negative and positive values of the dimensionless
frequency k̂ ∈

[
− 1

2 ;+ 1
2 −

1
N

]
. To avoid the handling of signed and unsigned numbers, the imple-

mentation actually performs a shift of k̂ by 1/2, such that k̂ ∈
[
0; 1 − 1

N

]
, and therefore:

12

Zsw(fk) =
N−1

∑
n=0

zsw[n]e−j2πnk̂ ∗ sinc(Tw fk), with k̂ :=
k
N

, and k ∈ N, k ∈ [0; N − 1] (35)

The previous equation now constitues the DFT, as implemented in the regular algorithm “fft”
implemented in most of softwares.

Important notes:

• In equ.35, the DFT does not primarily depend on fs. The numerical implementation does
not require the value of that parameter to compute the DFT of a sampled signal. However,
the quantitative interpretation of the DFT does mandatorily require to know fs! The fs-
dependence of the DFT will actually be concealed in the abscissa axis of the spectrum, as
well as in its normalization procedure (cf. below).

• In equ.35, due to the shift of k̂ that now varies in the range
[
0; 1 − 1

N

]
, the first N

2 sam-
ples of the DFT and of the frequency support stand for k̂ ∈

[
0; 1

2 −
1
N

]
, hence fk =

k̂ fs ∈
[
0; fs

2 − δ f
]
, that is the positive frequencies range. Because this range is restricted to[

− fs
2 ;+ fs

2

[
, the next N

2 samples of the DFT and of the frequency support
(

k̂ ∈
[1

2 ; 1 − 1
N

])
,

will stand for the negative frequencies range:
[
− fs

2 ;−δ f
]
. The concept applies with the

samples of zsw(ts) and those of the time support too.
• It is most important to notice that, strictly speaking, the physical unit of Zsw(fk), as com-

puted by equ.35, is similar to the physical unit of zs(ts). Yet, the regular physical unit of
the Fourier transform is the one of signal multiplied by a time. This issue has to do with
the normalization of the DFT, which will be discussed hereafter.

• The convolution with $ sinc(T_w f_k)$ is not effectively realized in a typical computation
of the DFT, which generally only uses the sum ∑ _{n = 0}{N-1}z_{sw}[n]e{−j2πnk̂}. It merely
reflects the fact that the (time) windowing of the original signal has two consequences on
the computed spectra : it increases the width of the spectral features in the DtFT and the
DFT, and it introduces some oscillations in the spectra, corresponding to the sidelobes of
the window function. Apart from the natural rectangular window, other window shapes
can be used, that can reduce either the widening of the spectral features, either the residual
oscillations.

The figure below illustrates the last sequence to calculate the DFT.

13

IV- DtFT & DFT: synopsis

The figure below summarizes the discretization process of a continuous time signal z(t) yielding
its DtFT (step 5) and lastly, its DFT (step 9).

14

V- Computation of the DFT

In most of softwares, the computation of the DFT, as given by equ.35, is performed by the instruc-
tion “fft”. E.g. if zsw[n] is a windowed sampled signal (a “vector”) consisting of N samples in
Octave, its DFT will be given by the instruction fft(zsw).

We hereafter give couple of examples of such an implementation, compare it to the result returned
by the “fft” instruction, and highlight some traps to avoid.

V-1- Raw computation

We examplify the calculation of the DFT with a simple cosine waveform signal of period T1 (fre-
quency f1 = 1/T1) over a windowing duration: Tw = 1 s:

z(t) = cos(2π f1t), ∀t ∈ [0; 1] (36)

whose FT is well-known:

Z(f) =
1
2
[δ(f − f1) + δ(f + f1)] (37)

On the other hand, the signal being T1-periodic, it can be expanded in Fourier series, whose set of
coefficients are real:

Z1 = Z−1 =
1
2

(38)

Below is given an Octave code that implements equ.35 and compares the result to the one re-
turned by the “fft” instruction. We discuss the DFT spectra in the monolateral range

[
0; fs

2

[
(i.e.

[
0; fs

2 − δ f
]
) for now.

Illustrative code: The code below computes half the bilateral spectrum of a sinusoidal signal,
windowed over an integer number of periods, without normalization.

[1]: ##

Illustration of the fft instruction from hard coding

##

Initializations

Regular initializations lines in Octave, quite useless in CoCalc

clc

clear all

close all

%matplotlib qt

Parameters

N = 512; # number of samples

15

Tw= 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

n = 0:(N-1); # n ranging from 0 to N-1, as defined in eq.18 e.g.

t_s= n*Ts; # time support, of duration Tw

f_n= n(1:(N/2))*df; # frequency support, here restricted to [0;fs/2[

↪→(monolateral)

Building the test discrete time sampled signal

z_s = cos(2*pi*f1*t_s); # a simple cosine waveform signal, of frequency f1

DFT calculation

1-hard coding

for k = 1:N # k index, as defined in eq.18. It starts from 1 instead

↪→of 0 as we'll use it for indexation, which starts at 1 in Octave

k_hat = (k-1)/N; # k_hat, as defined in eq.18. Note the (k-1), to make the

↪→definition of the variable consistent with eq.18.

Z_s1(k) = sum(z_s.*exp(-j*2*pi*n*k_hat)); # DFT, as defined in eq.18

endfor

Z_s1 = Z_s1(1:(N/2)); # truncation of the DFT to its first N/2 elements to

↪→restrict the frequency spectrum to [0;fs/2[

2-fft instruction

Z_s2 = fft(z_s); # fft-based DFT

Z_s2 = Z_s2(1:(N/2)); # truncation of the DFT to its first N/2 elements to

↪→restrict the frequency spectrum to [0;fs/2[

Displays

figure

subplot(2,2,1), stem(f_n, abs(Z_s1)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Hard-coded DFT')

subplot(2,2,3), plot(f_n, angle(Z_s1)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

subplot(2,2,2), stem(f_n, abs(Z_s2)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('DFT calculated from "fft" instruction')

16

subplot(2,2,4), plot(f_n, angle(Z_s2)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[1]:

[1]:

17

The modulus and phase of the hard-coded DFT from equ.35 and those returned by the “fft” in-
struction are identical, indeed.

The modulii feature a unique peak at the frequency of the cosine waveform, f1 (here 12 Hz) in
the range

[
0; fs

2

[
(here [0; 256[Hz). However, unexpectedly, the magnitude of the peak does not

match the magnitude of the Fourier series coefficient |Z1| = Z1 = 1
2 , but rather N

2 (here 256, since
we have set N = 512), which is discussed in the section below.

V-2- Normalization: Fourier series & Fourier transform

The discrepancy between the magnitude of the modulus of the computed peaks and the theoret-
ical, expected, one is due to the lack of normalization of the DFT, as computed by equ.35, or by
the “fft” instruction.

The normalization of the DFT is usually performed upon division of the result of the “fft”
instruction by the number of samples zs(ts) consists of (e.g. N).

Doing so, the normalized DFT stands for the Fourier series coefficients of the Tw-periodic, or finite,
duration sampled signal zs(ts), whose physical units are those of zs(ts).

However, to use the FT to evaluate the (continuous) Fourier Transform of an infinite-duration
signal, whose physical units are those of the signal times time (e.g. V.s), it is necessary to use the
normalizing factor Ts =

N
Tw

.

18

To normalize properly the DFT, we will remind:

• If “fft” is meant to compute the Fourier series coefficients of a T-periodic discrete time sig-
nal zs(ts), then the normalization is performed upon division of the result of the “fft”
instruction by the number of samples zs(ts) consists of. The physical units of Fourier
series coefficients are consistently those of zs(ts).

• If “fft” is meant to compute the DFT of a discrete time signal zs(ts) of finite duration T,
then the normalization is again performed upon multiplication of the result of the “fft”
instruction by the number of samples zs(ts) consists of. The physical units of Fourier
series coefficients are consistently those of zs(ts).

• If “fft” is meant to compute the Fourier Transform of an infinite duration time signal, then
the normalization is performed upon division of the result of the “fft” instruction by the
sampling period Ts = N

Tw
used to sample zs(ts). The physical units of the DFT are now

consistent with those of the FT of the continuous time signal z(t).
• Note that if Tw = 1 s, the two normalization processes are equivalent, since 1

Ts
= N

Tw
= N.

The corresponding modified Octave code showing both the properly normalized Fourier series
coefficients AND DFT of the cosine waveform signal, calculated out the “fft” instruction only, is
given below.

Illustrative code: The code below computes half the bilateral spectrum of a sinusoidal signal,
windowed over an integer number of periods, and compares the two ways of normalizing the
DFT.

[3]: # Parameters

N = 512; # number of samples

Tw= 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

n = 0:(N-1); # n ranging from 0 to N-1, as defined in eq.18 e.g.

t_s= n*Ts; # time support, of duration Tw

f_n= n(1:(N/2))*df; # frequency support, here restricted to [0;fs/2[

↪→(monolateral)

Building the test discrete time sampled signal

z_s = cos(2*pi*f1*t_s); # a simple cosine waveform signal, of frequency f1

DFT calculation

2-fft instruction

19

Z_s_FSC = fft(z_s)/N; # fft-based normalized Fourier series coefficients (FSC)

Z_s_DFT = fft(z_s)*Ts; # fft-based normalized DFT

Z_s_FSC = Z_s_FSC(1:(N/2)); # truncation of the FSC to its first N/2 elements

↪→to restrict the frequency spectrum to [0;fs/2[

Z_s_DFT = Z_s_DFT(1:(N/2)); # truncation of the DFT to its first N/2 elements

↪→to restrict the frequency spectrum to [0;fs/2[

Displays

figure

subplot(2,2,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,2,3), plot(f_n, angle(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

subplot(2,2,2), stem(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized DFT')

subplot(2,2,4), plot(f_n, angle(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[3]:

20

[3]:

Conclusion: The magnitude of the modulus of the coefficient at f1 now matches the expected
magnitude |Z1| = Z1 = 1

2 . As to the DFT, its spectrum is now consistent with that of the Fourier
series coefficients, too. However, this coincidence between the two normalizations is due to the
fact that Tw = Tw0 = 1. If you change that value to kTw0 , the amplitude of the fundamental
frequency will increase by k. In fact, since we are clearly dealing with a periodic signal, there is no
reason to use the normalisation by Ts in this case, and the normalization by N should therefore be
used.

V-3- Bilateral spectra

Whether we deal with the Fourier series coefficients of a T-periodic or time-limited signal, or
the DFT of an infinite duration signal, their spectrum is naturally bilateral and spreads, as stated
above, over

[
− fs

2 ; fs
2

[
, or equivalently over

[
− fs

2 ; fs
2 − δ f

]
.

Several approaches lead to a consistent bilateral representation. Ours is a three-steps procedure:

1. The bilateral frequency range is first defined.
2. It has been stated in section III-4 that the first N/2 samples of the DFT stand for the positive

range of frequencies whereas the second half of the samples stand for the negative range

21

of frequencies. In Octave, the instruction “fftshift” allows for swaping the second half of
the elements of a vector to the first half part of it and vice versa. Therefore, applying the
instruction “fftshift” to the DFT-calculated vector makes its representation consistent over
the bilateral frequency range.

3. The bilateral spectrum can be plotted consistlently (modulus, phase, real part, imaginary
part).

The figure and the Octave code below illustrate the bilateral representation of the Fourier series
coefficients and DFT spectrum of the cosine waveform signal.

22

Illustrative code:
[6]: # Parameters

N = 512; # number of samples

Tw= 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

n = 0:(N-1); # n ranging from 0 to N-1, as defined in eq.18 e.g.

t_s= n*Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = cos(2*pi*f1*t_s); # a simple cosine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(z_s)/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum

Z_s_DFT = fftshift(fft(z_s)*Ts); # fft-based normalized DFT to be represented

↪→over a bilateral spectrum

Displays

figure

subplot(2,2,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,2,3), plot(f_n, angle(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

subplot(2,2,2), stem(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized DFT')

subplot(2,2,4), plot(f_n, angle(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[6]:

23

[6]:

24

The spectra have been calculated consistently and are bilateral in the range
[
− fs

2 ;+ fs
2

[
(here

[−256;+256[Hz).

V-4- Phase issues

In the spectra calculated so far, the phase trace shows apparent random fluctuations. These stem
from the numerical fluctuations of the imaginary and real parts of the DFT. Indeed, the phase is
calculated out of the regular definition:

arg(Zsw) = φ(Zsw) := atan
(

Im{Zsw}
Re{Zsw}

)
(39)

Therefore tiny fluctuations of the real part of the DFT, will introduce large fluctuations of the
phase, but fluctuations of the imaginary part of the DFT can cause unwanted fluctuations of the
phase too. To overcome that, we state a “zero-phase” criterion: if the modulus of a given sample
of the DFT is larger than an arbitrary small value, then the sample is expected to be valuable and
its phase must be computed consistently (equ.39), otherwise we force it to be zero. This can easily
be implemented in Octave by using a boolean test condition when computing the phase of the
DFT vector.

The Octave code below illustrates our “zero-phase” criterion on the Fourier series coefficients and
DFT spectrum of the cosine waveform signal.

25

[4]: # Parameters

N = 512; # number of samples

Tw= 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

n = 0:(N-1); # n ranging from 0 to N-1, as defined in eq.18 e.g.

t_s= n*Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = cos(2*pi*f1*t_s); # a simple cosine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(z_s)/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum

Z_s_DFT = fftshift(fft(z_s)*Ts); # fft-based normalized DFT to be represented

↪→over a bilateral spectrum

zero_phase_criterion = 1e-8; # arbitrary threshold w.r.t which the absolute

↪→value of the imaginary part of the DFT will be compared

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Phi_Z_s_DFT= angle(Z_s_DFT).*(abs(Z_s_DFT)>zero_phase_criterion); # Idem for DFT

Phi_Z_s_DFT= Phi_Z_s_DFT.*(abs(Phi_Z_s_DFT) > zero_phase_criterion);

Displays

figure

subplot(2,2,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

26

subplot(2,2,3), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

subplot(2,2,2), stem(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized DFT')

subplot(2,2,4), stem(f_n, Phi_Z_s_DFT), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[4]:

[4]:

27

The bilateral phase spectrum now features only zeros, as expected for the cosine waveform signal.

We exemplify again the calculation of the phase, but now with a sine waveform signal of frequency
f1 over a similar windowing duration: Tw = 1 s:

z(t) = sin(2π f1t), ∀t ∈ [0; 1[(40)

whose FT is well-known, too:

Z(f) =
1
2

[
δ(f − f1)e−j π

2 + δ(f + f1)e+j π
2

]
(41)

and whose set of Fourier series coefficients are imaginary:

Z1 = Z∗
−1 =

1
2

e−j π
2 (42)

Illustrative code:
[7]: # Parameters

N = 512; # number of samples

Tw= 1; # windowing duration in natural units, i.e. seconds

28

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

n = 0:(N-1); # n ranging from 0 to N-1, as defined in eq.18 e.g.

t_s= n*Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = sin(2*pi*f1*t_s); # a simple sine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(z_s)/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum

Z_s_DFT = fftshift(fft(z_s)*Ts); # fft-based normalized DFT to be represented

↪→over a bilateral spectrum

zero_phase_criterion = 1e-8; # arbitrary threshold w.r.t which the absolute

↪→value of the imaginary part of the DFT will be compared

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Phi_Z_s_DFT= angle(Z_s_DFT).*(abs(Z_s_DFT)>zero_phase_criterion); # Idem for DFT

Phi_Z_s_DFT= Phi_Z_s_DFT.*(abs(Phi_Z_s_DFT) > zero_phase_criterion);

Displays

figure

subplot(2,2,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,2,3), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

29

subplot(2,2,2), stem(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized DFT')

subplot(2,2,4), stem(f_n, Phi_Z_s_DFT), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[7]:

[7]:

30

The bilateral phase spectrum features the expected ±π/2 values (±1.57 rad) for the phase at the
∓ f1 frequencies, as expected from the theoretical calculation of the FT of that signal, which states
the consistency of our phase criterion.

V-5 “Seeing” the time & frequency shift
To figure out the time shift as well as the frequency shift effect that is implictly introduced by the

DFT computation, we consider a basic signal consisting in a time-shifted Dirac peak by a factor τ,
hence:

zτ(t) = z(t − τ) = δ(t − τ) (43)

Considering the property of the FT regarding time-shifted signals, we have the FT pair:

[zτ(t) = z(t − τ)] ⇌ [Zτ(f) = Z(f)e−j2π f τ] (44)

Therefore, here, with our Dirac peak:

[zτ(t) = δ(t − τ)] ⇌ [Zτ(f) = e−j2π f τ] (45)

31

The FT has a constant modulus of 1 and a phase scaling linearly with the frequency f , however
with a slope scaling with −τ. The phase slope is therefore expected to be negative with τ > 0
and vice versa.

The figure and the Octave code below illustrate the time and frequency shift that the DFT compu-
tation intoduces on the above-defined time-shifted Dirac signal that we windowed and sampled
over Tw = 1 s.

32

33

For values of τ smaller than half of the windowing duration Tw
2 = 0.5, the slope of the DFT phase

is negative (leaving aside the wrapping of the phase within the region [−π;+π]). And the slope
gets more and more negative as τ increases. As τ crosses Tw

2 , the slope of the DFT phase gets
positive, whereas there should be no reason for that.

The only interpretation is to assume that τ → −τ. The DFT algorithm interprets the second half
of the signal (N/2 samples) as standing for negative times. Consequently the second half of the
frequency support stands for negative frequencies. Hence the necessity to built the frequency
support consistently!

Illustrative code:
[3]: # Parameters

N = 128; # number of samples

Tw = 1; # windowing duration now defined over one period only

width = Tw/N;

tau = [width 0.2 0.45 0.55 0.98];

A = 1;

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

t_s = 0:Ts:Tw-Ts; # time support, of duration Tw

f_n = -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal & DFT calculation

for i=1:length(tau)

z_s(i,:) = A*(abs(t_s-tau(i))<width/2);

DFT calculation

2-fft instruction

Z_s_DFT(i,:) = fftshift(fft(z_s(i,:)))*Ts; # fft-based normalized DFT of

↪→the causal signal.

zero_phase_criterion = 1e-8;

Phi_Z_s_DFT(i,:) = angle(Z_s_DFT(i,:)).*(abs(Z_s_DFT(i,:)) >

↪→zero_phase_criterion);

Phi_Z_s_DFT(i,:) = Phi_Z_s_DFT(i,:).*(abs(Phi_Z_s_DFT(i,:))>

↪→zero_phase_criterion);

endfor

34

Displays

i=5; # Change that index from 1 to length(tau) to select the desired value of tau

figure

subplot(3,1,1), plot(f_n, abs(Z_s_DFT(i,:)),'o'), xlabel('f_n [Hz]'),

↪→ylabel('|Z_s|'), title('Normalized DFT')

subplot(3,1,2), plot(f_n, Phi_Z_s_DFT(i,:),'o--'), xlabel('f_n [Hz]'),

↪→ylabel('arg(Z_s) [rad]')

legend(strcat('\tau=', num2str(tau(i))))

subplot(3,1,3), plot(f_n, Phi_Z_s_DFT(i,:),'o--'), xlabel('f_n [Hz]'),

↪→ylabel('arg(Z_s) [rad]')

axis([fmin fmax -pi pi])

legend(strcat('\tau=', num2str(tau(i))))

figure

for i=1:length(tau)

stem(t_s, z_s(i,:)), hold on

endfor

xlabel('time [s]'), ylabel('Signal z_s(t)'), title('Temporal representation of

↪→the signal')

ans = -63.248

ans = -48.925

[3]:

35

[3]:

36

37

VI- Applications

Although the theoretical framework of the DFT has been established for the general case of non-
causal signals, that is signals that exist for positive as well as negative time t ∈

[
− Tw

2 ;+ Tw
2

[
, so

far we have treated examples of signals built as causal signals, that is signals defined for positive
time only.

In the examples given hereafter, we focus on periodic, or non-periodic, non-causal signals.

VI-1 Fourier series coefficients of a periodic, non-causal signal

We start with the case of periodic, non-causal signals.

VI-1-a Problem positioning
Signal 1:

To that end, we consider the former T1-periodic sine waveform signal defined over a windowing
duration Tw = 1 s, but we arbitrary define it as:

z(t) = sin(2π f1t), ∀t ∈
[
−1

2
;

1
2

[
(46)

Hence, the non-causal nature of that signal. The code below reproduces the previous code for
that signal, except that, our signal being periodic, we only focus of the Fourier series coefficients
spectrum.

Illustrative code:
[13]: # Parameters

N = 512; # number of samples

Tw = 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

t_s= -Tw/2:Ts:Tw/2-Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = sin(2*pi*f1*t_s); # a simple sine waveform signal, of frequency f1

DFT calculation

38

2-fft instruction

Z_s_FSC = fftshift(fft(z_s)/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum

zero_phase_criterion = 1e-8; # arbitrary threshold w.r.t which the absolute

↪→value of the imaginary part of the DFT will be compared

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Displays

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[13]:

39

[13]:

40

The spectrum is consistent with the one of the causal signal, as expected owing to the periodicity
of the signal.

Signal 2: Let us now look at the situation where, instead of a 1 s-windowing, the windowing is
now defined as Tw = T1 = 1/ f1, symetrically around 0. In other words:

z(t) = sin(2π f1t), ∀t ∈
[
−T1

2
;

T1

2

[
(47)

The code below exemplifies that.

Illustrative code:
[10]: # Parameters

N = 512; # number of samples

f1= 12; # frequency of the cosine waveform signal in Hz

Tw = 1/f1; # windowing duration now defined over one period only

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

41

df = fs/N; # spectral resolution

support vectors

t_s= -Tw/2:Ts:Tw/2-Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = sin(2*pi*f1*t_s); # a simple sine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(z_s)/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum

zero_phase_criterion = 1e-8;

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Displays

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→axis([-15, 15,-0.1, 0.5]), title('Zoom in')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]'), axis([-15, 15, -pi, pi])

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[10]:

42

[10]:

43

[10]:

44

We have added a zoom in the [−15;+15] Hz range, where three samples only are visible due to
the frequency resolution of the problem δ f = 1/Tw = 1/T1 = f1 = 12 Hz. The magnitudes of
the modulii of the peaks at ± f1 are 0.5 as expected, but the phase peaks are surprinsigly reversed
compared to the former calculation of the same signal. Owing to its periodicity, the spectrum
should be identical, though.

VI-1-b Questions & answers So, what is the problem?

Answer:

The DFT does not make any assumption on the causal, or non-causal, character of the sampled
signal zs(ts). It is the user who decides whether the signal is to be plotted against a causal, or a
non-causal, time interval. The DFT does not consider the actual time support {nTs} but only the
(time) index n, which always begins at n = 0 (Python) or n = 1 (Octave). Therefore, the structural
nature of the DFT is to assume that the signal zs(tsw) is causal, i.e. spreading over a fully positive
time interval (cf. section III-5).

In the example above, the DFT algorithm therefore interprets the signal as starting from a “false
reference time” t f rt = 0 (the signal “goes down”) and lasting a duration Tw = T1. In this case,
doing so, the operation falsifies the phase of the signal at the “true reference time” ttrt = 0, as
defined by the user for the temporal representation of the signal (the signal “goes up”). If the
signal is interpreted as starting from t f rt = 0, it is immediately seen that the regular expression

45

for it is z(t) = − sin(2π f1t), and NOT z(t) = + sin(2π f1t), as we initially believed. Hence the
inversion of the phase peaks in the spectrum by a factor of π.

But, why did this effect not occur when considering the intial time interval t ∈ [−1/2;+1/2]?

Answer:

Having a look to that signal, it is readily seen that, over that windowing, the phases of the signal
at t f rt = 0 and ttrt = 0 are similar. Hence, the consistent calculation of the phase of the DFT.

Is there a way to treat non-causal signals without having to care about the way the windowing is performed?

Answer:

Yes, if we know the signal is truly non-causal and that the way its DFT phase is calculated matters,
we can force the non-causal character of the signal to be taken into account, as demonstrated
below.

VI-1-c Forcing the non-causality to be considered in the DFT spectrum
One forces the first half of the signal zsw(ts) (first N/2 samples) standing for the negative part

of the time support to be placed at the end of signal vector. Doing so, the “false reference time” of
the DFT is forced to match the “true reference time” of the signal, and the DFT can be computed
consistently.

This is achieved by using again the instruction “fftshift”, but that is now applied to the signal
zsw(ts) itself, before the computation of the DFT. The figure and the code below exemplify that.

46

Illustrative code:
[12]: # Parameters

N = 512; # number of samples

47

f1= 12; # frequency of the cosine waveform signal in Hz

Tw = 1/f1; # windowing duration now defined over one period only

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

t_s= -Tw/2:Ts:Tw/2-Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = sin(2*pi*f1*t_s); # a simple sine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(fftshift(z_s))/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum. NOTE THE USE

↪→OF FFTSHIFT ON THE SIGNAL TO ACCOUNT FOR THE NON-CAUSALITY OF THE SIGNAL

zero_phase_criterion = 1e-8;

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Displays

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→axis([-15, 15,-0.1, 0.5]), title('Zoom in')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]'), axis([-15, 15, -pi, pi])

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

48

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[12]:

[12]:

49

[12]:

50

The phase is now represented consistently.

Obviously, that use of “fftshift” on a well-windowed non-causal signal, as initially defined (equ.43),
does not modify its DFT, as shown in the code below.

Illustrative code:
[5]: # Parameters

N = 512; # number of samples

Tw = 1; # windowing duration in natural units, i.e. seconds

f1= 12; # frequency of the cosine waveform signal in Hz

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

t_s= -Tw/2:Ts:Tw/2-Ts; # time support, of duration Tw

f_n= -fs/2:df:fs/2-df; # bilateral frequency support

51

Building the test discrete time sampled signal

z_s = sin(2*pi*f1*t_s); # a simple sine waveform signal, of frequency f1

DFT calculation

2-fft instruction

Z_s_FSC = fftshift(fft(fftshift(z_s))/N); # fft-based normalized Fourier series

↪→coefficients (FSC) to be represented over a bilateral spectrum. NOTE THE USE

↪→OF FFTSHIFT ON THE SIGNAL TO ACCOUNT FOR THE NON-CAUSALITY OF THE SIGNAL

zero_phase_criterion = 1e-8; # arbitrary threshold w.r.t which the absolute

↪→value of the imaginary part of the DFT will be compared

Phi_Z_s_FSC= angle(Z_s_FSC).*(abs(Z_s_FSC)>zero_phase_criterion); # the phase is

↪→computed by the "angle" instruction, for each Fourier series coefficient

↪→sample, but it is multiplied by our zero phase criterion that either outputs

↪→0, or 1.

Phi_Z_s_FSC= Phi_Z_s_FSC.*(abs(Phi_Z_s_FSC) > zero_phase_criterion); # the

↪→resulting phase is forced to be 0 if it is smaller than the

↪→zero_phase_criterion

Displays

figure

subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized Fourier series coefs.')

subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'),

↪→title('Temporal representation of the signal')

[5]:

52

[5]:

53

VI-2 DFT of a non-periodic signal

We now consider the more generic case of non-periodic signals, hence the use of the FT formalism.

VI-2-a Causal signal
Signal 3:

For that application, we consider a causal, time-limited but non-periodic (because of the random
noise) signal that is built as follows. We consider the realistic situation of a relevant electrical
signal, perturbed by an ambient electrical noise. The relevant signal is supposed to be a sinusoidal
signal of frequency 17 Hz. The noise results from two components: a sinusoidal oscillation, whose
frequency and amplitude are arbitrarily set to 50 Hz and 0.1 V, respectively, and a uniform random
background (white noise), whose magnitude equals that of the 50 Hz oscillation. The amplitude of
the relevant signal is 5 times smaller than that of the 50 Hz oscillation. Hence, the relevant signal
is “drowned in noise”.

The signal is windowed over Tw = 1 s. The code below shows how powerfull the DFT is to detect
the spectral components of the noisy signal.

Illustrative code:

54

[4]: # Parameters

N = 512; # number of samples

Tw = 3; # windowing duration now defined over one period only

f1 = 50; # frequency of the 1st signal component in Hz

f2 = 17; # frequency of the 2nd signal component in Hz

mag_s1 = 0.1; # magnitude of the 1st signal component, in V

mag_s2 = mag_s1/5; # magnitude of the 2nd signal component, in V

#In-built variables

Ts = Tw/N; # sampling period

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

noise=rand(1,N)*mag_s1;

support vectors

n = 0:N-1;

t_s = n*Ts; # time support, of duration Tw

f_n = -fs/2:df:fs/2-df; # bilateral frequency support

tau = Tw/2;

Building the test discrete time sampled signal

z_s = mag_s2*sin(2*pi*f2*t_s)+mag_s1*sin(2*pi*f1*t_s)+noise; # noisy signal

DFT calculation

2-fft instruction

Z_s_DFT = fftshift(fft(z_s))/N; # fft-based normalized DFT to be represented

↪→over a bilateral spectrum.

disp(max(abs(Z_s_DFT))) # JMT

zero_phase_criterion = 1e-8;

Phi_Z_s_DFT= angle(Z_s_DFT).*(abs(Z_s_DFT)>zero_phase_criterion); # Idem for DFT

Phi_Z_s_DFT= Phi_Z_s_DFT.*(abs(Phi_Z_s_DFT) > zero_phase_criterion);

Displays

figure

subplot(2,1,1), semilogy(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'),

↪→ylabel('|Z_s|'), title('Normalized DFT')

subplot(2,1,2), plot(f_n, Phi_Z_s_DFT), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

figure

55

plot(t_s, z_s), xlabel('time [s]'), ylabel('Signal z_s(t)'), title('Temporal

↪→representation of the signal')

0.050418

[4]:

[4]:

56

In the bilateral spectrum of the modulus of the DFT, the 50 Hz components of the noise are well-
visible, but the 17 Hz components of the actual signal too, whereas these are not really identifiable
in the temporal representation of the signal (50 Hz only).

VI-2-b Non-causal signal
Signal 4:

In this application, we consider the important case of the rectangle function, a typical example of
non-causal signal.

Illustrative code:
[1]: # Parameters

N = 512; # number of samples

Tw = 1; # windowing duration

width = Tw/10;

tau = 0;

A = 1;

#In-built variables

Ts = Tw/N; # sampling period

57

fs = 1/Ts; # sampling frequency

df = fs/N; # spectral resolution

support vectors

t_s = -Tw/2:Ts:Tw/2-Ts; # time support, of duration Tw

f_n = -fs/2:df:fs/2-df; # bilateral frequency support

Building the test discrete time sampled signal

z_s = A*(abs(t_s-tau)<width/2);

REQUIRED CARDINAL SINE FUNCTION TO COMPARE DFTs to theory

function [y] = mysinc(x,Amp)

y(find(x)) = Amp*sin(pi*x(find(x)))./(pi*x(find(x)));

y(find(x==0)) = Amp;

end

DFT calculation

2-fft instruction

Z_s_DFT = fftshift(fft(fftshift(z_s)))*Ts; # fft-based normalized DFT of

↪→the properly fftshifted non-causal signal.

Z_s_DFT_ns = fftshift(fft(z_s))*Ts; # fft-based normalized DFT of

↪→not fftshifted signal.

Z_s_DFT_theo = mysinc(f_n*width,A*width); # Cardinal sine theoretical DFT

zero_phase_criterion = 1e-8;

Phi_Z_s_DFT = angle(Z_s_DFT).*(abs(Z_s_DFT)>zero_phase_criterion);

Phi_Z_s_DFT = Phi_Z_s_DFT.*(abs(Phi_Z_s_DFT) > zero_phase_criterion);

Phi_Z_s_DFT_ns = angle(Z_s_DFT_ns).*(abs(Z_s_DFT_ns)>zero_phase_criterion);

Phi_Z_s_DFT_ns = Phi_Z_s_DFT_ns.*(abs(Phi_Z_s_DFT_ns) > zero_phase_criterion);

Phi_Z_s_DFT_theo= angle(Z_s_DFT_theo).*(abs(Z_s_DFT_theo)>zero_phase_criterion);

Phi_Z_s_DFT_theo= Phi_Z_s_DFT_theo.*(abs(Phi_Z_s_DFT_theo) >

↪→zero_phase_criterion);

Displays

figure

fmin= -40;

fmax= 40;

subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Zoom in')

hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g')

axis([fmin fmax 0 A*width])

58

legend('DFT\{fftshifted signal\}','DFT\{signal\}','Theo. DFT')

subplot(2,2,3), plot(f_n, Phi_Z_s_DFT), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

hold on, plot(f_n, Phi_Z_s_DFT_ns,'r'), plot(f_n, Phi_Z_s_DFT_theo,'g')

axis([fmin fmax -pi pi])

subplot(2,2,2), plot(f_n, real(Z_s_DFT)), xlabel('f_n [Hz]'),

↪→ylabel('Re\{Z_s\}'), title('Zoom in')

hold on, plot(f_n, real(Z_s_DFT_ns),'r'), plot(f_n,real(Z_s_DFT_theo),'g')

legend('DFT\{fftshifted signal\}','DFT\{signal\}','Theo. DFT')

axis([fmin fmax -A*width A*width])

subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'),

↪→ylabel('Im\{Z_s\}')

hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g')

axis([fmin fmax -1e-18 1e-18])

figure

subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'),

↪→title('Normalized DFT')

hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g')

legend('DFT\{fftshifted signal\}','DFT\{signal\}','Theo. DFT')

subplot(2,2,3), plot(f_n, Phi_Z_s_DFT), xlabel('f_n [Hz]'), ylabel('arg(Z_s)

↪→[rad]')

hold on, plot(f_n, Phi_Z_s_DFT_ns,'r'), plot(f_n, Phi_Z_s_DFT_theo,'g')

subplot(2,2,2), plot(f_n, real(Z_s_DFT)), xlabel('f_n [Hz]'),

↪→ylabel('Re\{Z_s\}'), title('Normalized DFT')

hold on, plot(f_n, real(Z_s_DFT_ns),'r'), plot(f_n,real(Z_s_DFT_theo),'g')

legend('DFT\{fftshifted signal\}','DFT\{signal\}','Theo. DFT')

subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'),

↪→ylabel('Im\{Z_s\}')

hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g')

figure

plot(t_s, z_s), xlabel('time [s]'), ylabel('Signal z_s(t)'), title('Temporal

↪→representation of the signal')

axis([-1.05*Tw/2 1.05*Tw/2 -0.05 1.05])

[1]:

59

[1]:

60

[1]:

61

62

VII- DFT implementation using Octave: summary

The table below gives the summary of the Octave syntax to compute the mono-, or bilateral, the
DFT spectrum of a windowed discrete time signal zsw(ts) consisting of N samples, whether the
signal is periodic of not.

63

VIII- References

1 - The Fast Fourier Transform and Its Applications, Book by E. Oran Brigham (original ed. 1988)

[0]:

64

