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An introduction to the Discrete Fourier Transform and its applications in signal processing

This Jupyter notebook is meant to introduce the concepts of Discrete Fourier Transform (DFT) as a fundamental tool of signal processing. The theoretical foundations of the Fourier transform are introduced, however with a minimal mathematical formalism. The reader must have been introduced to the Fourier transform concept and must have some mathematical background before going through this document.

Here, the focus is rather brought on the technical implementation of the DFT, as well as on illustrations of the pratical use of the DFT by means of illustrative codes implemented in Octave 1 , a free programming langage that is compatible with Matlab.

The outline of this notebook is as follows: I-Foundations of the Fourier transform for continuous time signals II-The Discrete time Fourier Transform (DtDFT) III-The Discrete Fourier Transform (DFT) IV-Computation of the DFT V-DtFT & DFT: synopsis VI-Applications VII-DFT implementation using Octave: summary VIII-References

I-Foundations of the Fourier transform for continuous time signals I-1-Definition and conventions

A Fourier transform (FT) is a mathematical transform that decomposes functions depending on time, or space, into functions depending on temporal, or spatial, frequency. The Fourier transform of a function (here a signal) is a complex-valued function representing the complex sinusoids out of which the original function might be reconstructed. For each frequency, the magnitude of the complex value (modulus) represents the amplitude of a constituent complex sinusoid with that frequency, and the argument of the complex value represents that complex sinusoid's phase offset.

Here, the focus is brought to one-dimensional, time-dependent signals only, but the framework can be extended to 2D and space-dependent signals.

Let's assume a continuous time signal (i.e. analog signal) z(t), integrable in time (i.e. presenting no divergence), and its Fourier transform counterpart Z( f ) = FT{z(t)}, forming a Fourier transform pair:

z(t) ⇌ Z( f ) (1) 
By definition, Z( f ) and z(t) are respectively derivable from each other according to :

Z( f ) := FT{z(t)} = +∞ -∞ z(t)e -j2π f t dt (2) 
and, upon inverse FT operation:

z(t) := FT -1 {Z( f )} = +∞ -∞ Z( f )e +j2π f t d f (3) 
Note: Another definition of the Fourier transform using the pulsation ω = 2π f instead of the frequency can be found in the text books:

Z(ω) := 1 √ 2π +∞ -∞ z(t)e -jωt dt (4) 
But unless specified, we won't use this definition and we will stick to Z( f ).

I-2-Fourier series & Fourier transform

The FT formalism applies to any kind of signal, including periodic AND non-periodic signals.

For periodic signals however, Fourier series are a valuable tool, whose formalism is easier than the FT one. Besides, since one can always consider a single period T of any T-periodic signal (frequency f := 1/T), the Fourier series formalism obviously also applies to finite-duration signals of duration T.

Fourier series can represent T-periodic signals as the sum of sinusoids whose frequencies are integer multiples of the fundamental frequency f = 1/T of the periodic signal. The modulus and phase of the Fourier series coefficients represent the amplitude and phase of each harmonicallyrelated sinusoid. Hence the Fourier series coefficients spectrum of a T-periodic signal is discrete and its constituting frequencies are harmonics (i.e. integer multiples) of the fundamental frequency f = 1/T, whereas the Fourier transform spectrum of the same signal is continuous.

The table below summarizes the mathematical formalism for the Fourier series coefficients and for the Fourier transform.

II-The Discrete time Fourier Transform (DtFT)

In most applications, the FT is to be computed out of discrete time sampled signals. Therefore, it's natural to introduce the discrete time Fourier Transform (DtFT).

II-1-Time sampling

Let T s be the sampling period of the continuous time signal z(t), hence its corresponding sampling frequency:

f s := 1 T s (5) 
The discrete time sampled signal is denoted z s (t). At that stage, we make no assumption on the duration of its time support, that may be considered as infinite, hence an infinite number of samples. z s (t) is derived out of the Dirac comb operator of temporal period T s , which is the sampling operator:

δ T s (t) = +∞ ∑ n=-∞ δ(t -nT s ), (6) 
Therefore the continuous time t gets sampled according to:

t → t s [n] = tδ T s (t)| n = nT s , ∀n ∈ Z (7) 
and then the discrete time sampled version of the continuous time signal is:

z s (t s ) = z(t)δ T s (t) (8) 
Hence, the value of the n th sample, with n ∈ Z, of z s (t s ): z s (t s [n]) → z s [n].

The figure below summarizes the sampling process of a continuous time signal z(t) into its sampled version z s (t s ).

II-2-Formal expression of the DtFT

Let Z s ( f ) be the DtFT of the sampled signal z s (t s ), forming the FT pair:

z s (t s ) ⇌ Z s ( f ) (9)
The formal expression of Z s ( f ) can be derived as follows. As we are about to demonstrate it, a straightforward consequence of the temporal sampling process is that the DtFT is f s -periodic in the frequency space. Besides, it can be shown that the FT of a T s -periodic Dirac comb operator in time (T s = 1 f s ), is a f s -periodic Dirac comb operator in the frequency space, weighted by f s . The corresponding FT pair is:

δ T s (t) = δ 1/ f s (t) ⇌ f s δ f s ( f ) = 1 T s δ 1/T s ( f ) (10) 
Thus, using the convolution theorem, the FT of the sampled signal z s (t s ) is:

Z s ( f ) := FT{z s (t s )} = FT{z(t)δ T s (t)} = FT{z(t)} * FT{δ T s (t)} = FT{z(t)} * f s δ f s ( f ) = Z( f ) * f s δ f s ( f ) (11) 
The sampling process turns the FT into a DtFT, now defined by the formal expression:

Z( f ) → Z s ( f ) := Z( f ) * f s δ f s ( f ) (12) Because the δ f s Dirac comb replicates Z( f ) every f s , Z s ( f ) is f s -periodic.

II-3-Explicit expression of the DtFT

To derive a more explicit expression of Z s ( f ), we consider the discrete time expression of the FT of a continuous time signal (equ.2):

Z( f ) := +∞ -∞ z(t)e -j2π f t dt → Z( f ) = +∞ ∑ n=-∞ z s [n]e -j2π f nT s T s (13) 
That is, according to equ.12:

Z s ( f ) := Z( f ) * f s δ f s ( f ) = ∑ +∞ n=-∞ z s [n]e -j2π f nT s T s * f s δ f s ( f ) = ∑ +∞ n=-∞ z s [n]e -j2π f nT s * δ f s ( f ) = ∑ +∞ n=-∞ z s [n]e -j2πn f fs * δ f s ( f ) (14) 

III-The Discrete Fourier Transform (DFT)

The discrete Fourier Transform (DFT) of a generic discrete time signal z s (t s ) is an approximation of its DtFT (equ.14) obtained by :

• truncating the summation over n • discretizing the f parameter • truncating the f s -periodization

III-1-Truncating the summation: temporal windowing

When dealing with realistic discrete time sampled signals, it is impossible to handle an infinite number of samples. The discrete time sampled signal to be analyzed, z s (t s ), always consists of a finite number of samples. Let us assume that the sampling operation yields N samples of the discrete time signal. Hence the truncation of the summation over n in equ.14.

The N samples are obtained by windowing operation of z s (t s ), i.e. the multiplication of the signal by a windowing function w(t) to form the windowed sampled signal:

z sw (t s ) = z s (t s )w(t) (15) 
w(t) may have a typical rectangular shape (but note that this definition is not exclusive), whose width sets the windowing duration T w , i.e. the duration of the time support of z sw (t s ). w(t) and its FT W( f ) form a FT pair defined as:

w(t) = 1, ∀t ∈ [0; T w ] 0, anywhere else ⇌ W( f ) = T w sin(πT w f ) πT w f := T w sinc(T w f ) (16) 
By definition:

T w := NT s (17) 
Now, the n th sample, with n ∈ N, n ∈ [0; N -1], of the windowed discrete time support t s is t s [n] := nT s , and the corresponding sample of

z sw (t s ) is z sw (t s [n]) → z sw [n].
The figure below completes the former figure about the sampling process of a continuous time signal z(t) into its sampled and windowed version z sw (t s ).

Important note: Although the last sample of the windowed discrete time support is written as (N -1)T s , the total duration of the signal is T w = NT s . In other words, each sample covers a duration of T s in time (cf. figure below, item 5).

III-2-Resuming the expression of the DtFT

The effect of the windowing operation is not trivial to the DtFT, which forces us to reconsider its expression (equ.14).

To that purpose, we resume the analysis of sections II-2 and II-3 out of the FT of the windowed continuous time signal Z w (t) := FT{z(t)w(t)}, thus: z(t)w(t) ⇌ Z w ( f ). It is also reminded that: w(t) ⇌ W( f ).

We then have:

Z w ( f ) := FT{z(t)w(t)} = Z( f ) * W( f ) → Z w ( f ) = N-1 ∑ n=0 z sw [n]e -j2π f nT s T s * W( f ) (18) 
That is, by analogy with equ.12:

Z sw ( f ) := Z w ( f ) * f s δ f s ( f ) = ∑ N-1 n=0 z sw [n]e -j2π f nT s T s * W( f ) * f s δ f s ( f ) = ∑ N-1 n=0 z sw [n]e -j2π f nT s * W( f ) * δ f s ( f ) = ∑ N-1 n=0 z sw [n]e -j2πn f fs * W( f ) * δ f s ( f ) (19) 
The previous equation constitutes the most complete expression of the DtFT of a continuous time signal z(t), whose windowed and discrete time version is z sw (t s ).

The figure below illustrates the influence of the temporal windowing, both in the time space and in the frequency space, by FT pairing. It is important to notice that we have taken a symetric interval of definition for the continuous time signal z(t).

III-3-Frequency sampling

III-3-a Sampled frequency Both the T s -sampling and the windowing in time force us to consider the sampling of the frequency, too. As seen before, the T s -sampling in time imposes a f s -periodization of the DtFT. In order to keep the same number of samples in the frequency domain, N samples will be used to sample the irreducible part (one period) of the DtFT. Therefore, the N samples of z s (t s ) resulting from the windowing operation feature a single f s period of its DtFT.

Hence a frequency sampling rate:

δ f = f s /N.
Therefore the continuous frequency gets sampled according to:

f → f δ f [k] := f δ δ f ( f )| k = kδ f = k f s N , ∀k ∈ Z (20)
To simplify the notations, we will write in the following:

f δ f [k] → f k .
Then the discrete frequency sampled version of the continuous frequency DtFT signal is:

Z sw ( f δ f [k]) = Z sw ( f k ) = Z sw ( f )δ δ f ( f )| k (21)
Hence, out of equ.19:

Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn f k fs * W( f k ) * δ f s ( f k ) × δ δ f ( f )| k ( 22 
)
where the symbol × represents a product.

III-3-b Spectral resolution

The frequency sampling rate δ f states the formal expression of the spectral resolution of the DFT (or frequency resolution), i.e. the shortest separation in frequency between two subsequent samples in the spectrum:

δ f := f k+1 -f k = f s N = 1 NT s = 1 T w (23) 

III-3-c Important consequence on the DtFT

Because δ f = 1 T w , the FT pair δ δ f ( f ) ⇌ 1 δ f δ 1/δ f (t) may be written as:

δ δ f ( f ) ⇌ T w δ T w (t) (24) 
Thus, we can establish the FT pair between the discrete frequency DtFT and the windowed discrete time signal as:

[Z sw ( f k ) = Z sw ( f )δ δ f ( f )] ⇌ z sw (t s ) * T w δ T w (t) (25) 
The windowed discrete time signal is replicated every T w duration, which means that it is actually T w -periodic! Nevertheless, this operation affects the amplitude of z sw (t s ) as the signal is now scaling with T w . To avoid this, Z sw ( f k ) is to be normalized by T w .

Z sw ( f k ) → Z sw ( f k ) T w (26) 
Hence, out of equ.22:

Z sw ( f k ) = 1 T w N-1 ∑ n=0 z sw [n]e -j2πn f k fs * W( f k ) * δ f s ( f k ) × δ δ f ( f )| k (27)
Introducing the explicit expression of W( f k ) for a rectangular windowing (equ.16), we have now:

Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn f k fs * sinc(T w f k ) * δ f s ( f k ) × δ δ f ( f )| k (28)
The consequence of the frequency sampling has properly been taken into accout, we get rid from the sampling operator δ δ f ( f )| k to lighten the previous equation, while keeping the frequency sampling in mind:

Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn f k fs * sinc(T w f k ) * δ f s ( f k ) (29) 
The figure below completes the previous one and illustrates the above elements.

III-4-Truncating the f s -periodization

It was mentioned above that the N samples of z s (t s ) resulting from the windowing operation feature a single f s period of its DtFT. Thus, the f s -periodization is truncated to the frequency range f k ∈ -f s 2 ;

f s 2 .
The discrete frequency support of the DFT is then defined as:

f k := - f s 2 + k f s N , ∀k ∈ N, k ∈ [0; N -1] (30)
or equivalently, using the spectral resolution δ f :

f k := - f s 2 + kδ f , ∀k ∈ N, k ∈ [0; N -1] (31)
Because the frequency range is restricted to f k ∈ -f s 2 ;

f s 2 , the convolution with the Dirac comb operator δ f s ( f ) can be removed from the expression of the DtFT (cf. equ.29):

Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn f k fs * sinc(T w f k ), with f k := - f s 2 + k f s N , and k ∈ N, k ∈ [0; N -1] (32)
An equivalent expression is obtained when introducing the dimensionless frequency:

k := f k f s (33) Hence, k ∈ -1 2 ; + 1 2 -1 N . The expression of Z sw ( f k ) now becomes: Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn k * sinc(T w f k ), with k := - 1 2 + k N , and k ∈ N, k ∈ [0; N -1] (34) 
The previous equation constitues a possible definition of the DFT, however the regular algorithm implemented in most of softwares to compute the DFT does not perform the straight implementation of equ.34. To earn computation time, a further step is considered.

III-5-Pre-implementation step

In equ.34, the summation is performed over negative and positive values of the dimensionless frequency k ∈ -1 2 ; + 1 2 -1 N . To avoid the handling of signed and unsigned numbers, the implementation actually performs a shift of k by 1/2, such that k ∈ 0; 1 -1 N , and therefore:

Z sw ( f k ) = N-1 ∑ n=0 z sw [n]e -j2πn k * sinc(T w f k ), with k := k N , and k ∈ N, k ∈ [0; N -1] (35) 
The previous equation now constitues the DFT, as implemented in the regular algorithm "fft" implemented in most of softwares.

Important notes:

• In equ.35, the DFT does not primarily depend on f s . The numerical implementation does not require the value of that parameter to compute the DFT of a sampled signal. However, the quantitative interpretation of the DFT does mandatorily require to know f s ! The f sdependence of the DFT will actually be concealed in the abscissa axis of the spectrum, as well as in its normalization procedure (cf. below). • In equ.35, due to the shift of k that now varies in the range 0; 1 -1 N , the first N 2 samples of the DFT and of the frequency support stand for k ∈

0; 1 2 -1 N , hence f k = k f s ∈ 0; f s 2 -δ f
, that is the positive frequencies range. Because this range is restricted to f s 2 ; + f s 2 , the next N 2 samples of the DFT and of the frequency support k ∈ 1 2 ; 1 -1 N , will stand for the negative frequencies range: -f s 2 ; -δ f . The concept applies with the samples of z sw (t s ) and those of the time support too.

• It is most important to notice that, strictly speaking, the physical unit of Z sw ( f k ), as computed by equ.35, is similar to the physical unit of z s (t s ). Yet, the regular physical unit of the Fourier transform is the one of signal multiplied by a time. This issue has to do with the normalization of the DFT, which will be discussed hereafter. • The convolution with $ sinc(T_w f_k)$ is not effectively realized in a typical computation of the DFT, which generally only uses the sum ∑ _{n = 0} {N-1}z_{sw}[n]e {-j2πn k}. It merely reflects the fact that the (time) windowing of the original signal has two consequences on the computed spectra : it increases the width of the spectral features in the DtFT and the DFT, and it introduces some oscillations in the spectra, corresponding to the sidelobes of the window function. Apart from the natural rectangular window, other window shapes can be used, that can reduce either the widening of the spectral features, either the residual oscillations.

The figure below illustrates the last sequence to calculate the DFT.

IV-DtFT & DFT: synopsis

The figure below summarizes the discretization process of a continuous time signal z(t) yielding its DtFT (step 5) and lastly, its DFT (step 9).

V-Computation of the DFT

In most of softwares, the computation of the DFT, as given by equ.35, is performed by the instruction "fft". E.g. if z sw [n] is a windowed sampled signal (a "vector") consisting of N samples in Octave, its DFT will be given by the instruction fft(z sw ).

We hereafter give couple of examples of such an implementation, compare it to the result returned by the "fft" instruction, and highlight some traps to avoid.

V-1-Raw computation

We examplify the calculation of the DFT with a simple cosine waveform signal of period T 1 (frequency f 1 = 1/T 1 ) over a windowing duration: T w = 1 s:

z(t) = cos(2π f 1 t), ∀t ∈ [0; 1] ( 36 
)
whose FT is well-known:

Z( f ) = 1 2 [δ( f -f 1 ) + δ( f + f 1 )] (37) 
On the other hand, the signal being T 1 -periodic, it can be expanded in Fourier series, whose set of coefficients are real:

Z 1 = Z -1 = 1 2 (38) 
Below is given an Octave code that implements equ.35 and compares the result to the one returned by the "fft" instruction. We discuss the DFT spectra in the monolateral range 0;

f s 2 (i.e. 0;

f s 2 -δ f ) for now.
Illustrative code: The code below computes half the bilateral spectrum of a sinusoidal signal, windowed over an integer number of periods, without normalization.

[1]: [1]:

######################################################## # Illustration of the fft instruction from hard coding # ######################################################## #####
The modulus and phase of the hard-coded DFT from equ.35 and those returned by the "fft" instruction are identical, indeed.

The modulii feature a unique peak at the frequency of the cosine waveform, f 1 (here 12 Hz) in the range 0; f s 2 (here [0; 256[ Hz). However, unexpectedly, the magnitude of the peak does not match the magnitude of the Fourier series coefficient |Z 1 | = Z 1 = 1 2 , but rather N 2 (here 256, since we have set N = 512), which is discussed in the section below.

V-2-Normalization: Fourier series & Fourier transform

The discrepancy between the magnitude of the modulus of the computed peaks and the theoretical, expected, one is due to the lack of normalization of the DFT, as computed by equ.35, or by the "fft" instruction.

The normalization of the DFT is usually performed upon division of the result of the "fft" instruction by the number of samples z s (t s ) consists of (e.g. N).

Doing so, the normalized DFT stands for the Fourier series coefficients of the T w -periodic, or finite, duration sampled signal z s (t s ), whose physical units are those of z s (t s ).

However, to use the FT to evaluate the (continuous) Fourier Transform of an infinite-duration signal, whose physical units are those of the signal times time (e.g. V.s), it is necessary to use the normalizing factor T s = N T w .

To normalize properly the DFT, we will remind:

• If "fft" is meant to compute the Fourier series coefficients of a T-periodic discrete time signal z s (t s ), then the normalization is performed upon division of the result of the "fft" instruction by the number of samples z s (t s ) consists of. The physical units of Fourier series coefficients are consistently those of z s (t s ). • If "fft" is meant to compute the DFT of a discrete time signal z s (t s ) of finite duration T, then the normalization is again performed upon multiplication of the result of the "fft" instruction by the number of samples z s (t s ) consists of. The physical units of Fourier series coefficients are consistently those of z s (t s ). • If "fft" is meant to compute the Fourier Transform of an infinite duration time signal, then the normalization is performed upon division of the result of the "fft" instruction by the sampling period T s = N T w used to sample z s (t s ). The physical units of the DFT are now consistent with those of the FT of the continuous time signal z(t).

• Note that if T w = 1 s, the two normalization processes are equivalent, since 1 T s = N T w = N. The corresponding modified Octave code showing both the properly normalized Fourier series coefficients AND DFT of the cosine waveform signal, calculated out the "fft" instruction only, is given below.

Illustrative code:

The code below computes half the bilateral spectrum of a sinusoidal signal, windowed over an integer number of periods, and compares the two ways of normalizing the DFT. 

| = Z 1 = 1 2 .
As to the DFT, its spectrum is now consistent with that of the Fourier series coefficients, too. However, this coincidence between the two normalizations is due to the fact that T w = T w 0 = 1. If you change that value to kT w 0 , the amplitude of the fundamental frequency will increase by k. In fact, since we are clearly dealing with a periodic signal, there is no reason to use the normalisation by T s in this case, and the normalization by N should therefore be used.

V-3-Bilateral spectra

Whether we deal with the Fourier series coefficients of a T-periodic or time-limited signal, or the DFT of an infinite duration signal, their spectrum is naturally bilateral and spreads, as stated above, over -f s 2 ;

f s 2 , or equivalently over -f s 2 ;

f s 2δ f . Several approaches lead to a consistent bilateral representation. Ours is a three-steps procedure:

1. The bilateral frequency range is first defined. 2. It has been stated in section III-4 that the first N/2 samples of the DFT stand for the positive range of frequencies whereas the second half of the samples stand for the negative range of frequencies. In Octave, the instruction "fftshift" allows for swaping the second half of the elements of a vector to the first half part of it and vice versa. Therefore, applying the instruction "fftshift" to the DFT-calculated vector makes its representation consistent over the bilateral frequency range. 3. The bilateral spectrum can be plotted consistlently (modulus, phase, real part, imaginary part).

The figure and the Octave code below illustrate the bilateral representation of the Fourier series coefficients and DFT spectrum of the cosine waveform signal. [6]:

The spectra have been calculated consistently and are bilateral in the range -f s 2 ; + f s

2

(here [-256; +256[ Hz).

V-4-Phase issues

In the spectra calculated so far, the phase trace shows apparent random fluctuations. These stem from the numerical fluctuations of the imaginary and real parts of the DFT. Indeed, the phase is calculated out of the regular definition:

arg(Z sw ) = φ(Z sw ) := atan Im{Z sw } Re{Z sw } (39)
Therefore tiny fluctuations of the real part of the DFT, will introduce large fluctuations of the phase, but fluctuations of the imaginary part of the DFT can cause unwanted fluctuations of the phase too. To overcome that, we state a "zero-phase" criterion: if the modulus of a given sample of the DFT is larger than an arbitrary small value, then the sample is expected to be valuable and its phase must be computed consistently (equ.39), otherwise we force it to be zero. This can easily be implemented in Octave by using a boolean test condition when computing the phase of the DFT vector.

The Octave code below illustrates our "zero-phase" criterion on the Fourier series coefficients and DFT spectrum of the cosine waveform signal. [4]:

The bilateral phase spectrum now features only zeros, as expected for the cosine waveform signal.

We exemplify again the calculation of the phase, but now with a sine waveform signal of frequency f 1 over a similar windowing duration: T w = 1 s:

z(t) = sin(2π f 1 t), ∀t ∈ [0; 1[ ( 40 
)
whose FT is well-known, too:

Z( f ) = 1 2 δ( f -f 1 )e -j π 2 + δ( f + f 1 )e +j π 2 (41)
and whose set of Fourier series coefficients are imaginary: [7]:

Z 1 = Z * -1 = 1 2 e -j π
The bilateral phase spectrum features the expected ±π/2 values (±1.57 rad) for the phase at the ∓ f 1 frequencies, as expected from the theoretical calculation of the FT of that signal, which states the consistency of our phase criterion.

V-5 "Seeing" the time & frequency shift

To figure out the time shift as well as the frequency shift effect that is implictly introduced by the DFT computation, we consider a basic signal consisting in a time-shifted Dirac peak by a factor τ, hence:

z τ (t) = z(t -τ) = δ(t -τ) (43)
Considering the property of the FT regarding time-shifted signals, we have the FT pair:

[z τ (t) = z(t -τ)] ⇌ [Z τ ( f ) = Z( f )e -j2π f τ ] (44) 
Therefore, here, with our Dirac peak:

[z τ (t) = δ(t -τ)] ⇌ [Z τ ( f ) = e -j2π f τ ] (45) 
The FT has a constant modulus of 1 and a phase scaling linearly with the frequency f , however with a slope scaling with -τ. The phase slope is therefore expected to be negative with τ > 0 and vice versa.

The figure and the Octave code below illustrate the time and frequency shift that the DFT computation intoduces on the above-defined time-shifted Dirac signal that we windowed and sampled over T w = 1 s.

##### Displays i=5; # Change that index from 1 to length(tau) to select the desired value of tau figure subplot(3,1,1), plot(f_n, abs(Z_s_DFT(i,:)),'o'), xlabel('f_n [Hz]'), →ylabel('|Z_s|'), title('Normalized DFT') subplot [START_REF] Dft\{signal\} | Theo. DFT') axis([fmin fmax -A*width A*width]) subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'), →ylabel('Im\{Z_s\}') hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g') axis([fmin fmax -1e-18 1e-18]) figure subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'), →title('Normalized DFT') hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g') legend('DFT\{fftshifted signal\}','DFT\{signal\}[END_REF]1,2), plot(f_n, Phi_Z_s_DFT(i,:),'o--'), xlabel('f_n [Hz]'), →ylabel ('arg(Z_s) [rad]') legend(strcat('\tau=', num2str(tau(i)))) subplot [START_REF] Dft\{signal\} | Theo. DFT') axis([fmin fmax -A*width A*width]) subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'), →ylabel('Im\{Z_s\}') hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g') axis([fmin fmax -1e-18 1e-18]) figure subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'), →title('Normalized DFT') hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g') legend('DFT\{fftshifted signal\}','DFT\{signal\}[END_REF]1,[START_REF] Dft\{signal\} | Theo. DFT') axis([fmin fmax -A*width A*width]) subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'), →ylabel('Im\{Z_s\}') hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g') axis([fmin fmax -1e-18 1e-18]) figure subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'), →title('Normalized DFT') hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g') legend('DFT\{fftshifted signal\}','DFT\{signal\}[END_REF], plot(f_n, Phi_Z_s_DFT(i,:),'o--'), xlabel('f_n [Hz]'), 

VI-Applications

Although the theoretical framework of the DFT has been established for the general case of noncausal signals, that is signals that exist for positive as well as negative time t ∈ -T w 2 ; + T w 2 , so far we have treated examples of signals built as causal signals, that is signals defined for positive time only.

In the examples given hereafter, we focus on periodic, or non-periodic, non-causal signals.

VI-1 Fourier series coefficients of a periodic, non-causal signal

We start with the case of periodic, non-causal signals.

VI-1-a Problem positioning

Signal 1:

To that end, we consider the former T 1 -periodic sine waveform signal defined over a windowing duration T w = 1 s, but we arbitrary define it as:

z(t) = sin(2π f 1 t), ∀t ∈ - 1 2 ; 1 2 (46)
Hence, the non-causal nature of that signal. The code below reproduces the previous code for that signal, except that, our signal being periodic, we only focus of the Fourier series coefficients spectrum. [10]:

Illustrative

[10]:

We have added a zoom in the [-15; +15] Hz range, where three samples only are visible due to the frequency resolution of the problem δ f = 1/T w = 1/T 1 = f 1 = 12 Hz. The magnitudes of the modulii of the peaks at ± f 1 are 0.5 as expected, but the phase peaks are surprinsigly reversed compared to the former calculation of the same signal. Owing to its periodicity, the spectrum should be identical, though.

VI-1-b Questions & answers So, what is the problem?

Answer:

The DFT does not make any assumption on the causal, or non-causal, character of the sampled signal z s (t s ). It is the user who decides whether the signal is to be plotted against a causal, or a non-causal, time interval. The DFT does not consider the actual time support {nT s } but only the (time) index n, which always begins at n = 0 (Python) or n = 1 (Octave). Therefore, the structural nature of the DFT is to assume that the signal z s (t sw ) is causal, i.e. spreading over a fully positive time interval (cf. section III-5).

In the example above, the DFT algorithm therefore interprets the signal as starting from a "false reference time" t f rt = 0 (the signal "goes down") and lasting a duration T w = T 1 . In this case, doing so, the operation falsifies the phase of the signal at the "true reference time" t trt = 0, as defined by the user for the temporal representation of the signal (the signal "goes up"). If the signal is interpreted as starting from t f rt = 0, it is immediately seen that the regular expression for it is z(t) =sin(2π f 1 t), and NOT z(t) = + sin(2π f 1 t), as we initially believed. Hence the inversion of the phase peaks in the spectrum by a factor of π.

But, why did this effect not occur when considering the intial time interval t ∈ [-1/2; +1/2]?

Answer:

Having a look to that signal, it is readily seen that, over that windowing, the phases of the signal at t f rt = 0 and t trt = 0 are similar. Hence, the consistent calculation of the phase of the DFT.

Is there a way to treat non-causal signals without having to care about the way the windowing is performed?

Answer:

Yes, if we know the signal is truly non-causal and that the way its DFT phase is calculated matters, we can force the non-causal character of the signal to be taken into account, as demonstrated below.

VI-1-c Forcing the non-causality to be considered in the DFT spectrum

One forces the first half of the signal z sw (t s ) (first N/2 samples) standing for the negative part of the time support to be placed at the end of signal vector. Doing so, the "false reference time" of the DFT is forced to match the "true reference time" of the signal, and the DFT can be computed consistently. This is achieved by using again the instruction "fftshift", but that is now applied to the signal z sw (t s ) itself, before the computation of the DFT. The figure and the code below exemplify that. 

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [1]:

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [3]:

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [6]:

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [4]:

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [7]:

  figure for i=1:length(tau) stem(t_s, z_s(i,:)), hold on endfor xlabel('time [s]'), ylabel('Signal z_s(t)'), title('Temporal representation of →the signal') ans = -63.248 ans = -48.925 [3]:

  figure plot(t_s, z_s, 'o-'), xlabel('time [s]'), ylabel('Signal z_s(t)'), →title('Temporal representation of the signal') [13]:

  figure subplot(2,1,1), stem(f_n, abs(Z_s_FSC)), xlabel('f_n [Hz]'), ylabel('|Z_s|'), →title('Normalized Fourier series coefs.') subplot(2,1,2), stem(f_n, Phi_Z_s_FSC), xlabel('f_n [Hz]'), ylabel('arg(Z_s) →[rad]')

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

For values of τ smaller than half of the windowing duration T w 2 = 0.5, the slope of the DFT phase is negative (leaving aside the wrapping of the phase within the region [-π; +π]). And the slope gets more and more negative as τ increases. As τ crosses T w 2 , the slope of the DFT phase gets positive, whereas there should be no reason for that.

The only interpretation is to assume that τ → -τ. The DFT algorithm interprets the second half of the signal (N/2 samples) as standing for negative times. Consequently the second half of the frequency support stands for negative frequencies. Hence the necessity to built the frequency support consistently! Illustrative code: [START_REF] Dft\{signal\} | Theo. DFT') axis([fmin fmax -A*width A*width]) subplot(2,2,4), plot(f_n, imag(Z_s_DFT)), xlabel('f_n [Hz]'), →ylabel('Im\{Z_s\}') hold on, plot(f_n, imag(Z_s_DFT_ns),'r'), plot(f_n,imag(Z_s_DFT_theo),'g') axis([fmin fmax -1e-18 1e-18]) figure subplot(2,2,1), plot(f_n, abs(Z_s_DFT)), xlabel('f_n [Hz]'), ylabel('|Z_s|'), →title('Normalized DFT') hold on, plot(f_n, abs(Z_s_DFT_ns),'r'), plot(f_n,abs(Z_s_DFT_theo),'g') legend('DFT\{fftshifted signal\}','DFT\{signal\}[END_REF] endfor Signal 2: Let us now look at the situation where, instead of a 1 s-windowing, the windowing is now defined as T w = T 1 = 1/ f 1 , symetrically around 0. In other words:

The code below exemplifies that.

Illustrative code:

[10]: # Parameters N = 512; # number of samples f1= 12; # frequency of the cosine waveform signal in Hz Tw = 1/f1; # windowing duration now defined over one period only #In-built variables Ts = Tw/N; # sampling period fs = 1/Ts; # sampling frequency The phase is now represented consistently.

Obviously, that use of "fftshift" on a well-windowed non-causal signal, as initially defined (equ.43), does not modify its DFT, as shown in the code below. 

VI-2 DFT of a non-periodic signal

We now consider the more generic case of non-periodic signals, hence the use of the FT formalism.

VI-2-a Causal signal Signal 3:

For that application, we consider a causal, time-limited but non-periodic (because of the random noise) signal that is built as follows. We consider the realistic situation of a relevant electrical signal, perturbed by an ambient electrical noise. The relevant signal is supposed to be a sinusoidal signal of frequency 17 Hz. The noise results from two components: a sinusoidal oscillation, whose frequency and amplitude are arbitrarily set to 50 Hz and 0.1 V, respectively, and a uniform random background (white noise), whose magnitude equals that of the 50 Hz oscillation. The amplitude of the relevant signal is 5 times smaller than that of the 50 Hz oscillation. Hence, the relevant signal is "drowned in noise".

The signal is windowed over T w = 1 s. The code below shows how powerfull the DFT is to detect the spectral components of the noisy signal. 

VI-2-b Non-causal signal

Signal 4:

In this application, we consider the important case of the rectangle function, a typical example of non-causal signal. 

VII-DFT implementation using Octave: summary

The table below gives the summary of the Octave syntax to compute the mono-, or bilateral, the DFT spectrum of a windowed discrete time signal z sw (t s ) consisting of N samples, whether the signal is periodic of not.
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