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Current and emerging trends in medical image
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Pierre-Henri Conze, Gustavo Andrade-Miranda, Vivek Kumar Singh, Vincent Jaouen and Dimitris Visvikis

Invited Paper

Abstract—In recent years, the segmentation of anatomical
or pathological structures using deep learning has experienced
a widespread interest in medical image analysis. Remarkably
successful performance has been reported in many imaging
modalities and for a variety of clinical contexts to support
clinicians in computer-assisted diagnosis, therapy or surgical
planning purposes. However, despite the increasing amount
of medical image segmentation challenges, there remains little
consensus on which methodology perform best. Therefore, we
examine in this paper the numerous developments and break-
throughs brought since the rise of U-Net inspired architectures.
Especially, we focus on the technical challenges and emerging
trends that the community is now focusing on, including con-
ditional generative adversarial and cascaded networks, medical
Transformers, contrastive learning, knowledge distillation, active
learning, prior knowledge embedding, cross-modality learning,
multi-structure analysis, federated learning or semi-supervised
and self-supervised paradigms. We also suggest possible avenues
to be further investigated in future research efforts.

Index Terms—artificial intelligence, semantic segmentation,
deep neural networks, vision Transformers, medical imaging

I. INTRODUCTION

THE increased volume of medical data to be interpreted by
clinicians for diagnosis, therapeutic or surgical planning

purposes has encouraged the development of computer-aided
image analysis tools to benefit from precise, fast, repeatable
and objective measurements made by computational resources.
Among existing analysis tasks, medical image segmentation
whose goal is to extract the boundaries of anatomical or
pathological structures from medical images remains crucial.
Also commonly used in computed vision [1], semantic seg-
mentation is a key step for many medical imaging workflows
since the information arising from the resulting voxel-wise
localization can greatly help clinicians to diagnose disorders,
assess disease progression, plan therapeutic interventions or
monitor treatment effects. Core feature of many computer-
aided detection and diagnosis schemes, image segmentation is
involved in the analysis of many imaging modalities includ-
ing computed tomography (CT), magnetic resonance (MR),
positron emission tomography (PET) or ultrasound (US).

Delineating anatomical or pathological structures from med-
ical images is traditionally performed manually. This task
is exceedingly time-consuming and requires suitable clinical
expertise to get clinically-relevant contours. This is therefore
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not applicable to large volumes of data typically produced
in clinical routine or research studies. Given the potential
fatigue of human experts and the wide variations in expertise,
manual segmentation is prone to strong intra- and inter-expert
variability [2]. Irregularities of the targeted structures, morpho-
logical variations or pathological deformities between patients
as well as the potential lack of clearly visible boundaries
with the surrounding anatomy further affect the non-agreement
between operators. To ease the process, intra-subject semi-
automatic techniques consisting of ascending and descending
non-linear registration steps applied to manually-drawn masks
can be applied to obtain volumetric results [3, 4]. Although
more affordable than 3D volume annotations, such propagation
schemes from sparse manual delineations to remaining slices
still need interactions and may require manual refinements.

Mathematical models and low-level image processing have
been extensively exploited for segmentation purposes before
the rise of learning techniques. In particular, model-based
segmentation incorporating statistical shape models has been
followed in various clinical contexts [5]. These models have
been further improved by exploiting prior knowledge of shape
information, for instance by relying on internal shape fitting
and auto-correction to guide the delineation process [6]. Con-
versely, aligning and merging manually segmented images
into a specific atlas coordinate space have been developed
as a reliable alternative to statistical shape models. In this
context, various single- and multi-atlas methods have been
proposed relying on non-linear registration [7]. Some hybrid
methods relying on statistical shape models constrained with
probabilistic atlases have also been investigated. Medical im-
age segmentation has been also performed through Bayesian
approaches using expectation-maximization [8], possibilistic
clustering [9], histogram-based thresholding followed by re-
gion growing [10], active contours [11] and more recently
machine learning (ML) [12] techniques.

However, the previously described methodologies are not
perfectly suited for high inter-subject shape variability, weak
boundaries and significant differences in tissue appearance. In
most cases, their robustness is not up to the inherent limitations
of medical images such as noise, non-uniform contrasts or
motion artifacts. Moreover, many of these methods are semi-
automatic and hence require prior knowledge, associated with
high computational costs. This has strongly motivated the
development of deep learning (DL) techniques to exploit im-
age characteristics (e.g. contrast variation, orientation, shape,
texture patterns) in a more efficient data-driven manner.

In recent years, artificial intelligence (AI) and more par-
ticularly DL models have reached impressive performance in
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medical image segmentation, becoming the new state-of-the-
art [13]. The transition between systems that use handcrafted
features (i.e. ML) to systems that learn features directly from
data (i.e. DL) is now acted. The most widely-used models
to date are based on convolutional neural networks (CNN).
Especially, the U-Net convolutional architecture [14] has been
widely adopted in the community thank to its ability to output
detailed delineations using a relatively low amount of training
data. Nevertheless, new paradigms recently appear based on
attention mechanisms, accompanying the emerging interest
devoted to pure and hybrid Transformers-based models [15].

Despite the availability of review articles summarizing exist-
ing DL approaches in medical image segmentation [13, 16],
a more exhaustive, updated and comprehensive panorama is
needed to allow a wide audience (e.g. researchers, clinicians,
radiologists) to benefit from the latest and emerging trends
in the field. Some of these existing reviews only focus on
specific aspects such as anatomy-aided techniques [17], multi-
organ segmentation [18], 3D CNN models [19] or U-Net and
its variants [20] whereas others [15, 16, 21] address a broader
overview of medical image analysis with DL by describing
various tasks including classification, detection, segmentation
or registration. In addition, despite the increasing amount of
medical image segmentation challenges, there remains little
consensus on which methodology performs the best. In this
context, this paper aims at examining the numerous devel-
opments and breakthroughs brought since the rise of U-Net
[14] inspired architectures with a novel and specific focus on
the technical challenges and emerging scenarios that the com-
munity is now focusing on, including knowledge distillation,
contrastive learning, medical Transformers, prior knowledge
embedding, cross-modality analysis, federated, active, self-
or semi-supervised learning. The recurring motivation for
these new approaches lies in the difficulty to obtain large
annotated datasets, as compared to other imaging tasks (e.g.
classification) or fields (e.g. computer vision).

This paper starts with a description of both background
(Sect.II) and clinical needs (Sect.III) before providing an
in-depth overview of current trends (e.g. prior knowledge
embedding) in medical image segmentation with DL (Sect.IV).
By bringing the light to medical Transformers, multi-task
learning, segmentation uncertainty, contrastive learning and
knowledge distillation, emerging trends are then motivated and
explained in Sect.V. Sect.VI focuses on emerging applications
including cross-modality learning, multi-domain segmentation,
semi-supervised, active and federated learning. To help readers
navigate through the paper, an overview of the targeted current
and emerging trends is provided in Tab.I. Sect.VII finally con-
cludes this paper by summarizing and discussing the possible
avenues to be further investigated in the future.

II. BACKGROUND

Over the last few years, CNN models have become state-of-
the-art in medical image segmentation due to their ability to
learn hierarchical representations of image features in a data-
driven fashion [16]. Before going into current and emerging
trends, this section aims at explicitly formulating what is med-
ical image segmentation using DL (Sect.II-A) and describing

TABLE I
CURRENT AND EMERGING TRENDS IN MEDICAL IMAGE SEGMENTATION

WITH DEEP LEARNING, PROVIDED WITH A REPRESENTATIVE REFERENCE.

Topic Sect. Description Ref.
Current trends

Conditional generative
adversarial networks IV-A Discriminator assesses if seg-

mentation is synthetic or real [22]

Cascaded networks IV-B Series of convolutional
encoder-decoders [23]

Prior knowledge
embedding IV-C Regularization term added

into the loss function [24]

Deep supervision IV-D Objective functions
at some hidden layers [25]

Attention
mechanisms IV-E Channel attention, spatial

attention, branch channel... [26]

Multi-structure analysis IV-F Incorporating inter-
structure relationships [27]

Learning frameworks IV-G Unified frameworks, neural
architecture search [28]

Emerging trends
Medical
Transformers V-A Hybrid CNN-Transformers,

full Transformers... [29]

Multi-task learning V-B Taking advantage of infor-
mation shared among tasks [30]

Segmentation
uncertainty V-C Uncertainty modelling to

improve performance [31]

Constrative learning V-D Learning a disentangled
feature representation [32]

Knowledge distillation V-E Distilling information
between models [33]

Emerging applications
Cross-modality
segmentation VI-A Exploiting complementary

between modalities [34]

Multi-domain
segmentation VI-B Dealing with multiple

intensity domains [35]

Self-supervised
learning VI-C Self-supervised contrastive

learning, pre-text tasks [36]

Semi-supervised
learning VI-D Mean teacher, pseudo

labeling, auxiliary task... [37]

Federated learning VI-E Distributed training
between clinical institutions [38]

Active learning VI-F Assisting annotators
in the annotation process [39]

Lightweight networks VI-G Trade-off between trainable
parameters and performance [40]

seminal works (Sect.II-B) until the development of U-Net
(Sect.II-C). The last part on data augmentation (Sect.II-D),
especially useful to address data scarcity issues frequently
encountered in the field, completes the panorama.

A. Problem formulation

Let X be a set of images xxx ∈ RH×W×D where H , W
and D are the image dimensions in x-, y- and z- dimension
respectively while the annotation set Y ⊂ [0, 1]H×W×D×C

contains for each xxx ∈ X a map yyy of H ×W × D one-hot
vectors indicating the ground truth classes for all voxels. In a
fully-supervised setting, a deep segmentation network φ aims
at approximating a mapping function φ : xxx → φ(xxx;ΘΘΘφ) = ŷyy
between intensity xxx and class labels yyy images from N train-
ing samples {xxxn, yyyn}1≤n<N by optimizing a loss function

Lφ(yyy, ŷyy) =
1

N

N∑
i=0

`φ(yyyn, ŷyyn) with ŷyyn = φ(xxxn) through a

stochastic optimizer. The parameters of φ, namely ΘΘΘφ, are
optimized during the training process. A stochastic gradient
descent scheme, from standard gradient descent to Adam [41]
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or more elaborated optimizers, aims at finding the optimal
weights ΘΘΘ∗φ such that ΘΘΘ∗φ = arg min

ΘΘΘφ

Lφ(yyy, ŷyy). In practice, the

network weights are iteratively updated in the direction of the
steepest descent to reach the local minimum, following:

ΘΘΘφ ←ΘΘΘφ − α∇ΘΘΘφLφ (1)

where the learning rate α is a hyper-parameter controlling
the step size at each iteration. Tuning α is of paramount
importance to find a good trade-off between convergence speed
and stable optimization. Back-propagation deals with gradient
computation, while the gradient descent algorithm, based on
this gradient, aims at performing the learning procedure. `φ is a
per-image loss function which is usually the cross-entropy loss
defined, in a multi-class scenario with C classes, as follows:

`CE(yyyn, ŷyyn) =
1

|C ||Ω|
∑
c∈C

∑
u∈Ω

−yyyn,c,u log(ŷyyn,c,u) (2)

where Ω is the image grid and c ∈ C a given class with
C = {0, ..., C} indexing the different structures of interest as
well as the background. As reviewed in [42], a wide variety
of loss functions exist including distribution-based (e.g. cross-
entropy), region-based (e.g. Dice), compound (e.g. DiceCE)
and boundary-based (e.g. Hausdorff distance) losses.

B. Seminal works

The simplest and early attempts to perform segmentation
using CNN consisted in classifying each pixel individually
in a patch-based manner [43]. Since input patches from
neighboring pixels have large overlaps, the same convolutions
were computed many times. By replacing fully-connected
layers with convolutional layers, fully convolutional networks
(FCN) gave the opportunity to take entire images as inputs
and produce likelihood maps instead of single-pixel outputs.
It removed the need to select representative patches and
eliminated redundant calculations due to patch overlaps. In
order to avoid outputs with far lower resolution than input
shapes, FCN were applied to shifted versions of input images
[44]. Multiple resulting outputs were thus stitched together
to get results at full resolution. Further improvements were
then proposed with architectures comprising a regular FCN to
extract features, followed by an up-sampling part that enables
the recover the input resolution using up-convolutions [16].
Compared to patch-based or shift-and-stitch methods, precise
localization was possible in a single pass while taking into
account the full image context. This motivated the strong in-
terest devoted to convolutional encoder-decoders among which
U-Net (Sect.II-C) is the most commonly used representative.

C. U-Net

Among existing convolutional encoder-decoders architec-
ture, most DL-based medical image segmentation models are
based on U-Net [14] and its 3D counterpart V-Net [45]. U-
Net and V-Net consist of symmetrical architectures comprising
an encoder that gradually reduces the spatial dimension us-
ing pooling layers, a decoder progressively recovering object

Fig. 1. Residual V-Net inspired convolutional encoder-decoder architecture for
medical image segmentation purposes. Refer to Sect.II-C for further details.

details and initial resolution as well as skip-connections (i.e.
long-range shortcuts) which concatenate features between con-
tracting and expanding paths to help in improving localization
accuracy and convergence speed. The contracting path encoder
of a standard U-Net (resp. V-Net) architecture consists of
sequential layers including 3×3 (resp. 3×3×3) convolutional
layers followed by batch normalization (BN) and rectified
linear unit (ReLU) activations (Fig.1). Spatial size is reduced
using 2 × 2 (resp. 2 × 2 × 2) max-pooling layers. The first
convolutional layer typically generates 32 or 64 channels and
this number doubles after each pooling as the network deepens.
The encoder finally projects each input greyscale image xxxn to
a latent representation (denoted as zzzn in Fig.1). On its turn,
the decoder branch is built symmetrically with respect to the
encoder, except that max-pooling layers are replaced by up-
sampling operations (e.g. bi/tri-linear interpolation, transpose
convolution). Depending on the binary or multi-class nature of
the segmentation issue at hand, a final 1×1 (resp. 1×1×1) con-
volutional layer with sigmoid or softmax activation achieves
pixel-wise segmentation ŷyyn = φ(xxxn), at native resolution. V-
Net-inspired models may more suffer from high computational
cost and GPU memory usage than their 2D counterparts.

Numerous refinements to the U-Net encoder-decoder archi-
tecture have been proposed including, to name a few, models
which embed encoders pre-trained on large non-medical imag-
ing databases (e.g. ImageNet) to leverage low-level features
typically shared between different image types [46], sequen-
tial models exploiting residual convolutions [45] (Fig.1) or
pyramidal atrous convolutions (instead of pooling operations)
[47] as well as alternative attention models (Sect.IV-E) such
as attention U-Net [26] which integrates attention gates on
skip-connections to focus on salient features. As an extension
to vanilla U-Net, U-Net++ [48] relied on re-designed skip-
connections through intermediate convolution layers as well
as deep supervision (Sect.IV-D). By aggregating features of
varying semantic scales at the decoder branch, nested and
dense skip-connections act as a flexible feature fusion scheme.

D. Data augmentation

Deep segmentation models are most often trained with
extensive on-the-fly data augmentation, towards improved
generalization properties. By comprising random geometric
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transformations (e.g. translation, rotation, scaling, shear, flip-
ping) and random intensity modifications (e.g. normalization,
blurring, contrast adjustment), data augmentation can be seen
as a clever way to artificially increase the amount of available
data, with slightly modified copies of already existing images.
In practice, geometric transformations are applied to both
greyscale images and ground truth masks whereas intensity
transformations only modify source images. Data augmenta-
tion enables to teach DL models desired invariance, covariance
and robustness properties and to strongly reduce over-fitting.

More recently, it was shown that DL models could further
benefit from more elaborated data augmentation techniques
such as MixUp which exploits convex combinations of pairs
of samples and associated labels to train neural networks
[49]. MixUp regularizes the neural network to favor simple
linear behavior in-between training examples. Originally pro-
posed for image classification tasks, its extension to image
segmentation is straightforward and efficient, as proven in
[50] where improved generalization with MixUp as a data
augmentation technique is reached for knee MR segmentation
purposes. This success at the input data space further inspired
the use of MixUp in the latent feature space [51], in a setting
referred to manifold MixUp. As reviewed in [52], synthetic
augmentation based on image synthesis methods, for instance
exploiting generative adversarial networks (GAN), is another
powerful alternative to standard data augmentation since it
samples the manifold on which the original training set resides.
Although effective, especially in extreme data scarcity scenar-
ios, synthetic augmentation is more demanding to implement.
Standard and more sophisticated data augmentation systems
are obviously not mutually exclusive and can be used together.

While data augmentation is typically employed during train-
ing, using it at test time recently started to get special attention.
Strongly linked to the way model uncertainty can be quan-
tified [31] (Sect.V-C), test-time data augmentation consists
in performing the inference both on original and augmented
versions of images, followed by a merging procedure. Gains
in performance are reported in various clinical contexts such
as lesion segmentation from whole-body PET-CT images [53].

III. CLINICAL NEEDS AND APPLICATIONS

An ever-increasing number of research studies have illus-
trated the numerous applications of medical image analysis
with DL, targeting a large number of pathologies and imaging
modalities [16, 21]. On its side, medical image segmentation
plays a key role in many medical imaging workflows tai-
lored for diagnosis, disease progression assessment, surgery
or therapeutic planning, follow-up, survival analysis, treatment
response evaluation, dosimetry and many other applications.

Clinical needs deal, first of all, with organ delineation from
anatomical CT or MR imaging given that clinical parame-
ters (e.g. volume, shape, inner textures) can be exploited as
biomarkers to diagnose or quantify disease progression, as in
cardiac [54], brain [55] or prostate [56] disorders. Hepatic
pathologies with primary or secondary liver lesions are also
concerned, thus making fully-automatic liver segmentation
[57] particularly useful and requested in clinical routine. Re-
garding pure organ volumetry, a good example is an automated

assessment of the total kidney volume (TKV) from MR images
in patients with polycystic kidney disease since TKV is the
main image-based biomarker to follow PKD progression [58].
Segmenting healthy organs (e.g. liver, kidneys) to obtain a
measurement of volume, size or shape is also a relevant use-
case in the context of transplant surgery planning [59, 60].

In other works, whole or sub-structure organ segmentation
is managed as a first step toward lesion detection and de-
lineation. The main related challenge in this context deals
with class imbalance as most voxels usually belong to the
non-diseased class. In particular, there are numerous research
works aimed at delineating skin lesions from dermatological
images [30, 61], brain tumors from MR images [47, 62, 63],
liver lesions from CT scans [57], head and neck primary tu-
mors, lymph nodes and organs at risk from radiotherapy com-
puted tomography (RT-CT) or combined PET and CT images
[64–66], breast masses in mammograms [67] or ultrasound
images [68], cystic kidney tissues in MR modality [69] or
lesions in whole-body images [53]. In oncology, PET and CT
imaging held a special place for disease characterization since
they contain complementary information about the metabolic
or biochemical function of tissues and organs as well as
the anatomy of cancer [70]. Inner-lesion tissue segmentation
is also increasingly targeted as in [71] where both active
and necrotic tissues are identified inside liver tumors for
patients with hepatocellular carcinoma in dynamic contrast-
enhanced CT or in [72] where low and high-grade gliomas
are decomposed into several tissue types comprising necrotic
and enhancing cores, non-enhancing tumor and oedema.

Another emerging application deals with automatically ex-
tracting blood vessels (e.g. retinal, brain, liver vessels) from
medical images [73, 74]. Apart from class imbalance and
appearance similarity with non-vascular tissues, vascular seg-
mentation brings additional limitations: complex multi-scale
geometry with decreasing diameters and contrast along tree-
like networks, inter-patient variability in branching patterns...

Medical image segmentation is also involved in plenty of
radiomics pipelines where it has been for a very long time
the bottleneck in both time and automation. Thus, extracting
radiomic features in an automated and high-throughput way
from relevant lesion areas is requested to quantify the char-
acteristics of medical images, comprehensively characterize
objects (e.g. tumors, organs, tissues) and finally provide useful
guidance for clinicians. Although initially designed to process
CT and functional PET images, the radiomics approach can
be applied to any imaging modality or radio-tracer [75]. This
includes works involving automated DL-based segmentation
towards patient outcome prediction such as survival analysis
[70] or chemotherapy response assessment and prediction [76].

More marginal applications can also be mentioned, as for
the management of musculoskeletal diseases where patient-
specific information related to the degree of muscle atrophy
across joints is needed to plan interventions and predict inter-
ventional outcomes. In particular, DL-based shoulder muscle
segmentation from MR images [46] can be employed to
analyze the shoulder strength balance, which is particularly
important given that a clear relationship between muscle
atrophy and strength loss [77] has been established.
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IV. CURRENT TRENDS

A. Conditional generative adversarial networks

A network design based on conditional generative adversar-
ial networks (GAN) has been proposed as a general-purpose
solution for image-to-image translation [78]. The goal is not
only to learn the mapping from input to output images but also
to learn a loss function to train this mapping. This kind of strat-
egy is obviously suitable for segmentation purposes and among
the possible applications, its feasibility for medical image
segmentation has been demonstrated in several recent works
[22, 60, 61, 79]. In practice, conditional GAN architectures
comprise a generator aiming at providing segmentation masks
through encoding and decoding layers as well as a discrimina-
tor which assesses if a given segmentation mask is synthetic or
real. The adversarial network learns to discriminate real from
synthetic delineations, i.e. ground truth masks versus those
arising from the generator. This enforces the generative part to
create increasingly plausible segmentation masks. During the
training process, the generated delineations are gradually close
to the ground truth, to the point of being able to deceive the
discriminator. Unlike standard post-processing schemes, such
iterative refinement performed through adversarial learning
[79] is conducted in an end-to-end manner.

As generator φ, conditional GAN pipelines may use any
type of U-Net [14] inspired model, from simple [22] to
extended (using dense dilated convolution) [61] and cascaded
(Sect.IV-B) [60] ones. The inputs of the discriminator D
are the concatenation of source images and ground truth or
predicted masks to be evaluated. Defined between 0 (fake) and
1 (plausible or real), the output of D is an array where each
value corresponds to the degree of segmentation likelihood for
a given image crop and its associated segmentation mask. Let
φ(xxx) and D(xxx, φ(xxx)) be the outputs of φ and D respectively.
The loss function Lφ(ΘΘΘφ,ΘΘΘD) for the generator φ can be
defined as the following combination:

Lφ(ΘΘΘφ,ΘΘΘD) =
1

N

N∑
n=1

`CE(φ(xxxn), yyyn) + λ`adv(φ(xxxn), yyyn)

(3)
where λ is an empirically set weighting factor and
ΘΘΘD the trainable parameters of D. The adversarial term
`adv(φ(xxxn), yyyn) equals to − log(D(φ(xxxn),xxxn)). Minimizing
`CE tends to provide rough predictions whereas maximizing
logD(φ(xxxn),xxxn) aims at improving contour delineations.
Conversely, the optimizer typically fits D through cross-
entropy using both estimated and ground truth masks. The
loss function LD(ΘΘΘφ,ΘΘΘD) for D is therefore defined as:

LD(ΘΘΘφ,ΘΘΘD) =
1

N

N∑
n=1

− log(D(yyyn,xxxn))

− log(1−D(φ(xxxn),xxxn)) (4)

The above equation maximizes the loss values for ground
truth (i.e. log(D(xxx,yyy))) and minimizes loss values for gener-
ated masks (i.e. − log(1−D(xxx, φ(xxx)))). The optimization pro-
cess is performed sequentially by alternating gradient descents
on φ and D at each batch [81]. To further improve the ability

of conditional GAN architectures to extract the contours of
the targeted anatomy or abnormalities, investigations on more
robust generators than traditional U-Net [14] is an interesting
research avenue [60]. Condition GAN can also be employed
as a tool combined with other constraints (Sect.IV-C) such as
anatomical shape priors, as proposed in [24].

B. Cascaded networks

Managing long-range spatial context from medical images
is an important feature to improve the automatic delineation
process. However, increasing the network depth over and over
to exploit larger receptive fields is not suitable for memory
and computational reasons, especially given the volumetric
nature of most medical imaging data. In addition, too many
high-resolution details are discarded when the number of
down-sampling operations in the encoder branch is signifi-
cant. To address these challenging limitations, standard scale-
space pyramid [82] and auto-context [83] ideas influenced the
development of cascaded strategies exploiting series of convo-
lutional encoder-decoders [23, 60]. Instead of simultaneously
exploiting several pathways working at various scales [84],
cascaded approaches consist in using a scale-space pyramid
to perform segmentation at a higher resolution while also
considering contextual information from lower resolutions.

By considering two convolutional encoder-decoders in cas-
cade, the most common setup could consist in training a low-
resolution model and using its weights as initialization of
a high-resolution model through transfer learning and fine-
tuning. Although this strategy can significantly speed up
convergence, the ability of the high-resolution segmentation
model to extract long-range contextual features remains lim-
ited. The idea of stacking (at least) two convolutional encoder-
decoders to integrate multi-level information more directly
came naturally [23] and made use of auto-context [83] such
that posterior probabilities resulting from a given model can
be used as features for the following one [55]. The models
can be trained separately [55] but this prevents refining low-
resolution models from the high-resolution ones during back-
propagation. An end-to-end training is better suited to exploit
simultaneous multi-level segmentation refinement [23, 60]. A
cascade of deep modules exploiting tissue-specific geodesic
distance maps as contextual information was employed in [85]
to gradually improve the delineation accuracy. Combined with
top-down reasoning, such bottom-up strategies could better
handle texture information and region discontinuities.

C. Prior knowledge embedding

Regularization plays a key role in DL since it tends to
increase both robustness and generalizability of a deep model
when applied to unseen data. One common strategy consists in
adding a regularization term into the loss function to get more
accurate and plausible results [86]. The regularization term
Rφ deals with adding some prior knowledge to the model φ
and its regularization effect is achieved by adding the scaled
regularizer λRφ to the loss function Lφ to ensure further
consistency between both predictions φ(xxx) and targets yyy. The
resulting loss function can be expressed as follows:
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Fig. 2. Integration of anatomical shape priors into a deep segmentation pipeline [24, 26, 35, 80]. Shape priors-based regularization is performed using a shape
encoder arising from a convolutional auto-encoder previously optimized on ground truth segmentation masks. Refer to Sect.IV-C for further details.

Lφ(ΘΘΘφ) =
1

N

N∑
n=1

`φ(φ(xxxn), yyyn) + λRφ (5)

Many different types of information can be incorporated as
prior knowledge into DL frameworks such as shape constraints
[26], topology specifications [73], edge polarity [87] or ad-
jacency rules between regions [88]. Nevertheless, integrating
shape priors remains one of the most commonly used strategies
toward anatomically meaningful predictions. In particular, the
use of convolutional auto-encoder (AE) to learn anatomical
shape variations from medical images has been demonstrated
in multiple applications [24, 26, 35, 80]. Specifically, a con-
volutional AE is a deep network made of an encoder F : yyy 7→
F (yyy;ΘΘΘF ) and a decoder G : F (yyy;ΘΘΘF ) 7→ G(F (yyy;ΘΘΘF );ΘΘΘG)
where ΘΘΘF and ΘΘΘG correspond to the learnable parameters of
F and G respectively. F maps the input to a low-dimensional
feature space whereas G reconstructs the original input from
the compact representation. To avoid the AE to copy the input,
F is usually designed to be undercomplete such that the latent
space is much smaller than the input dimension. By penalizing
the reconstruction G ◦ F (yyy), the cross-entropy loss function
can be employed to optimize the AE following:

ΘΘΘ∗F ,ΘΘΘ
∗
G = arg min

ΘΘΘF ,ΘΘΘG

1

N

N∑
n=1

`CE((G ◦ F )(yyyn), yyyn) (6)

where ΘΘΘ∗F (resp. ΘΘΘ∗G) are the optimal weights of the encoder
(resp. decoder). After having trained the AE, its encoder
component acts as a non-linear shape model and can project
any predicted or ground truth segmentation masks to a shape
manifold space [80]. The encoder produces a feature map F (yyy)
which compactly encodes the most salient characteristics of yyy.

Once the AE trained, its encoder component can be inte-
grated into the segmentation pipeline (Fig.2). A regularizerRφ
that penalizes the deviation between predicted and ground truth
segmentation masks fed as inputs of the learned shape model
F is included in the global loss (Eq.5). A Euclidean distance
between both latent shape representations [26] is usually used:

Rφ(ŷyy,yyy) =
1

N

N∑
n=1

‖F (yyyn;ΘΘΘ∗F )− F (φ(xxxn);ΘΘΘ∗F )‖22 (7)

Nevertheless, a cosine distance between predicted and ground
truth masks in low-dimensional space is also of interest [74].

Rφ(ŷyy,yyy) =
1

N

N∑
n=1

1− cos(F (yyyn;ΘΘΘ∗F ), F (φ(xxxn);ΘΘΘ∗F )) (8)

As reported in [80], shape is just one of the geometric
attributes of anatomical or pathological structures one can
exploit. Much more meaningful priors such as texture, topol-
ogy or size can be embedded into training objectives towards
stronger robustness and stability of DL segmentation networks.

D. Deep supervision

Introduced in the context of holistically-nested edge detec-
tion [89], additional convolutional operations can be applied
at different levels of the decoder branch in order to exploit
a deep supervision mechanism (Fig.3) able to boost the seg-
mentation performance [15]. Companion objective functions
are estimated at some hidden layers of the network and added
to the output loss. In practice, feature maps as outputs of each
intermediate decoder blocks can be up-sampled to the size of
the input image using bi- or tri-linear interpolation, depending
of the 2D or 3D nature of the segmentation problem. Similarly
to [25], a convolutional operation (e.g. with 3× 3 kernel) can
be applied to create feature maps at each level of the decoder
(16 in Fig.3). These maps then go through deep supervision
modules to improve the gradient flow and encourage learning
more useful representations [25]. After having performed the
concatenation of these intermediate outputs, two convolutional
layers including a final 3×3 one with softmax activation finally
achieve pixel-wise segmentation (multi-label in Fig.3). In this
context, the overall loss function Lφ can be defined as the
weighted sum of the cross-entropy losses (or any other losses)
estimated at different decoder levels involving supervision:

Lφ(ΘΘΘφ) =

M∑
j=1

wjLjCE + wfLfCE (9)

where wj and Ljce denote the weight and loss for the points
of supervision at level j of the decoder, wf and LfCE the
weight and loss computed at the final network output (where
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Fig. 3. Convolutional encoder-decoder architecture with deep supervision. The overall loss function is the weighted sum of losses estimated at different
decoder levels [25]. C is the number of classes. Refer to Sect.IV-D for further details.

f stands for final). When following a VGG-13 architecture
[90] as depicted in Fig.3, M = 4 intermediate decoder levels
can be considered. Following [25], one can use w1 = 0.8,
w2 = 0.7, w3 = 0.6, w4 = 0.5 and wf = 1 where level
j = 1 is closer to the network ending part than level j > 1.
However, how to balance the hyper-parameter setting among
different loss components remains a matter of concern. Instead
of empirically defining weights, a relative weighting can be
learned from the data using homoscedastic uncertainty [91].

E. Attention mechanisms

The human visual system can concentrate and focus actively
on a tiny portion of highly relevant perceptible information
while disregarding other irrelevant perceivable stimuli. At-
tention mechanisms were introduced in DL frameworks to
imitate this aspect of how the human visual system processes
information. In general, they can be regarded as a dynamic
selection process where the features extracted from images are
adaptively weighted to pay attention to the more salient ones,
i.e. the feature needed for accurately solving a specific image
analysis task. Attention mechanisms, particularly in image
segmentation, can suppress feature responses in irrelevant
background regions, hence reducing the rate of false-positive
predictions. This is particularly true for the challenging in-
stances of small objects with high shape variability.

The attention problem is usually formulated using three
vectors: query, key and value. Conceptually, we can think of
key and value as a look-up table in which the query is matched
to a key, and the value associated with that key is returned. In
image segmentation, it is equivalent to mapping the features
of the structure to segment (query) against a collection of
plausible target features (keys), then presenting the best-
matched regions (values). Mathematically, let us consider that

alignment
function 

attention
weights 

output

Fig. 4. Flow-chart diagram of a general attention mechanism function. Refer
to Sect.IV-E for further details.

we have a query q ∈ Rdq and M pairs of key k ∈ Rdk
and value v ∈ Rdv vectors {(k1, v1), . . . (kM , vM )}, where
all of them can be obtained from intermediate CNN features
or embedding patches of an input image xxx. The attention is
computed step-by-step following three operations: alignment,
weighting and contextualization. In the alignment step E(·),
each query is matched against the M keys to compute a
score value. Several commonly used alignment functions are
further described in Tab.II where additive [92] and dot-product
[93, 94] functions are the most widely used. In the next step,
the alignment scores are passed through a function H(·) (e.g.
softmax, sigmoid) to generate the final attention weights by
normalizing all the scores to a probability distribution (Eq.10).
A contextualization vector (Eq.11) is then instantiated for each
q as a weighted sum of the M values vi by the set of weights
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TABLE II
SUMMARY OF SEVERAL POPULAR ALIGNMENT FUNCTIONS USED TO

COMPUTE THE MATCHING SCORE BETWEEN A QUERY AND KEYS. WWW AND
VVV ARE TRAINABLE WEIGHT MATRICES, MEANWHILE dk STANDS FOR THE

DIMENSION OF A VECTOR k. [.; .] STANDS FOR CONCATENATION.

Name Alignment function
Additive or concatenation E(q, k) = VVV T tanh(WWW [q; k]) [92]
Content-based attention E(q, k) = cos(q, k) [95]
Location-based attention E(q) =WWWq [93]
General E(q, k) = qWWWk [93]
Dot-product E(q, k) = qT k [93]

Scaled dot-product E(q, k) = qT k√
dk

[94]

A. This computation enables to define how much attention
should be paid to each feature vi. Fig.4 depicts the procedure
followed to get the context vector for a particular query q.

A(q, ki) = H(E(q, ki)) (10)

C(q, {(k1, v1), . . . (kM , vM )}) =

M∑
i=1

A(q, ki)× vi (11)

Four main categories of attention techniques can be found
in the literature dedicated to medical image segmentation:
channel attention (what to attend), spatial attention (where to
attend), branch channel (which to attend) as well as hybrid
(e.g. channel and spatial attention) methods.

Channel attention is based on the idea that, in deep CNN
models, each channel represents a different feature map that
typically denotes distinct objects. As a result, the role of
channel attention is to adaptively calibrate the weight of each
channel, serving as an object selector of the entities that
should deserve more attention. Channel attention, particularly,
squeeze-and-excitation (SE) block [96], has proved to be ex-
tremely effective in tasks such as head and neck primary tumor
segmentation [97], prostate zonal segmentation [98], brain
structure segmentation [99] and micro-vessel segmentation
[100]. The SE block, depicted in Fig.5, passes an intermediate
features map through a squeeze operation (i.e. global average
pooling) that captures global spatial information. Then, an
excitation module (alignment function) captures channel-wise
relationships and outputs an attention vector using fully-
connected and non-linear layers (e.g. ReLU), followed by
a sigmoid function (weighting). Lastly, each channel of the
input features map is scaled by multiplying the corresponding
element in the attention vector (contextualization). Others
works including [26] extended skip-connections between both
encoder and decoder branches through channel attention gates.
By scaling the encoder features by importance, the network
may concentrate on a specific aspect of the input to generate
the segmentation. A similar approach was presented in [101]
for lesion segmentation. This model also used the extracted
feature maps from the encoder path for the computation of
attention weights which are afterward merged with the up-
sampled feature maps in the decoder branch.

Spatial attention and channel attention have relatively sim-
ilar functioning. Spatial attention consists in adaptively cali-
brating the weight of each part of the image. This mechanism

GAP

X
convolution

Fig. 5. Flow-chart diagram of a squeeze-and-excitation block [96]. GAP
stands for global average pooling.

chooses where to focus attention through an adaptive spatial
area selection procedure. One may integrate an attention block
into the U-Net architecture to learn semantic representations
that prioritize spatial regions with high saliency levels for the
task of tumor segmentation [68]. In the same direction, the
addition of a spatial-channel squeeze-and-excitation block can
improve the performance of various convolutional architec-
tures dedicated to medical image segmentation [102].

Branch attention mechanisms, on its side, separate the
attention problem into several sub-modules (branches), each
of which focuses on a certain aspect (e.g. channel, spatial, res-
olution, degradation) while exchanging effective information.
Then, the role of the attention mechanism is to adaptively
calibrate the weight of each branch, acting as a dynamic
branch selection procedure, choosing which to focus on. To
segment scleral blood vessels, Yao et al. [103] developed a
U-Net-inspired architecture with deep feature concatenation
and an attention mechanism branching into numerous attention
gates. This enables the network to focus on the border seg-
mentation of tiny blood veins. Other works such as [56] and
[104] exploited the multi-scale nature of CNN models. They
generated series of multi-scale attention modules at different
resolutions and integrated local deep attention features with a
global context. Lastly, channel and spatial attention incorpo-
rated the benefits of both attention mechanisms. This system
acts as a dynamic spatial area and object selection mechanism,
deciding what and where to focus attention [105, 106].

F. Multi-structure analysis

The multi-structure analysis aims at incorporating inter-
structure relations into a given DL-based segmentation model,
thus leading to a more accurate representation of complex
anatomies. A typical application in this direction deals with
multi-organ segmentation from CT [23, 40, 107, 108], PET
[109] or MR [60, 107, 109] images. Although computationally
effective, global approaches which consider one single model
for all structures of interest are computationally effective,
extracting high-level relationship patterns between multiple
structures but cannot fully exploit the local characteristics of
each different component to delineate. Conversely, modeling
multiple structures by a set of structure-specific models en-
ables generating local structure-specific features but sacrifices
the ability to take advantage of inter-structure relationships.

In their survey, Cerrolaza et al. reported that multi-level
(e.g. nested, multi-resolution) or sequential models are robust
alternatives to global or individual models as they combine
the robustness and specificity of global approaches with the
flexibility of structure-specific models [27]. Multi-level nested
models decompose the data into different levels of detail
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Fig. 6. Typical Transformers-based model architectures for medical image segmentation: (a) hybrid Transformers-CNN encoder, (b) pure Transformers-based
encoder, (c) full Transformers-based network. Refer to Sect.V-A for further details.

according to coarse-to-fine analysis rules. Conversely, in multi-
level multi-resolution models, global inter-organ relations are
modeled at coarser resolutions while local organ-specific vari-
ations are extracted from higher resolutions. On its side, se-
quential modeling deals with the analysis of multiple structures
following a pre-defined order of increasing complexity. In the
same vein, it is also relevant to mention the application related
to lesion segmentation for which delineating the organ of inter-
est as a first stage before localizing its inner lesions is usually
followed to promote the extraction of organ-specific features
and to narrow the search area (Sect.III). As an example, such
two-step sequential approach has been successfully applied in
[57] for liver lesion segmentation from CT scans.

G. Learning frameworks

The success of DL in medical image segmentation not only
originates from the development of novel learning paradigms
but also from the network architecture design itself and the
focus given to data management and optimization processes.
Especially, a trend can be noticed towards the development of
unified frameworks such as NiftyNet [110] or nnU-Net [28].
Since the design choices towards an optimal framework are
usually dedicated to a specific segmentation task (i.e. a given
tissue type for a given modality) and cannot easily be trans-
ferred to another application, pipelines that can configure their
sub-components in an automated fashion are highly requested.
In particular, nnU-Net [28] which has been designed to deal
with the dataset diversity found in the domain has proven
its efficiency by winning many challenges. It condenses and
automates the key decisions for designing a successful pipeline
for any given dataset. Thus, nnU-Net has become one of the
reference frameworks when targeting a new segmentation task.

In the same scope, neural architecture search (NAS) is
another direction under investigation with the goal to automate
the iterative network design process usually handled manually
by researchers. Among the existing research works in this
area, NAS-UNet [111] is based on the design of three types
of primitive operation set on search space to automatically
find two cell architectures (DownSC, UpSC) for semantic
segmentation purposes. Promising results were reported for
various imaging modalities including CT, MR and ultrasound.

V. EMERGING TRENDS

A. Medical Transformers

Transformers, as attention-based structures [94], have first
demonstrated their tremendous force in natural language pro-
cessing (NLP) [112, 113] and have gradually gain attraction
on different computer vision tasks such as image classification,
detection, segmentation and video analysis. Their popularity
is now also rapidly growing in medical image analysis [114],
especially for medical image segmentation with an exponential
growth of related publications in the last year [15, 115].
The pioneering work of vision Transformers [116] was an
interesting and meaningful attempt to replace convolutional
backbones with convolution-free models. In contrast to CNN,
vision Transformers (ViT) offer parallel processing and a
complete field of view in a single layer.

ViT has a columnar structure where the 3D input volume
xxx ∈ RH×W×D×C is split into np 3D non-overlapping patches
{xxx1,xxx2,xxx3, . . . ,xxxnp} with xxxi ∈ RP×P×P×C , C represents
the number of modalities, (P, P, P ) is the resolution of
each patch and np = HWD/P 3 is the resulting number
of patches, which is also the effective input length of the
Transformer. Since Transformer layers operate over fixed size
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1D set of vectors, the np patches are flattened and mapped
to a d-dimensional embedding space through a trainable lin-
ear projection matrix EEE ∈ R(P 3·C)×d. To preserve spatial
information, a 1D positional embedding EEEpos ∈ Rnp×d is
added to each of the np patches, and the resulting sequence
of embedding is used as input to the Transformer encoder:

zzz0 = [xxx1EEE;xxx2EEE;xxx3EEE; . . . ;xxxnpEEE] +EEEpos (12)

The Transformers-based encoder consists of alternating L
layers of multi-head self-attention (MSA) and multilayer per-
ceptron (MLP) blocks. A layer normalization (LN) is applied
before each block and a residual connection after each block.
One layer of a Transformer block can be formulated as:

zzz′l = MSA(LN(zzzl−1)) + zzzl−1

zzzl = MLP(LN(zzz′l)) + zzz′l
(13)

with l = {1, . . . , L}. The MSA block consists of h parallel
self-attention (SA) heads, where each SA head attends to
bring information from different representation sub-spaces at
different positions through a scoring function A. To achieve
this goal, an input sequence zzz ∈ Rnp×d is mapped into query
(Q ∈ Rnp×dk ), key (K ∈ Rnp×dk ) and value (V ∈ Rnp×dv )
matrices using three learnable parameters: WWW q ∈ Rd×dk ,
WWW k ∈ Rd×dk and WWW v ∈ Rd×dv .

Q = zzzWWW q

K = zzzWWW k

V = zzzWWW v

(14)

Then, the attention distribution function is computed following
Eq.15 and the resulting attention weights are applied to the V
matrix obtaining the SA maps, as described in Eq.16.

A(Q,K) = softmax
(
Q ·KT

√
dk

)
(15)

SA(Q,K, V ) = A(Q,K)× V (16)

For MSA, Q, K, and V are computed once for each head
using h different learnable parameters (WWW q,k,v

i ), and the final
attention map results from the concatenation of the h heads
multiplied by a learnable aggregation matrix WWW o ∈ Rhdv×d.
The computational cost of single head attention with full d-
dimension is maintained by setting dk and dv equal to d/h.

MSA(Q,K, V ) = [head1; . . . ; headh]WWW o (17)

with headi = SA(Qi,Ki, Vi) = SA(zzzWWW q
i , zzzWWW

k
i , zzzWWW

v
i ). In the

context of medical Transformers, U-Net-shaped architecture
remains the preferred choice to build the Transformer
segmentation models. From them and as illustrated in Fig.6,
three categories can be identified [117]: pure Transformers-
based encoder, hybrid Transformers-CNN encoder as well as
full Transformers-based network.

1) Pure Transformers-based encoder: The first category
exploits the global context modeling capability of
Transformers to effectively encode the relationships between
spatially distant voxels. A convolution-free encoder is
introduced by forwarding flattened image representations to
Transformers, whose outputs are then reorganized into 3D
tensors followed by CNN up-sampling blocks with multi-level
feature aggregation. For instance, [118, 119] employed a 3D
ViT as an encoder and connected it to the CNN decoder via
skip-connections. At the bottleneck of the encoder, the feature
map was reshaped and up-sampled by a factor of 2. Then, the
previous Transformer layer was used as a skip connection and
concatenated with the resized feature to be later up-sampled
through convolution, normalization and linear activation. This
process was repeated until the initial resolution was reached.
However, as anatomical structures can substantially vary in
scale, they cannot be properly modelled using a set of fixed
sub-regions of the image. Recently, hierarchical ViT such as
Swin [120] or PVT [121] Transformers have been introduced
to overcome these challenges by extracting features at
different resolutions. This improves the performance of
Transformers in dense prediction tasks while saving the
linear computational complexity with respect to the image
size. Hierarchical ViT architectures introduce CNN-like
properties into the Transformers as they compute local
attention with shifted windows, starting from small-sized
patches and gradually merging neighboring patches in the
subsequent layers. To reduce the design complexity of
traditional hierarchical ViT, a 3D U-shape model inspired
by nested hierarchical Transformers [122] exploited the
idea of global self-attention within smaller non-overlapping
3D blocks [123]. Cross-block self-attention communication
was achieved by hierarchically nesting these Transformers
and connecting them with a specific aggregation function.
Valanarasu et al. proposed in [124] a gated axial-attention
model that extended previous designs by incorporating
a new control mechanism in the self-attention module.
Furthermore, the model operated on the whole image and
patches to simultaneously learn both global and local features.

2) Hybrid CNN-Transformers encoder: This second
category integrates the global context modeling ability of
Transformers with the CNN inductive bias [29, 125, 126].
CNN layers capture the multi-scale context feature maps
by stacking convolution blocks. Meanwhile, Transformers
capture the long-term dependencies among the features that
would be potentially lost with purely convolutional models.
Lastly, a CNN-based decoder gradually up-samples the
Transformers output into a 4D feature map to recover the
full segmentation mask (Fig.7). Others approaches modified
the traditional SA blocks using deformable Transformers
[127] or squeeze-and-expansion Transformers layers [128].
In [129], Chen et al. proposed a 2D hybrid network that
combines two independent self-attention blocks to model the
long-range interactions and global spatial relationships. In
addition, a multi-scale skip-connection scheme aggregated
multiple features in the decoder at a different scale to generate
more discriminative representations. PC-SwinMorph [130]
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performed registration-based segmentation using both CNN
and patch-based contrastive strategies followed by a Swin
Transformer which enforced the capture both global and
local anatomical representations. Another type of hybrid
Transformers-CNN encoders deal with multi-branch fusion
schemes like TransFuse [131], HybridCTrM [132] and
CrossTeaching [133]. Commonly, the two parallel branches,
one for CNN and the other for Transformers, are fused to
benefit from the two learning paradigms. The CNN branch
provides the ability to focus on local information while
Transformers learn long-range voxel dependencies.

3) Full Transformers network: Full Transformers architec-
tures are built in an end-to-end Transformer-based fashion
[134, 135]. Cao et al. proposed in [136] a Swin 2D U-Net
network which includes a patch expanding layer to up-sample
the feature maps of the decoder. This architecture showed
superior performance in capturing fine details compared to
decoders based on bi-linear up-sampling. Lin et al. went a
step further in [137] by first adopting a dual-scale encoder
based on 2D Swin-Transformer to extract both coarse and
fine-grained feature representations at different scales. They
also included an interactive fusion module to effectively
establish global dependencies between features of different
scales through the self-attention mechanism. To better leverage
multi-scale feature hierarchies, Huang et al. proposed in [138]
a 2D hierarchical encoder-decoder architecture whose main
contribution was the inclusion of an enhanced Transformer
context bridge to capture the correlation and local context of
multi-scale features generated by the hierarchical Transformer
encoder. Peiris et al. developed in [139] VTU-Net that works
directly in 3D using Swin Transformers. The Swin decoder
introduces parallel cross-attention and self-attention, which
creates a bridge between queries from the decoder, keys,
and values from the encoder. Such parallelization enables to
preserve the full global context during the decoding process,
which is key towards a robust delineation of medical images.

B. Multi-task learning
Another way to improve image segmentation consists in

exploiting the ability of deep models to simultaneously deal

with multiple tasks. Multi-task learning aims at taking advan-
tage of the information shared among two or more connected
or auxiliary tasks while better handling each task individually
[52]. As investigated in [140], multi-task learning can be seen
as a form of inductive transfer where the introduced inductive
bias allows to prefer some hypotheses over others (i.e. the
ones that explain more than one task), towards solutions that
generalize better than their individual counterparts. One of
the first multi-task learning frameworks dedicated to medical
image segmentation was developed in [141] which investigated
whether a single CNN can be trained to perform different
segmentation tasks, i.e. in a multi-domain fashion (Sect. VI-B).
The combined training procedure was therefore suited for
identifying anatomical structures, tissue classes as well as
imaging modalities at once. More globally, multi-task learning
can leverage various and heterogeneous forms of annotations,
from global images to finer-grained and pixel-level labels.
Based on the finding that several segmentation, classification,
regression or detection issues can be effectively solved at once
using a single network, multi-tasking strategies have emerged
through the design of a cascade of task-specific sub-networks
[30] or the development of networks with shared encoder
and task-specific decoders [142–145] to benefit from partial
parameters sharing between tasks or sub-tasks.

In particular, the encoder-decoder architecture designed in
[142] featured a single encoding path and multiple decoding
branches for concurrent segmentation tasks. The encoding
module used a generic set of parameters shared by multiple
tasks whereas the decoding branches were task-specific. An
auxiliary cost was also added at the end of the encoding
module to predict the presence or absence of lesions. Sup-
plementary sub-tasks including contour detection and distance
map estimation were incorporated in [143] to refine coarse
and discontinuous segmentation predictions from convolu-
tional models. In [144], a single multi-task network was pro-
posed to simultaneously address gastric tumor segmentation
and lymph node classification from CT scans. An attention-
based reconstruction task was integrated into the segmentation
pipeline of [145] to leverage unlabeled medical images in a
semi-supervised segmentation framework (Sect.VI-D). In [73],
Keshwani et al. improved vessel CT segmentation not only
by considering a single decoding branch dedicated to vessel
segmentation but also by involving two additional decoders: a
centerness decoder whose task was formulated as a regression
problem and a topology distance decoder aiming at enhancing
the vessel connectivity which is key regarding clinical needs.

By enabling fruitful cooperation between related tasks,
these multi-task approaches have been shown to outperform
traditional independent or segmentation-only models. As for
deep supervision (Sect.IV-D), the relative weighting between
each task’s loss can be tuned by hand or automatically [146].

C. Segmentation uncertainty

In DL-based image segmentation, the forward pass is a
deterministic process that maps a voxel to a unique label. This
apparent determinism however fails to take into account the
various sources of uncertainty that affect a neural network pre-
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diction. Such awareness may be crucial to detect potential seg-
mentation errors. There is a clear need to understand the lim-
itations of segmentation models via the assessment of voxel-
wise confidence measures, which is the purpose of uncertainty
quantification applied to segmentation [147, 148]. Uncertainty
modelling may also importantly be used to directly improve
segmentation performance, as in [149] where the distinction
between quality control and model improvement techniques
is highlighted. This is typically done by averaging out voxel-
level errors using multiple stochastic forward passes in models
that can sample across the uncertainty space [31, 147].

According to Bayesian terminology, uncertainty can be
divided into epistemic and aleatoric uncertainty [146, 150].
Epistemic (or model) uncertainty relates to the lack of ac-
curacy in the model parameters due to insufficient training.
It is a kind of uncertainty that can be reduced by providing
more training time and/or data. Aleatoric uncertainty, on the
other hand, relates to the inherent uncertainty of the data itself,
which can further be divided into homoscedastic uncertainty
(constant for all inputs) and heteroscedastic uncertainty (vari-
able between inputs). In image segmentation, both image and
label spaces are affected by aleatoric uncertainty. Example
causes of homoscedastic uncertainty in radiation imaging are
physical processes such as Compton scattering or positron
range. Image-space heteroscedastic uncertainty can be, for in-
stance, due to dataset shifts in multi-center studies, while label-
space heteroscedastic uncertainty may be due to heterogeneity
in annotation quality [151]. Ideally, uncertainty assessment
should be calibrated. Calibration means that prediction con-
fidence c should equal its likelihood of being correct, i.e. a
value of c ∈ [0, 100] should indeed translate to a model being
accurate c% of the time over multiple instances, which is an
open research subject in medical imaging [147, 148, 152].
Several techniques may be employed to produce voxel-level
confidence maps for both epistemic and aleatoric uncertainty
quantification of segmentation predictions. The most popu-
lar epistemic uncertainty measurement is Monte-Carlo (MC)
dropout, also known as test-time dropout (TTD) [150], where
many (e.g. from 10 to 50) stochastic dropout forward passes
of a model equipped with dropout weights are performed
during training [153–155]. The dissimilarity in the predictions,
assessed through variance, mutual information or entropy
[154] can then be assimilated to a voxel-wise epistemic
uncertainty map. An obvious drawback of MC dropout is the
requirement for dropout during training. Dropout may indeed
be detrimental to segmentation performance, and a number
of state-of-the-art segmentation solutions including nnU-Net
[28] do not include dropout. Alternatives to MC dropout
for epistemic uncertainty quantification include performing
forward passes at various training checkpoints of the opti-
mization [156], following the empirical observation that less
certain predictions are less stably predicted along training. A
more computationally demanding method is deep ensembling,
whereby independently trained networks are averaged together
to get uncertainty maps [157]. Albeit more demanding, deep
ensembling is a common practice due to its consistency in
improving segmentation results [28]. Thus, uncertainty maps
may be derived freely as a by-product of this main objective.

Data or aleatoric uncertainty, on the other hand, can
be assessed through test-time data augmentation (TTA), in
which multiple forward passes are performed to inputs altered
through basic data augmentations (e.g. flips, rotations, scaling)
[31]. The resulting outputs are then aggregated with similar
methods to TTD (i.e. averaging, entropy). TTA is easier to
implement than TTD as it does not require any modification to
the network architecture and can readily be achieved through
off-the-shelf data augmentation and segmentation frameworks.
Qualitative results seem to suggest that aleatoric uncertainty
estimates provide more expressive qualitative maps for medi-
cal image segmentation uncertainty assessment [31].

Regarding the improvement of performance through uncer-
tainty sampling, using epistemic uncertainty modelling with
TTD or MC dropout generally yields moderate but consistent
improvement of segmentation results [31, 156]. For instance,
epistemic uncertainty-aware networks achieved state-of-the-art
performance on the medical image segmentation decathlon
challenge [153, 158]. On the other hand, TTA seems to be
more effective than TTD for improving medical image seg-
mentation results, with performance enhanced by up to several
Dice points [31]. TTA is therefore a generally recommended
step if inference cost is a secondary concern. The question
as to what is the optimal way to pool TTA predictions and
what augmentation to select is an open research subject [159].
Applications of deep uncertainty modelling to PET-CT are
less popular than in MR modality, with few related works
in segmentation [65, 160]. Sudarshan et al. leverage physics-
based heteroscedastic uncertainty modelling for low-dose PET-
MR image denoising [161]. This relative lack is arguably due
to the novelty of the topic in medical imaging. Uncertainty
quantification being an emerging trend, more contributions are
expected in the future, especially in radiation imaging.

D. Contrastive learning

Whatever the image analysis task involving representation
learning, extracting robust features means reaching distinct
clusters reflecting the different classes involved. In this
direction, contrastive learning tends to enforce the model
to learn an efficient and disentangled feature representation
by comparing the input image with comparing images (i.e.
anchors). The comparison is performed between positive pairs
of similar inputs (e.g. generated through data augmentation)
and negative pairs of dissimilar inputs (e.g. other image
samples used for training). The original contrastive loss
was initially defined for classification purposes in computer
vision [162] and its adoption in the medical image processing
community has been relatively late [163]. The underlying idea
was to pull together data points from the same class while
pushing apart negative samples in embedded space [162],
thus imposing intra-class cohesion and inter-class separation.

1) Global contrastive learning: Most existing contrastive
learning methods deal with a global contrastive loss and target
image classification (Fig.8a). For image segmentation, a global
contrastive loss can still be used by projecting the data through
the encoder path to the latent space [32, 164]. Let us describe
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Fig. 8. Self-supervised global (a), self-supervised (b) and supervised (c) local
contrastive learning [164]. Refer to Sect.V-D for further details.

how a global contrastive loss can be defined in this context.
We consider an input batch B = {xxx1,xxx2, . . . ,xxxb} where each
xxxi corresponds to a 3D medical image or one of its 2D slice.
Using data augmentation, one can transform twice each xxxi to
form a pair of augmented images. These new images form a
set of augmented images A = {aaa1, aaa2, . . . , aaa2×b}. For a given
image xxxi, A contains two related augmented versions, referred
to aaaj and aaak. A global contrastive loss can therefore be used:

Lcon = − 1

|A|
∑

j∈{1,...,2×b}

log
exp(zzzj .zzzk/τ)∑
l 6=j exp(zzzj .zzzl/τ)

(18)

where zzzj and zzzk are the normalized features obtained after
applying a header function h(.) (e.g. multi-layer perceptron)
at the output of the encoder E such that zzzj = |h(E(aaaj))|. τ
is a temperature scaling parameter. As opposed to standard
approaches that operate on image classes, a dataset label
information was leveraged in [35] to enhance intra-domain
similarity and impose inter-domain margins, in a multi-task
multi-domain segmentation scenario.

2) Local contrastive learning: More suited for medical
image segmentation, a local contrastive learning approach can
be followed by designing a local version of the contrastive loss
(Eq.18) able to learn distinctive representations of local regions
instead of relying on global representations. Only teaching the
encoder to extract image-level disentangled features may not
be sufficient since segmentation requires a class prediction
for all voxels [164]. Two main techniques can be followed
to train the decoder at extracting distinctive local represen-
tations through contrastive learning: self-supervised (Fig.8b)
and supervised (Fig.8c) local contrastive learning.

For the first category, Chaitanya et al. introduced in [32] a
local extension of the contrastive loss that is helpful for per-
pixel segmentation as it learns distinctive representations of
local regions. Thus, it compares the local features of the image

to be equivalent underneath various transformations and also
focuses on the dissimilarity with other regions from the same
image. Validated on three MR datasets, this method lead to a
substantial increment in delineation accuracy. Since generating
pairs of data for the use of contrastive learning is challenging
in medical image segmentation due to the potential presence
of similar tissue or anatomical structure across the dataset,
Zeng et al. explored in [165] a novel method called positional
contrastive learning. The method dealed with generating con-
trastive data pairs based on the position of a slice within 3D
volumes. Based on the slice distance, more closest slices were
referred to as positive pairs, and far slices were considered
negative. This enabled the reduction of false-negative image
pairs and improved the segmentation results against state-of-
the-art. Self-supervised local contrastive learning is only one
of the strategies followed in self-supervised learning whose
perimeter is further explained in Sect.VI-C.

Conversely, a supervised local contrastive loss (Fig.8c) that
leverages limited pixel-wise annotation to force pixels with
the same label to gather around in the embedding space was
proposed in [164]. Some papers combine global and self-
supervised [32] or supervised [164] local contrastive learning.

Contrastive learning was also adopted in a federated learn-
ing context (Sect.VI-E). In [38], Wu et al. explored contrastive
learning for volumetric medical image segmentation in the
presence of limited labeled data. Following a similar approach
to the above-discussed ones, clients first learn a shared encoder
on unlabeled data from various sites. Then, a network is fine-
tuned on a labeled dataset. The mixed contrastive data are
supplied to each medical location, enabling the use of data
variousness for contrastive learning. This enables performing
global structural matching to learn an encoder with suitable
representations among clients.

E. Knowledge distillation

Compared to the computationally expensive scenario con-
sisting of training many different models on the same data
and then averaging their predictions, compressing the knowl-
edge into a single model through knowledge distillation is
much easier to deploy [166]. The knowledge distillation (KD)
mechanism tends to distill (i.e. transfer) information from a
well-trained cumbersome teacher network to a lightweight and
compact student network with the final goal of improving the
performance of this student model. In a standard KD setting,
the teacher model generates soft predictions which are used
to supervise the student model by calculating the difference
of their final layer with some measurement functions such as
cross-entropy or Kullback-Leibler divergence (KL). The soft
predictions are obtained after the last convolution layer by
mean of a parameterized softmax function following:

qqqc =
exp(zzzcτ )

exp

(∑
c∈C

zzzc
τ

) (19)

where the logits zzzc associated to each class c are converted
into probabilities qqqc. τ is a parameter called temperature which
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controls the softness of the output probabilities. Since tuning
τ is a difficult process and considering τ as a constant can
lead to sub-optimal results, feature normalized knowledge
distillation (FNKD) was proposed in [167] to exploit reliable
soft predictions irregardless of the feature scale by rather
considering the L2 norm instead of a scalar value:

qqqc =
exp

(
zzzc
‖zzz‖

)
exp

(∑
c∈C

zzzc
‖zzz‖

) (20)

with ‖.‖ corresponding to the L2 norm. Instead of focusing
on the final layer only from both teacher and student models,
guiding the compact network to mimic intermediate features
from the teacher network was adopted in [168] by means of
attention maps. Initially proposed in the context of image
classification, KD mechanisms were rapidly extended for
semantic segmentation purposes in computer vision [169, 170]
and medical image analysis [33] fields. Thus, a prediction map
distillation module was used in [33] to enable the student
network to learn predictive capability from the output seg-
mentation maps provided by the teacher. Let φs be the student
model, qqqsn and qqqtn the soft probability maps respectively from
the student and teacher networks. The loss function for training
the student φs with standard KD can be defined as:

Lφs =
1

N

N∑
n=1

λ KL(qqqsn||qqqtn)+(1−λ) `CE(φs(xxxn), yyyn) (21)

with λ∈ [0, 1] a scalar value adjusting the contributions of both
terms. Note that cross-entropy can easily replace KL for the
knowledge distillation sub-loss. The standard supervised loss
(cross-entropy in Eq.21) can be any dedicated loss function
(e.g. DiceCE), as mentioned in Sect.II-A. Such loss function
making the student mimicking the ability of the teacher to
generate soft prediction maps is however not enough to really
boost the performance of the student since only pixel-level
information is considered. In this direction, more context
and class-related information are needed. As for classification
[168], constraints on intermediate multi-scale features arising
from both teacher and student were therefore integrated [33]
with importance maps distillation modules able to encode fea-
ture maps into a transformable form to deal with the diversity
of feature sizes between teacher and student models. Other
constraints were proposed in the specific context of knowledge
distillation such as boundary-guided [171], region affinity [33],
class-similarity [172], anatomical knowledge [173] or holistic
distillation [174] in order to align high-order relations between
what both teacher and student generated.

To go further, a novel KD based framework called mul-
tiple teachers single student (MTSS) was developed as a
new privacy multi-organ segmentation setting learning from
multiple pre-trained single-organ segmentation models [175].
Formulated into a special unsupervised ensemble distillation
problem, multiple single-organ models served as teachers
from different specialties and collaboratively teach one general

Paired 
data

Unpaired 
data

Early Mid Late Fusion

Image-to-image
translation

Knowledge
distillationUDA

Fig. 9. Categorization of cross-modal segmentation frameworks. UDA stands
for unsupervised domain adaptation. Refer to Sect.VI-A for further details.

student, i.e. the multi-organ segmentation model. Further, the
integration of a co-training strategy and weight-averaged mod-
els unified multi-organ segmentation from few-organ datasets
[176]. Self-distilling a Transformer-based U-Net by simultane-
ously learning global semantic information and local spatial-
detailed features was also investigated in [177].

VI. EMERGING APPLICATIONS

A. Cross-modality segmentation

Most of the approaches presented in the literature do not
consider the multi-modal nature of medical imaging data,
leaving aside potentially valuable cross-modal information
unused. However, exploiting complementary and redundancy
information across modalities can possibly improve overall
segmentation performance, making better use of the scarcity
of annotated medical imaging data. The research field of
multi-modal image segmentation brings different technical
challenges and open questions to solve [178], including:
• Is the data available for training pairwise-aligned or

comes from different patients?
• How to fuse different modalities to simultaneously reduce

the heterogeneity gap and enable the transfer knowledge?
• How to map data from one modality to another?

Considering these questions, we introduce in what follows
the multi-modal works depending on the type of data
available during training (paired, unpaired), the followed
fusion strategy (early, mid or late) [34] as well as the adopted
translation approach. Fig.9 depicts a generic categorization
of the cross-modal segmentation framework whereas Fig.10
illustrates a cross-modal pipeline when managing paired data.

1) Paired data and early fusion strategy: When multi-
modal paired data is available, one may carry out any of the
three fusion strategies. The most straightforward is the early
(also known as input-level) fusion strategy (Fig.10a) which
integrates at the input level of the deep network the different
m-modalities. Therefore, the final segmentation is defined as
y = φ(x1, x2, . . . , xm) where φ represents the segmentation
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Fig. 10. Pipeline of cross-modal frameworks for paired data. (a) Early or input-level fusion, (b) mid or layer-level fusion, (c) late or decision-level fusion.

network. Early fusion has the advantage of its simplicity,
allowing more complex segmentation strategies such as multi-
task, multi-view, multi-scale or GAN-based approaches. One
of the first works devoted to solving multi-modal image
segmentation using CNN can be found in [179]. They explored
two-pathway cascaded architectures using different receptive
field sizes to capture both local and global context information.
Qin et al. proposed in [180] an adaptive convolutional layer
named autofocus to effectively change the size of the receptive
field to perform multi-modal brain tumor segmentation. The
autofocus layer captured the multi-scale information by paral-
lelizing multiple convolutional layers with different dilatation
rates that are later merged using a weighted soft-attention
mechanism to choose the optimal scales.

The above-mentioned methods and others [181, 182]
did not make dense predictions and are therefore slow in
the inference stage. To promote efficiency, encoder-decoder
architecture derived from U-Net [14] has been widely
adopted. For instance, Shapey et al. used in [183] a 2.5D
U-Net to segment the vestibular schwannoma in contrast-
enhanced T1-weighted and high-resolution T2-weighted MR
imaging. Spatial attention modules were added to each level
of the decoder to deal with small target regions, giving
more attention to them and penalizing voxels belonging
to the background. In [184], the modalities were fused
as multi-channel inputs and passed through an adversarial
network (Sect.IV-A). The generator is a 3D residual U-Net
that performs the segmentation while the discriminator
distinguishes between generated segmentation and ground
truth masks. An extra constraint was added via active contour
modeling by measuring the dissimilarity between ground
truth and prediction contours. To handle the class imbalance
problem, Zhou et al. carried out in [185] a coarse-to-fine
segmentation inspired on model cascades for brain tumor
segmentation. The main difference with previous works lies
in applying only a one-pass multi-task network (OM-Net) that
performs three tasks that are gradually introduced in an order
of increasing difficulty based on curriculum learning. The

first task learns to differentiate between tumors and normal
tissue until the loss curve tends to flatten. The second task is
then added and split the complete tumor into intra-tumoral
classes. This task continues until its loss curve displays a
flattening trend. Lastly, the third task is introduced and trained
simultaneously with the previous ones to precisely segment
the enhancing tumor. In this way, the model parameters
and the training data are transferred from an easier to a
more difficult task. Unfortunately, early fusion makes it
hard to discover highly non-linear relationships between the
low-level features from different modalities, especially when
the modalities have significantly different statistical properties.

2) Paired data and mid-fusion strategy: Mid or layer-level
fusion separately processes the multi-modal data in different
paths (Fig.10b). For each modality, m, the input xm is encoded
in each branch fm to learn the modality-specific representation
zm. Then, each representation zm is mapped into a common la-
tent space via a fusion operation Λ and use this as input of the
decoding transformations g(Λ(z1, z2, . . . , zm)). The main goal
of this strategy is to learn an optimal joint representation that
emphasizes the most informative features across modalities.
In mid-fusion, we can distinguish two types of multi-pathway
network architectures based on the following fusion strategy:
single-layer or multi-layer fusion.

Multi-modal segmentation networks based on single-layer
fusion generally employ encoder-decoder architectures where
each modality has its own encoder, with no interactions
between them, and a single decoder. They mainly differ on
the conducted fusion operation and are typically carried out
via concatenation, addition, averaging or convolution. For
instance, Havaei et al. used in [186] modality-specific convolu-
tional layers to later compute for each feature map the first and
second moments. Then, the moments were concatenated and
processed by further convolutional layers, yielding the final
segmentation. For their part, Tseng et al. took in [187] the
encoded representation from each modality and performed a
cross-modal convolution to combine the spatial information of
each feature map, modeling the correlations among them. In-
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spired by the success of the attention mechanism (Sect.IV-E),
recent fusion strategies incorporated spatial and channel-wise
attention to learn more informative features among modal-
ities [188, 189]. To name a few, Zhou et al. proposed in
[188] a three-stage segmentation network. In the first stage,
a 3D U-Net architecture got rough mask predictions. Then,
binarization and erosion operations were used to obtain the
context constraints for the following stage. The second stage
consisted of a multi-encoder-based framework where each
encoder produces a modality-specific latent representation that
is further fused with the assistance of attention mechanisms.
This process was repeated for each structure to be segmented.
In the third stage, a two-encoder-based 3D U-Net segmen-
tation network was applied to combine and refine the three
single prediction results. A correlation block to discover the
latent correlation between modalities was introduced in [189],
followed by a dual attention block that consists of a modality
attention module and a spatial attention module. In this way,
the network is encouraged to learn the most correlated features
across modalities and more useful spatial information to boost
segmentation results. Despite the great results of single-layer
fusion schemes, there is no complete freedom to learn within
and in-between modalities due to its single level of abstraction.

Regarding multi-layer fusion, it extends the idea of
residual learning in multi-modal frameworks allowing skip-
connections that by-pass spatial features between modalities
[190–192]. Therefore, low-level and high-level features
are fused at different levels of abstraction, increasing the
learning capabilities of the network to capture complex cues
across modalities. Li et al. proposed in [190] four dilated
Inception blocks consisting of three dilated convolutional
layers for each modality. In this way, the receptive field of
the network was expanded without losing resolution, while
multi-scale features were also learned. In order to obtain
the final segmentation, the features at different levels were
concatenated and up-sampled. On the other hand, Dolz et al.
proposed in [191] HyperDenseNet, a 3D model where each
modality has its own path. Dense connections not only occur
between the layers within the same stream but also across
modalities. Thus, the network can learn more powerful feature
representations at all levels of abstraction. To encode more
rich contextual information across modalities, Zhang et al.
developed in [192] a cross-modal self-attention distillation
network. The model extracted attention maps of intermediate
layers to further perform layer-wise attention distillation
among modalities. Significant spatial information can be
distilled from an attention map of one modality and then
used to ease attention learning of the other modalities. Fusing
multi-modal contextual information at multi-layer stages
represents the current trend. Moreover, semantic guiding
across modalities by attention mechanisms can be used to
bridge early feature extraction and late decision-making.

3) Paired data and late fusion: Similar to mid-
fusion, late fusion separately processes multi-modal data
(x1, x2, . . . , xm) with the difference that the segmentation
branches (φ1, φ2, . . . , φm) are integrated at the decision level.
More precisely, during the decoding stage, all feature maps

computed by the branches are mapped into a common feature
space via fusion operations, (e.g. concatenation, averaging,
weighted voting), followed by series of convolutional layers
[193]. The final output of late fusion can be formulated as
y = Λ(φ1(x1), φ2(x2), . . . , φm(xm)) where Λ is the fusion op-
eration. Thus, common features learned by the transformation
network are considered as a further refinement of decoding
and prediction. Some conventional layer-level methods as
[194] are thus categorized into late fusion strategy. Many
late fusion strategies have been proposed. Most of them are
based on averaging or majority voting. For averaging strategy,
Kamnitsas et al. trained in [72] three networks separately and
then averaged the confidence of the individual networks. The
final segmentation was obtained by assigning each voxel with
the highest confidence. For the majority voting strategy, the
final label of a voxel depends on the majority of the labels
of the individual networks. The statistical properties of the
different modalities are different, which makes it difficult for
a single model to directly find correlations across modalities.
Therefore, in a decision-level fusion scheme, the multiple
segmentation networks can be trained to fully exploit multi-
modal features. On the other hand, Zhang et al. proposed
in [194] a modality-aware module that fused the modality-
specific models at a high semantic level. Specifically, each
modality was embedded by a different modality-specific FCN.
Then, the outputs of FCN models were fused and passed to
an attention module to generate a modality-specific attention
map to adaptively measure the contributions of each modality.
Moreover, they designed a mutual learning strategy to enable
interactive knowledge transfer, where the modalities interact
as teacher and student simultaneously. In the same line,
Zhang et al. employed in [192] a transfer knowledge strategy
across modalities that differs from previous works in the use
of GAN. The authors applied cycleGAN [195] to capture
the knowledge transition across modalities. Each generator
represented a single-modality feature learning branch. Then,
they were merged by extra convolution layers followed by an
attention block to learn powerful fusion features. The intuition
behind the use of GAN is that GAN models can learn the
modality patterns of each modality and their content patterns.

Mid and late-fusion can achieve better performance
because each modality is employed as an input of one
network that can learn complex and complementary feature
information compared to an input-level fusion network.
However, they require more memory due to the use of
multiple networks. Therefore, the trade-off between accuracy
and execution time should be carefully considered. Despite
the impressive advances reached in the field of multi-modal
image segmentation, collecting large sets of paired images
is often either prohibitively expensive or not possible. As a
result, techniques that make use of unpaired datasets have
attracted increasing attention in cross-modal segmentation.

4) Unpaired data and domain adaptation: When only
unpaired datasets are available, cross-modal segmentation is
commonly managed by domain adaptation (DA) techniques.
Let Xm ×Ym represent the joint feature space and the corre-
sponding label space for a specific modality m. A domain can
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be formulated asDm = {Xm, P (xm)} where Xm is the feature
space and P (xm) the marginal probability distribution of the
data xm. Let us assume that we have two domains (e.g. from
two different modalities): a source domain DS = {XS , P (xS)}
and a target domain DT = {XT , P (xT )}. The DA problem
is formulated as a sub-class of transfer learning where the
label spaces in the source and target domains are the same
YS = YT = Y but where the domains are different DS 6= DT .
In cross-modal image segmentation, the feature spaces be-
tween source and target domains are identical (i.e. XS = XT ),
differing only in data distribution (i.e. P (xS) 6= P (xT )).
Hence, the goal is to learn a segmentation function f(·) that
performs well in both source and target domains by finding
a transformation T (·) such that P (T (xS)) = P (T (xT )). The
previous single-source single-target definition can be extended
to multi-source single-target or single-source multi-target DA.

Three groups of DA techniques are used for cross-modal im-
age segmentation: supervised domain adaption in which both
labeled source and target data are available {XS ,YS ,XT ,YT },
semi-supervised domain adaptation in which labeled source
data in addition to some labeled target data are available,
and unsupervised domain adaptation (UDA) in which both
labeled source data and unlabeled target data are available
{XS ,YS ,XT }. Most related works in cross-modal image seg-
mentation are based on single-source single-target UDA [196]
using reconstruction-based methods, domain-invariant feature
learning [197] and more largely GAN models [198].

The main drawbacks of existing approaches deal with their
limited scalability and robustness in handling more than two
domains since they rely on pairwise alignment using GAN
(cycleGAN or similar [198]). Hence, different models should
be built independently for every pair of image domains which
demands high computational resources. Lastly, either paired
or unpaired methods are application-dependent which limits
their transferability between different clinical settings.

B. Multi-domain segmentation

A strong assumption in the way deep segmentation pipelines
are usually designed and evaluated is that both training and
test data arise from the same probability distribution. Their
accuracy usually degrades when applied to new (i.e. unseen)
data that differ from the training data [62]. Instead of designing
pipelines specific to a given intensity domain, an emerging ap-
plication consists in training a deep segmentation model over
multiple intensity domains [35, 107, 199, 200]. The underlying
assumption is that exploiting the redundancy between multiple
intensity domains can enable the extraction of robust domain-
invariant feature representations to finally achieve better per-
formance than domain-specific (i.e. marginal) computational
models. Managing various domains can partially solve the
issue of dealing with the scarcity of imaging resources [199].
The improved generalization abilities of the resulting models
are a further step to facilitate their integration into routine.

In practice, intensity domains can be very different in
nature: multi-center, multi-scanner, multi-modal (Sect.VI-A),
or multi-protocol. Reasons explaining the acquisition shift
include differences in imaging systems, reconstruction settings

Fig. 11. Multi-domain segmentation with shared convolutional kernels and
domain-specific feature normalization, as employed in [35, 200].

or acquisition protocols. It is worth mentioning that variations
can even happen in a single center since both clinical practices
and imaging systems may significantly evolve over time. To
deal with this diversity, segmentation pipelines can integrate
an adversarial network to learn domain-invariant features [62],
exploit transfer learning and fine-tuning between domains
[199], share a common decoder (resp. encoder) while using
domain-specific encoders (resp. decoders) [107] or share their
latent space only [107, 200]. In particular, the very different
statistical distributions between unpaired multi-modal images
making the task of learning shared representations challeng-
ing has motivated the design of a single encoder-decoder
segmentation network in [200] through shared convolutional
kernels but domain-specific feature normalization (Fig.11).
Indeed, modality-agnostic kernels can extract expressive uni-
versal representations across domains only if the features
are well-calibrated upstream. Let us consider D domains
{d1, d2, . . . , dD}. Let vvvji,l,m be the mth feature map from the
lth layer produced by the ith image arising from the intensity
domain dj . The calibration can be performed through domain-
specific batch normalization (DSBN) [35, 200], following:

DSBNαjl,m,β
j
l,m

(vvvji,l,m) = αjl,m
vvvji,l,m − µ

j
l,m√

(σjl,m)2 + ε
+ βjl,m (22)

where µjl,m and σjl,m are respectively the domain-specific mean
and standard deviation computed for images from domain
dj belonging to a given batch. ε is a scalar value that is
used to reach numerical stability. DSBN layers are therefore
defined by trainable domain-specific shift and scale weights
{αjl,m, β

j
l,m}l,m set for each feature map of each layer.

Rather than focusing on a given anatomical target across
various intensity domains, developing a single multi-task
multi-domain network can enable simultaneously segmenting
multiple anatomies while leveraging shared features between
various domains and datasets [141]. In this direction, shared
convolutional kernels and domain-specific feature normaliza-
tion from [200] were combined in [35] with both contrastive
(Sect.V-D) and shape regularizations (Sect.IV-C) to segment
bone structures from multiple scarce pediatric datasets.

C. Self-supervised learning

The need for a large amount of annotated training data is
a strong constraint given the complexity of reaching a sig-
nificantly well-annotated medical imaging dataset. Generative
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models were therefore used to increase the number of training
samples through image synthesis [201]. As an alternative, the
availability of a reduced dataset only motivated researchers to
exploit the power of unlabeled images which may be easier
to collect. Unsupervised learning approaches assuming that a
related but unlabeled large dataset is available aim at learning
transferable feature representations from unlabeled images.

In particular, self-supervised learning can consist of pre-
training the model (or any of its constituents) by means of
pretext tasks to finally be more able to efficiently delineate
the targeted structures [36]. With the hypothesis of good
generalization ability of self-learned features, Taleb et al.
investigated the effectiveness of several pretext tasks for 3D
medical image segmentation purposes: rotation prediction,
jigsaw puzzles, relative patch location... More complex pretext
tasks such as semantic inpainting revealed their effectiveness
for better solving downstream segmentation tasks [202].

Leaving aside self-supervised pre-text tasks, self-supervised
contrastive learning (Sect.V-D) is another manner adopted in
the medical image analysis area to learn expressive feature
representations from unlabeled images [203]. In this direction,
Chaitanya et al. proposed in [32] a local contrastive loss able to
capture local features to provide complementary information
and therefore boost the segmentation accuracy.

D. Semi-supervised learning

Given the usual scarcity of many existing annotated medical
dataset and apart from transfer learning [204] whose goal is
to learn from related learning problems, researchers have also
explored semi-supervised learning approaches to exploit the
availability of unlabeled datasets. Among the existing semi-
supervised strategies [37], semi-supervised consistency regu-
larization is commonly employed through the use of a mean
teacher model [205]. In [206], a novel uncertainty-aware semi-
supervised learning framework was proposed and evaluated
for left atrium segmentation from MR images. Teacher and
student models were built in such a way that the student
model learned from the teacher model by minimizing the
segmentation loss on the labeled data as well as a consistency
loss with respect to the targets from the teacher model on all
data (i.e. labeled and unlabeled). The predicted targets from
the teacher model being potentially unreliable and noisy on
unlabeled data, Yu et al. designed an uncertainty-aware mean
teacher framework [206], where the student model gradually
learned from the meaningful and reliable targets by exploiting
the uncertainty information arising from the teacher model
(Sect.V-C). To better deal with noisy labels for COVID-19
pneumonia lesion segmentation, the main novelty in [207]
was to propose two mechanisms: an adaptive teacher that
suppresses the contribution of the student when the latter has
a large training loss and an adaptive student that learns from
the teacher only when the teacher outperforms the student.

As followed in [208], semi-supervised pseudo labeling is
another strategy to deal with both annotated and unlabeled
data. Thus, Fan et al. generated pseudo-labels by relying
on a first training with 50 labeled images only. The newly
pseudo-labeled examples were then included in the original

labeled training dataset to re-train the model. This updated
model was used to generate pseudo-labels for another batch
of unlabeled images and so on. This process was repeated up
to obtain efficient performance in COVID-19 lung infection
CT segmentation. However, the created pseudo-labels usually
do not have the same quality as ground truth labels, which may
limit their potential for improvements from unlabeled data.

As a powerful alternative, one may adopt an auxiliary task
on unlabeled data to facilitate performing image segmentation
with limited labeled data. In this direction, Chen et al. pro-
posed in [145] a semi-supervised image segmentation method
that simultaneously optimizes both supervised segmentation
and unsupervised reconstruction objectives. The reconstruction
task had the particularity to exploit an attention mechanism
that separated the reconstruction of image regions correspond-
ing to different classes. Such a simple yet effective multi-task
learning scheme (Sect.V-B) achieved strong improvements for
brain tumor and white matter hyper-intensities segmentation.

E. Federated Learning

Collecting large medical image datasets is a difficult and
time-consuming task for research needs. Accurate labeling of
these images requires clinical experience and is challenging to
obtain. Many imaging centers have large image datasets, but
many of them are unorganized or poorly annotated in spite
of their richness regarding deep model training [209, 210]. In
addition, medical images are usually linked to personal health
information related to the patient. Data protection to prevent
sharing sensitive patient data is essential when working with
multiple medical institutions, in a collaborative manner.

To solve this issue, federated learning (FL) enables dis-
tributed training of DL models without really sharing data
between multiple clinical institutions. Fig.12 shows the general
framework of federated learning. To work in a collaborative
fashion, FL allows various clinical institutes or hospitals to
work in coordination by using a central server. Each hospital
keeps an individual model which focuses on the local data
only. Before the training process, each institution submits a
request to download the global model from a central server.
The requested query is then approved by the central server
and the global model weights can be downloaded. Once the
training process is executed, the local client model weights
are sent to the central server for updating purposes. The
central server aggregates the feedback received from individual
institutions and updates the global model weights based on
pre-defined rules. These rules permit the model to measure
the quality of the feedback obtained from the client servers.

More and more research works in medical image segmenta-
tion involve a FL scheme [211]. Recently, Xu et al. introduced
in [212] a new federated cross-learning segmentation approach
that handles data that are not independently and identically
distributed. Unlike the conventional FL methods that combine
multiple individually trained local models on a server node,
the proposed method named FedCross consecutively trained
the global model across multiple clients in a round-robin
fashion. The authors also suggested a new federated cross-
ensemble learning technique that together trains and sets up
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Fig. 12. General framework of federated learning. Refer to Sect.VI-E for further details.

various models. Wicaksana et al. [213] proposed FedMix, an
FL strategy that employed mixed image labels specifically to
segment anatomical region-of-interest from medical images.
These labels incorporated substantial pixel-wise annotations,
weak bounding boxes and image-wise class annotations. The
authors initially created the pseudo annotations through clients
and employed refinement under supervision to enrich pseudo-
annotations. Later, each client contained high-quality data
which was determined using active sample picking for local
model updates. Based on the quantity and quality of data,
the approach provided updates through dynamic aggregation
techniques which allow for modification of each local client’s
weight. FedMix was validated on breast tumor segmentation
from ultrasound and skin lesion segmentation.

Wu et al. [38] introduced a new federated contrastive learn-
ing (FCL) framework for 3D volumetric image segmentation
that requires limited annotations only. The local clients first
started with learning a shared encoder to spread unlabeled
images. Later, annotated images were incorporated to fine-
tune the model. Through feature exchange in which each
client exchanges the features (i.e. low-dimensional vectors) of
its local data with other clients, the approach enables better
local contrastive learning while avoiding raw data sharing. A
global structural matching technique was developed to learn
the structural similarity of encoded features with suitable
representations to be shared with other remote clients.

More globally, FL has shown potential for improving the
accuracy of medical image segmentation while protecting the
privacy of individual patient data. By offering scalability, flex-
ible training scheduling and large training datasets via multi-
site collaborations [210], FL combines essential conditions to
consider increasing its deployment in various clinical settings.

F. Active learning

Active learning (AL) is a learning technique that involves
training a model on a small, initial set of labeled data and
then iteratively selecting new data to be labeled and added
to the training set (Fig.13). Thus, it assists annotators in the

annotation process to select the most useful samples to train a
DL-based model. This is particularly useful in medical image
segmentation, as manually labeling large amounts of medical
images is time-consuming and costly [52]. By using AL,
the model can learn to accurately segment images with less
human inputs, making the process more efficient and cost-
effective. Additionally, AL allows the model to focus on the
most difficult and important samples, resulting in improved
delineation performance. Nevertheless, choosing the best data
enabling the improvement of the model learning capability
remains challenging. In particular, there are multiple methods
to measure informativeness which mainly involves uncertainty
and representativeness criteria [39]. DL-based segmentation
methods are able to measure uncertainty (Sect.V-C) to some
extent. Computing for each voxel the sum of the lowest class
probability is one of the simplest manners. If the prediction is
uncertain, an increased number of annotated data is required
to exploit richer feature information. On the contrary, rep-
resentativeness deals more with choosing the samples from
distinct regions of the data distribution such that the variability
among the whole dataset is taken into account. In this context,
a good balance between exploration and exploitation among
the distribution is highly desirable.

To name a few, a cascaded 3D U-Net with CNN-correction
label curation was employed in [214] for kidney segmentation
from abdominal CT images in order to save the annotation
efforts and improve the segmentation outcomes. AL was
concluded to be able to reduce labeling efforts through CNN-
corrected segmentation and increase training efficiency by
iterative learning with limited data. Shen et al. presented in
[215] an AL approach able to alleviate the image annota-
tion issues towards brain tumor segmentation. The authors
combined both uncertainty and representativeness information
to ensure that AL selects enough informative and diverse
data. Contrary to existing studies based on uncertainty or
representativeness estimated at the scale of a single image,
Yan et al. scored in [216] dual-view mammograms according
to their prediction consistency, towards better breast mass
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delineation. A future possible extension is to integrate multiple
single and dual-view criteria to reach a unified AL system.
More globally, combining the strengths of AL and human-in-
the-loop computing [39] into end-to-end systems should play
an increasingly important role in the upcoming years.

G. Lightweight networks

Despite high performance, applying CNN or Transformers-
based networks for 3D medical image segmentation is compu-
tationally expensive. For instance, 3D convolution layers made
of many filters involve a large set of parameters to train as well
as a huge amount of floating point operations (FLOP) [40].
Medical images themselves obviously require a large compu-
tational storage cost. However, the device on which a given
3D model is deployed may have limited computational power,
making the deployment process hard in clinical routine. In this
context, the development of lightweight deep segmentation
models with smaller model sizes, lower computational cost
and inference time has recently attracted increasing attention.
First attempts investigated depth-separable convolutions [66]
consisting in replacing 3D convolution kernel 3 × 3 × 3
with 1 × 3 × 3 intra-slice and 3 × 1 × 1 inter-slice con-
volutions, combinations between point-wise, group-wise and
dilated convolutions [63] or the reduction of channels [217].
However, obtaining the same performance as computationally
expensive heavy-weight models is tedious and resolving the
trade-off between trainable parameters and performance re-
mains a challenge. Towards a better trade-off, Zhao et al.
managed in [218] the limited feature learning ability of spatio-
temporal separable convolutions via an attention-based feature
calibration mechanism providing more contextual information
with a larger receptive field.

The knowledge distillation mechanism fully described in
Sect.V-E which tends to distill information from a well-
trained cumbersome teacher network to a lightweight and
compact student network [33] could be also seen as a powerful
alternative towards lightweight segmentation networks.

VII. DISCUSSION

Deep learning (DL) has proven to be a powerful tool for
medical image segmentation. Its ability to automatically learn
complex and hierarchical representations from data enabled
to achieve a high level of robustness in segmentation tasks

tackling various diseases, anatomies and imaging modali-
ties. The availability of large datasets and open-source DL
frameworks has facilitated the development and deployment
of DL-based segmentation algorithms, making them more
accessible to researchers and clinicians. The success of DL
in medical image segmentation has been thus demonstrated
in a variety of studies including whole or sub-structure or-
gan segmentation, abnormality extraction or vascular system
delineation. Especially, lesion segmentation is increasingly
benefiting from the availability of combined anatomical and
nuclear imaging. More globally, medical image segmentation
with DL stars to have a concrete impact and to play a key
role in diagnosis, surgery or therapeutic planning, follow-up,
prognostic, dosimetric or radiomics applications at large.

Since the introduction of U-Net and U-shaped convolutional
encoder-decoder derivatives with data augmentation and en-
coder pre-training, various developments and methodological
breakthrough have emerged in the medical image analysis
community. Among current trends, the relevancy of condi-
tional generative adversarial networks, cascaded networks,
deep supervision and attention mechanisms have been proven
to enable the improvement of segmentation accuracy for both
large and small anatomical or pathological structures. Regular-
ization techniques embedding prior knowledge such as shape,
topological or adjacency constraints tend to be democratized
towards greater robustness and generalizability of deep seg-
mentation models. Additionally to novel architecture designs
and learning paradigms, a significantly strong focus has been
recently devoted to both data management and optimization
processes through the development of unified frameworks
such as nnU-Net whose popularity is steadily growing. Given
the substantial progress made in recent years, considering a
standard U-Net as the sole baseline no longer seems relevant.

Despite these successes, there are still challenges to the
use of DL for medical image segmentation. These challenges
include the need for large amounts of labeled data for training,
the sensitivity of DL models to noise, non-uniform contrast
and artifacts in medical images, the needed incorporation of
local and global context to benefit from both short- and long-
range spatial dependencies, the management of small struc-
tures and weak boundaries, the robustness to inter-subject vari-
ability and various multi-center, multi-scanner, multi-modal or
multi-protocol intensity domains as well as the risks for biased
or non-generalizable results.

Given these challenges, the use of DL has shown great
promise in line with the emergence of vision Transformers
whose ability to model long-range dependencies from 3D
medical images appears better than standard convolutional
only architecutres. Either hybrid when used in conjunction
with convolutional layers or purely Transformers-based, these
approaches are still at an early stage. More works in this
direction are expected, especially in the context of low-
data regimes and cross-modal analysis. The great potential
of multi-task learning, constrastive learning and knowledge
distillation which are likely to emerge can be also emphasize
as powerful trends to follow. Multi-task learning enables to
share information and exploit fruitful cooperation between
connected or auxiliary tasks while contrastive learning tends



21

to strengthen the extraction of distinctive and disentangled
representations. Against computationally expensive scenarios,
knowledge distillation techniques have proven great skills to
distill information from a cumbersome teacher network to a
lightweight student network. Uncertainty modelling is another
important path to study as it may improve the learning pro-
cess and provide clinicians with locally-estimated confidence
information. Further research and development beyond the
application of off-the-shelf DL solutions are needed to address
the above-mentioned challenges and enable a wider adoption
of image segmentation with DL into clinical routine.

To bridge the gap between DL paradigms and clinical
needs, recent investigations have struggle with novel and
concrete emerging applications. Among these applications,
cross-modality segmentation has gained in popularity in order
to fully exploit both complementary and redundancy across
modalities when managing paired or unpaired multi-modal
datasets. More globally, a special attention has been paid in
recent years to multi-domain segmentation strategies which are
far more relevant than focusing on multiple intensity domains
separately. In this direction, multi-task and multi-domain
techniques with multiple anatomies as targets should deserve
further investigation in the near future. Given the complexity
of collecting and annotating a large amount of medical images,
self-supervised, semi-supervised and active learning are sub-
fields of clear progress. However, more research efforts are
needed to maximize or avoid the time-consuming and costly
manual efforts made by clinical experts. Since medical data is
often sensitive and subject to strict regulations on sharing, fed-
erated learning now offers the possibility for multiple hospitals
and research institutions to collaborate by training a shared
model on their own local data while keeping the data private
and secure. Thus, federated learning enables the use of larger
and more diverse datasets, resulting in improved segmentation
performance. Finally, the development of lightweight models
with few memory and computational resource requirements
will for sure be beneficial to ease the deployment of DL-based
solutions on computationally-limited platforms.

Overall, the potential for bias in DL approaches is a com-
mon concern across medical image analysis tasks including
segmentation. In this context, encouraging the collection of
large and diverse datasets through collective work with various
experts is highly recommended. The design of novel evaluation
metrics reflecting the clinical applicability is also an area for
improvement. Finally, demonstrating a better reproducibility
when designing DL pipelines could increase the trust and
confidence of researchers and clinicians and make them more
suitable for large-scale clinical applications.
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