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Abstract 27 

The influence of biotic and abiotic factors on viral communities across environmental 28 

gradients in soil is relatively unknown. While soil pH strongly influences microbial 29 

community structure, it is unclear whether there is a similar influence on soil viruses. 30 

In this study, prokaryotic and viral communities were characterized in soils from a long-31 

term pH-manipulated soil gradient (pH 4.5 and 7.5), and viral populations also 32 

compared to those of other soils ranging in pH (4.0-7.5). Viral communities were 33 

significantly influenced by pH at the local scale with 99% of viral operational taxonomic 34 

units restricted to pH 4.5 or 7.5 soil only. Analysis of viromes from six other European 35 

and North American soil systems demonstrated that a selection of viral clusters from 36 

acidic and neutral pH soils were more associated with those from the local gradient 37 

pH 4.5 or 7.5 soils, respectively. While direct pH effects on virion integrity and indirect 38 

selection via host composition were not distinguished, the results reveal that soil pH 39 

is a factor in structuring viral communities at local and global scales. 40 
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Main 52 

Viruses play a major role in controlling the abundance, structure and evolution of 53 

microbial communities through cell lysis and the release of nutrients and modulation 54 

of host cell metabolism (Pratama et al., 2018). In soils, viruses are diverse (Emerson 55 

et al., 2018), abundant (Williamson et al., 2017), and have potential to impact nutrient 56 

cycling and other ecosystem functions (Emerson et al., 2018; Kuzyakov and Mason-57 

Jones, 2018; Trubl et al., 2018). However, fundamental knowledge gaps in soil viral 58 

ecology include a basic understanding of the biotic and abiotic drivers of viral 59 

communities. 60 

 Soil bacterial and viral community dynamics co-vary, with the susceptibility of 61 

hosts to infection from individual viruses varying over time (Vos et al., 2009) or viral 62 

community shifts occurring as an indirect result of nutrient input altering host 63 

community structure (Srinivasiah et al., 2015). While host communities are likely the 64 

strongest factor for defining viral community structures, the host range of viruses may 65 

also play a role in defining whether their community dynamics vary to the same extent 66 

over physicochemical gradients (de Jonge et al., 2019). Closely related host 67 

populations may be adapted to growth under different conditions, resulting in niche 68 

differentiation and contrasting distribution across an ecological gradient. However, it 69 

is unclear whether narrow or broad host ranges of their associated viruses reduce the 70 

relative variation in virus community structure compared to prokaryotes. In addition, 71 

changes in soil physicochemical characteristics may also directly impact the physical 72 

integrity and dispersal of viruses (Trubl et al., 2016). As soil pH is a major determinant 73 

of prokaryotic community composition at local and global scales (e.g. Bahram et al., 74 

2018; Bartram et al., 2014; Griffiths et al., 2011; Lammel et al., 2018; Lauber et al., 75 
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2009), it is possible that virus communities may also exhibit pH-influenced community 76 

structures. 77 

Soil samples were taken from the extreme ends of an extensively characterized 78 

contiguous soil pH gradient (pH 4.5 to 7.5) where total carbon, nitrogen and organic 79 

matter do not change significantly across the gradient (Nicol et al., 2008; Bartram et 80 

al., 2014). At this site, prokaryotic communities have been shown to vary in response 81 

to pH (Nicol et al., 2008; Bartram et al., 2014), and distinct virus populations infecting 82 

methylotrophic communities associated with contrasting soil pH have recently been 83 

observed (Lee et al., 2021). Both non-targeted total community metagenome and 84 

virus-targeted virome libraries were prepared as previously described (Lee et al., 85 

2021), and the assembled predicted viral contigs obtained were clustered into 1,910 86 

viral operational taxonomic units (vOTUs) (Table S1), and prokaryotic 16S rRNA gene 87 

fragments were extracted and classified into 2,312 OTUs (Supplementary Methods). 88 

Sequencing depth was sufficient to capture vOTU richness, although further 89 

sequencing and sampling may have increased 16S rRNA OTU recovery (Fig. S1).  90 

Of the metagenomic reads, 22.7% were taxonomically defined, with 91 

Actinobacteria and Proteobacteria dominating in both pH soils (Fig. 1a). Similar to 92 

other soil viral studies, only a small proportion of the prokaryotic viral community (7.0% 93 

of vOTUs) was taxonomically defined. A total of 29.1% of vOTUs were linked to 94 

predicted hosts, with the majority for both pH soils belonging to Actinobacteria and 95 

Proteobacteria (Fig. 1a, Table S2).  96 

Analysis of individual 16S rRNA OTUs and vOTUs demonstrated distinct 97 

structures between pH 4.5 and 7.5 soils for both prokaryote and viral communities 98 

(Fig. 1b). Specifically, 38.6% of OTUs (pH 4.5 OTUs, 263; pH 7.5 OTUs, 630) and 99 

99.0% of the vOTUs (pH 4.5 vOTUs, 524; pH 7.5 vOTUs, 1,361) were found in only 100 
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one soil pH. Prokaryote and viral (virome) alpha-diversity were significantly greater in 101 

pH 7.5 soil (Table S3). Although absorption of viruses to soil organic particles can 102 

decrease with increasing pH (Sobsey et al., 1980), the effect of soil pH biasing 103 

measurements of alpha-diversity may be small as organic matter content does not 104 

change significantly across the gradient and a neutral pH buffer was used for 105 

extracting viral particles from both soils, with no significant difference in the yields of 106 

virome DNA.  107 

While viromes produced 73x more assembled viral contigs than metagenomes, 108 

read mapping of individual reads to all vOTUs demonstrated that both approaches 109 

produced distinct viral community profiles between soils (Fig. 1b). Decreasing the 110 

breadth (length of contig covered by mapped reads) threshold (<75%) for defining 111 

vOTU detection disproportionately increased vOTU detection in metagenomes 112 

compared to viromes (Fig. S2). This suggests that the appropriate breadth thresholds 113 

for detection may be different in viromes compared to total metagenomes, with a cut-114 

off ≥75% potentially too conservative for the total metagenomes. However, care 115 

should be taken before reducing breadth threshold in other datasets that do not have 116 

paired viromes to corroborate viral detection.  117 

Soil viromes from the gradient soils were compared with those from six other 118 

ecosystems varying in pH, soil type, land use and location and where viral contigs 119 

were predicted using the same tools and standards (Table S4) (Emerson et al., 2018; 120 

ter Horst et al., 2021; Santos-Medellin et al., 2021). Using gene-sharing network 121 

analysis (Jang et al., 2019), the number of clusters containing vOTUs from these 122 

additional soils and the local gradient (pH 4.5 only, pH 7.5 only or both) were 123 

determined (Fig. 2, Table S5). On average, 31% of clusters were shared (range 1-124 

62%) in pairwise comparisons between all soils (Fig. S3). A clear trend was also 125 
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observed in comparison with the gradient soils (Fig. 2b) with shared viral clusters in 126 

acidic and neutral pH soils more associated with those from the local gradient pH 4.5 127 

or 7.5 soils, respectively. While this demonstrates that certain viral genes were 128 

restricted to acidic vs neutral pH soils, no candidate genes were identified as 129 

potentially conferring host adaptation to a particular pH range, with the majority 130 

encoding uncharacterized hypothetical proteins. In addition, the relative proportion of 131 

virus-encoded putative auxiliary metabolic genes for different metabolic functions was 132 

similar between soils with no trends associated with pH (Fig. S4).  133 

If individual viruses can infect multiple host populations at different soil pH, 134 

there would be a potential for virus community structures to be less distinct over an 135 

ecological gradient. However, analysis of samples from a continuous pH gradient 136 

demonstrated that contrasting soil pH results in the selection for virus community 137 

structures that are at least as distinct as prokaryote host community structures. While 138 

a relatively limited number of sites for analysis of viromes in different soil systems and 139 

that these analyses do not separate direct effects of pH on virion integrity from indirect 140 

effects of host composition, they demonstrate that, as with prokaryote communities, 141 

soil pH correlates with distinct patterns of virus community structures. 142 

 143 

Data availability 144 

Metagenome sequence reads are deposited in NCBI’s GenBank under BioProject 145 

accession nos. PRJNA621436–PRJNA621447. Metagenome draft assemblies are 146 

accessible through the JGI Genome Portal (DOI: 10.25585/ 1487501). Assembled 147 

metagenome-derived 16S rRNA gene sequences are available at ftp://ftp-adn.ec-148 

lyon.fr/. Metagenome sequence reads from ‘Agriculture 2’ site are available through 149 

NCBI BioProject PRJNA767554.  150 
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Figure Legends 273 

Fig. 1: Taxonomic composition and community structure of prokaryotic and virus 274 

communities in pH 4.5 and 7.5 replicate soil samples taken from the ends of a 275 

contiguous pH gradient. a) Relative abundance of taxonomically-defined prokaryotes, 276 

taxonomically-defined viruses and the predicted hosts of viruses. For prokaryotes, 277 

reads from metagenomes were annotated at the phylum level using the NCBI nr 278 

database. Numbers in parenthesis denote the number of mapped reads:total reads 279 

analyzed. Viral contigs ≥10 kb were taxonomically defined at the family level based on 280 

gene-sharing network analysis (Jang et al., 2019). Host prediction of viruses was 281 

determined by using the gene-sharing network, and gene homology analysis (Al-282 

Shayeb et al., 2020). Numbers in parenthesis denote the number of annotated:total 283 

reads or contigs for each sample, and plots display the relative proportion of annotated 284 

reads only (i.e. annotated reads of prokaryotes or reads mapped to annotated viral 285 

contigs). b) Normalized relative abundance of individual 16S rRNA OTUs and vOTUs 286 

in soil samples determined by read-mapping. Only vOTUs where reads were mapped 287 

with ≥1x coverage over 75% contig breadth were included. Ordinations show the 288 

principal coordinate analysis of Bray-Curtis dissimilarities derived from relative 289 

abundance tables. For virus communities, reads from both viromes (V) and 290 

metagenomes (M) were analyzed for each sample. Details of all methods used are 291 

provided in Supplementary Information. 292 

 293 

Fig. 2: Network analysis describing linkages of Gradient 4.5 and 7.5 vOTUs with six 294 

sets of soils samples ranging in pH from 4.0 to 7.5 from Europe and North America 295 

(Table S4). a) Gene sharing network of vOTUs showing viral clusters containing ≥25 296 

vOTUs. b) Relative abundance of clusters from each soil that contain vOTUs shared 297 
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with those from gradient pH 4.5 (blue) and gradient pH 7.5 soil (red) or both (grey). 298 

Numbers in parenthesis denote total number and percentage of shared viral clusters 299 

with Gradient soils. Details of all methods used are provided in Supplementary 300 

Information. 301 
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