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Simple Summary: The accurate assessment of the aggressiveness and localization of primary prostate
cancer lesions are essential for treatment decision making. Around 15% of lesions are missed by
PSMA Positron-Emission tomography/computed Tomography (PET/CT). The aim of our study
was to investigate the potential of novel surface markers to detect PSMA-negative lesions using
immunohistochemistry and autoradiography techniques. Our work demonstrates that targeting
both PSMA and neurotensin receptors might detect all intra-prostatic lesions. This new finding has
implications for the future theranostics of primary prostate cancer.

Abstract: The imaging of Prostate-Specific Membrane Antigen (PSMA) is now widely used at the
initial staging of prostate cancers in patients with a high metastatic risk. However, its ability to detect
low-grade tumor lesions is not optimal. Methods: First, we prospectively performed neurotensin
receptor-1 (NTS1) IHC in a series of patients receiving both [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2
before prostatectomy. In this series, PSMA and GRP-R IHC were also available (n = 16). Next, we
aimed at confirming the PSMA/GRP-R/NTS1 expression profile by retrospective autoradiography
(n = 46) using a specific radiopharmaceuticals study and also aimed to decipher the expression of
less-investigated targets such as NTS2, SST2 and CXCR4. Results: In the IHC study, all samples
with negative PSMA staining (two patients with ISUP 2 and one with ISUP 3) were strongly positive
for NTS1 staining. No samples were negative for all three stains—for PSMA, GRP-R or NTS1. In
the autoradiography study, binding of [111In]In-PSMA-617 was high in all ISUP groups. However,
some samples did not bind or bound weakly to [111In]In-PSMA-617 (9%). In these cases, binding of
[111n]In-JMV 6659 and [111In]In-JMV 7488 towards NTS1 and NTS2 was high. Conclusions: Targeting
PSMA and NTS1/NTS2 could allow for the detection of all intraprostatic lesions.

Keywords: prostate cancer; neuropeptide; PSMA; GRP-R; NTS1; NTS2; neurotensin

1. Introduction

Prostate cancer is the most common cancer in men and the third leading cause of cancer
death [1]. Prostate tumors are typically multifocal, composed of a combination of cells at
different stages of differentiation; the histo-prognostic grade (ISUP score) obtained from
biopsy samples then guides the management. However, prostate biopsies only provide
a limited representation of the intraprostatic tumoral process. Indeed, the ISUP score
is frequently modified after analysis of prostatectomy specimens. In addition, it is not
uncommon for biopsies to be negative, despite a strong suspicion of prostate cancer. Several
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studies have shown that performing multiparametric magnetic resonance imaging (mpMRI)
before a series of biopsies increases the detection of lesions [2–4], but no imaging method
is currently able to accurately estimate the histo-prognostic grade and their sensitivity is
not optimal.

Focal therapies using focused ultrasound (HIFU—High Intensity Focused Ultrasound)
or stereotactic radiotherapy are becoming increasingly important in the management of
low-grade localized prostate cancers, mainly because of their low rates of complications.
The accurate localization and characterization of the tumor lesion is therefore essential.
Indeed, in many cases, no target is identified on mpMRI—thus preventing the use of these
treatments. High-performance molecular imaging would guide these focal therapies.

The development of novel radiopharmaceuticals supports innovations in molecular
imaging by improving sensitivity and specificity in the diagnosis and characterization
of primary prostate tumors. For example, [68Ga]Ga-PSMA (Prostate Specific Membrane
Antigen) PET/CT (Positron Emission Tomography/Computed Tomography) is now widely
used at the initial staging of prostate cancers in patients with high metastatic risk and in
the context of biochemical recurrence [5,6]. However, its ability to detect low-grade tumor
lesions is not optimal. Novel radiopharmaceuticals with a role in this setting would
be helpful.

Tissue micro-imaging is a technique that allows for the pre-clinical evaluation of
radiopharmaceuticals [7,8]. We recently compared the targeting of PSMA and GRP-R
(Gastrin Releasing Peptide Receptor), by means of [111In]In-PSMA-617 and [111In]In-RM2,
respectively. We showed good detection of low-grade tumor lesions by [111In]In-RM2,
superior to that of [111In]In-PSMA [8]. Next, we translated these results into a Phase II study
using [68Ga]Ga-PSMA-617 PET/CT and [68Ga]Ga-RM2 PET/CT. Again, we demonstrated a
better detection of low-grade lesions by targeting GRP-R using [68Ga]Ga-RM2 [9]. However,
15.6% of the lesions remained undetectable by both modalities.

New targets for prostate cancer are currently being studied, such as neurotensin receptor-
1 (NTS1) [10], somatostatin receptor-2 (SST2) [11] or chemokine receptor-4 (CXCR4) [12]—
suggested to be expressed in prostate cancer in a few small pilot studies. However, compar-
isons are needed.

Thus, the main objective of this study was to evaluate alternative targets for the better
identification of intraprostatic lesions. Our strategy was based on a sequential approach:
First, we prospectively performed NTS1 IHC in a series of patients receiving both [68Ga]Ga-
PSMA-617 and [68Ga]Ga-RM2 before prostatectomy. In this series, PSMA and GRP-R IHC
were also available [9]. Next, we aimed at confirming the PSMA/GRP-R/NTS1 expression
profile by a retrospective autoradiography study and also aimed to decipher the expression
of less-investigated targets such as NTS2, SST2 and CXCR4.

2. Materials and Methods
2.1. Patient Characteristics

Study 1: Formalin-fixed paraffin-embedded samples were prospectively available from
patients enrolled in the NCT03604757 study, comparing [68Ga]Ga-PSMA-617 PET/CT to
[68Ga]Ga-RM2 PET/CT in patients with localized prostate cancer that were candidates for
radical prostatectomy. PSMA and GRP-R staining were performed during this study [9]. For
the current study, 16 samples were available for additional NTS1 staining and comparison
with GRP-R and PSMA staining (six samples were considered as non-contributors).

Study 2: Forty-six frozen samples of prostate cancer were available from the Depart-
ment of Pathology of the University Hospital of Toulouse, France. Patient samples were
obtained after informed consent in accordance with the Declaration of Helsinki and stored
at the “CRB Cancer des Hôpitaux de Toulouse (BB-0033-00014)” collection. According to
French law, the CRB Cancer collection was declared to the Ministry of Higher Education
and Research (DC- 2008-463) and a transfer agreement was obtained (AC-2013-1955) after
approval by ethical committees (Conseil Scientifique du Centre de Ressources Biologiques).
Clinical and biological annotations of the samples were declared to the CNIL (Comité
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National Informatique et Libertés). None of these patients received hormone therapy or
other systemic therapy prior to surgery. For each case, thirteen adjacent sections were
used: one for hematoxylin-eosin-saffron (HES) staining and twelve for high-resolution
microimaging (one section per radiopharmaceutical for total binding and another adjacent
section for non-specific binding). An experienced pathologist manually drew tumoral areas
on the HES-stained section. All patients were characterized according to their clinical and
biochemical criteria including age, tumoral size (clinical and pathological sizes), PSA value
and ISUP score.

2.2. NTS1—Immunohistochemistry

Immunohistochemical assessments were performed as previously described [10].
Immunohistochemistry results were expressed as an immunoreactive score (IRS) that
considered staining intensity and the percentage of stained tumor cells [13]. The final
IRS score (the product of the staining intensity score and the percentage of positive cells
score) thus ranged from 0 to 12: IRS 0–1 means no clear expression; IRS 2–3 indicates weak
expression; IRS 4–8 indicates moderate expression; IRS 9–12 indicates strong expression.
In order to study associations with other parameters, IHC results were dichotomized into
two groups: low expression (regrouping absent/weak expression) and high expression
(regrouping moderate/strong expression).

2.3. Radiosynthesis and Quality Control of Radioligands

The radioligands used in this study, their respective targets and their affinities towards
the target are summarized as follows: [111In]In-PSMA-617 targets PSMA
(Ki = 2.34 ± 2.94 nM [14]), [111In]In-RM2 targets GRP-R (Kd = 2.9 ± 0.4 nM [15], [111In]In-
JMV 6659 is a radioligand of NTS1 (Kd = 6.29 ± 1.37 nM [16]), [111In]In-JMV 7488 is
a radioligand of NTS2 (Kd = 36.39 ± 4.02 nM) [17], [177Lu]Lu-DOTATATE targets SST2
(Kd = 2.0 ± 0.8 nM [18]) and [67Ga]Ga-pentixafor is a radioligand of CXCR4
(Kd = 24.6 ± 2.5 nM [19]). The production and control of the radiopharmaceuticals used
are described in the Supplementary Materials.

2.4. High-Resolution Microimaging
2.4.1. Binding Assay

The protocol and recommendations edited by Reubi and co-workers for binding
assays were strictly adhered to [20]. Frozen samples were kept at −80 ◦C. Three days
before handling, samples were placed at −20 ◦C. The day of the experiment, samples
were pre-incubated for 10 min at 37 ◦C in Tris-HCl buffer at pH 7.4. Then, a binding
solution containing 10 nM of the radiopharmaceuticals (except [111In]In-JMV 7488 and
[67Ga]Ga-pentixafor, which were used at 75 nM and 50 nM, respectively) in Tris-HCl buffer
at pH 8.2, 1% of BSA (Sigma A2153), 40 µg/mL of bacitracin (Sigma®11,702), and 10 nM
of MgCl2 (Sigma M8266) was applied. In order to determine the amount of non-specific
binding, a large excess of cold ligand was added—more precisely, 1µM of [natGa]Ga-RM2
(Life Molecular Imaging), [natGa]Ga-PSMA-617 (ABX), neurotensin (Bachem), or [natLu]Lu-
DOTATATE (ABX), 7.5 µM of levocabastine or 10 µM pentixafor were used. Samples were
incubated at 37 ◦C for 2 h. Afterward, samples were rinsed five times for 8 min in cold
Tris-HCl buffer at pH 8.2 with 0.25% of BSA, two times for 8 min in cold Tris-HCl buffer at
pH 8.2 without BSA and finally, two times for 5 min in distilled water.

2.4.2. Tissue Microimaging

A Beta Imager-2000 (Biospace Lab) device was used to image and quantify radioactiv-
ity in the samples. Acquisition duration was about 10 h (4 × 106 counts).

2.5. Data Analysis

Imaging analysis was performed as previously described [7]. Briefly, HES and au-
toradiographic slides were fused and regions of interests (ROIs) were used to calculate
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the amount of specific binding. A first ROI—drawn by the pathologist to delineate tumor
areas—was applied to estimate total binding, and a second ROI—corresponding to back-
ground noise—was placed around the tissue. The same ROIs were then transferred to
the adjacent slice to determine non-specific binding. After subtracting background noise,
specific binding (total binding—non-specific binding) was expressed as a percentage of
total binding as follows:

Specific binding(%) =
(Total binding background)− (non specific binding background)

Total binding background
× 100

2.6. Statistical Analysis

Data, presented as the mean ± standard deviation (SD), were compared using a non-
parametric ANOVA. Statistical analyses were performed using GraphPad software (v 6.01,
San Diego, CA, USA). p values < 0.05 were considered statistically significant.

3. Results
3.1. Study 1: Prospective NTS1 IHC Study

Results are summarized in Table 1.

Table 1. PSMA, GRP-R and NTS1 immunochemistry staining with IRS score according to uptake
intensity (Standard Uptake Value—SUVmax) of [68Ga]Ga-PSMA-617 and [68Ga]Ga-RM2 Positron
Emission Tomography (PET) imaging.

PSMA GRP-R NTS1

Patient ISUP Score IRS SUVmax IRS SUVmax IRS

1 1 6 2.8 6 4.8 6
2 2 9 4.5 3 5.1 6
3 2 9 4.7 8 6.3 0
4 2 0 5 4 5.3 12
5 2 1 3.4 1 7.5 12
6 3 12 6.8 4 8.3 1
7 3 2 3.6 8 8.9 12
8 4 9 2.8 6 2.4 3
9 4 9 8.5 6 2.8 2

10 5 12 13.3 4 7.5 2
11 5 12 5.9 4 7.2 4
12 5 12 12.5 2 2.8 8
13 5 6 7.1 1 9.1 4
14 5 12 3.7 4 10.5 12
15 5 12 7.8 4 9 6
16 5 12 20.4 2 3.7 1

Immunochemistry was conducted on samples from prostatectomies of patients in-
cluded in our previous in vivo study [9]. Sixteen samples were available for GRP-R, PSMA
and NTS1 staining. Staining was cytoplasmic for PSMA and GRP-R and nuclear for NTS1
(Figure 1). GRP-R staining was considered positive (IRS ≥ 4) in 11 (68.8%) of 16 lesions. The
median GRP-R IRS score was 4 (3–6). PSMA IRS was considered positive (IRS ≥ 4) in 15
(83.3%) of 18 lesions. The median PSMA IRS score was 11 (6–12). NTS1 IRS was considered
positive (IRS ≥ 4) in 10 (62.5%) of 16 lesions. The median NTS1 IRS score was 5 (1–12).

Interestingly, all samples with negative PSMA staining (two patients with ISUP 2 and
one with ISUP 3) were strongly positive for NTS1 staining (IRS 0 versus 12; 1 versus 12;
2 versus 12). One lesion was negative for both PSMA and GRP-R staining and strongly
positive for NTS1 staining. On the other hand, all samples with negative NTS1 staining
(n = 6) were positive for PSMA and five of them were positive for GRP-R. Figure 1 shows
an example of a prostatic ISUP-2 sample with positive staining for NTS1 immunochemistry
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but negative staining for PSMA and GRP-R. No prostatic lesion showed negativity with all
three stains for PSMA, GRP-R and NTS1.
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Figure 1. Example of a prostatic ISUP-2 sample (HES staining in (A)) negative for PSMA (B) and
GRP-R (C) immunohistochemistry, but with positive staining for NTS1 immunochemistry (D). Images
were taken at 10× magnification.

Finally, when correlating the current NTS1 staining results with clinical PET imaging
data from patients included in the trial, four lesions were positive for NTS1 staining with a
low [68Ga]Ga-PSMA-617 uptake (SUVmax < 4). One lesion was positive for NTS1 staining
with a low [68Ga]Ga-RM2 uptake (Table 1).

3.2. Study 2: Retrospective Study of the Expression of PSMA, GRP-R, NTS1, NTS2, SST2 and
CXCR4 on Samples of Primary Prostate Cancer

Patient characteristics were summarized in Table 2.

3.3. Radiopharmaceuticals

[111In]In-RM2 was used at 3.9 GBq/µmol, [111In]In-PSMA-617 was used at 10.0 GBq/µmol,
[111In]In-JMV 6659 was used at 2.2 GBq/µmol, [111In]In-JMV 7488 was used at 3.4 GBq/µmol,
[67Ga]Ga-pentixafor was used at 0.3 GBq/µmol and [177Lu]Lu-DOTATATE was used at
14.9 GBq/µmol. All radiopharmaceuticals were produced at radiochemical purity > 95%.
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Table 2. Characteristics of the patients from which samples have used in this study. ND not
determined. PSA prostate specific antigen. * All patients were NxMX or N0M0 except for patient
no. 31, who was stage NxM1.

Patient Age ISUP Gleason
Score PSA (ng/mL) Clinical Tumoral

Size: cT
Pathological

Tumoral Size: pT Metastatic Risk

1 67 1 6 (3 + 3) 3.7 1 2c High
2 65 1 6 (3 + 3) 5.26 1 2c High
3 57 1 6 (3 + 3) 4.38 1 2a Low
4 51 1 6 (3 + 3) 3.7 2 2a Low
5 63 1 6 (3 + 3) 10 1 2c High
6 48 1 6 (3 + 3) 4.51 1 2c High
7 56 1 6 (3 + 3) 4.4 2 2c High
8 55 1 6 (3 + 3) 3.7 2 2c High

9 70 2 7 (3 + 4) 10.5 1 3a High
10 67 2 7 (3 + 4) 5.65 2 2c High
11 57 2 7 (3 + 4) 6 1 3a High
12 66 2 7 (3 + 4) 10 2 2c High
13 59 2 7 (3 + 4) 13 2 2b Intermediate
14 66 2 7 (3 + 4) 14 2 2c High
15 67 2 7 (3 + 4) 14 1 3a High
16 66 2 7 (3 + 4) 10.4 0 3a High
17 67 2 7 (3 + 4) 12.5 1 3a High
18 55 2 7 (3 + 4) 13 1 3a High
19 49 2 7 (3 + 4) 14.28 2 3b High

20 64 3 7 (4 + 3) 8 1 3a High
21 60 3 7 (4 + 3) 5.67 1 3b High
22 66 3 7 (4 + 3) 4.28 2 3a High
23 58 3 7 (4 + 3) 7.6 2 3a High
24 71 3 7 (4 + 3) 6.4 2 3a High
25 67 3 7 (4 + 3) 7.6 2 2c High
26 63 3 7 (4 + 3) 28 2 nd High
27 63 3 7 (4 + 3) 25.6 3 3b High
28 68 3 7 (4 + 3) 19 2 3a High
29 53 3 7 (4 + 3) 20 2 3a High

30 75 4 8 (4 + 4) 6 3 1b High
31 * 71 4 8 (4 + 4) 285 4 nd High
32 63 4 8 (4 + 4) 7 2 3a High
33 70 4 8 (4 + 4) 3.9 2 3a High
34 70 4 8 (4 + 4) 9.95 1 2c High
35 74 4 8 (5 + 3) nd nd nd High
36 66 4 8 (4 + 4) 44 2 3a High
37 59 4 8 (4 + 4) 14 2 4 High

38 73 5 9 (4 + 5) 10 nd 3b High
39 72 5 9 (4 + 5) 20 3 3b High
40 63 5 9 (4 + 5) 27 3 3b High
41 54 5 9 (4 + 5) 30 3 3a High
42 60 5 9 (4 + 5) 12.6 2 3a High
43 66 5 9 (4 + 5) 4.4 2 2a High
44 63 5 9 (5 + 4) 5 2 3a High
45 70 5 9 (4 + 5) 24.5 2 3b High
46 56 5 9 (4 + 5) 26 3 3a High

3.4. Quantitative Analysis

The specific binding (expressed as percentage over total binding) of each radiophar-
maceutical according to its ISUP score is shown in Table 3.
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Table 3. ISUP-based stratification and statistical analysis of samples for each target. Specific binding
% ± standard deviation (number of samples). Non-parametric one-way ANOVA (Kruskal–Wallis
test). p < 0.05 was considered significant. * stands for significant difference.

ISUP PSMA GRP-R NTS1 SST2 NTS2 CXCR4

1
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terestingly, no significant difference was found between [111In]In-PSMA-617 and [67Ga]Ga-
pentixafor, but the numbers of samples that could be assessed for CXCR4 was more limited.

For each radiopharmaceutical, there was no significant difference in binding intensity
between various ISUP scores.

Overall, binding of [111In]In-PSMA-617 was high in all ISUP groups. However, it was
interesting to see that some samples did not bind or bound weakly [111In]In-PSMA-617
(9%). Therefore, a search for novel targets is needed. Below, we report the number of
samples for which the binding intensity of the radiopharmaceutical was at least equal to
that of [111In]In-PSMA-617 (Table 4), six for [111In]In-JMV 6659 (1 ISUP-1, 2 ISUP-3 and
3 ISUP-4), four for [111In]In-JMV 7489 (1 ISUP-1, 1 ISUP-2, 1 ISUP-3 and 1 ISUP-5), three
for [177Lu]Lu-DOTATATE (2 ISUP-1 and 1 ISUP-3), three for [67Ga]Ga-pentixafor (2 ISUP-1
and 1 ISUP-5) and two for [111In]In-RM2 (1 ISUP-1 and 1 ISUP-5).

The number of samples for which the specific binding of a radiopharmaceutical was
equal or higher than [111In]In-RM2 is reported in Table 5: forty-three for PSMA (7 ISUP-1,
11 ISUP-2, 8 ISUP-3, 8 ISUP-4 and 9 ISUP-5), twenty for NTS2 (2 ISUP-1, 5 ISUP-2, 5 ISUP-3,
5 ISUP-4 and 3 ISUP-5), nineteen for SST2 (4 ISUP-1, 6 ISUP-2, 3 ISUP-3, 2 ISUP-4 and
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4 ISUP-5) eight for NTS1 (2 ISUP-1, 1 ISUP-2, 3 ISUP-3 and 2 ISUP-4) and eight for CXCR4
(4 ISUP-1, 2 ISUP-2 and 2 ISUP-5).

Table 4. Number of Delta ≥ PSMA for GRP-R, NTS1, SST2, NTS2 and CXCR4. Note: ISUP5 NTS2 >>
PSMA (95% vs. 44%).

ISUP GRP-R NTS1 SST2 NTS2 CXCR4

1 1 1 2 1 2
2 0 0 0 1 0
3 0 2 1 1 0
4 0 3 0 0 0
5 1 0 0 1 1

Total 2 6 3 4 3

Table 5. Number of specific binding ≥ GRPR for PSMA, NTS1, SST2, NTS2 and CXCR4.

ISUP PSMA NTS1 SST2 NTS2 CXCR4

1 7 2 4 2 4
2 11 1 6 5 2
3 8 3 3 5 NA
4 8 2 2 5 NA
5 9 0 4 3 2

Total 43 8 19 20 8

One ISUP-2 sample with low binding of [111In]In-PSMA-617 and negative binding for
[111In]In-RM2 was positive only for NTS2.

One ISUP-5 sample with negative binding of [111In]In-PSMA-617 and [111In]In-RM2
was positive for SST2, NTS2 and CXCR4.

To illustrate these results, three different cases are presented in Figures 2–4.
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Figure 2. Comparison of the binding between PSMA, GRP-R, NTS1, NTS2 and SST2-specific radio-
pharmaceuticals on an ISUP-1 sample. The red line drawing on the HES slice corresponds to the
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for SST2. Color scale refers to cps/mm2.
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binding was not available for GRP-R due to technical issues. Color scale refers to cps/mm2.
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for NTS2 and 100% for CXCR4. Color scale refers to cps/mm2.

4. Discussion

Several radiopharmaceuticals have been developed to help in the staging of prostate
cancer. The radiolabeled analog of the essential amino acid leucine 18F-FACBC (18F-
Flucicovine) does not demonstrate high specificity for imaging in primary prostate can-
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cer [21]. Furthermore, 11C-Acetate—marking lipid metabolism—cannot reliably distinguish
benign prostatic hyperplasia from prostate tumors. Finally, 11C/18F-Choline—another
marker of lipid metabolism—shows lower sensitivity than mpMRI for the detection of
primary prostate cancer [22]. Thus, the search for novel targets appears necessary for the
initial assessment of the aggressiveness of primary prostate tumors.

PSMA and GRP-R have been investigated for the initial staging of prostate cancer.
In a prospective study enrolling 56 intermediate grade prostate cancer patients before
prostatectomy, PSMA PET was found to be accurate in detecting intraprostatic lesions of
ISUP ≥ 2. Contrarily, the detection rate of PSMA PET was low for ISUP-1 lesions. Touijer
et al. prospectively investigated [68Ga]Ga-RM2 PET/CT in 16 patients before radical
prostatectomy; the performance of [68Ga]Ga-RM2 PET/CT imaging did not significantly
differ compared to mpMRI in terms of sensitivity, specificity or accuracy [23].

Our previous study showed similar findings, as [68Ga]Ga-PSMA-617 PET/CT was
useful for depicting higher ISUP score lesions and [68Ga]Ga-RM2 PET/CT had a higher de-
tection rate for low-ISUP tumors [9]. In the lesion-based analysis (including lesions < 0.1 cc),
[68Ga]Ga-PSMA-617 PET/CT detected 74.3% of all tumor lesions and [68Ga]Ga-RM2
PET/CT detected 78.1%. However, paired examinations showed negative uptake in 15.6%
of lesions by both modalities. Therefore, the objective of this work was to explore new
targets to detect these unseen lesions.

The prospective immunochemistry study performed in this work confirms the interest
in NTS1, as all PSMA negative lesions were strongly positive for NTS1. Moreover, all nega-
tive NTS1 staining lesions (37.5%) were positive for PSMA staining and positive for GRP-R
staining in five patients (31%). Our results consolidate a previous study demonstrating
that PSMA-negative samples from Gleason scores of 5, 6 or 7 were all NTS1-positive [24].
Thus, the interest in NTS1 might be greater than for GRP-R in low histological grade tu-
mors, but comparison with GRP-R is obviously needed. Unfortunately, no NTS1 imaging
radiopharmaceutical has yet shown interesting results when applied to humans [25]. Work
is ongoing to find stabilized NTS1 analogues suitable for imaging [16,26]. These new data
should also be considered with caution as IHC results do not necessarily translate into
similar findings in vivo.

With this in mind, we performed a retrospective micro-imaging study comparing
PSMA, GRP-R, NTS1 as well as NTS2, SST2 and CXCR4 expression using specific radio-
pharmaceuticals that would be more representative of in vivo behavior. Overexpression
of the NTS2 receptor in prostate cancer has been reported; an in vitro study has assessed
the potential use of the NTS2 receptor as a target by analyzing its expression patterns in
human prostate cell lines and primary prostate cell cultures—NTS2 was found in cells
with luminal phenotype [27]. Other studies are needed to confirm these results. SST2 is
also overexpressed in prostate cancer—especially in cases of neuroendocrine differenti-
ation [11,28]. CXCR4 overexpression has also been reported in prostate cancer; studies
have shown that CXCR4 is a key regulator of tumor dissemination [12]. An in vitro study
comparing adjacent normal endothelial cells to prostate tumor vasculature highlighted
CXCR4 as a potential novel target to interfere with prostate cancer angiogenesis [29].

While our work shows the superiority of PSMA for the detection of intraprostatic le-
sions, with a significant higher binding of [111In]In-PSMA-617 than [111In]In-RM2, [111In]In-
JMV 6659, [177Lu]Lu-DOTATATE or [111In]In-JMV 7488 for all ISUP-score groups (no
significant difference was found for CXCR4—mostly due to a lack of power), and PSMA
PET has now entered into guidelines [30], alternative targets are necessary in the event
of PSMA negativity. In a previous study enrolling fifty newly diagnosed patient with
prostate cancer, the [68Ga]Ga-PSMA-617 PET/CT was negative in 12.5% [31]. Targeting
the GRP-R is expected to cover the limitations of PSMA [9]. In our work, in ISUP scores
1, binding of [111In]In-RM2, [111In]In-JMV 6659 and [111In]In-JMV 7488 were higher than
that of [111In]In-PSMA-617 in one case (the same case for [111In]In-RM2 and [111In]In-JMV
7488, a different one for [111In]In-JMV 6659). In the ISUP-2 group, only [111In]In-JMV
7488 showed a higher signal than [111In]In-PSMA-617. In the ISUP 3 group, two samples
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showed higher [111In]In-JMV 6659 binding than [111In]In-PSMA-617—one sample showed
higher binding of [177Lu]Lu-DOTATATE than [111In]In-PSMA-617 and another sample
also showed higher binding of [111In]In-JMV 7488 than [111In]In-PSMA-617. Indeed, no
statistical analyses were performed due to the low number of samples.

Overall, the most interesting targets to cover PSMA-negative lesions appear to be NTS1
and NTS2—with, respectively, four and six cases with superior or equivalent detection
than PSMA, covering all ISUP scores. It is interesting to note that combining PSMA and
NTS1/NTS2 could allow for the detection of all intraprostatic lesions. The new findings in
this work also highlight the potential of multireceptor-targeting radioprobes that can still
bind one target (NTS1 or NTS2 or GRP-R) when the other is lost (PSMA). Works are ongoing
to optimize radiolabeled PSMA/GRP-R heterobivalent probes [32], while the development
of PSMA/NTS1 heterodimers has only been described once [33]. Overall, this work sheds
light on the abundance of different neuropeptide receptors (mainly neurotensin receptors)
in different physiopathological states of prostate cancer.

The improved detection of lesions allows for better mapping of prostate tumor pathol-
ogy, which is necessary for biopsy guiding to decrease the discordance rate of staging
of biopsies and final staging of prostatectomy samples. Finally, the possibility of a more
precise detection and characterization of intra-prostatic lesions opens new avenues for
radiotherapy planning and/or focal treatments.

The reader should be aware that it was not our aim to compare radiopharmaceuticals,
but rather to use them to quantify receptor density in primary prostate cancer samples.
Moreover, in this work, we were not able to provide the uptake (as a percentage of the
applied dose) of each radiopharmaceutical.

5. Conclusions

In this work, we have compared GRP-R, PSMA, NTS1, NTS2, SST2 and CXCR4 expres-
sion in vitro in primary prostate cancer samples. Our results confirm that PSMA remains
the best target in tumor detection at initial staging—especially for high grade lesions. Inter-
estingly, targeting NTS1 and NTS2 allowed us to detect all PSMA-negative lesions more
precisely than GRP-R in vitro. Future in vivo prospective studies must confirm these data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15082345/s1, Procedure for the preparation and quality
control of the radiopharmaceuticals.
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