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Prolégomènes

Le but des quelques pages qui vont suivre est de dégager certaines propriétés de l'entropie polynomiale. Nous essayerons notamment de voir si bon nombre des notions définies pour l'entropie classique (ou exponentielle) ainsi que leurs propriétés sont transposables dans le cas de l'entropie polynomiale. Pour agrémenter quelque peu notre aride propos, nous tâcherons d'étudier l'entropie polynomiale des homéomorphismes de Brouwer. À travers cet exemple, nous espérons faire entr'apercevoir au lecteur tout l'intérêt de cet outil qu'est l'entropie polynomiale ; en effet, il est bien connu que les homéomorphismes de Brouwer sont d'entropie exponentielle nulle... il faut donc avoir recours à un outil d'analyse plus fin pour mesurer la complexité et le désordre engendré par de telles applications.

Entropie topologique

Définitions . On appelle recouvrement ouvert de X une famille U = {U i } i∈I de parties ouvertes de X telle que X = i∈I U i .

Étant donnée une famille {U j } 1≤j≤n finie de recouvrements de X, on peut définir le recouvrement j=n j=1 U j dont les éléments sont les 1≤j≤n U j avec U j ∈ U j .

Notation . Comme X est compact, de tout recouvrement ouvert, on peut extraire un sous-recouvrement fini (propriété de Borel-Lebesgue). On peut alors considérer un sous-recouvrement de cardinal minimal et on note N (U ) ce cardinal.

Il nous est maintenant possible de définir l'entropie topologique (polynomiale) :

Définition . L'entropie h(T, U ) ∈ [0; ∞] topologique polynomiale de T relative au recouvrement U est donnée par la formule suivante :

h(T, U ) = inf σ > 0 | lim sup n→∞ 1 n σ log(N ( j=n-1 j=0 T -j (U )) = 0 .
On comprend alors que c'est l'exposant critique de n qui représente l'évolution du cardinal minimal d'un sous-recouvrement dynamique de j=n-1 j=0 T -j (U ) ... d'où le nom d'entropie polynomiale.

Remarques . Pour les calculs, il est plus simple de considérer la formule équivalente : h(T, U ) = lim sup n→∞ log(N ( j=n-1 j=0 T -j (U ))) log (n) .

L'entropie d'un recouvrement -telle qu'on l'entend couramment -est définie comme suit : L'entropie topologique d'une application est alors le supremum des entropies de recouvrement :

h exp (T, U ) = lim
h(T ) = sup U recouvrement ouvert de X h(T, U )
Nous sommes désormais à même d'énoncer quelques propriétés de l'entropie :

Propriétés . i) h(Id X ) = 0.
ii) h(T n ) = h(T ) pour n ∈ N * (et même Z * si T est un homéomorphisme).

iii) Si T est un homéomorphisme admettant un point errant, alors h(T ) ≥ 1.

iv) Si T : X → X et S : Y → Y sont deux applications continues, en munissant le produit cartésien X × Y de la topologie usuelle pour les produits, on a que : h(T × S) = h(T ) + h(S) v) si S : Y → Y est un facteur de T : X → X application continue, alors h(S) ≤ h(T ).

Remarques . Il découle de la dernière propriété que l'entropie est invariante par conjugaison. Dans le cas de l'entropie classique -ou que nous pourrons qualifier d'exponentielle -, les propriétés i), iv) et v) sont aussi vérifiées (et les démonstrations sont similaires). Pour ce qui est de la propriété ii), on a :

h(T n ) = |n|h(T ) pour n ∈ N * (et même Z * si T est un homéomorphisme).
Preuves . i) Pour tout recouvrement ouvert U , j=n-1 j=0 Id -j (U ) ⊇ U (tout ouvert de U est aussi un ouvert de j=n j=1 Id -j (U ), les sousrecouvrements du premier sont donc des sous-recouvrements pour le second), ainsi N ( j=n-1 j=0 Id -j (U ))) ≤ N (U ) et finalement :

log(N ( j=n-1 j=0 Id -j (U ))) log(n) → n→∞ 0 .
ii) Soit n ∈ N * , U un recouvrement ouvert et notons V = j=n j=1 T -j (U ). Remarquons tout d'abord, que pour tout k ≥ n, r ∈ {0, ..., n -1}, on a :

N ( j=k-1 j=0 (T n ) -j (U )) ≤ N ( j=(k-1)×n j=0 T -j (V )) ≤ N ( j=k×n+r j=0 T -j (U )) ≤ N ( j=k+1 j=0 (T n ) -j (V )).
En effet, les recouvrements des inégalités ci-dessus sont de plus en plus fins -en lisant de gauche à droite, bien sûr ! -, c'est-à-dire que tout ouvert d'un recouvrement de droite est inclus dans un ouvert du recouvrement de gauche. Or le cardinal minimal d'un sous-recouvrement croît avec la finesse de celui-ci, ce qui permet d'obtenir le résultat :

h(T ) = h(T n )
grâce aux équivalences :

log(k) ∼ k→∞ log(k + 2) ∼ k→∞ log((k -1) × n + 1) ∼ k→∞ log(k × n + r + 1).
Si de plus T est un homéomorphisme, il y a alors une bijection entre les sous-recouvrements de j=n-1 j=0 T -j (U ) et ceux de j=n-1 j=0 (T -1 ) -j (U ) d'où l'égalité : h(T ) = h(T -1 ).

iii) Si T est un homéomorphisme de X dans lui-même qui admet un point errant, cela signifie par définition qu'il existe x ∈ X et un ouvert U contenant x tel que :

∀n ≥ 1, T n (U ) ∩ U = ∅ (en fait ∀n ∈ Z * ).

Considérons maintenant un recouvrement ouvert U = {U 1 , U 2 } avec x ∈ U 1 ⊂ U et U 2 tel que x / ∈ U 2 . Soient n ≥ 1 et j ∈ {0, ..., n -1}, on a alors les propriétés suivantes :

• T -j (x) ∈ T -j (U 1 ) et T -j (x) / ∈ T -j (U 2 ) • Pour k = j, T -j (x) ∈ T -k (U 2 ) et T -j (x) / ∈ T -k (U 1 ) (car (T -j (x) ∈ T -k (U 1 )) ⇔ (x ∈ T -k+j (U 1 )) ⇒ (x ∈ T -k+j (U )) en contradiction avec l'hypothèse)
Ainsi, un sous-recouvrement de i=n-1 i=0 T -i (U ), puisqu'il doit contenir T -j (x) contient nécessairement l'élément U 2 ∩...∩T -(j-1) (U 2 )∩T -j (U 1 )∩ T -(j+1) (U 2 ) ∩ ... ∩ T -(n-1) (U 2 ) et ce pour tout j ∈ {0, ..., n -1}. D'où la minoration : N ( i=n-1 i=0 T -i (U )) ≥ n qui permet d'obtenir le résultat escompté, savoir :

h(T ) ≥ 1. iv) Soient T : X → X et S : Y → Y deux applications continues, et considé- rons l'application produit T × S continue pour la topologie produit. Mon- trons d'abord que : h(T × S) ≥ h(T ) + h(S). Pour cela, prenons U et V deux recouvrements ouverts de X et Y . Construisons alors W = {U × V | U ∈ U , V ∈ V } un recouvre- ment ouvert de X × Y .
Un sous-recouvrement de cardinal minimal de j=n-1 j=0

(T × S) -j (W ) peut s'obtenir à partir de sous-recouvrements minimaux pour j=n-1 j=0 T -j (U ) et j=n-1 j=0 S -j (V ) (en prenant pour éléments du premier les produits des éléments des sous-recouvrements minimaux des deux autres). Il s'ensuit que :

N ( j=n-1 j=0 (T × S) -j (W )) = N ( j=n-1 j=0 T -j (U )) × N ( j=n-1 j=0 S -j (V ))
et l'obtention de la première inégalité.

Réciproquement, pour montrer l'autre inégalité, prenons W un recouvrement ouvert de X × Y . Comme les U × V , où U et V sont des ouverts respectivement de X et Y , constituent une base d'ouverts du produit X ×Y , quitte à « exploser » les ouverts de W (ce qui ne fait qu'affiner le recouvrement et donc augmenter l'entropie relative à ce recouvrement), on peut supposer que les éléments de W sont de la forme :

W = {U i × V j | (i, j) ∈ E ⊆ I × J ; ∀i ∈ I, U i ouvert de X; ∀j ∈ J, V j ouvert de Y } .
Quitte à raffiner encore ce recouvrement, on peut supposer que I et J sont des ensembles finis.

Il n'est pas encore possible d'exhiber deux recouvrements U et V tels que des recouvrements de cardinal minimal pour ces derniers fournissent un recouvrement de cardinal minimal pour W comme pour la preuve de la première inégalité. Cela est dû au fait que E peut être un sous-ensemble strict de I × J auquel cas le « recouvrement produit » n'est pas forcément admissible. Il est donc nécessaire d'ajouter une étape à notre preuve, la voici :

pour tout x ∈ X, soit :

U x = i∈I; x∈Ui U i et pour y ∈ Y , soit : V y = j∈J; y∈Vj V j .
Comme on a fait en sorte que I et J soient finis, les U x et V y sont bien des ouverts (en tant qu'intersections finies d'ouverts).

On peut maintenant considérer le recouvrement symétrique de X × Y suivant :

W = {U x × V y } (x,y)∈X×Y .
C'est effectivement un recouvrement de X × Y car W en étant un, pour tout x et y, U x et V y ne sont pas vides (puisqu'il existe un ouvert de W contenant le couple (x, y)). De plus, W est un recouvrement plus fin que W ; en effet pour tout

U x × V y ∈ W , il existe W = U i0 × V j0 ∈ W contenant (x, y) et par définition : U x ⊆ U i0 et V y ⊆ V j0 donc U x × V y ⊆ W .
À partir de ce dernier, on peut maintenant considérer les recouvrements

U = {U x } x∈X de X et V = {V y } y∈Y de Y . Pour tout n ∈ N, le produit de sous-recouvrements dynamiques de j=n-1 j=0 T -j (U ) et j=n-1 j=0 S -j (V ) fournit un sous-recouvrement dynamique de j=n-1 j=0 (T × S) -j (W ). On obtient donc : h(T × S, W ) ≤ h(T × S, W ) ≤ h(T, U ) + h(S, V ) ≤ h(T ) + h(S).
Le recouvrement W ayant été choisi arbitraire, la seconde inégalité est prouvée.

v) Si S : Y → Y est un facteur de T , alors h(S) ≤ h(T ). Soit H : X → Y une semi-conjugaison entre T : X → X et S : Y → Y ; c'est-à-dire que H est une application continue surjective telle que : H • T = S • H. Soit U un recouvrement de Y . On a : H -1 ( j=n-1 j=0 S -j (U )) = j=n-1 j=0 T -j (H -1 (U )).
Or pour tout recouvrement V et application continue H surjective, on a :

N (H -1 (V )) = N (V ).
On obtient donc que :

N ( j=n-1 j=0 S -j (U )) = N ( j=n-1 j=0 T -j (H -1 (U ))), puis : h(S, U ) = h(T, H -1 (U )) ≤ h(T ) et enfin : h(S) ≤ h(T )
par passage au supremum.

Exemples . -Un homéomorphisme f du cercle T 1 a une entropie polynomiale dans {0, 1}. De plus h(f ) = 0 si et seulement f est conjugué à une rotation (on sait déjà grâce au lemme de Poincaré que si f n'est pas conjugué à une rotation, elle admet un point errant et grâce à la propriété d'homéomorphisme de f , il est possible de trouver des ensembles (n, )-couvrants de cardinal linéaire en n).

-Sur la sphère de Riemann P 1 (C), la translation t : z → z + 1 est d'entropie polynomiale égale à 1 Nous allons d'ailleurs développer beaucoup plus longuement ce dernier exemple. Tout d'abord, énonçons ici une méthode pratique pour rendre compact un espace topologique X et pouvoir ainsi calculer l'entropie d'applications sur cet espace. Pour cela on adjoint à X un élément souvent appelé « infini », on obtient un nouvel ensemble Ẋ = X ∪ {∞} qu'on munit de la topologie suivante : les ouverts U de Ẋ sont :

• les plongements des ouverts de X dans Ẋ (∞ / ∈ U )

• les complémentaires des compacts de X plongés dans Ẋ adjoints de ∞ (∞ ∈ U )

Ainsi muni, Ẋ (qu'on appelle compactifié d'Alexandrov de X) est un espace topologique compact.

Cas des espaces métriques

Dans le cas d'un espace métrique (dorénavant X est un espace doté d'une distance d, compact pour la topologie induite) muni d'une application T : X → X continue, on peut donner une définition alternative de l'entropie topologique qui permet souvent de bien simplifier les calculs et les démonstrations (comme les preuves de la section précédente). Commençons par définir, pour tout entier n ∈ N * , la distance dynamique d n :

d n (x, y) = max 0≤i<n d(T i (x), T i (y))
Notations . La boule de centre x et de rayon pour la distance d n sera notée B n (x, ).

De plus, on dira qu'un ensemble S ⊂ X est (n, )-séparé si : ∀x, y ∈ S, d n (x, y) ≥ . On notera alors : Enfin, en appelant U le recouvrement : U = {B(x, )} x∈X , on notera :

N (n, ) = N ( j=n-1 j=0 T -j (U )).
Remarque . On avait exprimé l'entropie d'une fonction T comme le supremum sur tous les recouvrements ouverts possibles U de l'entropie relative à ce recouvrement h(T, U ). En fait, il est possible de se restreindre à une famille {U i } i∈I dont l'infimum du diamètre soit nulle, c'est-à-dire que :

inf i∈I diam(U i ) = 0 avec diam(U ) = sup U ∈U diam(U ).
Ce résultat est dû au lemme de Lebesgue : pour tout recouvrement U ouvert on peut trouver > 0 telle que toute boule de U soit incluse dans un élément U ∈ U . Cela signifie que U (ou tout autre recouvrement de diamètre inférieur à ) est un recouvrement plus fin que U et par conséquent est d'entropie relative plus importante ; pour obtenir le supremum, on peut donc se limiter à de tels recouvrements.

Correspondance avec l'entropie topologique

Grâce à la remarque précédente, on obtient que :

h(T ) = sup >0 h(T, U ) = lim →0 + h(T, U ) = lim →0 + lim sup n→∞ log(N (n, )) log(n)
Proposition . Or pour tout n ∈ N et > 0, on a :

N (n, ) ≤ c(N (n, )) ≤ s(N (n, )) ≤ N (n, 2 )
Preuve . La première inégalité se montre en remarquant que les boules

B n (x, ) appartiennent toutes à j=n-1 j=0 (T ) -j (U ) : B n (x, ) = B(x, ) ∩ T -1 (B(T (x), )) ∩ ... ∩ T -(n-1) (B(T n-1 (x),
)); il suffit alors de considérer un ensemble C (n, )-couvrant et de voir que les boules B n (x, ), x ∈ C forment un sous-recouvrement de j=n-1 j=0 (T ) -j (U ). Tout ensemble S (n, )-séparé de cardinal maximal est (n, )-couvrant (car on ne peut pas ajouter d'élément x à S sans être à distance d n plus de de tous les éléments de S ; c'est-à-dire qu'il existe s ∈ S tel que d n (x, s) ≤ )... cela montre la deuxième inégalité.

Enfin la dernière inégalité vient du fait que, si S est un ensemble (n, )séparé, tout élément U ∈ j=n-1 j=0 T -j (U 2 ) contient au maximum un élément de S. 

Corollaire

Entropie d'une partition

Jusqu'ici nous avons vu l'entropie dans le cas d'espaces topologiques compacts ; cette entropie se mesurant à partir de certains recouvrements ouverts. Quand l'espace en question est de plus muni d'une mesure de probabilités borélienne, il est alors possible de définir l'entropie d'une partition.

Nous reprendrons dans cette partie toutes les notations déjà introduites précédemment.

Définitions . On suppose X muni d'une tribu borélienne B et d'une mesure de probabilités µ sur B. On dira d'une famille finie P = {P i } i∈{1,...,k} (P i ∈ B) qu'elle est une partition mesurable de X si :

• X = i∈{1,...,k} P i • µ(P i ∩ P j ) = 0 pour i = j
On définit alors l'entropie H µ (P) de la partition P pour la mesure µ ainsi :

H µ (P) = i∈{1,...,k} -µ(P i ) log(µ(P i ))
Remarque . Si la partition P est équi-répartie en masse, c'est-à-dire que µ(P i ) = 1 k ∀i ∈ {1, ..., k}, alors l'entropie H µ (P) est maximale (parmi toutes les partition de cardinal k) et vaut log(k).

Notation . Enfin, on notera M T l'ensemble des mesures de probabilité invariantes par T (c'est un compact pour la topologie faible, convexe et non vide).

Principe variationnel dans le cas général

Dans le cas où l'on étudie l'entropie telle que définie habituellement (c'est-àdire que l'on regarde l'évolution exponentielle et non polynomiale du nombre d'éléments d'un recouvrement ouvert de taille minimale), on définit l'entropie de l'application T relativement à la partition P pour la mesure µ ainsi :

h exp µ (T, P) = lim n→∞ 1 n H µ ( j=n-1 j=0
T -j (P)) (à noter que si P est une partition, j=n-1 j=0 T -j (P) l'est aussi), et par suite l'entropie de T pour la mesure µ comme : h exp µ (T ) = sup P h exp µ (T, P). On dispose alors de ce que l'on appelle le principe variationnel qui est l'égalité suivante :

h exp (T ) = sup µ∈M T h exp µ (T ).
Nous allons voir incessamment que même en remplaçant dans la définition de l'entropie d'une application par rapport à une partition (de façon analogue à ce que l'on a fait jusqu'à présent) le dénominateur n par log(n) et en prenant une limite supérieure (bref, en posant :

h µ (T, P) = lim sup n→∞ 1 log(n) H µ ( j=n-1 j=0
T -j (P))), le principe variationnel énoncé cidessus n'est plus valide : nous donnerons un contre-exemple à chacune des inégalités. En revanche, il existe d'autres définitions d'entropie se calculant à partir de mesures de probabilités µ qui, elles, peuvent être reliées à l'entropie topologique.

Contre-exemples au principe variationnel

Tout d'abord, montrons que l'inégalité : h(T ) ≥ sup µ∈M T h µ (T ) n'est pas vérifiée.

Pour cela considérons le cercle unité U et T l'application qui translate d'un arc de longueur 1 (ou bien la multiplication par e i si l'on se place du point de vue complexe). T étant une isométrie, elle est 1-lipschitzienne et donc d'entropie topologique polynomiale nulle. Cependant, si l'on considère µ la mesure de Haar sur le cercle (on a bien :

µ ∈ M T ) et P = {[0; π[, [π; 2π[}, on va montrer que h µ (T, P) > 0.
La partition j=n-1 j=0 T -j (P) pour n = 4 composée de 8 éléments.

Remarquons d'abord que pour tout n ∈ N * , la partition j=n-1 j=0 T -j (P) comporte 2n éléments dont les extrémités sont les n premiers itérés 0, T (0), ..., T n-1 (0) et π, T (π), ..., T n-1 (π) de 0 et de π. Pour simplifier la preuve, ne considérons que les itérés de 0 (en retirant ainsi des sommets et donc en considérant une partition moins fine l'entropie ne fait que diminuer). Soit donc n ≥ 2 et considérons la partition du cercle formée des n arcs ayant pour extrémités 0, T (0), ..., T n-1 (0). Parmi tous ces arcs, prenons-en un de longueur minimale et d'extrémités

A 1 = T k1 (0) et A 2 = T k2 (0) avec 0 ≤ k 1 < k 2 < n. On a alors : µ( Ȃ1 A 2 ) = < 1 n . Or le point A 3 = T k2+(k2-k1) (0) sera tel que : µ( Ȃ2 A 3 ) = µ( Ȃ1 A 2 ) = . De même, A 4 = T k2+2(k2-k1) vérifiera aussi : µ( Ȃ3 A 4 ) = . En posant N = 1 ≥ n, on peut alors disposer de N + 1 points A 1 , A 2 , ..., A N +1 = T k2+(N -1)(k2-k1) (0) distincts, tous dans {0, T (0), T 2 (0), ..., T n×N -1 (0)} et tels que µ( ˚ A i A i+1 ∩ ˚ A j A j+1 ) = 0 pour i = j.
Il résulte de cela que :

H µ j=n×N -1 j=0 T -j (P) ≥ i∈{1,...,N } -µ( ˚ A i A i+1 ) log Ä µ( ˚ A i A i+1 ) ä ≥ N log Å 1 ã ≥ (1 -) log(N ) ≥ log(N ) 2 ,
et donc que :

1 log(n × N ) H µ j=n×N -1 j=0 T -j (P) ≥ log(N ) 2 log(n × N ) ≥ 1 4 (N ≥ n), et enfin : lim sup n→∞ 1 log(n) H µ j=n-1 j=0 T -j (P) ≥ 1 4 > 0.
Qu'est-ce qui fait que dans le cas de l'entropie polynomiale, cette inégalité n'est plus valable (alors qu'elle marche pour l'entropie classique) ? Cela est dû à ce qu'on exige, dans le cas de l'entropie pour une mesure, une partition de X... ce qui est beaucoup plus contraignant qu'imposer un recouvrement ouvert de X. En effet, pour démontrer cette inégalité dans le cas classique, on construit à partir de la partition dynamique j=n-1 j=0 T -j (P) de cardinal N un recouvrement ouvert plus fin de cardinal plus petit que 2 n × N . Comme l'on mesure la croissance exponentielle de ce cardinal, et moyennant une petite astuce, on peut passer outre ce facteur 2 n . Ce n'est évidemment plus le cas pour l'entropie polynomiale. C'est ce que l'on voit dans notre contre-exemple : le cardinal de j=n-1 j=0 T -j (P)) est linéaire en n, tandis que si l'on considère un recouvrement ouvert « très proche » de P, par exemple :

U = {]0; π + η[, ]π; 2π + η[} (avec η arbitraire- ment petit), le cardinal minimal d'un sous-recouvrement de j=n j=0 T -j (U )
) va commencer par être linéaire en n mais finira par se stabiliser à partir de n de l'ordre de 1 η . En effet, le lemme de Lebesgue affirme l'existence d'une constante

> 0 (ici = η 2 ) vérifiant : pour tout x ∈ X, il existe U ∈ U tel que B(x, ) ⊂ U . Dans notre exemple, la propriété avec = η 2 reste vraie pour j=n-1 j=0 T -j (U ) quel que soit n ∈ N * (car elle est vraie pour les « tirés » T -k (U ))
. Ainsi, pour tout n, on peut trouver un sous-recouvrement de j=n-1 j=0 T -j (U )) de cardinal inférieur à celui de n'importe quel recouvrement à l'aide de boules de rayon .

Réciproquement, montrons que l'inégalité : h(T ) ≤ sup µ∈M T h µ (T ) ne marche pas non plus.

Pour ce faire, remarquons que l'entropie d'une partition H µ (P) = i∈I -µ(P i ) log(µ(P i )) est maximisé lorsque tous les éléments de la partition sont de même masse (auquel cas elle vaut le logarithme du cardinal de P). Il nous faut donc trouver une application T : X → X qui, quels que soient la mesure invariante µ ∈ M T et la partition P choisis, possède une mauvaise répartition de la masse pour les éléments de la partition « tirée » j=n-1 j=0 T -j (P). Pour cela, définissons l'application T sur le compact [0; 1] muni de la tribu borélienne B :

T : Ñ [0; 1] → [0; 1] x ≤ 1 2 → 2x x ≥ 1 2 → 1 é Contre-exemple à l'inégalité : h(T ) ≤ sup µ∈M T h µ (T ).
T admettant un point errant (n'importe quel x ∈]0; 1[), d'après une propriété vue précédemment, son entropie topologique h(T ) est plus grande que 1 (en fait, elle est exactement égale à 1).

Interrogeons-nous : quelles sont les mesures de probabilité µ invariantes par

T (µ ∈ M T ) ? C'est-à-dire qui vérifient pour tout borélien B ∈ B : µ(B) = µ(T -1 (B)). On peut constater en prenant B = [ 1 2 ; 1[ que nécessairement : µ([ 1 2 ; 1[) = µ([ 1 4 ; 1 2 [) = µ([ 1 8 ; 1 4 [) = ... = µ([ 1 2 n+1 ; 1 2 n [) = ... car ∀n ∈ N, T -1 ([ 1 2 n+1 ; 1 2 n [) = [ 1 2 n+2 ; 1 2 n+1 [.
Comme tous ces ensembles (les [ 1 2 n+1 ; 1 2 n [) sont en nombre infini et disjoints deux à deux et comme µ est une mesure de probabilité -donc finie ! -, on en déduit que nécessairement tous ces éléments sont de masse nulle. Ainsi µ(]0; 1[) = 0 (plus conceptuellement : presque tout point est non errant ; autrement dit une mesure invariante doit donner une masse nulle à l'ensemble des points errants... ici ]0; 1[) et µ est de la forme :

µ = λδ 0 + (1 -λ)δ 1 où δ x représente la masse de Dirac en x et λ ∈ [0; 1].
Pour une telle mesure µ, toute partition de [0; 1] ne peut avoir que deux valeurs possibles : 0 si un des éléments de la partition contient 0 et 1, -λ log(λ) -(1λ) log(1-λ) sinon. En tous les cas, la valeur de H µ ( j=n-1 j=0 T -j (P))) ne dépend pas de n et par suite :

sup µ∈M T sup P lim sup n→∞ 1 log(n) H µ j=n-1 j=0
T -j (P) = 0.

Principe variationnel alternatif

Dans cette partie nous allons voir qu'il existe néanmoins un principe variationnel pour l'entropie polynomiale... ou plus exactement pour une petite variante de l'entropie polynomiale que nous qualifierons de faible (et noterons h * (T )) car elle vérifie :

h * (T ) ≤ h(T ).
En plus de ce principe variationnel, l'entropie (polynomiale) faible regorge d'un grand nombre de propriétés , parmi elles citons notamment :

Propriété . Soit {F i } i∈I une famille dénombrable de fermés stables par T de X et F = ∪ I F i , alors :

h * (T F ) = sup i∈I h * (T Fi )
Cette propriété n'est vraie que si I est une famille finie dans le cas de l'entropie polynomiale (mais les F i ne sont plus nécessairement fermés ; on requiert simplement qu'ils soient stables). Nous ne nous étendrons pas davantage sur les nombreuses propriétés de l'entropie faible ni sur les démonstrations des quelquesunes que nous énoncerons, que le lecteur avide d'en savoir plus sache qu'il peut trouver dans la conclusion toutes les références pour satisfaire sa curiosité. De toute façon, la première propriété sus-citée permet déjà d'avoir une inégalité pour un principe variationnel faisait intervenir l'entropie polynomiale. Voyons donc dès à présent ce qu'est l'entropie faible.

Entropie faible. L'entropie faible est définie dans le cas où X est un espace métrique compact. On désigne toujours par d n la distance dynamique :

d n (x, y) = max i∈{0,...,n-1} d(T i (x), T i (y)).
Nous avons vu que, dans ce cadre, l'entropie polynomiale peut se définir comme :

h(T ) = lim sup →0 + inf ß σ > 0 | lim sup n→∞ 1 n σ c(n, ) = 0 ™ où c(n,
) est le cardinal minimal d'un recouvrement par des boules de rayon pour la distance d n , ce qui peut encore s'écrire : 

h(T ) = lim sup →0 + inf σ > 0 | lim sup n→∞ inf R∈R n B∈R 1 n σ = 0 Notations .
h * (T ) = lim sup →0 + inf σ > 0 | lim n→∞ inf R∈R ≥n B∈R 1 ind (B) σ = 0 Remarques . Comme R n ⊆ R ≥n et que ind (B) ≥ n si B ∈ R ∈ R ≥n , on a immédiatement que h * ≤ h.
De plus, la suite Ä R ≥n ä n∈N étant décroissante (au sens de l'inclusion), la limite supérieure n'est en réalité qu'une limite.

Entropie locale.

Notations . On désignera par M (X) l'ensemble -compact, convexe et non vide -des mesures boréliennes de probabilité sur X (non forcément invariantes par T ). B n (x, ) renvoie toujours à la boule centrée en x, de rayon pour la distance dynamique d n Définitions . L'entropie locale mesure, pour un point x ∈ X fixé, la vitesse de décroissance de la masse de la boule centrée en x pour la distance dynamique :

h µ (T, x) = lim →0 + lim inf n→∞ -1 log(n) log(µ(B n (x, ))).
Il est alors possible de définir l'entropie de T relativement à la mesure µ :

h µ (T ) = h µ (T, x)dµ(x).
Principe variationnel Maintenant que toutes les notions ont été introduites, énonçons abruptement le principe variationnel reliant l'entropie faible et les entropies relatives aux mesures de probabilité.

Proposition . h * (T ) = sup µ∈M (X)
h µ (T ).

Homéomorphismes de Brouwer

Comme annoncé en exergue, pour illustrer l'intérêt de l'entropie polynomiale, nous allons nous appliquer dans cette section à la calculer pour les homéomorphismes de Brouwer.

2.1 Rappels sur la sphère de Riemann P 1 (C) 

∀z 1 , z 2 ∈ C, d(z 1 , z 2 ) = 2|z 1 -z 2 | (1 + |z 1 | 2 )(1 + |z 2 | 2 ) ∀z ∈ C, d(z, ∞) = 2 1 + |z| 2
Remarque . Munie de cette distance, la droite projective devient un ensemble compact. De plus, la topologie induite par cette dernière est exactement celle évoquée dans la partie précédente pour rendre compact un espace topologique qui ne l'est pas (par la méthode du compactifié d'Alexandrov).

Définition des homéomorphismes de Brouwer

Commençons tout de go par définir les homéomorphismes de Brouwer, les notions intervenant dans cette définition seront elles-mêmes définies en-dessous.

Définition . Un homéomorphisme de Brouwer est un homéomorphisme du plan R 2 sans point fixe et qui préserve l'orientation.

Définitions . On dit qu'un homéomorphisme du plan préserve l'orientation s'il envoie les ouverts à gauche des droites topologiques orientées sur les ouverts à gauche de leur image.

Une droite topologique du plan Γ : R → R 2 est une application continue, injective, et qui se prolonge continûment en une application Γ : R ∪ {∞} → R 2 ∪ {∞} telle que : Γ(∞) = ∞ .

Exemples . L'exemple le plus simple d'homéomorphisme de Brouwer qui soit est la translation : • si z est à droite, au-dessus ou en-dessous du rectangle, son orbite sera aussi (O, ..., O)

t : Ñ Ċ → Ċ z ∈ C → z + 1 ∞ → ∞ é D'
• si z est dans le rectangle, on ne sait pas trop à quoi ressemblera l'orbite les l = L premières itérations, mais à partir de la (l + 1) ième itération, le représentant sera nécessairement O (car c'est lui qu'on choisit en cas de conflit). On peut donc brutalement majorer le nombre d'orbite par (N +1) l .

• si z est à gauche du rectangle, son orbite va commencer par O, O, ..., jusqu'à ce que l'itéré de z rentre dans le rectangle. En repérant l'indice i ∈ {1, ..., n -1} à partir duquel l'itéré rentre dans le rectangle, on peut de la même façon majorer grossièrement le nombre d'orbites par n × (N + 1) l

On a ainsi majoré le nombre d'orbites par (n + 1)(N + 1) l + 1 ; ce nombre est donc bien linéaire en n. D'où l'autre inégalité : h(t) ≤ 1.

Un minorant de l'entropie polynomiale

Nous avons déjà vu que pour tout homéomorphisme de Brouwer b, l'orbite de tout point z ∈ P 1 (C) converge vers l'infini. Il en résulte que l'entropie polynomiale des homéomorphismes de Brouwer est minorée par 1. En fait, on dispose de la propriété suivante : 

n k (U 1 )∩ U 2 = ∅.
Ainsi, en prenant pour voisinages de M et N respectivement U 1 et U 2 des intérieurs de disques topologiques assez petits, on peut se prévaloir des hypothèses suivantes :

• M ∈ U 1 , N ∈ U 2 et U 1 ∩ U 2 = ∅ • ∃ n 0 ∈ N, ( ∀n ≥ n 0 , b n (U 1 ) ∩ U 2 = ∅ et ∀n < n 0 , b n (U 1 ) ∩ U 2 = ∅) • ∀n ∈ Z * , (b n (U 1 ) ∩ U 1 = ∅ et b n (U 2 ) ∩ U 2 = ∅)
Maintenant, prenons un autre ouvert U 3 tel que P 1 (C) = U 1 ∪ U 2 ∪ U 3 et assez régulier pour que U 1 \U 3 et U 2 \U 3 soient des disques topologiques (fermés). On a donc encore l'existence d'un entier n 1 ≥ n 0 tel que :

∀n ≥ n 1 , b n (U 1 \U 3 ) ∩ U 2 \U 3 = ∅ et ∀n < n 1 , b n (U 1 \U 3 ) ∩ U 2 \U 3 = ∅.
Après tous ces préliminaires, on peut enfin définir le recouvrement U = {U 1 , U 2 , U 3 } et montrer ce que l'on voulait, à savoir : h(b) ≥ h(b, U ) ≥ 2. Pour cela, il suffit de montrer que tout sous-recouvrement du recouvrement dynamique j=n-1 j=0 T -j (U ) contient, asymptotiquement en n, au moins un nombre quadratique (en n) d'éléments. Soit donc n > n 1 , pour tout k ∈ {n 1 , n 1 + 1, ..., n -1} on peut trouver un point

A k ∈ U 1 \U 3 ⊂ U 1 tel que b k (A k ) ∈ U 2 \U 3 ⊂ U 2 . D'après la troisième hypothèse sur U 1 et U 2 , on a aussi que pour tout m entier relatif différent de 0 et k : b m (A k ) / ∈ U 1 et b m (A k ) / ∈ U 2 . Récapitulons : • A k ∈ U 1 et A k / ∈ U 2 , U 3 • b k (A k ) ∈ U 2 et b k (A k ) / ∈ U 1 , U 3 • ∀ m = 0, k ; b m (A k ) ∈ U 3 et b m (A k ) / ∈ U 1 , U 2 Ainsi, pour tout α ∈ {0, ..., n -k -1}, le seul ouvert du recouvrement dyna- mique j=n-1 j=0 T -j (U ) contenant b -α (A k ) est : U 3 ∩...∩b -(α-1) (U 3 )∩b -α (U 1 )∩b -(α+1) (U 3 )∩...∩b -(α+k-1) (U 3 )∩b -(α+k) (U 2 )∩b -(α+k+1) (U 3 )∩...∩b -(n-1) (U 3 ), ... ouvert qui fait donc forcément partie du sous-recouvrement. Comptons le nombre N (n) de couples (k, α) tels que k ∈ {n 1 , n 1 + 1, ..., n -1} , α ∈ {0, ..., n -k -1} : N (n) = n-1 k=n1 n-k-1 α=0 1 = n-1 k=n1 (n -k) = (n -n 1 )(n - n -1 + n 1 2 ) = 1 2 (n -n 1 )(n + 1 -n 1 ).
N (n) est bien quadratique, cela nous permet de conclure la preuve :

2 = lim sup n→∞ log(N (n)) log(n) ≤ lim sup n→∞ log(N ( j=n-1 j=0 T -j (U ))) log(n) ≤ h(b).

Homéomorphisme de Reeb

Soit r un homéomorphisme de Reeb ; c'est-à-dire qu'il préserve le feuilletage de Reeb ; pour z ∈ C, r(z) se trouve le long de la feuille contenant z (en parcourant cette feuille dans le sens indiqué par les flèches).

Considérons l'ouvert O (qui contient le pôle ∞) -comme dans le cas du calcul de l'entropie d'une translation. La dynamique est plus complexe que dans le cas d'une simple translation. En effet un point peut être arbitrairement loin à gauche du rectangle (et donc y rentrer à un moment quelconque), y rester un certain temps (borné en fonction de la taille de O), en sortir à droite, rester un temps arbitrairement long dans O puis rentrer à nouveau dans le rectangle par la droite et en re-sortir à gauche... (cf. la figure où est dessinée l'orbite d'un point).

Proposition . On a le résultat suivant :

h(r) = 2.
Une orbite (la première entrée ainsi que la dernière sortie du rectangle, le complémentaire de O, sont repérés par un cercle rouge)

Preuve . L'homéomorphisme de Reeb n'est pas conjugué à une translation ; d'après la minoration vue précédemment, on a déjà que h(r) ≥ 2. L'illustration d'une orbite de cet homéomorphisme permet d'ailleurs d'éclairer la preuvequelque peu obscure -précédente d'un minorant de l'entropie polynomiale ; en effet, en repérant (de haut en bas) ∆ 0 et ∆ 1 les droites -dites singulièresentourant la bande grise notée B sur l'image du feuilletage de Reeb, l'ensemble des couples singuliers de r est :

Sing(r) = {(M, N ) | M ∈ ∆ 0 , N ∈ ∆ 1 } .
Il s'agit maintenant de montrer que 2 est aussi un majorant de l'entropie polynomiale de r. Pour ce faire, nous allons utiliser (comme pour le calcul de l'entropie polynomiale de la translation) la dynamique symbolique. Enfin, on supposera assez petit pour que, comme sur la figure, les côtés horizontaux du rectangle soient respectivement au-dessus de ∆ 0 et en-dessous de ∆ 1 . Soit z ∈ P 1 (C), comptons à présent le nombre d'orbites symboliques possibles pour les n premiers itérés de z : z, r(b), ..., r n-1 (z) :

• si z = ∞, son orbite est (O, ..., O)
• si z est à l'extérieur de la bande B (au-dessus de ∆ 0 ou en-dessous de ∆ 1 ), il est possible qu'à un moment l'orbite de z rentre dans le rectangle. En repérant cet indice i d'entrée (avec la convention i = n si aucun des n premiers itérés n'entre dans le rectangle), on sait qu'à partir de l'indice i + N le représentant symbolique est forcément et définitivement O. Il y a donc au plus (n + 1) × N N orbites symboliques pour de tels z.

• si z est dans la bande B, on repère (comme c'est fait d'un cercle rouge sur la figure) par i et j les indices de première entrée et de dernière sortie du rectangle (avec possiblement i, j = n si l'orbite n'entre ou ne sort pas du rectangle). Une orbite de r suivant le tracé d'une feuille, au maximum il n'est possible de sortir et de n'entrer que deux fois dans le rectangle. De plus, chaque parcours dans le rectangle ne peut excéder un temps N . Ainsi le représentant symbolique de r k (z) ne peut être différent de O qu'en les indices i, i + 1, ..., i + N -1 et j -N, j -N + 1, ..., j -1. On a donc au maximum (n+1)(n+2) 2 N 2N orbites symboliques dans ce cas de figure.

Le nombre d'orbites symboliques est bien quadratique en n ; l'entropie polynomiale est donc majorée par 2 et finalement :

h(r) = 2.

Constructions d'homéomorphismes de Brouwer

Dans cette section, nous allons voir une manière de construire des homéomorphismes de Brouwer. La méthode présentée en premier permet d'ailleurs d'obtenir, à conjugaison près, tous les homéomorphismes de Reeb. En la généralisant, nous pourrons construire des homéomorphismes de Brouwer d'entropie polynomiale égale à n pour tout entier n plus grand que deux. Finalement, nous verrons qu'il est possible de construire un homéomorphisme d'entropie polynomiale r quel que soit le réel r plus grand que deux. L'entropie étant invariante par conjugaison, cela redémontre qu'il existe une infinité non dénombrables de classes de conjugaisons d'homéomorphismes de Brouwer.

Cas des homéomorphismes de Reeb

Pour donner une idée au lecteur du procédé de construction que nous allons présenter, rien de tel qu'un dessin ! Soient donc P 1 et P 2 deux copies du plan R 2 . On note

O i = {(x, y) ∈ P i | y > 0} (i ∈ {1, 2}
) leur demi-plan ouvert supérieur. La méthode consiste à déformer puis à recoller ces deux demi-plans pour obtenir le feuilletage de Reeb comme cela est illustré sur le schéma. Il faut néanmoins que ce recollement se fasse de façon continue et que l'ensemble ainsi obtenu : (P 1 ∪P 2 )/ ∼ (où ∼ est la relation qui identifie tout point de O 1 à un point de O 2 ) soit homéomorphe à R 2 . Pour ce faire, supposons que l'on dispose d'une fonction

f : O 1 → R continue qui vérifie : i) pour tout x 0 ∈ R, lim y→0 + f (x 0 , y) = -∞, ii) pour tout y 0 > 0, la fonction x → f (x, y 0 ) est un homéomorphisme crois- sant de R, iii) pour tout (x, y) ∈ O 1 , on a l'égalité f (x + 1, y) = f (x, y) + 1.
On identifie un point (x, y) ∈ O 1 au point point (f (x, y), y) de O 2 . L'hypothèse ii) assure que le changement de coordonnée de O 1 à O 2 est un homéomorphisme préservant l'orientation. En notant : τ i : P i → P i (i ∈ {1, 2}) les translations (x, y) → (x + 1, y) sur P i , l'hypothèse iii) entraîne que les projections de τ 1 et τ 2 sur R 2 f = (P 1 ∪P 2 )/ (x,y)∼(f (x,y),y) coïncident sur leur domaine commun (les projections des demi-plans O 1 et O 2 ). Ces deux translations induisent donc un homéomorphisme b f : R 2 f → R 2 f . Par construction, b f n'a aucun point fixe et préserve l'orientation ; si l'on a encore que R 2 f est homéomorphe au plan R 2 alors on aura bel et bien construit un homéomorphisme de Brouwer.

Remarque . En fait, notre homéomorphisme est plus précisément un homéomorphisme de Reeb ; il préserve le feuilletage de Reeb. On peut d'ailleurs montrer que l'on peut, par cette méthode, construire tous les homéomorphismes de Reeb (à conjugaison près).

Voyons donc rapidement pourquoi R 2 f est homéomorphe au plan ; cela revient à montrer que c'est une variété topologique séparée, possédant une base dénombrable d'ouverts, non compacte et simplement connexe. Examinons au moins la séparation. Soient M = N deux points de R 2 f . Le seul cas de figure qui pose problème est celui où M provient de la projection de la frontière de O 1 dans P 1 et N L'idée de la construction du feuilletage de Reeb : on considère deux copies P 1 et P 2 du plan munies des feuilletages triviaux en droites horizontales... puis on déforme ces feuilletages pour pouvoir les recoller... et obtenir un feuilletage de Reeb.

de la frontière de O 2 dans P 2 . Soient donc (x M , 0) et (x N , 0) leurs coordonnées respectives dans P 1 et P 2 . C'est ici que va rentrer en jeu l'hypothèse i) sur f : pour tout x 0 ∈ R, lim y→0 + f (x 0 , y) = -∞. Pour > 0 assez petit, les projections des boules B P1 ((x M , 0) ; ) et B P2 ((x N , 0) ; ) sont d'intersection vide. En effet, soit A = (x, y) ∈ B P1 ((x M , 0) ; ) ∩ O 1 , on a donc : x < x M -et 0 < y < or A est de coordonnée (f (x, y), y) dans P 2 et f (x, y) < f (x M + , y) < f (x M + 1, y) (pour < 1 et d'après l'hypothèse ii) ). En imposant assez petit, y sera suffisamment petit pour que f (x, y) soit plus petit que x N -... d'où : A / ∈ B P2 ((x N , 0) ; ).

Exemple . En prenant la fonction f : (x, y) → x -1 y , on obtient ainsi l'homéomorphisme de Reeb « le plus simple » en ceci que c'est le seul -à conjugaison près -qui ait un ensemble oscillant vide (voir les références dans la conclusion pour plus de détails).

Un exemple d'entropie polynomiale h > 2 quelconque

Généralisation de la construction Il est possible de généraliser la méthode de construction des homéomorphismes de Reeb à d'autres homéomorphismes de Brouwer dont l'ensemble singulier soit plus grand que le produit de deux droites topologiques. Il suffit de prendre non plus 2 mais n copies du plan P 1 , P 2 , ..., P n . On note toujours O i = {(x, y) ∈ P i | y > 0} leur demi-plan supérieur et on suppose que l'on dispose de n -1 fonction continues f *

1 : R * + → R, f * 2 : R * + → R, ..., f * n-1 : R * + → R.
Cette fois, les fonctions ont pour ensemble de départ R * + et non plus O 1 ; cela est suffisant pour nous : nos exemples ne comporteront que des changements de cartes de O 1 à O i de la forme : (x, y) → (f i-1 (x, y), y) = (x + f * i-1 (y), y). Cela permet déjà de s'assurer de l'ancienne condition ii) : pour tout y 0 > 0, la fonction x → f i (x, y 0 ) est un homéomorphisme croissant de R ainsi que de la condition iii) : pour tout (x, y) ∈ O 1 , on a l'égalité f i (x + 1, y) = f i (x, y) + 1. On considère toujours l'ensemble :

R {f * i } = (P 1 ∪... ∪P n )/ (x,y)∼(x+f * 1 (y),y)∼...∼(x+f * n-1 (y),y) .
Pour que ce dernier soit séparable -condition nécessaire pour être homéomorphe à R 2 -, il faut vérifier que chaque changement de carte de O i à O j avec i < j : (x + f * i-1 (y), y) → (x + f * j-1 (y), y) soit (x, y) → (x -f * i-1 (y) + f * j-1 (y), y) satisfasse (avec la convention f * 0 = 0) :

• pour 1 ≤ i < j ≤ n, lim y→0 + -f * i-1 (y) + f * j-1 (y) = -∞.
On considère encore les n translations : τ i : P i → P i conjuguées entre elles et qui induisent un homéomorphisme de Brouwer b {f * i } . Remarque . Un tel homéomorphisme de Brouwer (construit à partir de n copies du plan R 2 ) a forcément une entropie majorée par n.

Preuve . Pour obtenir cela, montrons que b {f * i } est un facteur du produit n facteurs t × ... × t où t désigne la translation t :

Å R 2 ∪ {∞} → R 2 ∪ {∞} M → M + 1 ã . Il s'agit de trouver une semi-conjugaison H : R 2 {f * i } ∪ {∞} → (R 2 ∪ {∞}) n . Soit M ∈ R 2 {f *
i } et supposons que M appartienne à la projection des O i , soient alors M 1 , ..., M n ses coordonnées dans chacun des demi-plan O 1 , ..., O n ; on définit intuitivement H(M ) = (M 1 , ..., M n ). Supposons maintenant que M appartienne à un demi-plan inférieur P i0 \O i0 et ait pour coordonnée M i0 dans P i0 ; on veut donc aussi que H envoye M sur le n-uplet (∞, ..., ∞, M i0 , ∞, ..., ∞), où la seule coordonnée différente de ∞ : M i0 se trouve en position i 0 . Enfin, H envoye ∞ sur (∞, ..., ∞). Désignons par F = Im(H) l'ensemble des n-uplets de (R 2 ∪ {∞}) n qui sont de la même forme que les n-uplets décrits au dessus et montrons que F est fermé... ou encore que son complémentaire c F est ouvert. Soit A = (A 1 , ..., A n ) ∈ c F , A peut ne pas être dans F pour plusieurs raisons :

• il y a deux coordonnées de A, disons A 1 = (x 1 , y 1 ) et A 2 = (x 2 , y 2 ), qui ne peuvent correspondre aux coordonnées d'un point de R 2 {f * i } . Si c'est parce que y 1 = y 2 , on peut trouver deux ouverts U 1 A 1 et U 2 A 2 dont aucun des couples (B 1 , B 2 ) ∈ U 1 × U 2 ne puisse correspondre aux deux premières coordonnées d'un point de F (il suffit de faire en sorte qu'ils ne puissent avoir la même ordonnée). L'ouvert (U 1 , U 2 , R 2 ∪ {∞}, ..., R 2 ∪ {∞}) A est donc inclus dans c F et est un voisinage de A. Si 0 < y 1 = y 2 (et donc x 2 = x 1 + f * 1 (y 1 )), on utilise la continuité de f * 1 pour aboutir au même résultat. Si 0 = y 1 = y 2 , on doit aussi utiliser, comme pour montrer la séparation de R 2 f , l'hypothèse : lim y→0 + f * 1 (y) = -∞. Enfin si 0 > y 1 = y 2 , il suffit de prendre U 1

A 1 et U 2 A 2 dans les demi-plans inférieurs de P 1 et P 2 .

• il y a deux coordonnées de A, prenons toujours A 1 = (x 1 , y 1 ) et A 2 = (x 2 , y 2 ), qui « correspondent » ; c'est-à-dire que y 1 = y 2 > 0 et x 2 = x 1 + f * 1 (y 1 ) et une troisième, mettons A 3 , égale à l'infini ∞. Prenons alors un ouvert U 1 A 1 inclus dans O 1 assez petit de telle sorte que pour tout B = (x, y) ∈ U 1 , x + f * 2 (y) et y soient bornés. On peut alors prendre un voisinage ouvert U 3 de l'infini ∞ ne rencontrant aucun des points de U 1 après changement de cartes (U in ) avec :

O 1 → O 3 . Ainsi l'ouvert (U 1 , R 2 , U 3 , R 2 ∪ {∞}, ..., R 2 ∪ {∞}) A est inclus dans c F . H : R 2 {f * i } ∪{∞} → F est alors une bijection continue qui conjugue (t × ... × t) F à b {f * i } d'où : h(b {f * i } ) = h((t × ... × t) F ) ≤ h(t × ... × t) = n termes 1 + ... + 1 = n.
* 1 et f * 2 de R * + dans R vérifiant : i) lim y→0 + f * 1 (y) = -∞ ii) lim y→0 + f * 2 (y) -f * 1 (y) = -∞ Pour f * 1 , prenons la classique : y → -1 y . Définissons f * 2 de la façon suivante : i) f * 2 (y) = -2 y pour y ≥ 1 ii) sur ]0; 1[, f * 2 est affine par morceaux et vaut : • f * 2 ( 1 2n+1 ) = -2 2n+1 pour tout n ∈ N • f * 2 ( 1 2n ) = -2 (2n) 2 pour tout n ∈ N * Ainsi, f * 2 « oscille » entre y → -2 y et y → -2 y 2 . Soient U M , U N et U O trois
• i n1 = 1, i n2 = 2 et i n3 = 3 • pour k / ∈ {n 1 , n 2 , n 3 }, i k / ∈ {1, 2, 3} Ce résultat permet de minorer N ( n-1 i=0 b -i {f * i } (U )
) par le nombre de tels triplets (n 1 , n 2 , n 3 ) qu'on pourra trouver.

Soit > 0 tel que les boules B P1 ((0, 0); ), B P2 ((0, 0); ) et B P3 ((0, 0); ) soient incluses dans les projetés sur P 1 , P 2 et P 3 des ouverts U M , U N et U O et notons N = 2 1 . Nous allons montrer que l'on peut obtenir tous les triplets (n 1 , n 2 , n 3 ) tels que :

n 2 -n 1 ≥ N , n 2 -n 1 impair et 2(n 2 -n 1 ) ≥ n 3 -n 2 ≥ n 2 -n 1 . En effet, soit (n 1 , n 2 , n 3 ) un tel triplet, f * 2 ( 1 n2-n1 ) = -2(n 2 -n 1 ) et f * 2 ( 1 n2-n1+1 ) = -2(n 2 -n 1 + 1) 2 et f * 2 est affine sur [ 1 n2-n1+1 ; 1 n2-n1
], avec les conditions imposées sur n 2 -n 1 , l'antécédent y 0 de -(n 3 -n 1 ) est assez Par construction, les points T n1 (A), ..., T n k (A) sont à moins de respectivement des origines des plans P 1 , ..., P k . L'homéomorphisme de Brouwer ainsi construit a donc bien une entropie polynomiale égale à k.

Un homéomorphisme de Brouwer d'entropie polynomiale un réel plus grand que 2. Soit maintenant h > 2 un réel non entier quelconque. Notons : k = h sa partie entière supérieure et α = h + 1 -k son résidu. Nous allons construire un homéomorphisme de Brouwer qui possède, comme dans le cas de celui qui a une entropie polynomiale égale à k, k droites singulières ; c'est-à-dire qu'il est construit à partir de k copies du plan et de k -1 fonctions... les voici :

• f * 1 : y → -1 y • f * 2 : la fonction « oscille » entre : y → -2 y et y → -2 y -2 y α , plus précisé- ment : -pour y ≥ 1, f * 2 (y) = -2 y -sur ]0; 1], f * 2 est affine par morceaux et vaut en ses « pointes » : * f * 2 ( 1 2n+1 ) = -2 2n+1 pour tout n ∈ N * f * 2 ( 1 2n ) = -2 2n -2 (2n) α pour tout n ∈ N * • f * 3 : la fonction « oscille » plus fortement encore que f * 2 entre : y → 3 2 f * 2 (y) et y → -3 y 2 :
pour y ≥ 1, f * 3 (y) = -3 y sur ]0; 1], on subdivise chaque intervalle [ 1 n+1 ; 1 n ] en 2n 3 intervalles réguliers dont les extrémités sont les 2n 4 +n (1) 2n 4 (n+1) pour n (1) ∈ {0, ...,

2n 3 }: * f * 3 ( 2n 4 +n (1) 2n 4 (n+1) ) = 3 2 f * 2 (y) pour n (1) pair * f * 3 ( 2n 4 +n (1) 2n 4 (n+1) ) = -3 y 2 avec y = 2n 4 +n (1) 2n 4 (n+1) pour tout n (1) impair • ... • f * k-1 : la fonction « oscille » encore plus fortement que f * k-2 entre : y → k-1 k-2 f * k-2 (y) et y → -k-1 y 2 : -pour y ≥ 1, f * k-1 (y) = -k-1 y -sur ]0; 1], on subdivise chaque intervalle [ 2 k-3 n 4+3(k-4) +2 k-4 n (1) n 3(k-4) +...+n (k-4) 2 k-3 n 4+3(k-3) (n+1) ; 2 k-3 n 4+3(k-4) +2 k-4 n (1) n 3(k-4) +...+n (k-4) +1 2 k-3 n 4+3(k-3) (n+1)
] (qui est un intervalle maximal sur lequel f * k-2 soit affine) en 2n 3 intervalles réguliers : pour n (k-3) ∈ {0, ..., 2n 3 }: * f * k-1 ( 2 k-2 n 4+3(k-3) +2 k-3 n (1) n 3(k-3) +...+2n (k-4) n 3 +n (k-3) 2 k-2 n 4+3(k-2) (n+1)

) =

k-1 k-2 f * 2 (y) pour n (k-3) pair * f * k-1 ( 2 k-2 n 4+3(k-3) +2 k-3 n (1) n 3(k-3) +...+2n (k-4) n 3 +n (k-3) 2 k-2 n 4+3(k-2) (n+1)

) = -k-1 y 2 avec y = 2 k-2 n 4+3(k-3) +2 k-3 n (1) n 3(k-3) +...+2n (k-4) n 3 +n (k-3) 2 k-2 n 4+3(k-2) (n+1) pour tout n (k-3) impair La seule différence avec la construction précédente réside dans la fonction f * 2 ; elle oscille entre deux fonctions beaucoup plus proches (avec une amplitude de l'ordre de 1 y α ). Cela implique qu'une fois que n 1 et n 2 ont été fixés, on a plus que pour n 3 un choix beaucoup plus faible : de l'ordre de (n 2 -n 1 ) α . À partir de n 4 , on peut recommencer à choisir les n i+1 avec toute la latitude que l'on désire (c'est-à-dire vérifiant : i+1 i (n i -n 1 ) ≤ n i+1 -n 1 ≤ 3(n i -n 1 )). Au final, pour > 0 fixé, on peut donc trouver de l'ordre de n 1+1+α+1+...+1 = n h k-uplets (n 1 , ..., n k ) tels qu'il existe une orbite passant à moins de des origines des P i aux positions n 1 , ..., n k . Cela entraîne que l'entropie polynomiale est minorée par h. L'essentiel de la dynamique de l'homéomorphisme se situant au niveau des k droites singulières, on peut se contenter de regarder la dynamique au voisinage de cet ensemble singulier. Pour la majoration, nous allons de nouveau utiliser la dynamique symbolique. Soit donc U = {U i } i∈{1,...,M } un recouvrement du plan R 2 {f * i } de diamètre . On peut supposer quitte à affiner le recouvrement qu'il n'y a qu'un seul ouvert, disons U 1 , qui contienne l'infini ∞ et que tous les autres soient bornées. Soit alors une grande constante C telle que toutes les images U i j des ouverts U j (j = 1) dans les plans P i soient inclus dans les boules B Pi ((0, 0); C) de rayon C. On peut trouver une petite constante η > 0 telle que pour tout y ∈]0; η[ et tout couple (i, j) avec i < j on ait : -f * j (y) + f * i (y) > 2 C . Comme dit plus haut, nous allons nous contenter de regarder la dynamique des points ayant une ordonnée (dans les différents P i ) comprise entre 0 et η strictement. Un tel choix permet de s'assurer qu'un point A de cette bande suffisamment à gauche (sinon son orbite symbolique est encore plus simple) va avoir le comportement suivant :

• entrer dans B P1 ((0, 0); ) au temps n 1 ≥ 0,

• entrer dans B P2 ((0, 0); ) au temps n 2 ≥ n 1 + 2 C , • ... ,

• entrer dans B P k ((0, 0); ) au temps n k ≥ n k-1 + 2 C . De plus, on sait que pour tout i ∈ {1, ..., k -1}, l'itéré de A sera aux temps n i + 2 C , n i + 2 C + 1, ..., n i+1 -1 dans U 1 ; on ignore le représentant de son orbite simplement aux temps n i , n i + 1, ..., n i + 2 C -1 (ce qui fait qu'entre les temps n i et n i+1 -1, on peut majorer le nombre d'orbites symboliques possibles par : (M + 1) 2 C ).

Dans la première partie nous avons commencé par définir l'entropie polynomiale dans le cadre le plus général qui soit : quand on ne dispose que d'un espace topologique compact et d'une application continue sur ce compact. Quand l'espace est métrique (c'est-à-dire muni d'une distance), nous avons vu qu'il existe d'autres moyens plus concrets pour la calculer. Ensuite, nous avons constaté l'échec du passage d'une des grandes propriétés de l'entropie classique à l'entropie polynomiale : on ne dispose pas du principe variationnel. Cela nous a poussé à introduire une définition alternative de l'entropie polynomiale : l'entropie faible qui, elle, dispose d'un principe variationnel la reliant à l'entropie locale. Cette entropie faible ayant la propriété d'être plus petite que l'entropie polynomiale, il subsiste tout de même une inégalité d'un principe variationnel faisant intervenir l'entropie polynomiale. La seconde partie débute par un rappel sur une interprétation géométrique du compactifié d'Alexandrov du plan : la sphère de Riemann. S'ensuit la définition des homéomorphismes de Brouwer accompagnée d'exemples pour essayer d'illustrer au lecteur ce qu'il en est. Viennent enfin quelques résultats sur l'entropie polynomiale de ces homéomorphismes : la valeur 1 caractérise la translation, tout autre homéomorphisme de Brouwer a une entropie polynomiale plus grande que 2, les homéomorphismes de Reeb ont une entropie polynomiale de 2 exactement et pour tout réel h ≥ 2 on peut construire un homéomorphisme de Brouwer d'entropie polynomiale égale à h.

Voilà que ce rapport se termine, il ne me reste plus qu'à souhaiter que le lecteur y aura pu trouver quelque objet d'intérêt. À défaut, j'espère du moins que l'austérité de certains passages (difficilement évitable, hélas !) ne l'aura pas trop rebuté et que nos vaticinations dans l'univers de l'entropie lui auront été agréables.

Et si de t'agréer je n'emporte le prix, J'aurai du moins l'honneur de l'avoir entropie.

  la croissance non pas polynomiale mais exponentielle du cardinal minimal d'un sous-recouvrement dynamique.

  s(n, ) le cardinal maximal d'un tel ensemble. De même, un ensemble C ⊂ X est dit (n, )-couvrant si : ∀x ∈ X, ∃y ∈ C, d n (x, y) ≤ et l'on notera : c(n, ) le cardinal minimal d'un ensemble (n, )-couvrant.

  La sphère de Riemann est un moyen de munir la droite projective complexe P 1 (C) d'une distance directement liée à la géométrie. Quel est-il ? Tout d'abord, voyons la droite P 1 (C) comme le plan complexe C (ou R 2 ) avec un point additionnel à l'infini Ċ = C ∪ {∞}, plan complexe que l'on plonge dans l'espace R 3 . Dans R 3 , considérons la sphère unité et plaçons le point infini ∞ aux coordonnées (0, 0, 1) (parfois appelé pôle Nord et noté d'un « N » sur la figure). À tout point z ∈ C, on associe son projeté Z sur la sphère unité selon la droite (N z) Or Géométrie projective de la sphère de Riemann nous disposons d'une distance sur la sphère : la distance euclidienne de l'espace R 3 . Elle induit une distance d sur la droite projective P 1 (C) ∼ Ċ :

  autres exemples d'homéomorphismes de Brouwer assez simples sont les homéomorphismes de Reeb. Il s'agit des homéomorphismes sans point fixe qui préservent chaque feuille d'un feuilletage de Reeb (visible sur la figure ci-jointe).

2. 3

 3 Entropie polynomiale des homéomorphismes de Brouwer 2.3.1 Cas d'une translation Soit t : z → z +1, la translation d'un vecteur unitaire dans le plan. Montrons que : Proposition . h(t) = 1. Feuilletage de Reeb Preuve . Tout d'abord, toute orbite de t converge vers l'infini (c'est d'ailleurs une propriété commune à tous les homéomorphismes de Brouwer). Ainsi, tout point z = ∞ est errant. D'après un des résultats vus précédemment, on a déjà h(t) ≥ 1. Il s'agit maintenant de trouver pour tout > 0 une famille (n, )-couvrante de cardinal de l'ordre de n quand n → ∞ ou -de façon équivalente -un recouvrement composé d'ouverts de diamètre plus petit qu' tel que le nombre d'orbites possibles en dynamique symbolique soit aussi de l'ordre de n. Tentons d'être plus clair. Imaginons {O i } 1≤i≤N un recouvrement ouvert d'un espace métrique compact X tel que : ∀i ∈ {1, ..., N }, diam(O i ) ≤ .Soit T : X → X une application continue. À tout point x ∈ X on associe un n-uplet de {1, ..., N } : (i 0 , .., i n-1 ) qu'on appelle représentation symbolique de l'orbite des n premiers itérés de x : x, T (x), ..., T n-1 (x). C'est-à-dire qu'il doit vérifier :∀k ∈ {0, ..., n -1},T k (x) ∈ O i kCette représentation symbolique n'est pas unique ; on peut faire son choix parmi plusieurs ouverts possibles. On collationne alors toutes les représentations choisies quand x parcourt X. On obtient ainsi M ≤ N n orbites possibles. On en conclue qu'il existe une famille (n, )-couvrante de cardinal M . En effet, pour chaque orbite symbolique possible O α (α ∈ {1, .., M }), on prend un représentantx α ∈ X d'orbite symbolique O α . La famille {x α } 1≤α≤M est (n, )-couvrante : Pour tout x ∈ X, soit α tel que x soit d'orbite symbolique O α ∀i ∈ {0, ..., n -1}, T i (x) et T i (x α ) sont dans le même ouvert O αi ⇒ ∀i ∈ {0, ..., n -1}, d(T i (x), T i (x α )) ≤ ⇒ d n (x, x α ) ≤ .Retournons à notre preuve. Soient donc > 0 et n ∈ N * . Soit O un ouvert défini comme le complémentaire d'un rectangle du plan. On prendra ce rectangle assez grand pour que O soit de diamètre (en coordonnées sphériques) plus petit qu' et que sa largeur L ne soit pas un entier. On adjoint à la famille {O} d'autres ouverts O 1 , O 2 , ..., O N de L'ouvert O (en gris) diamètres plus petits que en coordonnées sphériques (par exemple des boules pour la distance euclidienne de rayon ) de sorte que la famille {O, O 1 , ..., O N } soit un recouvrement de P 1 (C). Chaque fois que ce sera possible, on choisira O comme représentant dans les orbites symboliques. Comptons à présent le nombre d'orbites symboliques possibles de longueur n, soit z ∈ P 1 (C) : • si z = ∞, son orbite est (O, ..., O)

Proposition.

  Soit b un homéomorphisme de Brouwer non conjugué à une translation, alors : h(b) ≥ 2. Preuve . On sait que tout homéomorphisme de Brouwer b qui n'est pas conjugué à une translation possède un couple (M, N ) singulier. Définition . Un couple (M, N ) est dit singulier si M et N n'appartiennent pas à une même orbite de b et que pour tout voisinage U 1 de M et U 2 de N , il existe un entier naturel n ∈ N tel que : b n (U 1 ) ∩ U 2 = ∅. Remarque . On va avoir recours à un lemme : si D et V sont deux disques topologiques fermés d'intérieurs libres (c'est-à-dire que b(Int(D)) ∩ Int(D) = ∅ et b(Int(V )) ∩ Int(V ) = ∅), alors l'ensemble des entiers n tels que b n (Int(D)) rencontre Int(V ) est un intervalle de Z. De plus, comme M et N ne se trouvent pas sur une même orbite, en choisissant des ouverts U 1 et U 2 assez petits, il existe une suite n k → ∞ telle que : b

  Soient donc > 0 et n ∈ N * . Soit O un ouvert défini comme le complémentaire d'un rectangle du plan, rectangle choisi assez grand pour que O en coordonnées sphériques soit de diamètre inférieur à . De même que pour le calcul de l'entropie polynomiale de la translation, on adjoint à la famille {O} des disques topologiques ouverts O 1 , O 2 , ..., O N pris assez petits pour qu'ils soient libres (c.-à-d. r(O i ) ∩ O i = ∅) et que leur diamètre soit plus petit que (toujours en coordonnées sphériques) afin d'obtenir un recouvrement {O, O 1 , ..., O N } de P 1 (C) de diamètre inférieur à . Chaque fois que ce sera possible, on choisira O comme représentant dans les orbites symboliques. De plus, comme les O i sont des disques ouverts topologiques libres, l'orbite d'un point ne peut rester strictement plus de N itérations en dehors de O (après avoir passé par les O i une seule fois au maximum, l'orbite retourne nécessairement dans O).

  Un homéomorphisme de Brouwer d'entropie polynomiale égale à 3 Dans ce paragraphe, nous allons construire un homéomorphisme de Brouwer b 3 à partir de trois copies du plan : P 1 , P 2 et P 3 d'entropie polynomiale exactement 3 (la remarque précédente montre que 3 est déjà un majorant). Sur l'image cidessous, nous pouvons imaginer à quoi ressemble un homéomorphisme ainsi construit ; les trois demi-plans supérieurs O 1 , O 2 et O 3 se déforment pour se superposer en un ouvert homéomorphe au plan R 2 (en gris sur le dessin) tandis que les trois demi plan inférieurs forment les trois domaines de translation (en blanc sur le dessin). Un homéomorphisme de Brouwer construit à partir de 3 copies du plan (la superposition des 3 demi-plans supérieurs est représentée en gris) Repérons par M , N et O les origines (de coordonnées (0, 0) Pi ) des trois plans P 1 , P 2 et P 3 . Pour chaque orbite passant près de M , N et O, on note m et n le temps que met l'orbite pour aller de M à N puis de N à O. La dynamique de b 3 sera d'autant plus complexe -et donc son entropie d'autant plus élevée -qu'il y aura de valeurs possible pour le couple (m, n). Pour cela, nous aurons recours aux ensembles oscillants. Retroussons donc nos manches et construisons cet homéomorphisme ! Il nous faut donc fournir deux fonctions continues f

  disques topologiques libres d'intersection deux à deux vide assez petits pour qu'on puisse choisir un recouvrementU = {U i } i∈N * La fonction f * 2 qui « oscille » entre y → --2 y et y → --2 y 2 .tel que chacun de ces trois ouverts soit inclus dans un ouvert libre lui aussi (disonsU 1 ⊃ U M , U 2 ⊃ U N et U 3 ⊃ U O )de U et d'intersection vide avec tous les autres ouverts de U . Cela permet de s'assurer que si l'orbite d'un point passe aux temps n 1 < n 2 < n 3 respectivement par U M , U N et U O alors pour pour n > n 3 , un sous-recouvrement dynamique de n-1 i=0 b -i {f * i } (U ) de notre homéomorphisme de Brouwer b {f * i } ainsi construit contient nécessairement un ouvert de la forme : U i1 ∩ ... ∩ b -(n-1) {f * i }

  

  

  

  Dans la formule ci-dessus, R n désigne l'ensemble des recouvrements finis ayant pour éléments des boules B = B n (x, ) (x ∈ X) de rayon pour la distance d n . L'idée de l'entropie faible est de permettre, à n et fixés, des recouvrements par des boules de rayon pour des distances dynamiques d k avec k ≥ n. Pour compenser cette réduction de taille des ouverts (comme d k ≥ d n , ∀x ∈ X, B k (x, ) ⊆ B

n (x, )), on assigne à ces boules B pour des dynamiques plus grandes un poids plus faible : 1 k σ au lieu de 1 n σ où k est le plus grand indice (avec la convention 1 ∞ = 0) tel que B soit une boule de rayon pour la distance d k . On note ind (B) cet indice à valeur dans N ∪ {∞}. Notons aussi R ≥n l'ensemble des recouvrements finis à l'aide de boules de rayon pour les distances dynamiques d k avec k ≥ n Définition . L'entropie faible est alors donnée par la formule :

proche de 1 n2-n1 pour que : n 2 -n 1 ≤ -f * 1 (y 0 ) = 1 y0 ≤ n 2 -n 1 + . Prenons alors le point A de coordonnées dans P 1 : (-n 1 , y 0 ) P1 et donc de coordonnées (-n 1 + f * 1 (y 0 ), y 0 ) P2 dans P 2 et (-n 1 + f * 2 (y 0 ), y 0 ) P3 = (-n 3 , y 0 ) P3 dans P 3 . O a bien ce que l'on souhaitait :

• T n1 (A) a pour coordonnées dans P 1 : (0, y 0 ) P1 ∈ U M • T n2 (A) a pour coordonnées dans P 2 : (n 2 -n 1 + f * 1 (y 0 ), y 0 ) P2 ∈ U N

• T n3 (A) a pour coordonnées dans P 3 : (0, y 0 ) P3 ∈ U O Il ne reste plus qu'à compter le nombre N (n) de tels triplés pour n > N fixé... ou plutôt voyons rapidement pourquoi N (n) est de l'ordre de n 3 : pour n ≥ 10N , on choisit n 1 arbitrairement dans les n 10 premiers indices puis on choisit n 2 -n 1 impair et plus petit que n 10 (cela donne de l'ordre de n 20 choix pour n 2 ) et enfin on a encore n 2 -n 1 choix pour n 3 ; N (n) est bien de l'ordre de n 3 Un homéomorphisme de Brouwer d'entropie polynomiale un entier On a déjà vu que la translation avait une entropie polynomiale égale à 1, un homéomorphisme de Reeb une entropie polynomiale de 2 et l'on vient de construire un homéomorphisme de Brouwer d'entropie polynomiale 3. Soit k un entier plus grand que 4, on peut généraliser la méthode précédente en prenant k copies du plan et k -1 fonctions continue de R * + dans R :

Toutes ces fonctions ainsi définies sont affines par morceaux et continues. De plus, elles vérifient :

Les fonctions sont de plus en plus rapidement oscillantes de façon à ce qu'à > 0 fixé, on puisse montrer comme précédemment qu'on peut trouver un nombre de k-uplets (n 1 , n 2 , ..., n k ) vérifiant 0 ≤ n 1 < n 2 < ... < n k < n de l'ordre de n k tels qu'il existe une orbite passant aux positions n 1 , ..., n k à moins de de k points fixés (un sur chaque droite singulière). En effet, soit > 0. Posons : N = k 1 , alors tout k-uplet (n 1 , n 2 , ..., n k ) vérifiant :

] puis I 1 ⊂ I 0 un des 2(n 2 -n 1 ) 3 sous-intervalles réguliers de I 0 tel que f * 1 (I 1 ) ⊆ B(-(n 2n 1 ); ). f * 2 est affine sur I 1 , vaut 3 2 fois f * 1 en son extrémité droite et plus de 3 fois f * 1 en son extrémité gauche ; on peut donc choisir ensuite I 2 ⊂ I 1 un des 2(n 2 -n 1 ) 3 sous-intervalles réguliers de

• (-n 1 ; y 0 ) P1 dans P 1 ... soit :

• ...

Enfin, et c'est là la clef de ce dénombrement, on sait que grâce à la définition de f * 2 , on peut majorer n 3 -n 2 -1 par : 2(n 2 -n 1 + 1) α . Soit maintenant n ∈ N * , comptons le nombre de tels k-uplets (n 1 , ..., n k ) avec 0 ≤ n 1 < n 2 < ... < n k ≤ n : on a au maximum 2n α choix pour n 3 -n 2 ce qui majore ce nombre par :

Finalement, on peut majorer le nombre d'orbites symboliques par :

Cela permet de majorer l'entropie polynomiale de b {f * i } par h. On a prouvé les deux inégalités, on a bien effectivement :

L'entropie étant invariante par conjugaison, on retrouve le résultat connu suivant :

Corollaire . Il existe une infinité non-dénombrable de classes de conjugaisons d'homéomorphismes de Brouwer.

Remarque . En fait, le « résultat connu » est encore meilleur puisqu'il reste valable si l'on se restreint aux homéomorphismes de Reeb.

En guise de conclusion

Nous arrivons maintenant à la fin de nos pérégrinations entropiques ; il est temps de nous retourner et de dresser un constat de ce qui a été vu. Mais d'abord, rendons à César ce qui est à César : le concept d'entropie polynomiale -qui est le point de départ de ce rapport -a été introduit par Jean-Pierre Marco (in Dynamical complexity and simplectic integrability. arXiv, juil. 2009 ainsi que : Polynomial entropies and integrable Hamiltonian systems. Regular and Chaotic Dynamics, 18(6):623-655, 2013). L'article de Clémence Labrousse (Polynomial entropy for the circle homeomorphisms and for C 1 nonvanishing vector fields on T 2 . arXiv:1311, nov. 2013) a aussi servi pour certaines propriétés de ce rapport. À noter qu'elle a collaboré avec Jean-Pierre Marco pour l'article Polynomial entropies for Bott nondegenerate Hamiltonian systems (arXiv:1207, juil. 2012) qui compare l'entropie polynomiale avec l'entropie polynomiale faible. À propos de cette dernière, on trouvera dans l'article de Kong De-Peng et Chen Er-Cai (Slow entropy for noncompacts sets and variational principle. arXiv:1111, nov. 2011) le principe variationnel qui la relie à l'entropie locale (citons aussi le nom d'Anatole Katok et de Jean-Pierre Thouvenot qui sont à l'origine de l'entropie