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Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL,
CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
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We have studied homogeneous cavitation in liquid nitrogen and normal liquid helium. We monitor
the fluid content in a large number of independent mesopores with an ink-bottle shape, either when
the fluid in the pores is quenched to a constant pressure or submitted to a pressure decreasing at
a controlled rate. For both fluids, we show that, close enough to their critical point, the cavitation
pressure threshold is in good agreement with the Classical Nucleation Theory (CNT). In contrast,
at lower temperatures, deviations are observed, consistent with a reduction of the surface tension
for bubbles smaller than two nanometers in radius. For nitrogen, we could accurately measure
the nucleation rate as a function of the liquid pressure down to the triple point, where the critical
bubble radius is about one nanometer. We find that CNT still holds, provided that the curvature
dependence of the surface tension is taken into account. Furthermore, we evaluate the first- and
second-order corrections in curvature, which are in reasonable agreement with recent calculations
for a Lennard-Jones fluid.

Cavitation, the formation of a vapor bubble in a
metastable liquid below its saturated vapor pressure Psat,
is important in many fields, ranging from engineering
(ultrasonic cleaning, propeller damage. . . ) to natural sci-
ences (blocking of sap ascent. . . ). While, for decades, the
theoretical framework for cavitation has been the Classi-
cal Nucleation Theory (CNT), recent experiments using
hexane [1], heptane [2], ethanol [2], argon [3], nitrogen
[4] have shown that measured cavitation rates are many
orders of magnitude larger than predicted by CNT.

This discrepancy is generally attributed to a depen-
dance of the surface tension σ on the interface curvature.
Indeed, in the CNT, the liquid-vapor interface is assumed
to be infinitely sharp, with a surface tension σ∞ equal to
that for a planar interface, so that the energy barrier for
nucleation reads:

ECNT
b =

16π

3

σ3
∞

(Pv − Pl)2
(1)

where Pv and Pl are the pressures inside and outside the
bubble, respectively. In the above experiments, however,
the interface thickness is not negligible compared to the
nanometric size of the critical nucleus. As a result, the
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CNT may overestimate the energy barrier, accounting for
the measured cavitation rates. The modification of the
energy barrier can be computed from density functional
models [5]. A simpler approach consists in keeping the
CNT formalism, in particular equation 1, while allowing
the surface tension σ to depend on the radius of curvature
R. It was recently demonstrated that such an approach
is successful for cavitation in water [6].
To first order in curvature, the dependence of the sur-

face tension is expected to be of the form:

σ∞/σ(R) = 1 + 2δ∞/R (2)

(with R < 0 for a bubble), as demonstrated a long time
ago by Tolman [7] . Accordingly, δ∞ in the above equa-
tion is generally called the Tolman length. Beyond first
order, it is only recently that many theoretical works have
attempted to calculate σ(R) for a bubble or a droplet, us-
ing direct molecular dynamics simulations [8–10], various
density functional calculations [11, 12] or both [13, 14].
For Lennard-Jones (LJ) fluids, a consensus has emerged
that, first, δ∞ is negative and of the order of −0.1dlj (dlj
is the LJ length scale). Second, as soon as dlj/|R| > 0.1
which is the case in most nucleation experiments, the sec-
ond order correction cannot be neglected so that equation
2 does not capture the R−dependence of σ.
Experimentally testing these predictions through cav-

itation measurements is a prerequisite for using the con-
cept of an effective surface tension σ(R), and the sim-
ple and powerful tools of capillarity in situations where
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the interface is highly curved, ranging from homogeneous
nucleation of droplets to sessile nanodroplets [15, 16],
meniscii in mesopores [17] or liquid interfaces under an
AFM tip [18]. Experimental data are however scarce.
Interpretation of most cavitation experiments in simple
fluids only yields the effective surface tension for a single
value of R, equal to the radius R∗ of the critical nu-
cleus [3, 4]. This single value σ(R∗) is not enough to test
the validity of equation 2 and to determine first and sec-
ond order corrections in curvature. More detailed experi-
ments have been performed in ethanol and water [19, 20].
The analysis of the pressure dependence of the cavitation
rate points to the relevance of the second order correc-
tion, but its estimate may be specific to these fluids and
has been obtained only in a restricted temperature range.

In a recent work, we demonstrated that, by using
porous materials made of assemblies of individual pores
with an ink-bottle shape, it is possible to accurately mea-
sure the cavitation rate of hexane at room temperature
and a given liquid pressure in a single shot experiment
[1]. Here, we extend this new technique to the study
of cavitation in two simple cryogenic fluids, helium and
nitrogen, over a large range of temperatures. By moni-
toring the fluid content in the pores when decreasing the
liquid pressure, we can determine the cavitation thresh-
old, as well as the cavitation rate around this threshold.
At high temperatures, we show that our results are in
good agreement with the CNT; in other words, the crit-
ical radius is large enough to ensure σ(R) = σ∞. At low
temperatures, our measurements evidence a decrease of
the surface tension, with respect to its bulk value, due
to the curvature of the critical bubble. Furthermore, for
nitrogen, the optical technique used to monitor the fluid
content allows to accurately measure the pressure depen-
dence of the cavitation rate, hence to probe the second
order correction to σ. Using the procedure introduced by
Bruot and Caupin [20], we have extracted from the ex-
perimental data the first and second order contributions
to σ(R). These contributions are found to be of the same
order of magnitude and both are in reasonable agreement
with Density Functional Theory (DFT) predictions.

MEASUREMENT OF THE CAVITATION
THRESHOLD

Cavitation is studied in membranes of porous alumina
[1] or porous silicon [21]. The native independent pores
are roughly cylindrical, with a diameter and a length
which can be respectively tuned in the ranges 10-50 nm
and 1-10 µm by varying the synthesis conditions. Their
typical volume Vp is of the order of 10−21m3 (see Ma-
terials and Methods). In order to obtain the ink-bottle
shape necessary for evaporation to proceed by cavitation,
the pore aperture is reduced by Atomic Layer Deposition
[21].

Cavitation is monitored by measuring sorption
isotherms, that is the amount of fluid in the pores as

a function of the vapour pressure Pv in the gas reservoir.
For nitrogen, we use optical interferometry in white light
(WLI) which yields the optical thickness L of the sample.
We have checked that the variation of L is proportional
to the amount of fluid inside the pores [22]. WLI is more
precise and less prone to drift than volumetry. While it
only probes the illuminated part of the sample, the lat-
ter still contains a huge number of pores (of order of 109,
about one tenth of their total number).
A typical optical isotherm is shown in figure 1, where

the difference ∆L ≡ L(Pv) − L(Pv = 0) is plotted as a
function of the vapour pressure Pv. First, Pv is increased
up to the saturation pressure Psat in order to fill the
pores. Then Pv is decreased at a constant rate. In a first
step, the optical thickness barely decreases: the liquid-
vapor meniscii are pinned at the aperture of the pore and
the sample remains saturated with liquid. At some point
(Pv ≲ 0.8Psat in fig.1), ∆L starts to decrease, corre-
sponding to the recession of meniscii in the largest aper-
tures. This recession regime occurs in a wide pressure
range as there is some dispersion in the aperture diame-
ters, due to both the initial dispersion in pore diameter
and the ALD process. Finally, the sharp decrease of ∆L
over a narrow pressure range around 0.67Psat is the sig-
nature of cavitation in the pores whose aperture radius
is smaller than a temperature-dependent critical value.
The cavitation threshold P ∗

v is defined as the pressure at
mid-height of the cavitation step. Here and below, we
use the suffix ∗ for quantities evaluated at this threshold.
The corresponding liquid pressure at the threshold, P ∗

l ,
is derived from phase equilibrium between the vapour
and the metastable liquid (see Material and Methods).
Away from the threshold, Pl, the liquid pressure inside
the pores, is similarly derived from Pv. In the following,
we will use Pl to measure the departure from bulk phase
equilibrium Pl = Psat .

PV*

FIG. 1. Nitrogen optical isotherm at 90 K for the porous
alumina sample A (mean pore diameter 33 nm, see table
I). Upon decreasing the pressure, meniscii start to recede in
the larger apertures at PV ≃ 0.8Psat, until cavitation occurs
around 0.67Psat. Inset: sketch of meniscus receding (right)
and cavitation (left) in an ink-bottle pore.

Such isotherms have been measured for nitrogen in a
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FIG. 2. Nitrogen optical isotherms for the porous alumina
sample B (mean pore diameter 19 nm, see tab. I). The cavi-
tation pressure and the height of the cavitation step increase
with temperature.

large temperature range in several porous samples with
various pore diameters (see Table I inMaterial and Meth-
ods). Figure 2 shows a series of isotherms measured on
the porous alumina sample B. As the temperature in-
creases, the threshold P ∗

v and the fraction of pores emp-
tying through cavitation increase. This is due to the tem-
perature variation of σ∞ which favours cavitation with
respect to meniscus recession at high temperature [21].

Similar experiments have been performed for normal
liquid helium at temperatures above the superfluid tran-
sition (≃ 2.17 K). In this case, the adsorbed amount
is measured by a continuous volumetric method [21].
During evaporation, the cell is pumped through a fixed
impedance so that the rate of decrease of Pv varies
through the cavitation stage: P ∗

v is then obtained as the

pressure where |Ṗv| is minimal (see Supporting Informa-
tion).

SURFACE TENSION FROM CAVITATION
THRESHOLD

In order to obtain the surface tension at the scale of the
critical bubble, we first compute the energy barrier at the
cavitation threshold. According to CNT, the nucleation
rate J(Pl) at a fixed liquid pressure Pl is given by

J(Pl) = J0 exp
−Eb(Pl)/kbT (3)

with J0 being a prefactor which is controlled by the dy-
namics of the critical bubble [5, 23]. For nitrogen, the
pressure is decreased at a constant rate A = −dPl/dt.
Assuming that the energy barrier can be linearized as
Eb = E∗

b + α (Pl − P ∗
l )kbT in the vicinity of the cavita-

tion threshold, the probability Σ(Pl) that cavitation has
not occurred at pressure Pl in a pore of volume Vp is (see

Supporting Information):

Σ(Pl) = exp

[
− Vp

Aα
J(Pl)

]
(4)

As shown in Materials and Methods, Σ(Pl) =1/2 cor-
responds to the middle of the cavitation step, i.e. to
Pl = P ∗

l . The energy barrier E∗
b at the threshold is thus:

E∗
b = kbT ln [J0Vp/(Aα ln 2)] (5)

For the volumetric measurements with helium, the flow
rate is imposed instead of the pressure ramp and the
above expression is modified as:

E∗
b = kbT ln [J0Vp/τ ] (6)

where the characteristic time scale of cavitation, τ , is the
duration of the cavitation step (see Supporting Informa-
tion).
In Eqs.5 and 6, A (or τ) and Vp are known.

For Eq.5, we approximate α by its CNT expression(
∂ECNT

b /∂Pl|T
)
/(kBT ). As we will show below, this

is correct within 20% (see Fig. 6). Since α enters eq.5
through a logarithmic factor, our approximation has a
negligible impact on E∗

b . The last parameter is the
prefactor J0; for our experimental conditions, as usual
for a cryogenic liquid not too close to the critical point
[3, 4]and for water[6] close to room temperature, the dy-
namics of the critical bubble is controlled by the viscous
flow in the liquid. We use the corresponding expression

J0 = nl
σ∞
η

(
σ∞
kbT

)1/2

(1−Pl/Pv), where nl is the number

density of the liquid and η its viscosity (see Ref. [23? ]
and Supporting Information).
Plugging the above values in eqs.5 or 6 yields E∗

b in
the range of 40–55 kbT for both nitrogen and helium
(see Fig. S2 of the Supporting Information). Because
the experimental parameters Vp and A or τ vary from
run to run, comparing our results with CNT is easier
in terms of the effective surface tension σ which, for a
given fluid, should only depend on the temperature and
on the radius of the critical bubble. Due to the thickness
of the bubble interface, different choices can be used for
the bubble radius and for the surface tension[24]. When
using the so-called stress radius R∗

s and the associated
surface tension σ(R∗

s ), for which the Laplace equation
R∗

s = 2σ(R∗
s )/(P

∗
l − P ∗

v ) is satisfied, the energy barrier
is given by the CNT expression (eq.1), provided σ∞ is
replaced by σ(R∗

s )[24]. Equating this CNT expression
to the measured barrier thus yields the effective surface
tension:

σ(T,R∗
s ) =

[
3

16π
E∗

b(P
∗
v − P ∗

l )
2

]1/3
= σ∞(T )

[
E∗

b

ECNT∗
b

]1/3
(7)

The ratio σ/σ∞ is plotted in Fig. 3 as a function of the
normalised radius |R∗

s |/dlj as obtained from σ(T,R∗
s ) and
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the Laplace equation for both nitrogen and helium, using
respectively for dlj the values 0.375 nm and 0.26 nm for
nitrogen and helium. For a given fluid, increasing values
of R∗

s correspond to increasing temperatures, reflecting
the fact that σ∞ decreases when T increases while Eb

only weakly depends on T .The plot of σ/σ∞ as a function
of the normalised temperature T/Tc can be found in Fig.
S4 of the Supporting Information.

Figure 3 exhibits two important features. First, the
surface tension equals its bulk value for large critical bub-
bles (|R∗

s |/dLJ > 10); this implies that the CNT is valid in
this regime and that the evaluation of J0 is correct. Sec-
ond, for small bubbles, σ becomes significantly smaller
than σ∞, in agreeement with expectation. For nitrogen,
the relative deviation reaches −0.2 for |R∗

s |/dLJ ≃ 3, and
−0.15 for helium for |R∗

s |/dLJ ≃ 5. Data from earlier
cavitation experiments by Baidakov and co-workers in
superheated argon [3] and nitrogen [4] can be analysed
in the same way and yield a decrease of σ for small nu-
cleus consistent with our measurements, though with a
much larger scatter (see Fig. S7 in Supporting Informa-
tion).

We stress that Fig.3 cannot be used to test Eq. 2, or
to determine the respective first and second order correc-
tions in curvature. Indeed, in Fig.3, R∗

s varies together
with T , whereas, because the Tolman length may depend
on temperature [25] , a test of eq.2 requires varying R∗

s at
a fixed temperature. Because R∗

s = 2σ(R∗
s )/(P

∗
l − P ∗

v ),
this amounts to vary P ∗

v . In the following, we achieve
this requirement by varying the cavitation rate.

FIG. 3. Normalised surface tension as a function of the nor-
malised bubble curvature |R∗

s |/dLJ. Data for helium are mea-
sured above the superfluid transition. dLJ for helium and
nitrogen are given in the text. The temperature range is 65–
120 K for nitrogen and 2.3–4.5 K for helium. The uncertainty
on σ∞ is about 1% and is not taken into account in the eval-
uation of the error bars (see Supporting Information).

DETERMINATION OF THE GENERALIZED
TOLMAN LENGTH FROM THE PRESSURE
DEPENDENCE OF THE CAVITATION RATE

The pressure dependence of the cavitation rate, or that
of the energy barrier, α = (∂Eb/∂Pl|T ) /(kBT ), can be
determined by using two different methods for nitrogen.

Relaxation after quenching

The first method is similar to the one we previously re-
ported for hexane [1]. Starting from a sample fully filled
with liquid, it consists in quenching the sample down to
a pressure Pl close to P ∗

l by decreasing the pressure at a
fast rate down to Pl and then closing the cell (see Ma-
terials and Methods). As shown in Figs. 4 A & B, the
optical signal ∆L then decreases with time t to a lim-
iting value ∆L0 as exp(−t/τexp) (figure 4 C) . ∆L0 re-
flects the contribution of the fluid adsorbed on the walls
of the ”emptied” pores at equilibrium, and can be accu-
rately determined along the condensation branch of the
isotherm (dashed line in fig. 1), at least when the con-
densation and evaporation branches are well separated.
Close to the cavitation step, the number of filled pores is
then proportional to ∆L−∆L0.

As a result, the number of filled pores exponentially
decays with the characteristic time τexp(Pl), and the nu-
cleation rate J(Pl) equals 1/(τexpVP). Repeating the ex-
periment at different pressures, we determine the pres-
sure dependence of the nucleation rate. We find that
J varies exponentially with Pl (figure 4 D), allowing to
compute the value of α through eq. 3.

We performed such relaxation experiments at two dif-
ferent temperatures. The corresponding data points for
α are shown in red in figure 6. This method is simple,
but requires a very long term temperature stability. As
discussed below, analysing the shape of a single isotherm
provides a more efficient way to determine the value of
the parameter α.

Analysis of the isotherm shape

The magnification of the cavitation step of figure 1
is shown in the inset of figure 5. As explained above,
after subtracting the contribution ∆L0 of the fluid ad-
sorbed in empty pores (dashed blue line, measured dur-
ing condensation), the signal is proportional to the num-
ber of filled pores. When the pressure is decreased along
the isotherm, this number decreases through two mech-
anisms, namely cavitation and meniscus recession. As-
suming that the cavitation probability does not depend
on the aperture size, the ratio Ψ between the actual num-
ber of filled pores and the number that would be expected
without cavitation at a given pressure is:
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FIG. 4. (A) Optical isotherms measured in nitrogen at 73 K
on the porous alumina sample C (see tab. I) during quenching
at various pressures. The total measurement time is about
48 h. (B) Close-up of the isotherms showing the relaxations
at constant pressures 239.7, 240.36, 241.07, 241.86, 242.41,
243.24, 244.04, 245.51 mbar. (C) Relaxation of ∆L−∆L0 at
constant pressures (same values as in B). ∆L0 stands for the
optical thickness of empty pores (∆L0 ≃ 0.12 µm, a small
variation is allowed from run to run to account for the small
long term drift). (D) Nucleation rate J as a function of the
liquid pressure: from the relaxation time measured in fig. C
(squares - the size of the symbols sets the uncertainty) and
from the shape of the isotherm measured at constant pressure
rate (line).

FIG. 5. Fraction Ψ of pores that have not cavitated at pres-
sure Pl: experimental points (crosses) and fit by the double
exponential of the equation 4 (red solid curve). Inset: close-up
of of the cavitation step of fig. 1. The dotted curves represent
the signal ∆L0 for ”empty” pores (blue) and the extrapolated
signal (red) that would be observed without cavitation.

Ψ =
∆Lp

∆Lp +∆Lv
(8)

where the optical thicknesses ∆Lp and ∆Lv are defined
in figure 5. Ψ(Pl) obeys (see Materials and Methods):

dΨ

dPl
=

J(Pl)Vp

A
Ψ (9)

This is exactly the equation obeyed by Σ(Pl) (see Sup-
porting Information, eq. 6). Hence Ψ(Pl) is expected to
show the characteristic double exponential dependence of
equation 4. Figure 5 shows that this is indeed the case,
and the fit provides the value of α. The uncertainty on
α mainly originates from that on the extrapolated con-
tribution of the meniscus recession.
The result of this analysis can be directly compared

to that of the relaxation experiment by computing the
nucleation rate J(Pl) = (A/Vp)

d lnΨ
dPl

from the corrected

isotherm shape Ψ(Pl). As shown in figure 4D, both meth-
ods yield the same curves J(Pl) at T = 73 K, which val-
idates our method for correcting the isotherm shape for
the contribution of the meniscus recession. The radius
dependence of α, normalized by its CNT value, is shown
in Fig.6. Again, we find that the CNT is correct for large
bubbles. Moreover, α decreases with |RS|, the correction
reaching 20% for the smallest bubbles. Such a reduction
is qualitatively consistent with a reduction of the surface
tension at small scales.

FIG. 6. Plot of α = 1
kbT

∂Eb
∂Pl

∣∣∣
T
, normalised by its CNT

value calculated from eq. 1. Blue disks: this work, from
the isotherm shape. Red: this work, from relaxation after
quenching. Green open square are data for argon condensa-
tion, derived from the work of Sinha et al. [26]. Note that
argon values for α are plotted as a function of the critical EDS
radius RE since the stress radius RS cannot be derived from
[26].

For helium, a similar analysis can be used to extract
the value of α from the volumetric measurements. How-
ever, the uncertainty on α is of order ± 10% and we
can only conclude qualitatively that the parameter α is
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smaller than the CNT prediction for small radii (see Sup-
porting Information). In the following, we thus focus on
the results for nitrogen.

Nucleation rate has also been measured for argon in
condensation experiments [26, 27]. Comparing the nu-
cleation rate J for two different supersaturations S =
PV/Psat allowed Sinha et al. [26] to estimate the number
n∗ of atoms in the critical nucleus using the nucleation
theorem: n∗ = ∂(ln J)/∂(ln S)|T [28]. From this esti-
mate, it is possible to derive α as α = n∗/n∗CNT. The
corresponding values are quite consistent with our mea-
surement for nitrogen bubbles, as shown in fig. 6 .

Generalized Tolman length

In order to determine the curvature dependence of σ for
nitrogen, we use the fact that α can be related to Re, the
radius of the equimolar dividing surface (EDS) defined
such that there is no excess mass associated with the
interface. The EDS is different from the surface of tension
(of radius Rs), though one expects that both surfaces
lay in the region of the atomistically diffuse interface.
Similarly to other work on nucleation [19, 26, 29], we
obtain the equimolar volume V ∗

e of the critical nucleus
through the nucleation theorem which can be written as:
[28]

V ∗
e =

∂Eb

∂∆P

∣∣∣∣
T

(10)

where ∆P = Pl − Pv. Applied to a spherical critical
bubble of radius Re, this leads to:

4π

3
|R∗

e|3 = α
1

1− ρv/ρl
(11)

where ρv and ρl are the density of the bulk vapour and
liquid phases at the cavitation threshold.

It is customary to call δ the (algebraic) distance be-
tween the two surfaces:

δ = R∗
e −R∗

s (12)

δ, rather than δ∞, is called the Tolman length by some
authors. In order to avoid any confusion, we will call be-
low δ the generalized Tolman length. The Tolman length
δ∞ is properly defined as the asymptotic value of δ in the
limit of zero curvature. As conjectured by Tolman [7],
the natural assumption, which should be valid at least
at large radius, is to consider δ as a constant: δ ≃ δ∞.
Equation 2 is valid only at this level of approximation.

One can thus probe the validity of this first order ap-
proximation by computing independently δ from R∗

e and
R∗

s on the one hand, and, using equation 2, δ∞ from σ and
R∗

s on the other. Although both parameters are found to
have the same order of magnitude (about – 0.3 dLJ), δ is

significantly smaller than δ∞ (see Fig.S5 in Supporting
Information). This implies that δ cannot be considered
as a constant and σ cannot be described by a first order
expansion in curvature. This conclusion makes sense in
view of the small radii of cavitation bubbles (2.5 – 10
dLJ) in the temperature range where α is measured.

CURVATURE DEPENDENCE OF THE SURFACE
TENSION

Our results show the necessity to go beyond the above
first order approximation, and to allow for a dependence
of δ on curvature. Simulations suggest the following de-
pendence [24]:

δ = δ∞ +
c

Rs
(13)

The corresponding expansion of the surface tension
reads [30]:

σ∞

σ(R)
= 1 +

2δ∞
Rs

+
δ2∞ + c

R2
s

(14)

Following Bruot and Caupin [20], it is straightforward
to compute the two parameters δ∞ and c from the knowl-
edge of the energy barrier E∗

b and the radius Re (we refer
the reader to Ref.20 for the details of the algebra).
The second order expansion is more customarily writ-

ten in a Helfrich form [8, 11, 12, 14]:

σ(R) = σ∞

(
1− 2δ∞

Rs

)
+

κ

R2
s

(15)

where κ is the average curvature-elastic modulus, involv-
ing both the bending rigidity and the rigidity constant
associated with Gaussian curvature. Identification of eqs.
14 and 15 yields κ = σ∞(3δ2∞ − c).
The results for nitrogen are summarised in Fig. 7

where we compare the asymptotic Tolman length δ∞ and
the rigidity constant κ as a function of temperature to
the predictions of two different DFT calculations for a
Lennard-Jones fluid. In the middle of the temperature
range, we find δ∞/dLJ ≃ −0.1 and κ/ϵLJ ≃ −0.8, in
reasonable agreement with the DFT calculations (ϵLJ =
98kB is the LJ characteristic energy scale ). Within the
experimental uncertainty, κ is constant, consistent with
the DFT calculations. On the other hand, |δ∞| seems
to increase with temperature in the whole experimental
range, a behavior not expected from the DFT.
We also applied the same analysis to the data that we

obtained earlier with hexane at room temperature [1].
We find δ∞/dLJ ≃ −0.15 and κ/ϵLJ ≃ −0.9, very close
to the parameters for nitrogen at the same normalised
temperature T/TC = 0.57 (with dLJ = 0.54 nm and ϵLJ =
400kB for hexane).
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FIG. 7. Top : normalised asymptotic Tolman length δ∞/dLJ.
Bottom: normalised rigidity constant κ/ϵLJ. Lines are the
results of DFT calculations: full line from ref. [11], dashed
line from ref. [12].

Returning to the surface tension, it turns out that the
first and second order contributions in eq. 14 are of simi-
lar magnitude over the whole explored temperature range
(see Fig. S6 in Supporting Information). Thus, the sim-
ple functional form proposed by Tolman (σ ∝ 1

1+Ct/R )

fails to capture the curvature dependence of the surface
tension. This seems to be a general feature for nuclei of
nanometer size, as the same conclusion has been drawn
for ordinary liquids (ethanol, heptane and water) at room
temperature [20].

CONCLUSION

As a first practical remark, this work demonstrates
that continuous measurements of evaporation in a porous
material are a powerful tool to investigate cavitation
statistics. Here, we have focused on simple fluids, but
our technique can be applied to any volatile fluid.

Using nitrogen and helium, we have shown that
the Classical Nucleation Theory correctly predicts the
cavitation threshold as well as the parameter α =
(1/kbT ) (∂Eb/∂Pl|T ) when the critical bubbles are large
enough, that is at high temperature. At low tempera-
ture, for a bubble radius smaller than about 10 times the

molecular size, the simple CNT approach is still valid if,
instead of the bulk surface tension σ∞, one uses an ef-
fective surface tension σ(R). In the range R/dLJ < 10,
we find that an expansion up to second order in curva-
ture is necessary to account for the experimental results.
Presently, the measured values of the Tolman length and
rigidity are consistent with DFT, but the accuracy of
both experiment and calculation is still not high enough
to elucidate what happens moderately close to the criti-
cal temperature (T/TC ∼ 0.9).
To summarize, a macroscopic description of critical

cavitation bubbles is quantitatively valid down to the
nanometer scale if the surface tension is corrected for
the interface curvature. Beyond cavitation, our results
give a firmer basis to the concept of an effective surface
tension σ(R), and suggest that the simple and powerful
tools of capillarity can be used in any situations where
the liquid-vapour meniscus is highly curved.

MATERIALS AND METHODS

Samples

Details of the synthesis of the samples can be found
in Ref.[1] for porous alumina samples and Ref.[21] for
porous silicon samples. In porous alumina samples, the
cylindrical pores are independent with a narrow distri-
bution in diameter. In porous silicon, recent studies
[21, 31, 32] have shown that the pore network is more
disordered: the pores are still aligned along the etching
direction, but constrictions are present along the pores,
as well as connections between neighbouring pores. The
pores size distribution is also quite wide: for the sam-
ple used in this work, the mean transverse dimension
< d >= 50 nm, with 23 < d < 80 nm.

TABLE I. Characteristics of porous samples.

sample mean pore diameter pore lenth Rmax
s

(nm) (µm) (nm)
porous silicon 50 2 5.5

porous alumina - A 33 5.4 2.8
porous alumina - B 19 7 2.2
porous alumina - C 11 8 1.1
porous alumina - D 36 85 3.5

For nitrogen experiments, we report only measure-
ments where P ∗

V is independent on the pore diameter,
so that the fluid-wall interaction is not relevant and the
cavitation homogeneous. In practice, we find that this
limit is reached when the radius is of the critical nucleus
R∗

s is smaller than about one fifth of the pore diameter
(the maximum value Rmax

s of R∗
s is given in Table 1). This

limit is also consistent with an earlier study of cavitation
in porous silica [33].
For helium, the data discussed in this paper are re-

stricted to temperatures smaller than 4.5 K, correspond-
ing to a R∗

s smaller than 3.5 nm. Based on the theoretical
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effect of confinement[34], this ensures a negligible influ-
ence of confinement on cavitation.

Cell for optical measurements with nitrogen

In contrast to standard volumetric setups, the dead
volume around the sample in the optical cell is very large,
about 50 cc. This is not an issue because interferometry
only probes the fluid content in the pores. Moreover, it
has two important advantages: first, it allows to reach
the required low pressure rates with standard flowmeters
(Brooks 5850 series). Second, it makes the relaxation
experiments at a fixed pressure straightforward: we only
need to close the cell once the desired pressure is reached
since the subsequent liquid evaporation from the porous
sample causes a negligible pressure increase (Fig. 4 B).

Volumetric measurements with helium

Helium cavitation is studied by connecting the exper-
imental cell filled with liquid helium to a vacuum pump
through a controlable microvalve, and measuring the cell
pressure using a room-temperature pressure gauge con-
nected to the cell through a separate 0.2 mm diameter
capillary. Thermomolecular effects were computed to
be negligible in the range of temperatures and pressures
studied, so that the pressure read by the gauge equals the
cell pressure. The cavitation isotherm is obtained from
the time dependence of this pressure, and an analysis
similar to that used above for nitrogen yields the pres-
sure dependence of the cavitation rate (see Supporting
Information).

Calculation of the liquid pressure Pl

For a vapor pressure Pv in the vapor reservoir outside
the pores, the pressure Pl of the metastable liquid in the
pores is calculated assuming that the chemical potentials
of the two phases are equal. The chemical potential of the
vapour is calculated using the NIST values for fugacity
(for nitrogen) or by numerical integration over pressure of
the NIST volume data (for helium). The chemical poten-
tial of the metastable liquid phase is calculated assuming
that the liquid compressibility is equal to the compress-
ibility at saturated vapour pressure. This is consistent
with the fact that nucleation occurs far from the spin-
odal. In principle, the measurement of the optical thick-

ness L on the saturation plateau of the isotherm could be
used to determine the metastable liquid compressibility
for nitrogen, and to check its sensitivity to the confine-
ment [35]. However, because we cannot preclude that
the L variation is partially due to the emptying of the
larger pores, we can only obtain an upper bound for the
compressibility (see Supporting Information). This up-
per bound is enough to estimate the uncertainty on Pl

.
For both nitrogen and helium, the typical effect on Pl

of the liquid compressibility is less than 3 %, with an
uncertainty due to the assumption of a constant com-
pressibility of about 1%.

Equation for Ψ(Pl)

Above the cavitation step, the variation dNr of the
number of filled pores due to evaporation by meniscus
recession in the pressure interval dPv is dNr = avdPv,
the coefficient av being proportional to the slope of the
isotherm (red dotted line in Fig. 5). As the cavitation
step is very sharp, one can assume that, if cavitation
would not occur, the number of pores N ′(Pv) remaining
filled would be the extrapolation of the behaviour above
the cavitation step, hence follows the red dotted line, so
that dN ′ = avdPv, or in Pl variable, dN ′ = aldPl.
If we now include cavitation, the actual number of filled

pores is N = ΨN ′ < N ′. If recession and cavitation
are independent processes, the actual number of pores
emptying trough recession is simply decreased by a factor
Ψ: dNr = Ψ(aldPl). The total number dN of pores
emptying through cavitation and recession is thus:

dN =

(
J(Pl)VP

N

A
+ alΨ

)
dPl (16)

Using this equation to compute the derivative of Ψ =
N/N ′ yields equation 9. Note that the identity with the
equation for Σ implies that Σ=1/2 for Ψ=1/2, i.e. the
point at mid-height of the cavitation step.
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