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Summary. Machine learning classification methods usually assume that all possible
classes are sufficiently present within the training set. Due to their inherent rarities, ex-
treme events are always under-represented and classifiers tailored for predicting extremes
need to be carefully designed to handle this under-representation. In this paper, we ad-
dress the question of how to assess and compare classifiers with respect to their capacity
to capture extreme occurrences. This is also related to the topic of scoring rules used
in forecasting literature. In this context, we propose and study a risk function adapted to
extremal classifiers. The inferential properties of our empirical risk estimator are derived
under the framework of multivariate regular variation and hidden regular variation. A sim-
ulation study compares different classifiers and indicates their performance with respect
to our risk function. To conclude, we apply our framework to the analysis of extreme river
discharges in the Danube river basin. The application compares different predictive algo-
rithms and test their capacity at forecasting river discharges from other river stations. As
a byproduct, we study the special class of linear classifiers, show that the optimization of
our risk function leads to a consistent solution and we identify the explanatory variables
that contribute the most to extremal behavior.

Keywords: Multivariate Extreme Value Theory; Binary Classification; Multivariate Reg-
ular Variation; Hidden Regular Variation; River Discharges

1. Introduction

In binary classification, one typically considers data of the form (X, Y )> where Y ∈
{−1, 1} represents a binary response to the input X ∈ [0,∞)d. In this paper, we focus
on the case that Y = Y (u) represents the occurrence of an extreme event, Y (u) = 1
indicating that a random quantity H crosses a level u, called the threshold, and Y (u) =
−1 otherwise, that is

Y (u) =

{
+1, if H > u,

−1, otherwise.
(1)
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In the following, for simplicity, we focus on the case that H is a non-negative random
variable such that P(H > u) > 0 for all u > 0 and its upper end point is infinite.

In extreme value analysis, one is interested in the behavior of Y (u) for high levels, that
is for u → ∞, and, therefore, also any classifier g needs to be adapted to the threshold
u. Thus, for every u > 0, let g(·;u) be a measurable function from Rd to {−1, 1}. In
order to evaluate the quality of the classification at a certain level u, we consider a loss
function lu that assigns a cost to a classifier g(·;u) and a realization (x, y(u)). Here, it
is important to note that, by definition of rare events, P(Y (u) = 1) is very small and
P(Y (u) = −1) is close to one as u gets large. This imbalance can lead to atypical and/or
undesirable comparisons of classifiers. For example, the “always optimistic” classifier
that never forecasts an extreme can be defined as g(X;u) ≡ −1, almost surely. To see
how to handle this naive classifier, the classical risk function defined as the expectation
of the indicator 1{g(X;u) 6= Y (u)} can be written as

P
(
g(X;u) 6= Y (u)

)
= P(H > u, g(X;u) = −1) + P(H ≤ u, g(X;u) = 1). (2)

If g(X;u) ≡ −1, then P(g(X;u) 6= Y (u)) = P(H > u) goes to zero as u gets large.
Hence, the classical risk function E(1{g(X;u) 6= Y (u)}) will systematically favor the
always optimistic classifier for extremes. To avoid this undesirable feature, the loss
function has to be modified. One natural idea is to re-scale by P(H > u) and introduce
the loss function 1{g(X;u) 6= Y (u)}/P(H > u). In this case, the risk, i.e., the expected
loss E(1{g(X;u) 6= Y (u)}/P(H > u)), goes towards one as u gets large.

Another trivial but also interesting case is the “crying wolf” forecaster who always
issues g(X;u) ≡ +1, see also the forecaster’s dilemma (e.g. Lerch et al., 2017). In this
case, Equation (2) implies that P

(
g(X;u) 6= Y (u)

)
= P(H ≤ u) and, consequently, the

risk E(1{g(X;u) 6= Y (u)}/P(H > u)) goes towards infinity as u gets large. This limiting
cost indicates that the “crying wolf” forecaster is much worse than the overly optimistic
one. Both of them are unreasonable in practice and there is no reason to strongly favour
one over the other one. For this reason, we propose to use a following weighted loss
function

lu(g; (x, y)) =
1

P(Y (u) = 1 or g(X;u) = 1)
1{g(x;u) 6= y}

and the associated risk

R(u)(g) = E(lu(g; (X, Y (u))) =
P(g(X;u) 6= Y (u))

P(Y (u) = 1 or g(X;u) = 1)
. (3)

By construction, the event {g(X;u) 6= Y (u)} implies that {Y (u) = 1} or {g(X;u) = 1}
and therefore, necessarily, R(u)(g) ∈ [0, 1]. In particular, the naive classifier g(X;u) ≡
−1 possesses unit risk with R(u)(g) = 1 at each level u > 0. Similarly, the risk of the
“crying wolf” classifier g(X;u) ≡ +1 is then equal to R(u)(g) = P(H ≤ u) and converges
to one as u→∞.

Hence, the value of one is reached by the two worst cases scenarios in terms of
classifiers. This unit value provides a clear benchmark that can be compared to any
other classifier satisfying the existence of the limit

R(g) = lim
u→∞

R(u)(g) ∈ [0, 1].
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We call such classifiers extremal.
In the weather forecast literature (e.g. Schaefer, 1990), the definition of R(u)(g) can be

linked to the critical success index, also called the threat score. The critical success index
computes the total number of correct event forecasts (hits) divided by the total number
of forecasts plus the number of misses (hits + false alarms + misses). Hence, 1−R(u)(g)
can be understood as a critical success index for extremes. In the context of rare events
forecasts, Stephenson et al. (2008) highlighted some advantages and drawbacks of various
risk functions, including the critical success index. In particular, these authors linked
forecast scoring rules with two dependence indices used in EVT (see Coles et al., 1999)

χ = lim
u→1

P(U > u | V > u) and χ = lim
u→1

[
2 log(P(U > u)

log(P(U > u, V > u))
− 1

]
,

where the two random variables U and V follow the same continuous uniform distribu-
tion on [0, 1]. The choice of uniform marginals can be made whenever the forecast can
be assumed to be calibrated, i.e. observations and forecasts follow the same marginal
distributions and can be transformed into uniforms. Concerning the extremal depen-
dence strength between U and V , if χ > 0, then the variables U and V are said to be
asymptotically dependent and χ = 1. If χ = 0, then the variables U and V are said to be
asymptotically independent and χ < 1 captures some second order extremal dependence
information. Stephenson et al. (2008) advocated the use of χ and called it the extreme
dependency score. Later on, Ferro and Stephenson (2011) proposed two different scores
and studied their properties. But the link with the concept of asymptotic independence
was not clear and the convergence results of their estimators were not fully developed.
In contrast to χ, one drawback of χ is that its formula is not easy to explain to practi-
tioners. In comparison, R(g) as a type of the critical success index can be interpreted
with ease. Hence, it is of interest to extend this definition to the asymptotic independent
case.

In the machine learning literature, there is a vast body of work about imbalanced
data (see, e.g. Hilario et al., 2018). Within this context of imbalanced problems, R(g)
can be understood as a function of precision and recall, two metrics well-used to score
binary classifiers in learning research (see, e.g. He and Ma, 2013, and the F -score). Still,
the review paper by Haixiang et al. (2017) did not mention any imbalanced method
based on extreme value theory (see, e.g. Resnick, 2003). To our knowledge, very few
theoretical links have been made to bridge the imbalanced learning and multivariate
extreme value theory. One noticeable exception is Jalalzai et al. (2018) who worked on
binary classifiers for extremes under the regular variation hypothesis. But they did not
focus on R(u)(g). Instead, they studied a different setting where the object of interest
was P(g(X) 6= Y | ‖X‖ > u) where ‖X‖ represents a norm with u large. Hence, their
conditioning event was {‖X‖ > u}, while our conditioning depends on Y with the set
{Y (u) = 1 or g(X;u) = 1}, see Equation (3). So, their interest was centered on the
classifier performance when the norm of the explanatory vector X was large. Our focus
is on large values of H in the production of extreme events of the type Y (u) = 1 when
H > u, see Equation (1). Jalalzai et al. (2018) provided various theoretical results
based on the main assumption that the conditional distribution of X given Y = ±1 was
regularly varying with an angular measure that depends on Y = ±1.
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In this study, one part of our results is based on the concept of hidden regular
variation (see, e.g. Ledford and Tawn, 1996; Heffernan and Resnick, 2005; Ferro, 2007).
In particular, we take advantage of the model of Ramos and Ledford (2009) to derive
the asymptotic properties of our estimators.

Our paper is organized as follows. In Section 2, we propose and study a risk function
that can handle both the asymptotic dependent and independent cases. Estimators
are also constructed and their asymptotic properties derived. Section 3 focuses on a
simulation example that highlights the difficulty to compare common classifiers in the
case of asymptotic independence. In Section 4, we revisit the well studied example of the
Danube river application and see how the choice of the metric can change the ranking
of classifiers. Note that, besides the proofs of all propositions, the appendix addresses
the questions of how to optimize the linear classifier for extremes and how to choose the
relevant features, see Section B.

2. Risk, upper tail equivalence and extremal dependence

The following lemma provides a flexible blueprint to link risk functions with probabilities
based on general sets. We will apply it under different setups linked to extreme events.

Lemma 1. Let Aε be a sequence of measurable sets of increasing sizes with decreasing
ε ∈ [0, 1], in particular A1 ⊆ Aε ⊆ A0. Let Bε be the same type of set sequence such that
P(A1 ∩B1) > 0. The following ratio R(Aε, Bε) can be written as

R(Aε, Bε) :=
P(A14B1 | Aε ∩Bε)
P(A1 ∪B1 | Aε ∩Bε)

= 1−
[

1

P(B1|A1 ∩Bε)
+

1

P(A1 | Aε ∩B1)
− 1

]−1
,

(4)
where A14B1 denotes the symmetric difference. In addition, we have the three following
properties for R:

(a) R(Aε, Bε) is non-increasing in ε with R(A1, B1) = 0.
(b) Let A′ε be another sequence of measurable sets of increasing sizes with decreasing ε.

If A1 = A′1 and Aε ⊆ A′ε for some ε ∈ [0, 1) then

R(Aε, Bε) ≤ R(A′ε, Bε).

(c) If for any ε ∈ [0, 1] and ε′ ∈ [0, 1], there exist some positive constants a and b and
some positive function cε,ε′ such that

P(Aε ∩Bε′) = cε,ε′ Pa(Aε)Pb(Bε′), (5)

then

R(Aε, Bε) = 1−
[
cε,1
c1,1

(P(A1 | Aε))−a +
c1,ε
c1,1

(P(B1 | Bε))−b − 1

]−1
. (6)

We deduce from Equation (4) that R(Aε, Bε) = 0 if and only if P(B1 | A1 ∩ Bε) =
P(A1 | Aε ∩ B1) = 1. The second property of this lemma indicates that, for a given ε,
the risk function becomes smaller if the set Aε is as small as possible.



Binary Classifiers for Extremes 5

Equation (5) can be viewed as a mixing condition that leads to a simple expression
of R(Aε, Bε′) based on disjoint events.

We want to use the ratio (4) in order to generalize the risk R(u)(g) defined in (3).
In the latter definition, adapted to extremes, the set {H > u} was considered and one
could set B1 = {H > u}, for instance, and consequently, Bε = {H > εu} would be a
natural sequence if H is regularly varying. The choice of Aε is open and it can play an
important role†. In the next paragraphs, we set ε = 0 and discuss the choice of A1 and
A0. In Section 2.1, we will work with ε > 0. In that case, we will call the corresponding
risk the conditional risk.

In the rest of this paper, we restrict our attention on a particular form of classifiers

g(X;u) =

{
+1, if g(X) > u,

−1, otherwise,
(7)

for some function g : Rd → (0,∞). The function g(.) does not have to be a norm. It
can be understood as any projection/summary of the explanatory variables X onto the
positive real line (see, e.g. Aghbalou et al., 2021, for projection techniques for extremes).
This corresponds to the set A1 = {g(X) > u} in Lemma 1. A special case of this lemma
is to set ε = 0 and when A0 and B0 are equal to the full set, i.e. P(A0) = P(B0) = 1, and
A1 = {g(X) > u} and B1 = {H > u}. In this case, Equation (4) tells us that R(u)(g)
defined by (3) satisfies

R(u)(g) = 1−
[

1

P(H > u | g(X) > u)
+

1

P(g(X) > u | H > u)
− 1

]−1
.

This leads to the following expression of R(u)(g)

R(u)(g) = 1− P(g(X) > u | H > u)

1− P(g(X) > u | H > u) + P(g(X) > u)/P(H > u)
. (8)

Within the class defined by Equation (7), the effect of the marginal distributions of
H and g(X) on R(g)‡ can be explained. When g(X) has a lighter tail than H, i.e.
P(g(X) > u)/P(H > u) → 0, then we also have P(g(X) > u | H > u) → 0, and
consequently

R(u)(g)→ 1, as u→∞.

In the case where g(X) possesses a heavier tail than H, i.e. P(g(X) > u)/P(H > u)→
∞, we can also show that

R(u)(g)→ 1, as u→∞.

This indicates that, whenever g(X) and H are not tail equivalent, the classifier
g(X) cannot outperform naive classifiers with respect to R(u)(g) for large u. Hence,
the marginal behavior of g(X) has a direct impact of its predicting capacity in terms
of R(g). This is a widely known fact in forecast verification. In particular, a paradigm

†Although we will apply Lemma 1 to sets Aε that are rare events, this is a not a necessity.
‡the shortcut notation R(g) corresponds to the case where g(X;u) = +1 is built from the

event g(X) > u in the associated R(g).
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promoted by Gneiting and his co-authors (see, e.g. Gneiting et al., 2007) is to work only
with calibrated forecasts. In our case, calibration means that g(X) and H have the same
distributions, and consequently P(g(X) > u)/P(H > u) = 1 for all u. In practice, it
may be difficult to ensure that this constraint holds for extremes (see, e.g. Lerch et al.,
2017; Taillardat et al., 2019). To illustrate this, suppose that P(X > u) = u−1 for all
u ≥ 1, and the variable H, independently of the value of X, is either equal to δX or
(2− δ)X with probability .5 and the constant δ ∈ (0, 1). Then, we have

P(H > u) =
1

2
P (δX > u) +

1

2
P ((2− δ)X > u) =


P(X > u), if u ≥ 2− δ,
1
2

(
1 + δ

u

)
, if δ < u ≤ 2− δ,

1, if δ ≥ u.

Hence, X and H are more than tail equivalent, they have identical tail behavior for large
u. Concerning classifiers, linear ones of the type ga(X) = aX with a > 0 belong to the
class defined by (7). They are tail equivalent to H, and R(ga) < 1. Although X and H
have identical tail behaviors, the choice of a = 1 is not optimal with respect to R(ga).
In particular, one can show that

R(g2−δ) =
1− δ
2− δ

< R(g1) =
2− 2δ

3− δ
.

This is not surprising. By construction, the largest values of H are more likely to be
produced by (2 − δ)X than X, especially if δ is small. In this context, the following
lemma explains that the risk function R(g) both depend on the upper tail dependence
between g(X) and H and their marginal behaviors.

Lemma 2. Assume that the two limits

c(g) := lim
u→∞

P(g(X) > u)

P(H > u)
∈ (0,∞)

and
χ∗(g) := lim

u→∞
P(g(X) > u | H > u) ∈ [0, 1]

exist. Then, χ∗(g) ≤ c(g) and the limiting risk based on (3) has the expression

R(g) = 1− χ∗(g)

1 + c(g)− χ∗(g)
. (9)

In particular,
R(g) = 0 if and only if c(g) = χ∗(g) = 1.

This lemma indicates that c(g) = 1, i.e. ḡ(X) and H are “asymptotically calibrated”,
is a necessary condition to have R(ḡ) = 0. In the above example with δ = 0, we have
c(g2) = 1 and R(g2) = 1/2 6= 0. This means that χ∗(g2) < 1. Note that c(g) = 1 im-
plies that the constant χ∗(g) simply corresponds to the aforementioned tail dependence
coefficient χ, denoted χ(g), and so, the case c(g) = 1 simplifies the expression of the risk

R(g) = 1− χ(g)

2− χ(g)
.
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This equality tells us that any asymptotically calibrated classifier with χ(g) = 0 always
produces a risk function R(g) = 1. Consequently, any asymptotically independent clas-
sifier is as uninformative as the two naive classifiers. A reasonable strategy will be to
dismiss all asymptotically independent classifiers and find/construct new asymptotically
dependent classifiers with positive χ(g). But, finding asymptotically dependent classi-
fiers can be complex in practice, and in addition, in some not so exotic setups, this is
not always possible. To see this, we consider the simple non-linear regression model in
the following lemma.

Lemma 3. Assume that the variable H in (1) is generated by the non-linear regression
model

H
d
= f(X) +N,

where
d
= represents the equality in distribution, N corresponds to a random noise and

X corresponds to the explanatory variables, independent of N . If P(f(X) > u) =
o (P(N > u)) , then for any classifier of the type defined by (7), we always have

R(g) = 1.

Hence, no classifier can outperform naive classifiers for this regression model.

Note that even if the forecaster knows exactly the function f(.) and has drawn from the
explanatory X, the “ideal” classifier g(x) =f(x) will perform badly, i.e. R(f) = 1. In
addition, the classical trick of using ranks to avoid the problem of marginals discrepancy
cannot be applied here. For example, suppose that H is unit Fréchet distributed, then
transforming the marginals ofX into unit Fréchet random variables, say into X̃, does not
remove the issue as the unobserved noise N has still have heavier tails than f̃(X̃) = f(X)
for some function f̃(.). So, a finer risk measure is needed that is able to distinguish
different classifiers in case of asymptotic independence.

Fig. 1. Simulated example for Lemma 3, for more details see equations (13) and (14).
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2.1. Conditional risk and hidden regular variation
The choice of the conditioning set in Lemma 1 brings new possibilities to construct finer
risk measures for extremes than R(u). To do so, we opted for the sets: A1 = {g(X) > u}
and B1 = {H > u}, (when ε = 1) and A0 = {g(X) > 0} and B0 = {H > 0} (when
ε = 0). But, changing the size of the sets Aε and Bε to make them closer to A1 and
B1, will increase the conditional probabilities P(B1 | A1 ∩ Bε) and P(A1 | Aε ∩ B1). A
simple choice when ε 6= 0 or ε 6= 1 is to set Aε = {g(X) > εu} and Bε = {H > εu} with
ε > 0. This modeling strategy is at the core of hidden regular variation and asymptotic
independent models. More precisely, we first need to fix marginal features. We assume
that both g(X) and H possess regularly varying tails with indices αg > 0 and αH > 0,
respectively. This means that for any ε ∈ (0, 1),

lim
u→∞

P(g(X) > u | g(X) > εu) = εαg and lim
u→∞

P(H > u | H > εu) = εαH .

These limits have to be understood with respect to Equation (6), i.e. the terms P(A1 | Aε)
and P(B1 | Bε). To apply (6), the mixing condition (5) needs to be satisfied. To do so,
we opt for an extended version of the framework of Ramos and Ledford (2009), i.e.

P[g(X) > u,H > v] = L(u, v)(u−αgv−αH )1/2η, (10)

where η ∈ (0, 1] indicates the rate of decay of the joint survival function and L(·, ·) is
bivariate slowly varying function, i.e. there exists a limit function ` : (0,∞)× (0,∞)→
(0,∞) defined as

`(s, t) = lim
u→∞

L(us, ut)

L(u, u)
, s, t > 0

and satisfying `(cs, ct) = `(s, t) for all c, s, t > 0. The parameter η measures the de-
pendence strength. The case η = 1 corresponds to the asymptotic dependence while
η < 1 to the asymptotic independence case. In particular, if η = .5, then independence
appears in the extremes. If .5 < η < 1 (0 < η < .5) the extremal dependence is said to
be positively (negatively) associated.

Now, noticing that (10) corresponds to the mixing condition (5), we can apply Lemma
1, see Appendix A for a proof.

Proposition 4. Under the Ramos and Ledford model defined by (10), the following
risk function

Rε(g) := lim
u→∞

P(g(X;u) 6= Y (u) | Y (εu) = g(X; εu) = 1)

P(Y (u) = 1 or g(X;u) = 1 | Y (εu) = g(X; εu) = 1)
, (11)

which will henceforth also be called conditional risk, can be expressed as

Rε(g) = 1− 1

`(ε, 1)ε−αg/2η + `(1, ε)ε−αH/2η − 1
, for any ε ∈ [0, 1).

Note that η ∈ (0, 1] takes a similar role as χ in the case of the unconditional risk R.
For fixed ε ∈ [0, 1), the risk function Rε(g) decreases with increasing η. So, given

all parameters are fixed but η, the forecaster should aim at maximizing η. In practice,
two forecasters, say g1 and g2, may produce different `(., .) and αg. Consequently, the
minimization of Rε(g) can also depend, besides η, on other parameters.
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2.2. Risk function inference
Concerning the estimation of Rε(g) defined by (11), the empirical estimator can be
easily computed from the sample (Xi, Hi)i=1,...,n. The following proposition describes
the asymptotic property of such an estimator.

Proposition 5. Assume that the risk function Rε(g) defined by (11) exists for a
sequence of un →∞ such that npg,ε(un)→∞ with

pg,ε(un) := P(max{g(X;un), Y (un)} = 1, H > εun, g(X; εun) = 1).

If

lim
n→∞

√
npg,ε(un)

(
P(g(X;un) 6= Y (un), H > εun, g(X; εun) = 1)

pg,ε(un)
−Rε(g)

)
= 0,

then the empirical estimator based on a sample (g(Xi;u), {Hi > u})i=1,...,n and defined
by

R̂n,ε(g) =

∑n
i=1 1{g(Xi;un) 6= Y

(un)
i , Hi > εun, g(Xi; εun) = 1}∑n

i=1 1{max{g(Xi;un), Y
(un)
i } = 1, Hi > εun, g(Xi; εun) = 1}

. (12)

converges in distribution in the following way√
npg,ε(un)

(
R̂n,ε(g)−Rε(g)

)
n→∞−→ N (0, Rε(g)(1−Rε(g))) .

3. Simulations

3.1. A simple linear setup
Our main simulated example is based on a simple linear regression model but with the
feature that the explanatory variables X do not have the same tail behavior and the
noise is regularly varying, see Lemma 3. More precisely, the multivariate vector X is
defined as follows 

X1 ∼ Pareto(3)

X2 ∼ Pareto(2)

X3 ∼ Exp(1)

X4 ∼ Exp(2)

, (13)

where all Xi are independent with X1 and X2 Pareto distributed with respective tail
index 2 and 3, and X3 and X4 exponentially distributed with respective scale parameters
1 and 2. The variable of interest H is simply a linear transform of X1 tainted by an
additive noise

H
d
= X1 +N, (14)

where N ∼ Pareto(2) represents an independent noise with heavier tail than X1. So,
given a sample ({Xj,i}1≤j≤4, Hi)i=1,...,n with n = 10000, our goal is to compare different
classifiers in terms of predicting extreme occurrences, here defined as {H > u} with u
equal to the 97th percentile of H. In this simulation setup, it is clear from (14) that
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Table 1. Summary and key features of the different classifiers studied. See for example Hastie
et al. (2009) for a comprehensive review of the last four classification methods.

Method Main features

Linear classifier Simple binary classifier, parameters estimation based on the mini-
mization of the risk function over the set of contributing variables,
theoretical value of R(gθ) inferred from spectral decomposition.

Logistic regression Parametric linear model with a lasso penalty, coefficients of less
contributing variables are set to zero.

Decision trees Easy to interpret, gives relative importance of each variables,
learns simple decision rules inferred from the input.

Random forests Builds multiple decision trees combined by majority vote, better
predictive power than decision trees.

Support vector machines Finds the best hyperplane to separate two overlapping classes,
generally performs better than the other classifiers.

all variables but X1 are useless to explain H. In addition, Lemma 3 tells us that the
relevant information contained in the variable X1 is hidden by the heavier noise N , i.e.
we are in the case of asymptotic independence.

An example of such simulation is given in Figure 1. The left panel displays a
scatter plot between H (left axis) and g(X) = X1 (right axis). As expected, no
sign of asymptotic dependence can be found in the upper corner. In the right panel,
we remove the mass along the axis (gray points) by conditioning on the joint event
Aε ∩ Bε = {g(X) > εu} ∩ {H > εu} with ε = .7, see all dark points. The right panel
zooms on these black points and highlights a clear dependence between H and X1 that
was hidden by the heavier noise N in H = X1 +N .

In practice, we do not know the optimal choice for g(.) and we need to introduce
different classifiers and compare them.

3.2. Classifiers descriptions
Table 1 below provides the list of classifiers that we compare with our metric (12). This
list contains some of the most standard classifiers found in the literature (see, e.g. Hastie
et al., 2009): logistic regression (Logistic), decision tree (Tree), random forest (RF ) and
support vector machine (SVM ).

Except for the linear classifier, we apply them with their built-in cost function that
is not necessarily fine-tuned to forecast extremes. This is not an issue because our main
goal is to compare existing forecasters, and not to create new ones (see, e.g. Jalalzai
et al., 2018, for such developments). Still, to fix a baseline in terms of performance, the
linear classifier defined as

gθ(X;u) =

{
+1, θ>X > u,

−1, θ>X ≤ u,
θ ∈ [0,∞)d.

should be optimal for the linear model (14), especially if the regression parameters are
estimated by minimizing our cost function (11). In such a context, we expect the linear
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Fig. 2. Example of predicted binary output for the decision tree classifier versus the true values
of H (on a logarithmic scale). The classifier has been trained twice as explained below. On
the left-hand side the classifier is trained with the subset {H > u} and the horizontal blue
dashed line represents the threshold value u. On the right-hand side the classifier is trained
with the subset {H > εu} and the horizontal red dashed line represents the threshold value
εu = 0.4 × u. The results shown are the predicted values made upon the testing set whose
sample size is equal to 3000 (30% of the data).

classifier to be the best. In Appendix B, Proposition 6 provides the condition of the
consistency of the estimator θ̂n,un

based on minimizing R̂n(gθ(·;un)) under a regularly
varying framework.

The binary outputs from the decision tree classifier are explained in Figure 2. The
light blue and light green regions represent the set of points that are well predicted by
the classifier. On the contrary, wrongly classified points belong to the light yellow and
light red regions: either an extreme is predicted when it is not (light red region), or an
extreme event is missed (light yellow region). The difference between the left and right
panels corresponds to the training set based on either {H > u} or on {H > εu}, i.e.
mass removed in the latter case, see also (12).

3.3. Implementation and results
We split our simulated data set in two: 70% for a training part, over which we train our
different classifiers to get good predictive power; 30% for a testing part, which we use
to estimate the risks R0(g) and Rε(g). Note that each algorithm has the same inputs,
in particular the same binary sequence describing the events {H > u} with u set to be
equal to the 97th percentile of H. This cross-validation procedure has been repeated 50
times. The sample used to compute our risk function is based on the bivariate binary
vector (g({Xj,i}1≤j≤4;u), {Hi > u})i=1,...,n where the output of the classifier g is binary.
In addition, the binary outputs of the classifier g are obtained under the threshold u
and the threshold εu, so the training part has to be performed twice (once for each
threshold). Then, the empirical risk estimator defined by (12) can be computed. Figure
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3 shows the sensitivity of the classifier ranking with respect to the value of ε.
As expected from Lemma 3, the top-left panel, that corresponds to the case ε =

0, clearly indicates that our five classifiers cannot outperform naive classifiers as all
classifiers have a risk near to one, the worst possible value. To start discriminating
classifiers, we need to remove the masses along the axes by setting a value for ε. As we
increase ε, the size of sets needed to compute (12) becomes smaller, see the values of nε
in the legend of each panel. Hence, the blue box plots becomes wider as ε increases: a
classical bias-variance trade-off. As we know from (14) that the true generative process
is linear, ε = 0.4 appears as a reasonable value to balance the bias-variance trade-off.
More importantly, the overall ranking is not sensitive to the values of ε > 0. In all cases,
our linear classifier tailored to handle linear asymptotic independence cases outperforms
all the other classifiers. Among the other classifiers, decision tree appears to be the best,
but it is still far from the optimal linear solution. Other simulations concerning the
regular variation case are available upon request.

4. Danube river discharges

We now apply our assessment approach to summer daily river discharges (measured in
m3/s) at 31 stations spread over the upper Danube basin, see Figure 4, and recorded
over the time period 1960-2010 in June, July and August. These observations have
been studied by the EVT community (see, e.g. Asadi et al., 2015; Mhalla et al., 2020;
Gnecco et al., 2021). This dataset was made available by the Bavarian Environmental
Agency (http://www.gkd.bayern.de). To remove temporal clustering in extreme river
discharges, Mhalla et al. (2020) in their Section 5 implemented a declustering step. Each
station then contains n = 428 observations that we will consider temporally independent.
In order to reduce the large discrepancy in terms of discharges magnitude among stations,
we force the starting value of all 31 time series to equal zero by subtracting to each station
its minimum. Then, we re-normalize each time series by its range (i.e. the difference
between the maximum and the minimum of each time series).

These post processing treatments are useful to display and interpret the data at hand
and do not impact the classifiers performance.

Although all 31 station recordings are available, we can artificially remove one station
and try to predict its values from a given subset of other weather stations. In this section,
we remove station 1 (downstream) and try to predict its values from only stations 23
and 24, which are indirect tributaries to the main river flow. So, this setup is complex§
for two reasons. First, station 1, as a downstream point that accumulates all discharges,
has a much heavier tail than the two tributaries. Second, it is difficult to determine if
we are in the asymptotic dependent or independent case, see Figure 5 that displays the
scatter plot between the hidden station (y-axis with station 1) and the two tributaries
(x-axis, stations 23 and 24). In this graph, the threshold u is taken to be equal to the
85th quantile of X1 and we choose ε = 0.6. Figure 6 summarizes our findings. Removing
the mass on the axes when thresholding by εu implies that only 190 points remain from

§Section C treats a simpler case where station 1 is predicted from the whole set of remaining
stations. In this case, strong dependencies among station 1 and other stations can be observed.
So, the main issue is to select these stations, a problem discussed in Section B.

http://www.gkd.bayern.de
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Fig. 3. Estimation of Rε(g) for different classifiers (cross-validation with 50 repetitions). In
red (top-left) are the estimates when ε = 0 and in blue for different values of ε > 0 (ε ∈
{0.4, 0.6, 0.8}). At the top of each plot, the value of ε and the number of points such that H > εu
from the testing set are given.
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Fig. 4. River map of the upper Danube basin, showing sites of the 31 gauging stations along
the Danube and its tributaries. Water flows toward gauging station 1. The stations represented
by a green triangle shaped dot are the three stations of interest as described in Section 4.

the original length of 428 data points per station. This can explain why, looking at
Figure 6, the uncertainty in the risk estimate increases when considering Rε(.) (blue
boxes) instead of R0(.) (red boxes).

Unlike the simulation example in Section 3.1, it is not clear to assess whether our river
discharges analysis of our three selected weather stations belongs to the framework of
asymptotic independence or not. Still, it is reassuring that the ranking of the classifiers
in Figure 6 appears to be insensitive to the values of R0 or Rε. i.e. whether the data are
asymptotically dependent or not. This hints that, among all the classifiers, the logistic
regression with lasso penalty seems to perform better than the four other classification
methods. This ranking of classifiers is specific to this particular example. No general
conclusions about lasso techniques for extremes should be drawn.

Besides this river example, we advocate practitioners to compute risk functions that
can both handle the asymptotic dependent and independence cases. This also com-
plements the recent tools used to discriminate between the two cases (see, e.g. Ahmed
et al., 2022). In addition, the linear classifier could provide a simple benchmark with
well understood properties with respect to R0, see Proposition 6.

5. Supplementary Materials

A R package is available on GitHub that implements the empirical estimation of the risk
function developed in this paper (https://github.com/jlegrand35/ExtremesBinary
Classifier) and can be used either to reproduce the results of the conducted classifier
comparisons or to perform new comparisons using other binary classifiers. The data used
in the application are available in the R package graphicalExtremes (Engelke et al.,
2019).

https://github.com/jlegrand35/ExtremesBinaryClassifier
https://github.com/jlegrand35/ExtremesBinaryClassifier
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Fig. 5. Summer daily measurements of river discharges from station 1 (y-axis) against station
23 (left x-axis) and station 24 (right x-axis) of Figure 4. The blue dotted lines are the threshold
value u (the 85th percentile of station 1). The black dots on the graphs in the top row are the
values such that min(Xj , X1) > εu where εu = 0.6u. The graphs in the bottom row corresponds
to the same data plots but on unit Fréchet scale highlighting potential asymptotic independence
in the data.
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Fig. 6. Estimation of Rε(g) for five different classifiers (cross-validation with 50 repetitions, 70%
train and 30% test), threshold is the 0.85 quantile of H. In red (left) are the estimates when ε = 0
and in blue (right) for ε = 0.6. The length of the testing set is equal to 129, this leads to around
60 points such that H > εu and nearly 20 points such that H > u.

Acknowledgment

Part of this work was supported by the DAMOCLES-COST-ACTION on compound
events, the French national program (FRAISE-LEFE/INSU and 80 PRIME CNRS-
INSU), and the European H2020 XAIDA (Grant agreement ID: 101003469) and funded
by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2075 - 390740016. The authors also acknowledge
the support of the French Agence Nationale de la Recherche (ANR) under reference
ANR-20-CE40-0025-01 (T-REX project), the ANR-Melody and the Stuttgart Center
for Simulation Science (SimTech).

A. Proofs

A.1. Proof of Lemma 1:
We can write that

P(A1 ∪B1 | Aε ∩Bε) =
P((A1 ∪B1) ∩ (Aε ∩Bε))

P(Aε ∩Bε)
,

=
P(A1 ∩Bε) + P(Aε ∩B1)− P(A1 ∩B1)

P(Aε ∩Bε)
.

In the same way, we have

P(A14B1|Aε ∩Bε) =
P(A1 ∩Bε) + P(Aε ∩B1)− 2P(A1 ∩B1)

P(Aε ∩Bε)
.
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Hence, we deduce that

R(Aε, Bε) =
P(A14B1|Aε ∩Bε)
P(A1 ∪B1|Aε ∩Bε)

= 1−
[
P(A1 ∩Bε)
P(A1 ∩B1)

+
P(Aε ∩B1)

P(A1 ∩B1)
− 1

]−1
.

The expression given by (4) follows.
Item (a) of the lemma is based on the following inequality

P(U | V ) ≥ P(U |W ), if the sets U , V and W satisfy U ⊂ V ⊂W.

For item (b), note that

R(Aε, Bε) ≤ R(A′ε, Bε)

⇐⇒ (1−R(Aε, Bε))
−1 ≤

(
1−R(A′ε, Bε)

)−1
⇐⇒ P(A1 ∩Bε)

P(A1 ∩B1)
+

P(Aε ∩B1)

P(A1 ∩B1)
≤ P(A′1 ∩Bε)

P(A′1 ∩B1)
+

P(A′ε ∩B1)

P(A′1 ∩B1)
,

⇐⇒ P(A1 ∩Bε) + P(Aε ∩B1) ≤
P(A1 ∩B1)

P(A′1 ∩B1)
[P(A′1 ∩Bε) + P(A′ε ∩B1)].

As P(A1∩B1) = P(A′1∩B1) and P(A1∩Bε) = P(A′1∩Bε) and P(Aε∩B1) ≤ P(A′ε∩B1),
then

R(Aε, Bε) ≤ R(A′ε, Bε).

This provides the second statement (b) since we assume that A1 = A′1 and Aε ⊆ A′ε.
Item (c) is a direct consequence of (4). �

A.2. Proof of Lemma 2
First, we note that, by definition,

χ∗(g) = c(g) · lim
u→∞

P(H > u | g(X) > u) ≤ c(g).

By taking the limits separately for every single term in (8), we directly obtain (9). From
that, we can immediately see that

R(g) = 0 if and only if 1 + c(g) = 2χ∗(g).

Now, assume that χ∗(g) < c(g). Then, R(g) = 0 would imply that 1 + χ∗(g) < 2χ∗(g)
which is equivalent to χ∗(g) > 1 in contradiction to the definition of χ∗(g). Thus,
R(g) = 0 implies χ∗(g) = c(g). Plugging this into (9), we obtain c(g) = χ∗(g) = 1.
Conversely, c(g) = χ∗(g) = 1 obviously leads to R(g) = 0. �

A.3. Proof of Lemma 3:
From Eq. (8), we know that we can only get R(g) < 1, only if H and g(X) are tail equiva-
lent. Thus, this will be assumed in the following. Let w such that δ := limu→∞w(u)/u ∈
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(0, 1), then for any positive u we can write that

P(f(X) +N > u, g(X) > u)

P(g(X) > u)
≤ P(f(X) > w(u), g(X) > u)

P(g(X) > u)

+
P(N > u− w(u), g(X) > u)

P(g(X) > u)
.

Since g(X) and N are independent, the second term reduces to P(N > u − w(u))
which converges to 0 since u− w(u) ∼ (1− δ)u as u gets large.

For the first term, we rewrite the ratio as follows

P(f(X) > w(u), g(X) > u)

P(g(X) > u)
≤ P(f(X) > w(u))

P(g(X) > u)

≤ P(f(X) > w(u))

P(N > w(u))

P(N > w(u))

P(N > u)

P(N > u)

P(g(X) > u)
.

Since w(u) → ∞ and P(f(X) > u) = o (P(N > u)), the ratio P(f(X)>w(u))
P(N>w(u)) goes to 0

as u gets large. From the assumption w(u) ∼ δu, P(N>w(u))
P(N>u) behaves as a constant when

u→∞.
The only remaining term is P(N>u)

P(g(X)>u) which converges to a constant due to tail

equivalence. So, limP(g(X) > u | H > u) = 0. �

A.4. Proof of Proposition 4:
In Lemma 1 we fix Aε = {g(X) > εu} and Bε = {H > εu} and A1 = {g(X) > u} and
B1 = {H > u}.

P(H > u or g(X) > u | min{H, g(X)} > εu) = P(A1 ∪B1 | Aε ∩Bε),

and
P(g(X;u) 6= Y (u) | min{H, g(X)} > εu) = P(A14B1|Aε ∩Bε).

The Ramos and Ledford model corresponds to the special of case of (5)

P[g(X) > εu,H > ε′u] = L(εu, ε′u)((εu)−αg(ε′u)−αH )1/2η = P(Aε∩Bε′) = cε,ε′ Pa(Aε)Pb(Bε′)

with

P(Aε) = P(g(X) > εu) = Lg(εu)ε−αgu−αg ,

P(Bε) = P(H > εu) = LH(εu)ε−αHu−αH

and

cε,ε′ =
L(εu, ε′u)

(Lg(εu)LH(ε′u))1/(2η)
, a = b =

1

2η
.

Then, from (6)

R(Aε, Bε) = 1−
[
cε,1
c1,1

(P(A1|Aε))−a +
c1,ε
c1,1

(P(B1|Bε))−b − 1

]−1
.

Letting u gets large provides the required result. �.
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A.5. Proof of Proposition 5:
As we assume that Rε(g) exists (for some ε ≥ 0), for un →∞ such that npg,ε(un)→∞,
we obtain that

√
npg,ε(un)

[ ∑n
i=1 1{g(Xi,un)6=Y (un)

i ,Hi>εun,g(Xi;εun)=1}
npg,ε(un)∑n

i=1 1{max{g(Xi,un),Y
(un)
i }=1,Hi>εun,g(Xi;εun)=1}
npg,ε(un)


−

(
P(g(X,un)6=Y (un),H>εun,g(X;εun)=1)

pg,ε(un)

1

)]
n→∞−→ N

((
0
0

)
,

(
Rε(g) Rε(g)
Rε(g) 1

))
Provided that the bias is negligible, i.e.

lim
n→∞

√
npg,ε(un)

(
P(g(X, un) 6= Y (un), H > εun, g(X; εun) = 1)

pg,ε(un)
−Rε(g)

)
= 0,

the Delta method yields√
npg,ε(un)

(
R̂n,ε(g)−Rε(g)

)
n→∞−→ N (0, Rε(g)(1−Rε(g))) .

�

B. Linear Classifiers

B.1. Definition, Basic Properties and Inference
In this section, we consider a specific type of classifiers which in this paper is referred to
as linear classifiers, i.e. classifiers of the form

gθ(X;u) =

{
+1, θ>X > u,

−1, θ>X ≤ u,
θ ∈ [0,∞)d.

To obtain an optimal linear classifier of gθ(X;u), i.e. some weight vector θ∗ such that
the classification risk R(gθ∗) gets minimal, we need to impose some joint extremal de-
pendence structure on X and H from (2).

Even though some of the results can also be obtained in a similar manner in a more
general framework for the conditional risk Rε, henceforth, we will focus on the asymp-
totically dependent case where we might find some optimal classifier with unconditional
risk R(gθ∗) < 1. As discussed before, in this case, at least one component of X needs
to have a similar tail behavior as H. A natural assumption is therefore that (X, H) is
jointly regularly varying on [0,∞) with index α > 0, i.e. there exist an α-Pareto random
variable P and, independently of P , a random vector (Γ,Ω) ∈ [0,∞)d × [0,∞), the
so-called spectral tail vector, on the unit sphere {x ∈ [0,∞)d+1 : ‖x‖∞ = 1} such that

L
((
‖(X, H)‖∞

u
,

(X, H)

‖(X, H)‖∞

) ∣∣∣∣ ‖(X, H)‖∞ > u

)
→w L(P, (Γ,Ω)), as u→∞.
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Here, we additionally assume that P(‖Γ‖∞ > 0) > 0 and P(Ω > 0) > 0. In this setup,
‖X‖∞ and H are tail equivalent in the sense that

lim
u→∞

P(‖X‖∞ > u)

P(H > u)
= lim

u→∞

P(‖X‖∞ > u | ‖(X, H)‖∞ > u)

P(H > u | ‖(X, H)‖∞ > u)

=
P(P · ‖Γ‖∞ > 1)

P(P · Ω > 1)
=

E(‖Γ‖α∞)

E(Ωα)
∈ (0,∞),

This is the minimal requirement on the link between the covariatesX and the unobserved
extremes of H essentially saying that at least one component of X is tail-equivalent to
H. It is important to highlight that we do not exclude the case that Γi = 0 a.s. for some
i ∈ {1, . . . , d} which means that Xi possesses a lighter tail than H. This property can
be read off from the quantity

ci = lim
u→∞

P(Xi > u)

P(H > u)
=

E(Γαi )

E(Ωα)
.

Thus, Γi = 0 a.s. if and only if ci = 0. By including this case, we therefore admit that
most of the components of X may not contribute to the extremes of the vector H.

Under these conditions, we obtain that, for all θ ∈ [0,∞)d, the classifier gθ is an
extremal classifier as

R(gθ) = lim
u→∞

P(H > u or g(X) > u)−1
(
P[max{θ>X, H} > u]− P[min{θ>X, H} > u]

)
=

E
(
max{θ>Γ,Ω}α

)
− E

(
min{θ>Γ,Ω}α

)
E (max{θ>Γ,Ω}α)

= 1−
E
(
min{θ>Γ,Ω}α

)
E (max{θ>Γ,Ω}α)

∈ [0, 1].

(15)

Equation (15) implies that the function θ 7→ R(gθ) is well-defined and continuous on
[0,∞)d. Its value does not depend on those components θi for which Γi = 0 a.s., which
is equivalent to ci = 0 as discussed above. Thus, in the following, we will consider this
function only on the parameter set

C = {θ ∈ [0,∞)d : θi = 0 for all i s.t. ci = 0},

containing all the relevant information – here, note that, in practice, identifying the
components i ∈ {1, . . . , d} such that ci = 0 a.s., from a given data set is a necessary step
for the correct specification of the set C.

From the consideration in the introduction, it can be easily seen that R(g0) = 1 – the
case θ = 0 corresponds to the trivial always optimistic classifier. Furthermore, denoting
the set of indices j with cj > 0 by J , we can see that

R(gθ) ≥ 1− E(Ωα)

‖θ‖α∞ ·minj∈J E(Γαj )
→ 1 (16)

as ‖θ‖∞ → ∞. By the continuity of θ 7→ R(gθ), we obtain that the function attains a
global minimum on the domain C.
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Proposition 6. Additionally to the assumptions above on the joint distribution of
(X, H) with α > 1, assume that there exists a function a(u) with a(u) → 0 as u → ∞
such that

P(u−1X ∈ A | ‖(X, H)‖ > u) ≤ (1 + a(u))P(PΓ ∈ A) (17)

for all A ⊂ [0,∞). Furthermore, let un → ∞ and nP(H > un) → ∞ such that, for
every compact subset K ⊂ C,

sup
θ∈K

√
nP(H > un)

∣∣∣∣∣P(gθ(X;un) 6= Y un)

P(H > un)
−

E
(
max{θ>Γ,Ω}α

)
− E

(
min{θ>Γ,Ω}α

)
E(Ωα)

∣∣∣∣∣ = 0

(18)

and

sup
θ∈K

√
nP(H > un)

∣∣∣∣∣P(max{gθ(X;un), Y un} = 1)

P(H > un)
−

E
(
max{θ>Γ,Ω}α

)
E(Ωα)

∣∣∣∣∣ = 0. (19)

If the function θ 7→ R(gθ) has a unique minimizer θ∗ in C, then the estimator

θ̂n,un
= argmin

θ∈C
R̂n(gθ(·;un)).

is consistent, i.e. θ̂n,un
→p θ

∗.

Given the set C, this result provides a strategy to find the optimal θ, i.e., the best linear
classifier. Determining the set C requires the identification of the relevant features, i.e.
the index set J such that cj > 0 if and only if j ∈ J . This is discussed in more detail in
the following subsection.

B.2. Feature Selection
The notion of sparsity quickly comes into play when doing classification. This is all
the more true when one is only interested in the extremes. Among the whole data set,
only a small proportion will truly contribute to the extremal behavior of the variable
of interest. Here, we develop a method to identify the informative signals in terms of
extremes among a large data set, assuming that (X, H) is jointly regularly varying. For
a comprehensive review of existing methods on sparsity and multivariate extremes we
highly recommend the work of Engelke and Ivanovs (2021).

As we have seen above, for linear classifiers, all the relevant features Xi necessarily
satisfy ci > 0. Thus, feature selection can be based on estimation of the ci which can be
done according to the following proposition.

Proposition 7. Assume that

ci = lim
u→∞

P(Xi > u)

P(H > u)

exists. If un →∞ and nP(H > un)→∞, then∑n
j=1 1{Xj,i > un}∑n
j=1 1{Hj > un}

→p ci.



22 Juliette Legrand et al.

Fig. 7. Correlation plot between X1 and the stations considered to contribute to the extremes of
X1 according to the table 2 (i.e. for which ci 6= 0). The blue dotted lines represent the threshold
u defined by the 85th percentile of X1.

If, additionally, √
nP(H > un)

(
P(Xi > un)

P(H > un)
− ci

)
→ 0

and
χ∗i = lim

u→∞
P(Xi > u | H > u) ∈ [0, 1]

exists, then, we have

√
nP(H > un)

(∑n
j=1 1{Xj,i > un}∑n
j=1 1{Hj > un}

− ci

)
→ N (0, ci · [1− 2χ∗i + ci]) .

C. River network

This section deals with a simpler case than the application in Section 4. Here an ap-
plication could be the following: we want to know which stations should continue to be
maintained to prevent extreme floods and maybe some stations are not necessary.

Here we still want to predict the extreme events at station 1. We define an extreme
event as an event exceeding the 85th quantile of X1 and we assume that the whole set of
remaining stations is available. In this case, strong dependencies among station 1 and
other stations can be observed. So, the main issue is to select these stations following
the procedure presented in Appendix B.

As in the simulated study, we identify the stations that may not contribute to the
extremes of X1 by estimating the ci. The estimation of the set C on all the data is
presented in Table 2. We found that among the 30 stations, only three stations are
relevant: stations 2, 13 and 30. Looking at Figure 4, these stations correspond to the
stations closest to X1. Figure 7 shows the scatter plots between these stations and
station 1.

Once the contributing variables have been identified, we compare the performance of
several classifiers, on the one hand keeping all the data and on the other hand keeping
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Table 2. Empirical estimates of
ĉi (as defined in proposition 7) for
each station. The values different
from zero are highlighted in red.

ci

X2 0.06
X3 0.00
X4 0.00
X5 0.00
X6 0.00
X7 0.00
X8 0.00
X9 0.00
X10 0.00
X11 0.00
X12 0.00
X13 0.30
X14 0.00
X15 0.00
X16 0.00

ci

X17 0.00
X18 0.00
X19 0.00
X20 0.00
X21 0.00
X22 0.00
X23 0.00
X24 0.00
X25 0.00
X26 0.00
X27 0.00
X28 0.00
X29 0.00
X30 0.02
X31 0.00

only the informative stations. Since there is a strong dependence between the data, we
assume that it is sufficient here to look at the risk R0. Comparison results are shown in
Figure 8.

By definition of the linear classifier, the estimation is already done by keeping only the
informative variables, which is why the estimates are identical for this specific classifier.
As for the other classifiers, we see some improvements when keeping only the informative
variables: the risk estimates are slightly smaller. This means that even if we remove a lot
of information by going from 30 explanatory variables to 3, these 3 remaining stations
contain all the information in terms of extremes of station 1.

D. Proofs of the appendix

D.1. Proof of Proposition 6
The proof is based on the following lemma which is proven in Subsection D.2.

Lemma 8. Under the assumptions from Proposition 6, for every compact subset K ⊂
C, the sequences of processes {An(θ), θ ∈ K} and {Bn(θ), θ ∈ K} defined by

An(θ) =

√
n

P(H > un)

(
1

n

n∑
i=1

1
{
{θ>Xi > un}4{Hi > un}

}
− P(gθ(X;un) 6= Y (un))

)

Bn(θ) =

√
n

P(H > un)

(
1

n

n∑
i=1

1
{
{θ>Xi > un} ∪ {Hi > un}

}
− P(max{gθ(X;un), Y (un)} = 1)

)
converge to centered Gaussian processes {A(θ), θ ∈ K} and {B(θ), θ ∈ K}, respec-
tively, weakly in `∞(K).
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Fig. 8. Estimation of R0(g) for different classifiers g (cross-validation - 70% train, 30% test - with
50 repetitions). The red distributions come from the estimation with all the stations, and the
green distributions represent the estimations with only the variables having ĉi 6= 0.

If the function θ 7→ R(gθ) has a unique minimizer θ∗, then, necessarily, R(gθ∗) < 1.
Now, similarly to the notation above, let J denote the set of indices j with cj > 0, and
let us consider θ ∈ C such that ‖θ‖∞ > k0 for some constant k0 > 0. Then,

R̂n(gθ) = 1−
∑n

i=1 1{min(θ>Xi, Hi} > un)}∑n
i=1 1{max(θ>Xi, Hi} > un)}

≥ 1−
∑n

i=1 1{Hi > un}
minj∈J

∑n
i=1 1{k0Xij > un}

n→∞−→ p 1−max
j∈J

E(Ωα)

kα0 E(Γαj )

where the right-hand side goes to 1 as k0 → ∞. Thus, as R̂n(gθ∗) →p R(gθ∗) < 1, we
obtain that, for sufficiently large k0 � ‖θ∗‖, with probability going to one,

R̂n(gθ∗) ≤ min
θ∈C\[0,k0]d

R̂n(gθ)

and, consequently,

argminθ∈CR̂n(gθ) = argminθ∈C∩[0,k0]dR̂n(gθ).

Now, we note that, by Lemma 8, the bias conditions (18) and (19) and the functional

delta method, R̂n(gθ) converges in probability to R(gθ) uniformly on every compact
subset of C. In particular,

sup
θ∈C∩[0,K]d

∣∣∣R̂n(gθ)−R(gθ)
∣∣∣→p 0.

Thus,

argminθ∈C∩[0,K]dR̂n(gθ)→p argminθ∈C∩[0,K]dR(gθ) = θ∗.

�
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D.2. Proof of Lemma 8
We will proof the lemma by applying the Central Limit Theorem 2.11.9 in Van der Vaart
and Wellner (1996). To this end, we define the function spaces A = {aθ, θ ∈ K} and
B = {bθ, θ ∈ K} where

aθ : (0,∞)d × (0,∞)→ {0, 1}, aθ(x, h) = 1
{
{θ>x > 1}4{h > 1}

}
bθ : (0,∞)d × (0,∞)→ {0, 1}, bθ(x, h) = 1

{
{θ>x > 1} ∪ {h > 1}

}
.

Then, with

Znl(f) =
1√

nP(H > un)
f(u−1n Xl, u

−1
n Hl), f ∈ A ∪ B,

for l = 1, . . . , n, we have that

{An(θ), θ ∈ K} =
{∑n

l=1
(Znl(f)− EZnl(f)), f ∈ A

}
and

{Bn(θ), θ ∈ K} =
{∑n

l=1
(Znl(f)− EZnl(f)), f ∈ B

}
.

Now, we have that

max {‖Znl‖A, ‖Znl‖B} = sup
f∈A∪B

|Znl(f)| ≤ 1√
nP(H > un)

a.s.

for all l = 1, . . . , n and n ∈ N.
Consequently, we check the Lindeberg condition: For k ∈ N, we have

lim
n→∞

n∑
l=1

E
(
‖Znl‖kA∪B1{‖Znl‖A∪B > η}

)
≤ lim

n→∞

n√
nP(H > un)

k
1{nP(H > un) < 1/η2} = 0

as nP(H > un)→∞ by definition. For k = 2, we obtain a Lindeberg type condition that
ensures convergence of An and Bn to A and B, respectively, in terms of finite-dimensional
distributions. For k = 1, we obtain the Lindeberg type condition of Theorem 2.11.9 in
Van der Vaart and Wellner (1996).

It remains to check the equi-continuity condition. In the following, to simplify no-
tation, we assume that C = [0,∞)d. Then, for θ(1), θ(2) ∈ [a, b] ⊂ K ⊂ C, we have
that

|aθ(1)(u−1n X, u−1n H)− aθ(2)(u−1n X, u−1n H)| ∈ {0, 1}
and

|bθ(1)(u−1n X, u−1n H)− bθ(2)(u−1n X, u−1n H)| ∈ {0, 1}
and the probability that any of those two expressions is equal to one is bounded by the
probability

P(1{a>X > un} 6= 1{b>X > un}) = P(a>X ≤ un, b>X > un)

= P
(
‖(X, H)‖ > un

‖K‖d

)
P
(
a>X ≤ un, b>X > un

∣∣∣ ‖(X, H)‖ > un
‖K‖d

)
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where we use that b>X > un implies that ‖X‖ > un/(‖K‖d) with ‖K‖ = supx∈K ‖x‖∞.
Making use of the fact that P (‖(X, H)‖ > un/(‖K‖d)) ≤ C0(‖K‖d)α P(H > un) for
some constant C0 > 0 and the bound given by Equation (17), we obtain that

P(1{a>X > un} 6= 1{b>X > un})

≤ C0(‖K‖d)α P(H > un)[1 + a(un/(‖K‖d))]P
(
Pa>Γ ≤ ‖K‖d, Pb>Γ > ‖K‖d

)
= C0(‖K‖d)α P(H > un)[1 + a(un/(‖K‖d))]EΓ

(
P
(
P ∈

[
‖K‖d
b>Γ

,
‖K‖d
a>Γ

]))
≤ C0 P(H > un)[1 + a(un/(‖K‖d))]E

(
(b>Γ)α − (a>Γ)α

)
≤ 2C0 P(H > un)‖a− b‖

provided that un is sufficiently large as a(un/(‖K‖d))→ 0.
Consequently,

sup
‖f−g‖<δ

n∑
l=1

E
[
(Znl(f)− Znl(g))2

]
= 2C0δ,

which tends to 0 as δ → 0. From this inequality, it can also be seen that any partition
of K into hypercubes with length ε2/(2C0) leads to a valid ε-bracketing, i.e. the number

Nε ∝ 1/ε2d grows with a power rate and, so,
√

log(Nε) is integrable.
Thus, by Theorem 2.11.9, the processes An and Bn converge to Gaussian processes

A and B, weakly in `∞(K). �
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