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Brunovsky decomposition
for dynamic interval localization

Simon Rohou1, Luc Jaulin1

1 ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

Abstract—This paper proposes a new set-membership method
for estimating the trajectories of dynamical systems, when the
states are completely unknown and only non-linear observations
are available. The first part of the proposed method is symbolic
and follows the decomposition of Brunovsky, i.e., it decomposes
the set of differential equations describing the dynamical system
into two blocks of constraints: one block gathers non-linear
analytical equations that do not involve differential operators,
while the other block is composed of linear chains of integrators.
The second part of the method, that relies on the symbolic
decomposition, is numerical and based on a contractor approach.
It involves a specific optimal operator for narrowing the sets
of feasible solutions. This approach is shown to be efficient on
a difficult problem of dynamic localization of a mobile robot,
without any prior knowledge about its states.

Index Terms—Brunovsky, non-linear system, interval analysis,
localization, constraint programming, differential equations.

I. INTRODUCTION

This paper introduces a new set-membership method for
estimating the set of feasible trajectories of a dynamical sys-
tem, without any prior knowledge about the states x(t) ∈ Rn,
but considering a discrete set of non-linear state observations
y(ti) ∈ R, such that:

ẋ(t) = f(x(t),u(t)) (1a)
y(ti) = g(x(ti)) (1b)

where f : Rn × Rm → Rn is a non-linear function depicting
the evolution based on an input vector u(t) ∈ Rm. The
observation function g : Rn → R, possibly non-linear, is
assumed to be scalar without loss of generality as the method
is readily scalable to the vector case. The ti, i ∈ N, are
observation times and the y(ti) are the related outputs.

When the states are completely unknown, conventional
methods such as Kalman filters run into difficulties, as it is
difficult to find a linearization point, or to perform prediction
steps. Particle filters will also miss a starting point, or will
employ algorithms with high complexity without ensuring a
reliable convergence. In contrast, the use of set-membership
approaches avoids the need for linearization and is more suited
to large uncertainties by not removing consistent solutions.
They are said reliable, as they will always enclose feasible
solutions inside guaranteed sets. In these approaches, all errors
are bounded [1], [2] and an arithmetic such as interval analysis
[3] allows to tackle rigorously the non-linearities of the system
[4], [5].

In this context, several tools exist for estimating the set of
feasible trajectories of System (1) in a reliable way. Firstly,
guaranteed integration methods [6], [7], [8], [9] can be used
for dealing with the non-linear differential Eq. (1a). This
amounts to solving so-called Initial Value Problems (IVPs),
considering some prior state vector x0, possibly enclosed in a
small box [x0]. The outputs of these algorithms are guaranteed
sets of feasible states. For many realistic applications, the
tools available in the state-of-the-art are comfortable with the
encountered non-linear equations. They will however badly
behave in case of unknown initial condition, i.e. [x0] possibly
large or unbounded, and thus are not suited for the issue
addressed in this paper. Secondly, the state observations y(ti)
can be processed together with their uncertainties by means
of constraint propagation tools such as contractors, that are
operators for safely narrowing the bounds of the state space
according to a given constraint (e.g. an equation), without
removing feasible solutions from the sets. However, if one
considers System (1) with unbounded prior sets for enclosing
the x(t) together with only few non-linear observations, the
use of state-of-the-art contractor methods leads to large sets
that are not relevant for state estimation purposes. In order
to overcome this problem, some branch-and-prune techniques
such as shaving methods [10] can be applied in order to reduce
the state sets by performing bisections. The counterpart is
obviously the increasing complexity of these algorithms. As
a consequence, the current existing tools are not sufficient for
addressing the considered problem both in a reliable and an
efficient way.

Our contribution relies on the decomposition of the non-
linear dynamical system into a Brunovsky canonical form
[11], [12]. The obtained decomposition is possible for flat
systems which constitutes a huge class of vehicles [13] such
as cars [14], mobiles with trailers [15], sailboats [16], etc.
We will show that the obtained Brunovsky form makes it
possible to solve our localization problem efficiently and in a
reliable way. Besides, as this method does not involve classical
interval integration tools [17], [18], [19], [20], [21], [22], the
contribution of this paper brings a new approach for dealing
with guaranteed integration.

The paper is organized as follows. Sections II and III
recall the principles of flat systems and Brunovsky decompo-
sition. Section IV outlines set-membership methods involving
contractors. It introduces the notion of Contractor Circuit
which allows a better understanding of the contraction process.
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Section V details a new contractor for dealing with chains of
integrators, resulting from the Brunovsky decomposition. Fi-
nally, Section VI shows how to apply the proposed method for
solving a state estimation problem such as the localization of
a mobile robot. Convincing results are provided in this section
on a reproducible robotic example. Section VII concludes the
paper.

II. FLAT SYSTEMS

Consider Eq. (1a) involved in the following system:{
ẋ = f(x,u)
z = h(x),

(2)

where z ∈ Rm is the output vector used with a control point
of view, i.e., z is not necessarily measured. Both f and h are
assumed to be smooth. The dimension of u and z are assumed
to be both equal to m. The system is said to be flat with the
flat output z [23], [24], if there exists two continuous functions
φ and ψ and integers κ1, . . . , κm such that x = φ

(
z1, ż1, . . . , z

(κ1−1)
1 , . . . , zm, żm, . . . , z

(κm−1)
m

)
u = ψ

(
z1, ż1, . . . , z

(κ1)
1 , . . . , zm, żm, . . . , z

(κm)
m

)
.

(3)
The integers κi, called the Kronecker indexes, are unique and
should be such that κ1 + · · · + κm = n, [25]. A system
satisfying Eq. (3) is observable: the function φ gives us the
unique state vector consistent with the flat outputs and their
derivatives. In practice, the functions φ and ψ involved in
Eq. (3) can be obtained by following these steps:

• The derivation step (see [26]) computes symboli-
cally z1, ż1, . . . , z

(κ1)
1 , . . . . . . , zm, żm, . . . , z

(κm)
m as func-

tions of x and u, using Eq. (2). We obtain an expression
of the form 

z1
ż1
...

z
(κm)
m

 = λ

(
x
u

)
. (4)

This can be done automatically without any difficulty
using Lie derivatives. It suffices to take all m equations
zj = hj(x) and to compute symbolically its first, second,
. . . κj th derivatives with respect to t. At each step, the
ẋi are replaced by fi(x,u).

• The inversion step has to be performed to obtain an
expression of the form of Eq. (3) from the inversion of
λ. This operation is difficult to obtain except for simple
systems. The inversion step will not be required in our
approach as it will be implicitly processed by our interval-
based resolution.

Example 1. Consider the system ẋ1 = x1 + x2
ẋ2 = x22 + u
z = x1.

(5)

For the derivation step, we compute z, ż, z̈, . . . with respect
to x and u until u occurs. We get z = x1

ż = ẋ1 = x1 + x2
z̈ = ẋ1 + ẋ2 = x1 + x2 + x22 + u.

(6)

Since we had to derive twice, we conclude that the Kronecker
index is κ = 2 which corresponds to the dimension of x =
(x1, x2)ᵀ. As a consequence, the output z is flat. From (6) we
read

λ

(
x
u

)
=

 x1
x1 + x2

x1 + x2 + x22 + u

 . (7)

For the inversion step, we have to isolate x and u in order to
obtain an expression with respect to z, ż, z̈. The inversion is
easy for this example:

x1 = z
x2 = ż − x1 = ż − z
u = z̈ −

(
x1 + x2 + x22

)
= z̈ − ż − (ż − z)2 .

(8)

As a consequence, φ (z, ż) =

(
z

ż − z

)
ψ (z, ż, z̈) = z̈ − ż − (ż − z)2 .

(9)

We can therefore consider that we have a procedure to find
the functions φ and ψ as soon as we have a flat output z.
Unfortunately, to our knowledge, there is no general method
to find a flat output for a given non-linear system [27]. In
practice, we can use the physical intuition we have on the
system [15] or tools coming from differential algebra such as
the approach based on finitely generated differential ideal [28].

III. BRUNOVSKY DECOMPOSITION

The differential flat system ẋ(t) = f(x(t),u(t)) with flat
outputs z1, . . . , zm and sensor outputs y admits the following
Brunovsky decomposition:


z1
ż1
...

z
(κm)
m

 = λ

(
x
u

)

z
(κ1)
1

∫
→ · · ·

∫
→ ż1

∫
→ z1

...

z
(κm)
m

∫
→ · · ·

∫
→ żm

∫
→ zm

y = g (x)

(10)

This decomposition clearly makes appear the Brunovsky nor-
mal form through the chain of integrators. It is illustrated by
Fig. (1).

Example 2. Let us consider the system described by the
following equations:

(i) ẋ1 = x4 cos(x3)
(ii) ẋ2 = x4 sin(x3)

(iii) ẋ3 = u1
(iv) ẋ4 = u2

(11)
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∫ ∫ ∫
· · ·

∫ ∫ ∫
· · ·

··
·

λ

z
(κm)
m

z
(κ1)
1 z1

zm

g

x
yu

Fig. 1. Non-linear dynamical Systems (1) and (2) transformed into a
Brunovsky canonical form. All the differential relations are gathered in chains
of integrators. The rest of the system is expressed by means of non-differential
functions λ and g.

This system corresponds to a wheeled robot moving on a
plane. (x1, x2)ᵀ is its location, x3 its heading, x4 its speed and
u ∈ R2 is the control vector: acceleration and rotation speed.
This system is known to be flat [15], if we take as flat output
z = (x1, x2)ᵀ. To check this, we compute the Brunovsky form,
applying the method of feedback linearization as explained
in [26]. We get that κ1 = κ2 = 2, and thus we have to
differentiate z twice. From Eq. (11)–(i) and (11)–(ii), we
obtain the following Brunovsky decomposition in which static
(i.e. non-differential) constraints (I) are separated from chains
of integrators (II):

(I)




z1
z2
ż1
ż2
z̈1
z̈2

 =


x1
x2

x4 cos(x3)
x4 sin(x3)

u2 cos(x3)− u1x4 sin(x3)
u2 sin(x3) + u1x4 cos(x3)


︸ ︷︷ ︸

λ(x,u)

(II)

 z̈1

∫
→ ż1

∫
→ z1

z̈2

∫
→ ż2

∫
→ z2

(12)
Although Block (I) in (12) appears as a differential equation,
the expressions of each of the six variables z1, z2, . . . , z̈2 are
considered independently and under the form of pure algebraic
constraints, so that all the differential part is delegated to
Block (II) in which these variables are link to each other. As
expected, we have κ1 + κ2 = 4, which is consistent with the
dimension of the system. Note that the Brunovsky Form (12)
and the state Eq.s (11) are equivalent.

This section has provided an illustration of how differential
equations describing a dynamical system can be separated into

two blocks of constraints. The first block (I) corresponds to
non-linear equations with no differential operator inside, while
the second block (II) is only made of chains of integrators.
The following section shows how these blocks can be dealt
with using contractor techniques.

IV. SET-MEMBERSHIP METHOD

The previous decomposition provides a formulation for a
dynamical system which will be shown to be adapted to set-
membership techniques. The relations from the decomposition
are sometimes called constraints. In a set-membership context,
we can formalize a state estimation problem as a Constraint
Network (CN), see for instance [29], [30]. Interval operators,
called contractors, are used to contract the set of feasible
values of the state variables of the system.

A. Contractors

Contractors are algorithms based on interval analysis, that
allow reliable computations despite non-linearities, large un-
certainties or singularities. This arithmetic ensures to never
remove valid solutions from the domains of the variables,
which is critical for the safety of complex systems.

When using the framework of contractors, state estimation
consists in contracting sets defined beforehand. Several con-
tractors can be called on a set until a fixed point is reached,
i.e. when the set cannot be reduced anymore. In practice, a
set represents the knowledge we have about a vector or a
trajectory. When nothing is known beforehand, as it is the
case for the state vectors x in the considered problem, then
unbounded sets are defined, such as infinite intervals or boxes
[x] = [−∞,∞]n. The same approach applies for trajectories
by using tubes, i.e. intervals of trajectories denoted by [x](·),
which allows to process temporal or differential equations
elegantly by processing one single object. Fig. 2 illustrates
a scalar tube enclosing a feasible trajectory.

t

[x]

t0

tf

[x]([t1])

[t1]

[x](t2)

t2

x
∗ (·)

x−(·)

x+(·)

Fig. 2. A tube [x](·) defined on the temporal domain [t0, tf ] as an interval of
two signals [x−(·), x+(·)] and enclosing an unknown trajectory x∗(·). The
thinner the tube, the better the approximation of x∗(·).

A collection of contractors exists in the literature (see for
instance [31], [32], [33]) and can be found in open-source
libraries such as Codac [34]. Each of these tackles a given
equation and provides an algorithm ready to be applied on
sets. When a set is provided as input of such algorithm, it
is possibly contracted and thus some infeasible values are
removed. For instance, the equation f(x) = 0 can be addressed
by a contractor CHC4revise provided in [35] and applied on some



4

box [x]. The obtained contracted box CHC4revise ([x]) is a subset
of [x] but still contains all feasible vectors consistent with
f(x) = 0. This consistency property of contractors allows to
apply them as much as is necessary. Several contractors can be
combined in order to tackle more complicated problems. From
Tarski’s theorem [36] and since all contractors we use are
inclusion monotonic, the resulting propagation method always
converges.

B. Contractor Circuits

Successive contractions allow to converge towards accurate
outer approximations of sets of feasible solutions for the
considered problem. This is achievable by combining several
contractors on common sets. Usually, a decomposition of
the problem is performed in order to bring out equations
associated with already available contractors. For instance,
the Brunovsky Form (10) already provides a decomposition
for which contractors are at hand. Graphically, the contractor
resolution amounts to the Contractor Circuit depicted in
Fig. 3.

[x](·)
[u](·)

[z1](·)
[ż1](·)
[z̈1](·)

[z2](·)
[ż2](·)
[z̈2](·)

C∫∫Cλ C∫∫
Fig. 3. So-called Brunovsky Circuit associated with the Brunovsky decom-
position of the robotic Eq. (12).

The concept of Contractor Circuit, introduced in this paper,
allows a better understanding of the use of contractors for state
estimation. A Contractor Circuit is a Boolean matrix that links
contractors to sets. In this representation, entries of the matrix
are represented by the small black dots at the intersection of
horizontal and vertical lines. At the bottom of the figure, each
rectangular block corresponds to a contractor involved in the
circuit. Horizontal lines are associated with sets, i.e. tubes in
this example. The red horizontal lines correspond to the inputs
and the blue ones to the output variables. The black vertical
lines represent the possible inputs of the contractor algorithms.

The initial bounds of the tubes correspond to some prior
knowledge we have on the values, or to some measurements
that have been performed. The latter can be seen as a restric-
tion on the sets: the measurement is directly encoded in the
set. Tubes are therefore initialized to [−∞,∞],∀t if there is
not prior information available for the related variables, as it is
the case for the state trajectory x(·). The contractors involved
in the circuit are then called until no more contraction can

be observed. Note that the order in which the contractors are
called will not affect the final results [37], because all the
operators are called indefinitely until a fixed point is reached.
The use of a Boolean matrix can be avoided but the call of the
contractors and the connections between tubes should then be
done by hand inside the program. Using the connection matrix
allows us to enclose a part of the usual code inside the data
structure of the problem. As a consequence, it helps to define
a high level language for computing with contractors.

The Circuit depicted in Fig. 3 involves the contractor Cλ
related to the non-linear equation (z, ż, z̈)ᵀ = λ(x,u). The
literature already provides algorithms for addressing this rela-
tion, see for instance the HC4revise contractor introduced
in [35]. In addition, the circuit involves two C∫∫ operators that
are the contractors for dealing with integrator chains. Because
the dimension of z is equal to 2, two contractor chains are
involved in this circuit. C∫∫ cannot be directly found in the
literature, but is required for Brunovsky decompositions. The
following section proposes an algorithm for C∫∫ .

V. THE INTEGRATOR CHAIN CONTRACTOR

In order to process the Brunovsky decomposition in a set-
membership context, a dedicated integrator chain contractor,
denoted by C∫∫ , has to be provided. As explained in Sec-
tion III, the integrator chain encompasses all differential links
of System (1) in one single relation given by:

z(κ)
∫
→ · · ·

∫
→ ż

∫
→ z (13)

where z is a scalar output as defined in System (2). For
vector outputs z, Relation (13) is involved several times
according to the dimension of z. This integrator chain allows
to accurately propagate information from one signal through
its primitives and derivatives. Note that this relation could be
broken down into several elementary integrators as in (14), for
which contractors already exist, see for instance [38].

z(κ)
∫
→ z(κ−1), . . . , z̈

∫
→ ż, . . . , ż

∫
→ z. (14)

However, in a set-membership context, this leads to well-
known wrapping effects due to the enclosure of each inter-
mediate result into non-optimal sets. The use of one single
operator allows optimal computations.

A. Linear state estimator

The chain (13) can be expressed under the form of a specific
linear state estimation for which the state is defined by a
set z of primitives/derivatives of one only signal1 and for
which the observations are provided by restrictions on these
primitives/derivatives. More precisely, the integrator chain
constraint involving the signals

(
z(0), z(1), . . . , z(κ), w

)
and

defined as:

w

∫
→ z(κ)

∫
→ · · ·

∫
→ ż

∫
→ z (15)

1The notation z is chosen voluntarily as it will refer, in the application of
the contractor related to this state estimator, to the output of System (2).
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can be cast into the following linear system corresponding to
the Brunovsky form:

ż(t) =


0 1 0 · · ·
0 0 1
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0


︸ ︷︷ ︸

A

z(t) +


0
0
...

1


︸ ︷︷ ︸

B

w(t), (16)

where w(·) is known to be inside a tube [w](·). An integrator
chain contractor C∫∫ ([z](·), [w](·)

)
has to be built to contract a

tube [z](·) =
(
[z(0)](·), [z(1)](·), . . . , [z(κ)](·)

)ᵀ
from Eq. (16)

and [w](·).
In the set-theoretical framework, due to the linearity of

System (16), an optimal contraction is achievable by comput-
ing a set of abstract sets Z(t) over time, using the following
equations:

−→
Z (t) ⊂ Ž(t) ∩

(
eAδ ·

−→
Z (t− δ) + δeA·[0,δ] ·B · [w]([t− δ, t])

)
←−
Z (t) ⊂ Ž(t) ∩

(
e−Aδ ·

←−
Z (t+ δ)−δe−A·[0,δ] ·B · [w]([t, t+ δ])

)
Z(t) =

−→
Z (t) ∩

←−
Z (t)

where
• Ž(t) is the prior set of states for t;
•
−→
Z (t),

←−
Z (t) are the sets of all states at t consistent with

the past and the future, respectively;
• Z(t) is the smallest set for z(t) assuming that w(t) ∈

[w](t) and z(t) ∈ Ž(t). It is the result of the contraction.
It has been shown that this observer is exact in the discrete
time case, if we represent the sets Ž(t),

−→
Z (t),

←−
Z (t), Z(t) by

polygons [39], [40]. An implementation in the continuous-time
case has been recently proposed in [41]. The principle is to
use a tube for representing prior sets Ž(·) and to apply the
exact discrete time observer of [39] for each slice of the tube.
The resulting contractor is still minimal if we assume that we
can neglect the discretization errors, otherwise, an unavoidable
small pessimism exists, due to the implementation of tubes.

Therefore, state observations are processed as restrictions on
the Ž(t) prior sets. In our approach, these restrictions directly
come from the tubes, under the form of boxes, since our
tubes are implemented as sets of boxed slices. The contraction
results into the intersection between the integration of the prior
sets Ž(t − δ) into

−→
Z (t) (from Eq. (16)) and the prior sets

Ž(t). It always corresponds to the intersection of a polygon
and a box, which can be computed accurately. Fig. 4 provides
a simple illustration of this state estimation in the continuous
case, using polygons and tubes. Considering for instance the

chain w

∫
→ z2

∫
→ z1, prior 2d sets Ž(·) are implemented as

tubes [z1]× [z2](·) (upper part of the figure). The lower part of
the figure depicts in gray one integration step (polygon Ž(t1)

into polygon
−→
Z (t1 + δ)) and the intersection with the prior

set at time t1 + δ: the box Ž(t1 + δ). The resulting contracted
set, represented in hatched blue, is also a polygon.

The guaranteed linear integration transforms each vector
into a box and each box or polygon into a polygon. The use of
polygons for representing sets allows to obtain optimal results

z1(t1)

z2(t1)

z1(t1 + δ)

z2(t1 + δ)

Eq. (16)

t

z2(·)

t

z1(·)δ δ

t1 t1 + δ t1 t1 + δ

ob
server

a

[z1](t1)× [z2](t1)

Ž1(·)
Ž2(·)

Ž(t1)

−→Z (t1 + δ)

Z(t1 + δ)

Ž(t1 + δ)

Fig. 4. Example of integrator chain contractor over one time step.

with minimal enclosures. However, it must be highlighted
that this optimality comes with a strong complexity of the
algorithms, since the number of vertices increases dramatically
with time. Non-minimal enclosures could be used instead, such
as intervals [42], [43], zonotopes [44] or parallelotopes [45],
allowing faster computations. In practice, these enclosures
would be more suited for state estimation, since the optimality
of this differential contractor is not always relevant with
respect to the number of observations of the system. A first
study has recently led to the publication of [46] in which an
ellipsoidal contractor is provided for ż = Az + Bw with
higher performances (faster computations, implementation for
any dimension) than the polygonal approach of [41], while
maintaining a quite accurate envelope of the states. Its appli-
cation in the context of this paper remains to be studied, but
is encouraging for real time applications.

As a conclusion, a contractor dealing with linear systems
expressed as ż = Az+Bw can be configured in order to deal
with a chain of integrators. This allows to contract a list of
tubes directly linked by their derivative and primitive relations.
In the remaining of this paper, the contractor provided in the
publication [41] is used for the C∫∫ involved in the Brunovsky
circuit.

VI. APPLICATION TO LOCALIZATION

The set-membership Brunovsky decomposition proposed in
this paper is now illustrated on a difficult academic robotic
problem.

A. Problem statement

We consider the localization problem of a robot moving in
an environment where few landmarks are available [47], and
formalized by System (1). This state estimation is difficult if
all state vectors x(t) ∈ R4, describing the positions (x1, x2)ᵀ,
headings x3 and speeds x4 of the vehicle are unknown, i.e.
when initial conditions or direct measurements of the states
are not at hand. Only the control u(t) ∈ R2 of the system
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(linear acceleration and rotation rate) is known, with some
bounded uncertainties, together with some interval range-only
observations [y](ti) made between the moving vehicle and two
landmarks, for which the positions ma and mb are known.

The goal of this problem is to perform a full state estimation
by computing an approximation of the four components of
x(t) along time, including the headings x3(t). Such state
estimation is difficult due to the absence of knowledge on the
initial condition x(0) as well as any other state, and because
very few asynchronous non-linear observations are available.
In particular, it has been shown in [48] and [49], that the
problem is difficult to solve if the heading of the robot is
not measured. As it has been said before, classical methods
such as Bayesian approaches or particle filters badly behave
in presence of few observations and are not suited to deal
with large uncertainties because of inaccurate linearizations
or convergence issues. On the other hand, set-membership
approaches are more dedicated to limited observations and
non-linear contexts, but very few studies have been done on
this application [29]. One should note the work of [50] based
on interval methods with a pruning component [51], that we
want to avoid. Indeed in [50], the approximation of heading
values is obtained by bisecting the heading space. Therefore,
a large number of bisections is needed in order to obtain a
significant approximation [52], which ruins the performances
of interval methods [53], [54].

B. Reproducible test case

Let us consider the following reproducible example. The
proposed simulation is based on analytical expressions and
simple data in order to encourage future comparisons with
the method provided in this paper. A wheeled robot described
by Eq. (11) follows a planar trajectory given by a Lissajous
equation. The unknown states are given by:

x(t) =


10 cos(t)
5 sin(2t)

atan2 (10 cos(2t),−10 sin(t))√
(−10 sin(t)) 2 + (10 cos(2t)) 2

 . (17)

Eq. (17) cannot be used during the resolution. It is only given
to validate the state estimation, and also to generate data
(exteroceptive measurements and inputs). From Eq. (17), we
obtain the following inputs:

u(t) =

 2 sin(t) sin(2t)+cos(t) cos(2t)
sin2(t)+cos2(2t)

10 cos(t)·sin(t)−20 cos(2t)·sin(2t)√
sin2(t)+cos2(2t)

 . (18)

The inputs are supposed accurately known. In our method,
they are actually numerically enclosed in a thin tube [u](·)
that is not degenerated because of the sliced implementation
of the tubes of the used library [34].

Finally, we assume that the robot performs distance mea-
surements between its position and one of the landmarks
ma or mb, respectively located at (−5, 6) and (0,−4). The
observation equation (1b) is therefore the distance function:

yj(ti) =

√(
x1(ti)−mj

1

)2
+
(
x2(ti)−mj

2

)2
. (19)

The beacons emit asynchronously range-only signals received
by the robot. These bounded measurements are given in
Table I.

TABLE I
SET OF FOUR BOUNDED MEASUREMENTS (ti, [y](ti)).

ti [ya](ti)

0.75 [12.333,12.383]
2.25 [10.938,10.988]

ti [yb](ti)

1.50 [4.733,4.783]
3.00 [10.211,10.261]

The simulation is run for t ∈ [0, 3].

C. Interval Brunovsky localization: methodology

Our interval state estimation approach consists in the fol-
lowing steps:

• First, a symbolic decomposition of Eq. (11) is made
in order to obtain a Brunovsky form. The decomposi-
tion makes appear two blocks of differential and non-
differential relations, as in (12).

• Second, sets of feasible values are defined in order to
enclose the involved variables x(·), u(·), and the [y](ti)’s.
For the states, we define an unbounded tube [x](·) such
that ∀t, [x](t) = [−∞,∞]4. The tube [u](·) is thin and
centered on Eq. (18). This means that the analytical
knowledge of u(·) is not required by our method2. Fi-
nally, interval measurements [y](ti) are given by Table I.

• The third step consists in defining contractors for the
equations resulting from the first step. This amounts to
build the Brunovsky Circuit of Fig. 3. The non-differential
and non-linear function λ(x,u) is given by (12) and
a contractor Cλ can be easily built from this analytical
expression [35]. Then, the two C∫∫ of Fig. 3 are con-
tractors for dealing with linear observers, such as those
provided in [41] or [46], and configured according to
System (16). We add another contractor Cg for dealing
with Eq. (19), also built from an analytical expression.
This last contractor links some slices [x1,2](ti) of the
tube [x](·) with the measurements [y](ti). More details
are given in [32].

• Finally, the contractors are applied on the intervals and
tubes defined in the second step. Some iterative resolution
is performed by calling all the contractors until no more
contraction is obtained. It should be recalled that the order
of calls does not change the quality of the results, only the
computation time may differ. Once this fixed point has
been reached, the estimated (feasible) states are enclosed
in the contracted tube [x](·).

D. Results

The obtained results for the position tube [x1,2](·) is il-
lustrated in blue in Fig. (5). It encloses the unknown true

2Because our tubes are implemented as lists of boxes, some pessimism
related to wrapping effects is introduced. The time-discretization of our tubes
is set to δ = 0.003.
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trajectory given by Eq. (17) that is white painted. As one
can see, despite the absence of prior knowledge on the states,
the obtained envelope is thin thanks to the use of efficient
contractors. The two landmarks are pictured by orange boxes
and the four range-only measurements are drawn by gray lines.

-10 -6 -2 2 6 10

-5

-3

-1

1

3

5

px

py

Fig. 5. Set [x](·) of feasible states projected in two dimensions. The unknown
planar trajectory remains enclosed in the tube, which illustrates the guarantee
of the computations.

The simulation, run in 36 seconds, also provides a contrac-
tion of the velocity tube [x4](·) and the heading tube [x3](·),
as illustrated by Fig. 6. The example has been processed
by operators delivered in the Codac library [34], in which
this example is freely available. The Reader may find more
material related to this work on http://codac.io/brunovsky.

0 1 2 3

2.5

3.5

t

θ

Fig. 6. The tube [x3](·) of feasible headings. The actual but unknown truth,
given by x∗3(t) = atan2

(
10 cos(2t),−10 sin(t)

)
, is plotted in white and

guaranteed to be enclosed in the computed [x3](·).

VII. CONCLUSIONS

This paper has presented a new approach for state esti-
mation of non-linear dynamical systems, that combines some
non-linear state estimation techniques [55] based on flatness
[15] with interval contractors. Flatness allows us to build
a Brunovsky decomposition made with a set of static non-
differential and non-linear relations, together with chains of
integrators. A contractor based approach is then able to take
advantage of this decomposition in order to enclose, in a
guaranteed way, the unknown states into an accurate tube.

In our set-membership approach, all the differential relations
are processed by one single operator, able to deal with a
chain of integrators, and providing optimal results when using
polygons as wrappers. The resulting state estimator has several
advantages over classical approaches:

• The state estimator is reliable with respect to non-
linearities. Thanks to interval analysis, it is able to
deal with non-linear (or non-differentiable and even non-
continuous) state equations, without linearizing (as done
by the extended Kalman filter [56]) or approximating
them.

• The state estimator does not require the interval inte-
gration of differential equations. Such integrations are
needed by all other interval state estimation methods [21],
[8], [57], [58], which makes them inefficient for large
uncertainties.

• The state estimator can be used for real-time applications.
Our approach has been applied to the range-only localization
of a robot, without any measurements of its heading or speed,
nor any knowledge about its positions. This state estimation
problem, that is known to be difficult to address, has been
accurately and reliably solved using the Brunovsky decom-
position and the specific operators described in this paper,
without any bisection technique or prior knowledge on the
states.
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