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The characterisation of future extreme wave events is crucial because
of their multiple impacts, covering a broad range of topics such as coastal
flood hazard, coastal erosion, reliability of offshore and coastal structures.
The main goal of this paper is to propose and study a stochastic simulator that,
given offshore conditions (peak direction Dp, peak period Tp and moderately
high significant wave heights Hs), produces jointly offshore and coastal ex-
treme Hs, a quantity measuring the wave severity and which represent a key
feature in coastal risk analysis. For this purpose, we rely on bivariate Peaks
over Threshold and a nonparametric simulation scheme of bivariate GPD is
developed. From this joint simulator, a second generator is derived, allowing
for conditional simulations of extreme Hs. Finally, to take into account non-
stationarities, the extended generalised Pareto model is also adapted, letting
the parameters vary with specific sea state parameters Tp and Dp. The per-
formances of the two proposed generators are illustrated on simulated data
and then applied to the simulation of new extreme oceanographic conditions
close to the French Brittany coast using hindcast sea state data. Results show
that the proposed algorithms successfully simulate future extreme Hs near
the coast in a nonparametric way, jointly or conditionally on sea state param-
eters from a coarser model.

1. Introduction. French coastlines have been particularly affected by extreme maritime
events in the past (Nicolae Lerma et al., 2015). Co-occurrence of high tidal coefficients, at-
mospheric surge conditions and specific sea states can lead to extreme maritime events. These
events are particularly crucial for assessing flooding risks and their consequences (Genovese
and Przyluski, 2013; Bertin et al., 2012). According to the special IPCC report (see Collins
et al. (2019)), extreme wave heights, which contribute to these extreme maritime events, have
increased over the past few years. The recent IPCC report (Seneviratne et al., 2021) indicates,
with high confidence, an increase in the occurrence and magnitude of such coastal events in
the future. More specifically, Caires and Sterl (2005) showed that the most extreme wave
conditions were expected to occur in the North Atlantic, which includes the Bay of Biscay,
our study area.

Sea surface elevation over a geographical area results from the superposition of waves
generated by local winds and by remote swell (generated in distant regions). The characteri-
sation of this complex surface is called a sea state and to describe it, various parameters are
available. In this work, we will focus on three variables: the significant wave height denoted
Hs [m], the peak period, Tp [s], and the peak direction, Dp [°] (see e.g. Holthuijsen (2007)
for more details).

Keywords and phrases: Bivariate extremes, Multivariate generalised Pareto distribution, Simulation of ex-
tremes, Nonstationarity, Extended generalised Pareto distribution, Covariate effects, Significant wave heights.
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Fig 1: (left) Portion of IOWAGA hindcast database grid, the red dot corresponds to the "off-
shore" point (data extracted from the IOWAGA database) and the triangular green dot cor-
responds to the "coastal" point (data extracted from the HOMERE database). (right) Scatter
plot of the coastal significant wave heights versus the offshore significant wave heights with
the different thresholds considered. The dark dots belong to the region of the data used for
simulation.

From a coastal risk point of view, a fundamental question is to determine how moder-
ately high offshore significant wave heights can produce large coastal Hs. Peak direction and
peak period influence the relationship between coastal and offshore Hs. In this context, our
main goal is to propose and study a stochastic simulator that, given offshore conditions (Tp,
Dp, Hs moderately high), produces jointly offshore and coastal extreme significant wave
heights. Note that in this study, we assume the availability of offshore Tp and Dp, but we
could also consider an appropriate bivariate generator of (Tp,Dp) (based, for example, on
Heredia-Zavoni and Montes-Iturrizaga, 2019). Hereinafter, Hc (resp. Ho) will denote the
coastal (resp. offshore) significant wave heights. The left-hand side map of Figure 1 shows
the two locations of interest.

From such a stochastic generator (first goal), many products can be derived. In partic-
ular our second objective is to propose a conditional simulation model (second goal). The
framework for each step of this study is summarised in Table 1. In order to make the two
simulation models as flexible as possible, nonparametric algorithms are derived using resam-
pling techniques (or nonparametric bootstrap (Efron, 1979)). While this study focuses on
simulation of extreme Hs, and as illustrated by the numerical simulations in Section 4, the
two nonparametric algorithms developed could be applied to a broad range of data.

In multivariate extreme value analysis, one is often interested in the joint behaviour of
the variables as they become large. As illustrated by the right-hand side of Figure 1, which
depicts a scatter plot between Ho and Hc, large values tend to occur simultaneously. For this

Table 1: Summary of available data for each step of this study. A tick v (resp. a cross x)
indicates the availability (resp. non-availability) of the data.

Hc Ho Dp Tp

Inference v v v v
First Goal: Joint simulation x x v v

Second Goal: Conditional simulation x v v v
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specific type of dependence, called asymptotic dependence (Coles, 2001), models from the
class of multivariate Extreme Value Theory (EVT) can be used. To achieve the two objectives
(first Goal and second Goal), we will therefore propose two simulation algorithms based on
multivariate Peaks over Thresholds (Sec. 8.3.1 Beirlant et al., 2004). Note that to assess
whether data fall within the class of asymptotic dependence or not, summary statistics have
been developed such as the dependence measures χ and χ̄ (Coles, Heffernan and Tawn,
1999) and, for our specific dataset, these measures do not point toward the case of asymptotic
independence between Ho and Hc (see Figure 11 in Appendix A).

For independent extremes, conditional models based on Heffernan and Tawn (2004)
should be favoured to deal with our second goal, see for example Towe et al. (2017); Shooter
et al. (2019); Tendijck et al. (2021). In particular, if the distance between the two locations
increases, the dependence is likely to decrease and other specific models should be used to
address such issues (e.g. Shooter et al., 2019, 2021a).

Before modelling the joint behaviour of large values, it is necessary to model margins
(Beirlant et al., 2004). To visualise this task with respect to our data, the empirical histograms
displayed in Figure 2 indicate that, given {Ho > vo} (moderately high offshore significant
wave heights), a traditional univariate extreme value approach based on fitting a generalised
Pareto distribution (GPD) to the exceedances (Coles, 2001) is not appropriate. Indeed, the
clear increase from zero to the mode in the left-hand histogram of Figure 2 cannot be repro-
duced by the probability density function (pdf) of the GPD that is a strictly decreasing func-
tion. To tackle this issue, we use the extended generalised Pareto distribution (EGPD) intro-
duced by Naveau et al. (2016) which handles this type of setting (see also Papastathopoulos
and Tawn (2013)), more details are given in Section 3.

Furthermore, like many other environmental data, extreme Hs are nonstationary with
respect to covariates (Jonathan and Ewans, 2013) and marginal models need to take into
account this nonstationarity (e.g. Ewans and Jonathan, 2008; Méndez et al., 2008; Casas-Prat,
Wang and Sierra, 2014). To incorporate nonstationarities, Chavez-Demoulin and Davison
(2005) proposed to let the parameters of an extreme value model vary as smooth functions
of covariates. This has been intensively applied to oceanographic data (e.g. Feld et al., 2014;

Fig 2: (left) Empirical histogram for the coastal significant wave height threshold ex-
ceedances and (right) similarly for the offshore significant wave heights threshold ex-
ceedances, illustrating that fitting a generalised Pareto distribution (Coles, 2001) is
not suitable for the coastal data. The coastal marginal threshold is defined by vc :=
min (Hc;Ho > vo).
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Jonathan, Ewans and Randell, 2014; Ross et al., 2017). However, there are only a few papers
dealing with nonstationary EGPD (de Carvalho et al., 2022; Haruna, Blanchet and Favre,
2022). In this study, and as illustrated in Figure 3, the marginal EGPD models parameters
will be described as smooth functions of the covariates Tp and Dp.

Fig 3: Dependence of Hs with respect to Tp and Dp (left) Offshore significant wave heights
Ho given peak period Tp. (right) Estimated quantiles of Ho given the peak direction Dp

for different quantile levels q ∈ {0.25,0.5,0.75,0.9,0.99}, estimation is performed using
smoothed quantile regression (Koenker, Ng and Portnoy, 1994).

The key steps of our study are the following: (1) marginal regression modelling within
the class of EGPD, (2) transformation of the data to common exponential margins, (3)
modelling extremal dependence between the variables using multivariate generalised Pareto
model (hereafter MGP models) (Rootzén and Tajvidi, 2006), (4) nonparametric simulation
of bivariate extreme Hs within the class of MGP distributions. In our modelling scheme, dif-
ferent steps are novelties.To our knowledge, little attention has been paid in the literature to
the modelling of multivariate nonstationary extremes using EGPD and to the nonparametric
simulation within the MGP class.

Our paper is organised as follows. In Section 2, the sea state data are presented and the
marginal inference incorporating covariates in the EGPD modelling is described in Section
3. In Section 4, the nonparametric method to simulate MGP vectors is presented and some
numerical experiments are shown. Two algorithms are outlined, one for bivariate simulations
and a second one for conditional simulations. Both algorithms are applied in Section 5 to
the sea state data. The R codes along with the data used in this study can be found in the
Supplementary Material A (Legrand et al. (2023)).

2. Sea state data. Our study is carried out in the northern part of the Bay of Biscay in
France. The specificity of this region is that it is exposed to the Atlantic Ocean and there-
fore subject to complex superpositions of wind generated waves and swell. The data are ex-
tracted from two different wave hindcasts provided by IFREMER and consist of simulations
of sea states by a numerical model. First, the IOWAGA database (Ardhuin and Accensi, 2014)
corresponds to sea states parameters that are generated by the wave model WAVEWATCH-
III and forced by CFSR winds on a Global grid (0.5◦ resolution grid in latitude and lon-
gitude). HOMERE is the second database (Accensi and Maisondieu, 2015), also based on
WAVEWATCH-III model and forced by IOWAGA on the wet boundaries, but on an unstruc-
tured grid covering only the English Channel and the Bay of Biscay, more refined close to
the coast and with the inclusion of currents and water levels.
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As mentioned in the introduction, we restrict our attention to two specific locations: an
offshore grid point (47◦N, 3◦W) from the IOWAGA database and a coastal point from the
HOMERE database, near the French coast (47◦24N, 2◦78W) corresponding to the SEM-REV
sea test site (Mouslim et al., 2009) (see Figure 1). Among all the sea states parameters, the
significant wave heights Hs[m] from the two locations, the peak period Tp[s] and the peak
direction Dp[

◦] only from the offshore location are used. Data are available at 3-hour intervals
spanning from 1994 to 2016. More precisely, the original HOMERE database has a 1-hour
resolution time step but the IOWAGA database is sampled every 3 hours, so to obtain data at
the same time scale a sub-sampling of the HOMERE database every 3 hours is performed.
Recall that Hc (resp. Ho) correspond to the coastal (resp. offshore) significant wave heights.
A scatter plot between Hc and Ho can be found in Figure 1, highlighting a strong dependence
structure between the variables. Data are then split into two sets:

• Set 1 contains the first 70% of the data and is used for the inference of the marginal regres-
sion models and the preliminary steps for the simulation of Hs (see Section 5);

• Set 2 contains the remaining 30% of the data and is used for the simulation of extreme Hs.

In order to propagate the uncertainties from the marginal modelling to the bivariate sim-
ulations, a bootstrap resampling is also adopted by repeating the combined marginal and bi-
variate analysis for 100 resamples of the Set 1. Note that Set 2 is not involved in the bootstrap
procedure.

3. Marginal regression analysis.

3.1. Marginal regression. In this section, only the data from Set 1 are considered. A
regression model for Hc and Ho is chosen. We pre-select the extremes by considering, within
the Set 1, data such that Ho > vo, i.e. belonging to the right rectangular region in Figure 1,
where vo is defined as the 0.98 quantile of Ho. A common choice when someone is interested
in extreme values is to work with the class of the generalised Pareto distributions (GPD)
(e.g. Coles (2001)). However, this type of model always raises questions on the choice of
the threshold and the GPD approximation holds true only for the very high values. In our
case we want to model all the data that are to the right of the vertical blue line in Figure
1, this means that values are not necessarily extremes. To overcome such problems, Naveau
et al. (2016) proposed a new class of extreme value distributions, called extended generalised
Pareto distributions (EGPD). The EGPD class is suitable for modelling the entire range of
data, not only the most extreme values, and avoids the need for careful threshold selection. It
also ensures that both lower and upper tails are in compliance with univariate EVT. In Naveau
et al. (2016), four parametric models are proposed. We restrict ourselves to the first and
simplest one (corresponding to the EGP3 model introduced by Papastathopoulos and Tawn
(2013)), which appears to be flexible enough, and whose cumulative distribution function is
of the form

(1) F (x) =

(
1−

(
1 +

ξx

σ

)−1/ξ
)κ

.

The model has three parameters: scale σ > 0, shape ξ ∈ R and an additional parameter
κ > 0 which controls the shape of the lower tail. In Naveau et al. (2016), the authors devel-
oped the EGPD for non-negative shape parameter ξ. Indeed, the main applications were the
modelling of daily rainfall (e.g. Naveau et al., 2016; Tencaliec et al., 2019; de Carvalho et al.,
2022; Rivoire, Martius and Naveau, 2021), which are heavy-tailed (ξ > 0). In our case, as
reported in Jonathan and Ewans (2013), extreme Hs data are generally described by upper-
bounded tail distributions. Still, the case ξ < 0 can be handled by model (1).



6

Table 2: Estimated parameters for the regression marginal models. Point estimates and 95%
asymptotic and bootstrap confidence intervals are given in brackets.

Parameter Estimate Asymptotic CI Bootstrap CI

ξc −0.11 [−0.15,−0.07] [−0.21,−0.09]
κc 4.11 [3.57,4.64] [3.02,4.84]
ξo −0.10 [−0.16,−0.04] [−0.17,−0.04]
κo 1.16 [1.05,1.26] [1.05,1.28]

As mentioned in the Introduction, Hs data are nonstationary (see Figure 3), see also
Jonathan, Ewans and Randell (2014); Feld et al. (2014); De Leo et al. (2021). Therefore,
we regress Hs on the peak direction Dp and the peak period Tp. We choose here to put the
dependency on the scale parameter. The regression marginal models can then be written as
follows

(2)


P(Ho − vo ≤ x|Ho > vo, Tp,Dp) =

(
1−

(
1 +

ξox

σo(Tp,Dp)

)−1/ξo
)κo

,

P(Hc − vc ≤ x|Ho > vo, Tp,Dp) =

(
1−

(
1 +

ξcx

σc(Tp,Dp)

)−1/ξc
)κc

.

The coastal marginal threshold vc introduced in (2) is defined by vc := min(Hc;Ho > vo) so
that the minimum of Hc − vc is equal to zero. This definition of vc allows to keep a large
amount of data for the simulations (see Section 5) and the use of the EGPD ensures that
extreme values of Hc are still well modelled.

Note that in classical EVT, incorporating a varying threshold in a extreme value model
often leads to improved marginal modelling (see for example Northrop and Jonathan (2011)
for a spatially varying threshold to model extreme Hs). However, in Equation (2), the thresh-
olds vc and vo should not be confused with the usual EVT thresholds. For example, going
back to the left panel of Figure 2, the histogram clearly highlights a mode around 1.5. In
this case, a classical EVT approach would have probably been based on varying thresholds
greater than 1.5. The parameter κ of the EGPD allows us to capture the lower tail behaviour.
This additional parameter appears to bring the necessary flexibility to fit well this particular
dataset, see Figure 12, without the need of a varying EVT threshold. If needed, one could
integrate covariate in κ (Le Carrer, 2022).

The regression marginal models (2) are estimated using the R package gamlss
(Stasinopoulos, Rigby and Akantziliotou, 2008) with the EGPD family (Le Carrer, 2022).
The inference is performed using maximum penalised likelihood estimation (note that the
model fitting is achieved with the CG algorithm (Cole and Green, 1992)). In our model (2),
we assume that the parameters σo and σc vary smoothly with Tp and Dp. This is achieved
using tensor product of cubic regression splines. The parameter estimates for the regression
marginal models are reported in Table 2. Both asymptotic 95% confidence intervals (CI),
derived from the asymptotic variance-covariance matrix of the fitted models, and bootstrap
95% CI for each parameter are given in brackets. Both procedures produce similar results.

Both estimated shape parameters are negative but close to zero, which suggests light-
tailed or bounded distributions. This is in accordance with previous studies and the physical
behaviour of wave heights in shallow waters (Castillo and Sarabia, 1992; Vanem and Fazeres-
Ferradosa, 2022). Regarding the lower tail parameter κ, looking at Equation (1) one can check
that less mass is put at zero for large values of κ. Thus looking at the empirical histograms
in Figure 2, the estimates of κ seem reasonable. Goodness-of-fit plots of the model (2) are
shown in Appendix B.
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3.2. Covariate effects. The covariate effects on the scale parameters can be seen on the
top panels in Figure 4. Regarding the effect of Dp, we find that the biggest storms come from
the WSW and with strong similarities between the coastal and the offshore model. There are
more differences between the two locations if we look at the effect of Tp, which might be
due to a greater loss of energy during the propagation of waves with large period. This is in
particular the case for swells generated well offshore, corresponding to a large peak period,
and coming from the NW, which are filtered at the coast due to the islands. To visualise in an
alternative way the effect of the covariates on the scale parameters, we also choose to consider
the theoretical expectation of the fitted EGPD models. As can be seen from Equation (3) (and
similarly for Ho), the theoretical expectation of model (2) is directly proportional to the scale
parameter (see Naveau et al. (2016)):

(3) E(Hc|Ho > vo, Tp,Dp) = σc(Tp,Dp)
1

ξc
[κcB(κc,1− ξc)− 1] ,

where B denotes the Beta function defined by

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt.

Fig 4: (top left) Estimated offshore scale parameter conditionally to the offshore peak direc-
tion Dp and the offshore peak period Tp. (top right) Identical to the top left panel but for the
coastal scale parameter. (bottom left) Interpolated ratio of empirical extreme coastal signif-
icant wave heights Hc and extreme offshore significant wave heights Ho. The interpolated
surface between the data points is performed using local polynomial interpolation of degree
2. (bottom right) Ratio of the predicted conditional expectations of extreme coastal signifi-
cant wave heights Hc and extreme offshore significant wave heights Ho, conditionally to the
offshore peak direction Dp and the offshore peak period Tp. On the four plots, observed data
points are superimposed.
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The bottom left panel in Figure 4 represents the empirical ratio Hc/Ho given Tp and Dp

values. Local polynomial interpolation (LOESS, Cleveland and Devlin (1988)) is performed
between the observed data points to get values on a regular grid of Dp and Tp, ranging from
230 to 300 degrees for the peak direction and from 10 to 20 seconds for the peak period. This
first panel is then compared to the estimated ratio of the two conditional expectations (bottom
right panel in Figure 4), which, from Equation (3), is proportional to

σ̂c (Tp,Dp)/σ̂o (Tp,Dp) .

This ratio can give us an idea of the propagation of the wave energy from the offshore to the
coast as a function of the covariates. These results can be physically interpreted: the loss of
wave energy between the offshore and the coast is lower for small periods but also for waves
coming from the SW rather than the NW due to the bathymetry (see the map on Figure 1).

Using the estimated σ̂c(Tp,Dp) and σ̂o(Tp,Dp), the Hs data are then transformed to com-
mon exponential scale using the probability integral transform

(4)
HE

o :=− log
{
1− F̂o[(Ho − vo)/σ̂o(Tp,Dp)]

}
,

HE
c :=− log

{
1− F̂c[(Hc − vc)/σ̂c(Tp,Dp)]

}
,

where F̂o (resp. F̂c) is the fitted EGPD(ξ̂o, κ̂o,1) cdf’s (resp. EGPD(ξ̂c, κ̂c,1)) from Equa-
tion (2).

4. Multivariate Pareto model. In this section, the threshold exceedances of Hs trans-
formed to common exponential margins are modelled. This vector is denoted HE :=
(HE

c ,HE
o ) in the following. For that, we adapt the definition of Rootzén and Tajvidi (2006)

of bivariate threshold exceedances given as

(5)
[
HE −u|HE ≰ u

]
where u := (uc, uo) ∈ R2

+ and HE ≰ u means that HE
c > uc and/or HE

o > uo, that is to
say we are extreme in at least one of the two components. Then multivariate EVT theory
states that (5) can be well approximated by a multivariate generalised Pareto (MGP) distri-
bution (Rootzén and Tajvidi, 2006). Note that there are different equivalent definitions for
multivariate threshold exceedances (see Section 8.3 of Beirlant et al. (2004)).

Rootzén, Segers and Wadsworth (2018) derived a stochastic representation of standard
MGP vectors considering that a bivariate random vector Z follows a standard MGP distribu-
tion if, and only if,

(6) Z =E + T −max(T ),

with T a random vector and E a unit exponential random variable independent of T . In the
above equation, the addition should be interpreted component-wise and the scalars E and
max(T ) are repeated twice if Z is a bivariate random vector. Note that the standard MGP
distribution is supported by the set L := {x ∈Rd;x≰ 0}.

In our study, Equation (6) is adapted to Z = (Z1,Z2) defined as

(7)

{
Z1 :=HE

o − uo|HE
o > uo or HE

c > uc,

Z2 :=HE
c − uc|HE

o > uo or HE
c > uc.
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Algorithm 1 Nonparametric bootstrap MGP simulation
1: input A sample (Z1,i,Z2,i)1≤i≤n from a MGP distribution

2: output A simulated sample (Z
(m)
1,k ,Z

(m)
2,k )1≤k≤m, potentially with m ̸= n

3: procedure
4: Define ∆i := Z1,i −Z2,i for 1≤ i≤ n

5: Generate m realisations E(m)
k ∼Exp(1), independently of (∆i)1≤i≤n, for 1≤ k ≤m

6: Bootstrap m realisations ∆(m)
k , 1≤ k ≤m, from (∆1, . . . ,∆n)

7: end procedure
8: return Z

(m)
1,k :=E

(m)
k +∆

(m)
k 1

∆
(m)
k <0

and Z
(m)
2,k :=E

(m)
k −∆

(m)
k 1

∆
(m)
k >0

, for 1≤ k ≤m

4.1. Simulation of bivariate standard generalised Pareto distributed vectors. Kiriliouk
et al. (2019) established several parametric MGP models by setting explicit densities for
T in a multivariate setting. In the following, we consider only vectors of dimension 2, i.e.
Z = (Z1,Z2) and T = (T1, T2). To bypass the choice of the underlying distribution for T ,
we start from the following rewriting of Equation (6),

(8)

{
Z1 =E +∆1∆<0,

Z2 =E −∆1∆≥0,

where ∆ := Z1 − Z2 = T1 − T2 and 1A denotes the indicator function, equals to 1 if A is
true and 0 otherwise.

Equation (8) is the basis for our simulation algorithms. From this equation, we see that
we need to simulate values of ∆ and E independently, instead of (T1, T2). Generating inde-
pendent, and identically distributed, unit exponentials is trivial, so the main difficulty is to
simulate ∆. This can be achieved by bootstrapping (see Efron (1979)). Our approach is then
described in Algorithm 1 and a theoretical proof can be found in Appendix C.

4.2. Numerical experiments. In the following, we simulate MGP vectors Z = (Z1,Z2)
from the representation (6) with different parametric models on (T1, T2) and we compare
with our simulation algorithm. The different experiments are reported in Table 3 and some
graphical results are shown in Figure 5 which displays for each model a scatter plot of the
data, the measure of extremal dependence χ(u) for increasing values of u, and the marginal
quantile-quantile plots. We use the measure χ(u) which gives a measure of asymptotic de-
pendence between two variables X and Y (for more details see e.g. Coles, Heffernan and
Tawn (1999)) and which is defined by

(9) χ(u) := P
(
Y > F−1

Y (u) |X >F−1
X (u)

)
, u ∈ (0,1).

In Table 3, (a) and (b) are two bivariate Gaussian models with same correlation coefficient
ρ < 1 but with µ1 ̸= µ2 for (b), leading to asymmetry. Model (c) corresponds to the Type I
bivariate logistic distribution proposed by Gumbel (1961). For model (d) we consider two
independent Gumbel distributed variables with different scale parameters. And lastly, (e)
corresponds to a bivariate exponential distribution as defined in Marshall and Olkin (1967).

As seen in Figure 5, Algorithm 1 successfully simulates draws from the parametric simu-
lations in terms of the marginals Z1 and Z2, but also recovers well the dependence structure
when looking at the measure of dependence χ(u).
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(a)

(b)

(c)

(d)

(e)

Fig 5: Each panel line corresponds to one of the parametric model (a) to (e), and shows
from left to right: (1) Scatter plot of simulated data with the parametric model with sample
size n = 10000 (black dots) and sampled data from one simulation using Algorithm 1 with
sample size m= 10000 (blue diamond-shaped dots); (2) Empirical estimates of the measure
of asymptotic dependence χ(u) for the simulated data with the parametric model (black line)
and for the sampled data from Algorithm 1 (red line), with associated 95% pointwise con-
fidence intervals based on 1000 bootstrap replications; (3) and (4) Quantile-quantile plots
for Z1 and Z2 with associated 95% pointwise confidence intervals based on 1000 bootstrap
replications.
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Table 3: Overview of the different experiments carried-out given the joint distribution of T .
For each, we give the joint distribution F (x1, x2) when it can be written easily or the

survival function S(x1, x2). In the third column, we give the different parameters values
used in the numerical experiments.

Bivariate model Joint distribution of T Parameters

(a) Gaussian
symmetric

N
(
(µ1, µ2),

(
1 ρ
ρ 1

)) µ1 = 0
µ2 = 0
ρ= 0.4

(b) Gaussian
asymmetric

N
(
(µ1, µ2),

(
1 ρ
ρ 1

)) µ1 = 0
µ2 = 2
ρ= 0.4

(c) Logistic F (x1, x2) =
(
1 + e−x1/σ1 + e−x2/σ2

)−1 σ1 = 1
σ2 = 5

(d) Gumbel F (x1, x2) = exp [− exp{−x1/σ1}] exp [− exp{−x2/σ2}]
σ1 = 1
σ2 = 4

(e) Exponential S(x1, x2) = exp{−λ1x1 − λ2x2 − λ3max(x1, x2)}
λ1 = 2
λ2 = 10
λ3 = 1

4.3. Conditional simulation within the MGP class. From an application perspective, we
also want to be able to simulate conditionally on one of the two variables. In this section we
describe the conditional simulation algorithm for the MGP model.

From Equation (6) we can derive

(10) Z2 = Z1 + T2 − T1 = Z1 −∆.

From Equation (10), we can design a simulation strategy but caution is required because
∆ and Z1 are not necessarily independent. But for some values of Z1, this will be the case.
To see this, one can compute the conditional distribution of ∆ given Z1 = z1 starting from
the joint distribution function of (Z1,Z2) which is given by

f(Z1,Z2)(z1, z2) = e−max(z1,z2)f∆(z1 − z2)1(z1,z2)∈L , for z1, z2 ∈R,

where f∆ denotes the distribution function of ∆.
First case: If z1 > 0. In this case, noting that if z1 > 0 then 1(z1,z2)∈L = 1, the marginal

distribution of Z1 is given as follows

fZ1
(z1) = e−z1K,

where K :=
∫ 0
−∞ euf∆(u)du+

∫∞
0 f∆(u)du and does not depend on z1.

Therefore, the conditional distribution of Z2 given Z1 = z1 when z1 > 0 is given by

fZ2|Z1
(z2 | z1) =

1

K

[
f∆(z1 − z2)1z1≥z2 + ez1−z2f∆(z1 − z2)1z1<z2

]
From this, the conditional distribution of ∆ given Z1 = z1 > 0 can then be deduced:

(11) f∆|Z1
(δ | z1) =

1

K

[
f∆(δ)1δ≥0 + eδf∆(δ)1δ<0

]
.

This shows that, conditionally on Z1 > 0, ∆ does not depend on Z1.
Second case: If z1 < 0. Then, noting that 1(z1,z2)∈L = 1z2>0 if z1 < 0, we get

fZ1
(z1) = e−z1K(z1),
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Algorithm 2 Nonparametric conditional MGP simulation
1: input A sample (∆i)1≤i≤n ; a realisation z1 of Z1

2: output A simulated sample (Z
(m)
2,k )1≤k≤m conditionally on Z1 = z1, potentially with m ̸= n

3: procedure
4: if z1 > 0 then
5: Define ∆|Z+

1
the subset of (∆i)1≤i≤n such that Z1 > 0

6: Bootstrap m realisations ∆(m)
k , 1≤ k ≤m, from ∆|Z+

1
independently of Z1

7: else
8: for 1≤ k ≤m do
9: Sample one realisation ∆

(m)
k from (∆i)1≤i≤n independently of Z1

10: Generate a random number u ∈ [0,1]

11: while u > exp(∆
(m)
k )1

∆
(m)
k <z1

do

12: Repeat steps 9 and 10

13: end for
14: end procedure
15: return Z

(m)
2,k := z1 −∆

(m)
k for 1≤ k ≤m

where K(z1) :=
∫ z1
−∞ euf∆(u)du. And we can derive the conditional distribution of Z2 given

Z1 = z1 < 0 as follows

fZ2|Z1
(z2 | z1) =

1

K(z1)
ez1−z2f∆(z1 − z2)1z2>0.

The conditional distribution of ∆ given Z1 = z1 < 0 is then given by

(12) f∆|Z1
(δ | z1) =

1

K(z1)
eδf∆(δ)1δ<z1 .

From Equations (11) and (12) we derive the conditional simulation algorithm described
in Algorithm 2, where the simulation procedure is split into two cases:

1. If z1 > 0, we can sample values of ∆ independently of Z1,
2. otherwise, if z1 < 0, we use a rejection sampling approach to approximate the targeted

conditional density in Equation (12).

Similarly, we could also derive a simulation scheme of Z1 given Z2 = z2.

4.4. Numerical experiment continued. As for the bivariate simulations, we can illus-
trate Algorithm 2 with numerical experiments. We choose here to show the results only for
Model (a) (Symmetric Gaussian) since for this specific model we have an explicit form for
the theoretical distribution of ∆. The results are presented in Figure 6 where we simulated
the conditional distribution of Z2 for eight different conditioning values. The sampled and
theoretical conditional distributions appear to be in close conformity.

5. Application to extreme significant wave height. The methodology presented in
Section 4 is applied to the joint and the conditional simulations of extreme significant wave
heights. For that, the sample of bivariate threshold exceedances (Z1,Z2) defined in Equation
(7) is used as input data for Algorithm 1 or Algorithm 2. The thresholds uo and uc in (7) are
defined as the 0.8 quantile of HE

o , or equivalently of HE
c . This quantile has been selected

following the stability plot approach proposed in Kiriliouk et al. (2019).
Recall that in both cases, simulations are performed on the exponential scale. A final step

of back transformation is then necessary to get simulations of Hs on the original scale. This
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final step corresponds to part 3 (resp. 5) in the following procedure for the joint (resp. condi-
tional) simulation of Hs. For the sake of clarity we now divide the joint and the conditional
simulation scheme of Hs in two separate sections. Note that in the following two sections,
simulations are performed given the marginal parameters estimates. The quantification of
the uncertainty propagation from the marginal inference step to the bivariate estimation is
postponed to Section 5.3.

5.1. Joint simulation of significant wave heights. The joint simulation scheme for ex-
treme Hs is described hereafter. In the following we fix the pair value (tp, dp) ∈ R2 which
may be taken from Set 2.

1. Compute σ̂o(tp, dp) and σ̂c(tp, dp) from the marginal EGPD models fitted on Set 1 (see
Section 3).

2. Simulate m pairs of (z1, z2) applying Algorithm 1 with input data (Z1,Z2) as defined in
(7). We therefore obtain m simulated pairs ((z1,1, z2,1), . . . , (z1,m, z2,m)) for a fixed value
(tp, dp).

3. Transform the simulated values to the original scale

ho,i := σ̂o(tp, dp)F̂
−1
o (1− e−(z1,i+uo)) + vo ∈Rm,

hc,i := σ̂c(tp, dp)F̂
−1
c (1− e−(z2,i+uc)) + vc ∈Rm,

where F̂−1
o (resp. F̂−1

c ) is the inverse cdf of the EGPD(ξ̂o, κ̂o,1) (resp. EGPD(ξ̂c, κ̂c,1))
estimated in Section 3.

This procedure is then applied to four selected pairs (tp, dp) from the Set 2 corresponding
to the four largest Hc of this dataset. Figure 7 depicts simulated pairs of offshore and coastal
Hs with simulation sample size m= 1000.

Figure 7 shows that for these specific conditions, Algorithm 1 successfully generates ex-
treme Hc and Ho. Note that since the four points considered are the largest observations, they
are expected to be among the extremes of the simulated distributions.

Fig 6: Sampled conditional distribution of Z2 given Z1 = z1 using Algorithm 2 for the asym-
metric Gaussian model with sample size n = 10000. Eight experiments are presented for
different quantiles of Z1 whose values are reported in each panel title. The sample size for
each simulation is m= 10000. The theoretical conditional density is superimposed in red.
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Table 4 describes the eight largest hc of Set 2, giving the time event and the correspond-
ing ho, tp and dp values. The last column of Table 4 gives the empirical estimate of the joint
survival probability defined as 1/m

∑m
i=1 1{ho,i > ho, hc,i > hc}, applying the above proce-

dure with simulation sample size m= 1.106. This estimated probability quantifies the obser-
vations made with Figure 7: for the most extreme events, the associated joint probabilities
are expected to be lower.

5.2. Conditional simulation of coastal significant wave heights. The conditional simu-
lation scheme for extreme coastal Hs is described below. Note that the procedure is symmet-
rical for simulating offshore Hs. In the following we fix the triplet value (ho, tp, dp) ∈ R3

which may be taken from Set 2.

Fig 7: Sampled values of coastal versus offshore significant wave heights from Algorithm 1,
m= 1000 pairs of points are simulated. Each panel corresponds to a fixed value of (tp, dp)
corresponding to the four largest Hc from Set 2 in decreasing order (recall that Set 2 contains
the last 30% of the original dataset that have not yet been used). Next to each scatter plot,
marginal distribution of simulated Ho and Hc are depicted with boxplots. On both the scatter
plots and the boxplots, the red diamond-shaped points represent the true values of the coastal
and offshore significant wave heights for the four pairs.

Table 4: Empirical joint survival probability of exceeding the observed extreme significant
wave heights hc and ho for the eight largest coastal significant wave heights of Set 2. Only

events from different storms are given (i.e. events separated by more than 3 hours).
Estimation is performed using m= 106 simulated pairs (ho,i, hc,i)1≤i≤m for each largest

event with Algorithm 1.

Date-Time Hc [m] Ho [m] Tp [s] Dp [°] Joint probability

1 2014-02-05 12:00:00 GMT 7.83 10.1 17.86 257 0.002
2 2011-12-16 03:00:00 GMT 7.74 10.4 13.89 262 0.045
3 2010-02-24 15:00:00 GMT 7.62 10.0 15.15 259 0.057
4 2016-01-02 06:00:00 GMT 7.18 8.4 14.71 256 0.277
5 2013-12-24 06:00:00 GMT 7.08 8.4 14.71 253 0.388
6 2014-02-14 21:00:00 GMT 7.06 8.3 14.08 248 0.691
7 2015-01-15 09:00:00 GMT 6.45 7.9 13.70 260 0.489
8 2016-03-28 03:00:00 GMT 6.30 7.6 14.08 256 0.762
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1. Compute σ̂o(tp, dp) and σ̂c(tp, dp) from the marginal EGPD models fitted on Set 1 (see
Section 3).

2. Transform ho to the standardised space using the probability integral transform:

hEo =− log
{
1− F̂o[(ho − vo)/σ̂o(tp, dp)]

}
where F̂o is the EGP (ξ̂o, κ̂o,1) cdf’s.

3. Set z1 := hEo − uo, where uo is the threshold on the offshore Hs on the exponential scale.
4. Simulate z2 applying Algorithm 2, only in the case z1 > 0. Here ∆|Z+

1
is defined from Set

1 through ∆|Z+
1
:= (Z1 −Z2)1{Z1 > 0}, with Z1, Z2 as defined in (7), and bootstrapped

m times. We therefore obtain m simulations of z2 = (z2,1, . . . , z2,m) for a fixed triplet
(ho, tp, dp), given z1 > 0.

5. Transform the predicted values to the original scale

hc,i := σ̂c(tp, dp)F̂
−1
c (1− e−(z2,i+uc)) + vc

where F̂−1
c is the inverse cdf of the EGPD(ξ̂c, κ̂c,1) (see Section 3).

Note that in Step 4 above, the simulation is restricted to the case when z1 > 0 for conve-
nience, since our focus is on the simulation of extreme Hs.

The pseudo-algorithm described above is applied with all the triplet values (ho, tp, dp)
from Set 2, with simulation sample size m= 1000. These conditional simulations of coastal
significant wave heights are then compared to the true values of Hc from Set 2. The overall
coverage probability (i.e. the number of times the actual value of coastal Hs is within the 95%
range of the predicted distribution) is equal to 95% and the simulations are shown in Figure
8. The simulations and the true Hc values (red dots) are most of the time in good agreement.
Since no declustering approach has been adopted, consecutive observations, which belong
to the same storm event, are kept. They are depicted with identical colour, highlighting a
temporal dependence structure between each storm cluster.

The effect of the covariates Tp and Dp in the conditional simulations is depicted in Figure
9, showing that the simulation model is able to simulate both the most intense and the more
moderate Hc. This plot also highlights for which sea state conditions the simulations are far

Fig 8: Boxplot of predicted Hc conditionally on (Ho, Tp,Dp) using Algorithm 2. The simula-
tion sample size is equal to m= 1000 for each observation. Red dots represents the observed
Hc values from Set 2. The alternating colours depict different storms: consecutive boxes with
same colour correspond to observations that belong to the same storm (i.e. separated by less
than 3 hours).
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from the observed values. It appears that the two predictions such that the observed Hc value
does not fall within the 95% simulation range correspond to small Hc and Ho.

Fig 9: Scatter plot from Set 2 with the peak direction Dp on the y-axis and the peak period Tp

on the x-axis. A dot’s colour corresponds to the value of the coastal significant wave heights
Hc. The size of the dots corresponds to the value of the offshore significant wave heights Ho.
The shape indicates if the observed Hc falls within the 95% range of the predicted distribution
from the conditional model where the simulation sample size is equal to m= 1000 for each
observation.

5.3. Uncertainty quantification. As mentioned in Section 2, in addition to these simu-
lations, we also combined the marginal and the dependence analysis in a bootstrap scheme
in order to accommodate for marginal uncertainties. Both Algorithm 1 and Algorithm 2 have
been applied within the bootstrap procedure, leading to 100 bootstrap sample of joint and
conditional simulations of Hs. Results of each iteration can be found in the Supplementary
Material B (Legrand et al. (2023)), showing the reproduction of Figures 7 and 8 for each
bootstrap sample. Overall, it seems that the performances are reasonably good within each
resampling iteration. Also, regarding the conditional simulation algorithm, the mean cover-
age probability over the 100 bootstraps is equal to 93%.

6. Discussion and conclusions. Simulation of extreme events in a multivariate setting
is of great interest to capture not only the statistical behaviour of the extremes, but also
the dependence between large values of complex processes. Based on the multivariate EVT,
this work presents two nonparametric simulation algorithms of bivariate generalised Pareto
distributed variables, without assuming any specific parametric shape for the MGP model.
Thanks to Algorithm 1, one can simulate joint extremes. As for Algorithm 2, it allows the
simulation of conditional extremes. Both methods have been validated with numerical simu-
lations.

We would like to point out that in the context of bivariate extremes, other simulation
algorithms have been developed. For example Marcon, Naveau and Padoan (2017) proposed
a simulation method with a semi-parametric structure for the extremal dependence function,
but it was not based on a MGP model and did not cover nonstationarities. Michel (2006)
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derived a nonparametric simulation framework of bivariate generalised Pareto variables using
a different representation of MGP vectors than the one used in this paper.

For application purposes and as a by-product, a nonstationary marginal modelling with
the EGPD was also developed, adding covariate effects on the scale parameter of the EGPD
using smoothing splines.

We applied this work to the simulation of extreme significant wave heights near the Brit-
tany coast given specific offshore sea state conditions (Tp,Dp) with compelling results. In
both joint and conditional settings, thanks to the presented algorithms, we are able to simulate
realistic extreme Hs events. Regarding the marginal models, other studies have considered
extreme value models for Hs with both varying scale and shape parameters (e.g. Jonathan and
Ewans, 2007; Feld et al., 2014). Incorporating effects of Tp and Dp on both parameters could
certainly improve the models, but at the cost of computational limitations. Moreover, one
could argue that for our specific dataset, the sea states could be considered as homogeneous
since Dp has a constrained domain between [234◦,300◦].

Note that in possible extensions of this work to climate projections, it is assumed that
data will not be available at the coastal location but only on a coarse grid, similar to the
IOWAGA Global hindcast. This argument, which is illustrated in Table 1, motivates the first
pre-selection of the Hs data through {Ho > vo} for the marginal regression analysis (see
Section 3).

Extensions to the multivariate case will be the subject of future works. Considering more
than two locations raises different modelling issues. It would also be interesting to apply this
methodology to other locations in order to ensure the proper generalisation of the methodol-
ogy.

Finally, as already mentioned, a classical approach regarding extreme significant wave
height simulations is the conditional extreme model of Heffernan and Tawn (2004). For ex-
ample, Shooter et al. (2021b, 2022) applied this model in a spatial setting to characterise the
behaviour of the extremal dependence structure between different metocean variables. One
strength of our bivariate model (hereafter referred to as MGPD approach) is that a condi-
tional sampling scheme can be easily produced from simulations of joint extremes. So, we
can compare the MGPD approach to the traditional conditional model of Heffernan and Tawn
(2004) for our data at hand. We consider hereinafter the conditional generation of extreme
Hs on the standardised scales. In other words, we generated standardised coastal significant
wave heights on the exponential scale with Algorithm 2 on the one hand and with the condi-
tional extreme value model of Heffernan and Tawn (2004) on the other hand. We simulated
nsim = 1000 samples of same length as the observation exceedances hEo > uo. Figure 10
depicts one of these nsim simulations of coastal Hs versus observed offshore Hs in the ex-
ponential space. One can see that for this specific simulated sample, the conditional extreme
approach tends to simulate less extreme values of Hc than the MGPD approach. A first com-
parison has been made computing the mean absolute error between the observed data and the
simulations for both models. Results are depicted in the right panel of Figure 10, showing
slightly better results for the MGPD model.
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Fig 10: Scatter plots between coastal Hs and offshore Hs in the standardised space (ex-
ponential margins). The coloured triangle shaped points correspond to one simulation run
with the conditional extreme model of Heffernan and Tawn (2004) (left) and with our MGPD
approach (middle). The vertical dashed line corresponds to uo. (right) Mean absolute error
over the nsim = 1000 simulations for both models: Heffernan and Tawn (2004) on the left -
MGPD approach on the right.

APPENDIX A: TAIL DEPENDENCE BETWEEN Hs DATA

Figure 11 depicts the estimated tail dependence measures χ(u) (see (9)) and χ̄(u) between
the offshore and the coastal significant wave heights. Recall that the dependence measure
χ̄(u) (e.g. Coles, Heffernan and Tawn, 1999) between two variables X and Y is define as

χ̄(u) =
2 log (1− u)

logP (FX(X)> u,FY (Y )> u)
, u ∈ (0,1).

Fig 11: Empirical estimates of the measure of asymptotic dependence χ(u) (left) and χ(u)
(right) between Ho and Hc, with 95% pointwise confidence intervals.

APPENDIX B: MARGINAL REGRESSION MODELLING

We show here the goodness of fit for the marginal regression models defined in Equation
(2). As our models depend on some covariates, the diagnostic plots presented here are built for
the standardised Hs exceedances which are defined as (Hc − vc)/σc(Tp,Dp) (and similarly
for Ho). From Figure 12, one can see that the fits seem to be fairly good, a slight discrepancy
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Fig 12: (left) Empirical histogram (grey) of the standardised extreme significant wave heights
exceedances (a) at the coast and (b) offshore. The fitted EGPD density is superimposed.
(right) The corresponding quantile-quantile plots with associated 95% pointwise confidence
intervals computed using parametric bootstrap.

in the lower values can be noticed for the coastal model but this is not a major issue as the
interest lies mainly in the larger values.

APPENDIX C: PROOF OF ALGORITHM 1

With the same notations as in Algorithm 1, let F be the common distribution func-
tion of ∆1, . . . ,∆n and F

(m)
nm be the empirical distribution function of the bootstrap sample

∆
(m)
1 , . . . ,∆

(m)
m .

LEMMA 1. If F (m)
nm converges in distribution to F , as n and m tend to infinity, then

(Z
(m)
1,k ,Z

(m)
2,k )1≤k≤m converge in distribution to a bivariate GPD G where G is the common

distribution function of the sample (Z1,i,Z2,i)1≤i≤n.

PROOF. As P (E ≤ u) = 1−min(1, exp(−u)) for any u ∈R if E ∼Exp(1), the bivari-
ate distribution function of (Z(m)

1 ,Z
(m)
2 ) is equal to

P
[
(Z

(m)
1 ,Z

(m)
2 )≤ (z1, z2)

]
= 1−E

[
min

(
1, e−min(z1−∆(m)1

∆(m)<0
,z2+∆(m)1

∆(m)>0
)
)]

= 1−E
[
min

(
1, e−min(z1−∆(m),z2)−max(∆(m),0)

)]
,

for any (z1, z2) ∈ {x ∈R2;x≰ 0}.
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Then, one can show that the function x 7→min(1, x), defined for x≥ 0, is Lipschitz and
bounded by 1. And applying the Portmanteau theorem, we have, letting min(n,m)→∞,

P
[
(Z

(m)
1 ,Z

(m)
2 )≤ (z1, z2) |∆1, . . . ,∆n

]
→ 1−E

[
min

(
1, e−min(z1−∆,z2)−max(∆,0)

)]
= 1−E

[
min

(
1, emax(T1−z1,T2−z2)−max(T1,T2)

)]
.

This is the cumulative distribution function of the MGP vector (Z1,Z2) as defined in
Rootzén, Segers and Wadsworth (2018) (Prop. 8).

The assumption in Lemma 1 is linked to bootstrap asymptotic theory (e.g. Bickel and
Freedman (1981)).

Acknowledgments. The authors would like to thank Noémie Le Carrer for helpful dis-
cussion on the implementation of the EGPD family within the gamlss package.

The authors are indebted to the Laboratoire d’Océanographie Physique et Spatiale, IFRE-
MER for providing the data used in this study.

Funding. The third author was supported in part by the DAMOCLES-COST-ACTION
on compound events, the French national program (FRAISE-LEFE/INSU and 80 PRIME
CNRS-INSU), and the European H2020 XAIDA (Grant agreement ID: 101003469. The
authors also acknowledge the support of the French Agence Nationale de la Recherche
(ANR) under reference ANR-20-CE40-0025-01 (T-REX project), the ANR-Melody (ANR-
19-CE46-0011).

SUPPLEMENTARY MATERIAL

Supplement A: R code and data
This supplement contains the R code and the data used in this study.

Supplement B: Bootstrap simulations
This supplement file contains two movies showing the results of each nboot = 100 bootstrap
for both algorithms iteration by reproducing Figure 7 and Figure 8 of the main paper.
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