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ABSTRACT

For several decades NIME community has always been ap-
propriating machine learning (ML) to apply for various tasks
such as gesture-sound mapping or sound synthesis for digi-
tal musical instruments. Recently, the use of ML methods
seems to have increased and the objectives have diversified.
Despite its increasing use, few contributions have studied
what constitutes the culture of learning technologies for
this specific practice. This paper presents an analysis of
69 contributions selected from a systematic review of the
NIME conference over the last 10 years. This paper aims at
analysing the practices involving ML in terms of the tech-
niques and the task used and the ways to interact this tech-
nology. It thus contributes to a deeper understanding of the
specific goals and motivation in using ML for musical ex-
pression. This study allows us to propose new perspectives
in the practice of these techniques.

Author Keywords
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Design, Human-IA Interaction, Literature Review

CCS Concepts

•Human-centered computing → Human computer interac-
tion (HCI); •Applied computing → Sound and music com-
puting;

1. INTRODUCTION
Machine learning (ML) is defined as a set of computational
techniques capable of discovering the underlying structure
of a data set. These techniques are said to be trained on
this data set to learn the structure, making them capable of
making predictions by taking as input data never observed
before. In other words, this family of techniques makes
it possible to create a program inductively: the computer
takes as input a set of data defining the task to be ac-
complished, and proposes as output the program capable of
performing this task (with a certain level of performance).
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Examples of well-known tasks are: image recognition, in-
duced from a set of image-textual category pairs [49]; ma-
chine translation, induced from a set of sentences in one
language and its translation into another language [65]; or
content generation, induced from a set of typical content to
be generated [42]. Due to the remarkable results on com-
plex and real data, this type of technology has attracted
interest of creative practitioners and artists working with
new technology and new media. In this paper, we propose
to provide a survey of the use of ML in the design of New
Interfaces for Musicale Expression (NIME).

The NIME community has been involved in the develop-
ment of ML and its use in a creative context from an early
stage with mapping between gesture and sound [20]. Indeed,
ML was used to create non-linear relationships between
high-level control parameters and low-level sound synthesis
parameters, as illustrated in the works of Wessel et al. [89].
This way of building a mapping between signals from dif-
ferent modalities is usually called implicit mapping [91, 36],
which has particularly been explored in the creation of in-
teractions between gestures and sounds. Today the use of
ML techniques has diversified, especially since the last lit-
erature review on ML proposed ten years ago, in 2013, in
the NIME community [10]. This computational technique
has changed in form and expressive capacity, particularly
with the advent of deep learning. A lot of work at NIME
has followed and even triggered changes in the use of this
technology.

To address this question, we propose in this paper a sys-
tematic literature review of the work of the NIME com-
munity involving ML over the last ten years. Through the
analysis, our questions are: (1) What musical and techno-
logical practices have emerged in the NIME community? (2)
Beyond the techniques used, what kinds of interactions are
taking place between the user and the ML methods proposed
by the NIME community? (3) What are the motivations and
expectations of the authors of the publications when using
ML?

We propose an analysis grid allowing us to extract the
diversity of the methods used, the actors involved in the
design of these systems and their control on them. We re-
port in this article the results of the literature review and
discuss their implications.

2. BACKGROUND
Over the past decade the research and tools in Machine
Learning have grown exponentially. Shortly after the Deep
Learning breakthrough in 2012, showing a qualitative gap
between state of the art and what a Deep Neural Net-
work achieves on an image classification task, ML research
has exploded, supported by large public and private invest-
ments. Among the key steps of this research, we can cite



the use of Convolutional Neural Network for supervised
learning (classification, regression) [50] or content genera-
tion through Generative Adversarial Networks [29]. Tech-
nological breakthrough, and its widespread integration to
many software and services, also does not go without socio-
political and socio-cultural consequences such as technolog-
ical governance [57], accentuation of biases from datasets
(e.g. racist or sexist biases) [79], exploitation of cheap
labour for repetitive annotation tasks [81], or the enormous
impact of such technology on the environment [12].
As the NIME community initiated the integration of ML

into instrument design prior to 2012, one wonders what im-
pact technological advances have had on NIME over the
past decade. In particular, we ask to what extent the NIME
communities have been able to adapt to the new technolo-
gies integrated, manipulated, or avoided ML methods in
the creation of musical interfaces. In this article, we pro-
pose a literature review to understand this diversification,
the methods put forward, and also better understand the
goals of people applying ML to musical tasks in NIME com-
munity.

3. METHOD
In this section, we present the method used for the literature
review on the involvement of ML in the design of new inter-
faces for musical expression. We used the guidelines given
by PRISMA for writing and reading systematic reviews and
meta-analyses [63]. Our bibliographic research is based on
the literature produced in the NIME conference 1. Figure 1
illustrates the survey methodology, from the identification
of the items to the final filtering. We detail below each step
of the selection process.

Figure 1: Diagram of the paper selection process broken
down into three stages.

.

3.1 Search Protocol
We propose a review of the literature over the last ten years,
between 2012 and 2022. We have searched for papers in the

1https://www.nime.org/

archives of the conference proceedings. We chose not in-
clude music proceedings in our search protocol due to a lack
of technical and design information in the project descrip-
tions. The archive of the conference proceedings is available
online in a GitHub repository2. Moreover, the bibliography
file for the year 2022 was not available at the time of writing
this paper, so we created it from the list of accepted papers
indicated on the conference website3, and we asked for con-
firmation from the programme committee officers. We have
identified a total of 1206 articles.

3.2 Selection of studies

3.2.1 Filtering by keywords
The bibliographic search strategy included a collection of
keywords defined to identify articles proposing a system
in which one of the main elements is an ML model. We
used this keyword collection on the metadata of the publi-
cations including the title, the keywords of the article and
the abstract. The keywords used in the selection of arti-
cles were: “machine learning”, “artificial intelligence”, “AI ”,
“neural network”, “deep learning”, “reinforcement learning”,
“model”, “recognition”, “classification”, “regression” . These
keywords have been selected to consider articles whose main
technology is machine learning, through the use of MLmodel.
From this first selection 92 publications were extracted.

3.2.2 Manual filtering
We performed a final step of reading the content of the
selected articles and removed any research articles that did
not include a system involving a ML model, such as articles
reporting reviews or interviews. A total of 69 articles were
finally selected with this filtering process: [16, 93, 30, 51,
28, 74, 56, 15, 66, 60, 98, 76, 55, 18, 68, 31, 54, 84, 6, 7, 92,
100, 83, 67, 8, 95, 90, 22, 43, 87, 33, 94, 38, 64, 46, 70, 32,
85, 88, 73, 99, 35, 24, 40, 5, 75, 62, 27, 53, 61, 80, 48, 78,
59, 4, 82, 14, 26, 72, 52, 44, 23, 47, 2, 19, 34, 86, 97, 77].

3.3 Data extraction
For each publication, nine features were extracted using a
custom-made data extraction worksheet. These features
were chosen according to three research questions presented
in Introduction (Section 1), framing our analysis.

1. The techniques used

(a) Type of learning: we differentiate two types of
learning with (i) Shallow learning which concerns
all models using manually calculated descriptors
(e.g. Decision tree [39], Support vector machine
[17], k nearest neighbours method [13])); (ii)Deep
learning which concerns all models which auto-
matically learn the most efficient descriptors for
the defined task, this generally concerns the dif-
ferent types of neural networks.

(b) Type of model: gives details of the ML algorithm
used (e.g. Recurrent neural network [71], Varia-
tional Autoencoder [45]).

(c) Type of task: defines the goal for the model with
either (i) classification where the data is pre-
dicted in discrete class labels; (ii) regression where
the model predicts a continuous quantity; or (iii)

2https://github.com/NIME-conference/
NIME-bibliography
3https://nime2022.org/
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generation where the model can generate new in-
stances of data.

2. The possibility of interaction between the author/user
and the ML system

(a) Modifiable parameters: defines whether or not a
user can modify certain parameters of the system
to influence its operation (e.g. learning rate of
the ML model)

(b) Trainable by user: defines whether users have the
possibility to train the proposed model with their
own data.

(c) User intervention: defines at what point in the
process of designing and conceiving the contribu-
tion, the users intervened. We distinguish three
moments: (i) Beginning, meaning that the users
were solicited from the beginning of the process,
whether it was the design or the first prototypes;
(ii) Middle, means that the users have tested and
evaluated the first prototypes designed with quan-
titative and/or qualitative feedback, or if they
have participated in the training of the learning
model; (iii) End, means that the users are only
content to use the given system at the end of its
design.

(d) Evaluation: defines how the system is evaluated.
This may be quantitatively through performance
indicators or qualitatively through analysis of the
user experience.

3. The goals of the authors in using ML techniques

(a) Terminology: gives the vocabulary used by the
authors to define the contribution presented in
the publication (e.g. agent, instrument, system)

(b) Usage expectations: defines for what purposes the
authors develop the systems.

Finally, we were able to map each article in this grid
of analysis, creating fequency of occurences of each cate-
gory (type of learning, type of model, type of task, task
details, terminology, intended user, modifiable parameters,
author training, user intervention, evaluation) in our pool
of selected articles. In the following section, we report the
results of the analysis.

Figure 2: Percentage of articles per year offering a ML
model in their system.

4. RESULTS
In this section, we present the results of the analysis. First,
we found that the number of publications using ML has
increased significantly since 2012. Figure 2 shows the pro-
portion of these papers among the total number of accepted
publications at NIME each year, from 2012 to 2022. An-
other finding is that the use of ML models remains a mi-
nority in the published articles, as they concern between 2%
and 12% of the accepted papers. We notice that on aver-
age the percentage of articles is twice as high between 2017
and 2022 compared to the 2012-2016 period. The remain-
ing results are structured in three parts: learning models
and tasks, interactions between the user and the ML meth-
ods, and user motivations analyzed through the applica-
tions and terminologies (additional details are reported in
Appendix A).

4.1 Learning models and tasks
Here we describe the types of ML models used in the se-
lected articles of the literature review, as well as the specific
tasks performed with these models and their purpose in a
musical context.

Figure 3: Evolution of the distribution of papers according
to the type of models.

4.1.1 Types of models
Figure 3 depicts the evolution of the percentage of articles
using Shallow learning and Deep learning models between
2012 and 2022. Our analysis shows that the number of
articles using ML models has increased significantly over
the years, with a shift from a predominant use of Shallow
learning models between 2012 and 2016, to a predominant
use of Deep Learning models since 2017. The first works
highlighting Deep learning methods appeared in 2013 [47,
23], one year after the seminal article [50] that heralded
the onslaught of artificial neural networks on the field of
machine learning and artificial intelligence. It is also worth
noting that several papers use both Shallow learning and
Deep learning models [47, 67, 8, 64].

4.1.2 Task types
Figure 4 shows the evolution of the distribution of tasks
performed by the proposed models, divided into three cat-
egories: classification, regression and generation. The first
two tasks are supervised tasks while the last one is unsu-
pervised. Several articles can combine several tasks at the
same time by integrating several models into the proposed
system.



Figure 4: Evolution of the distribution of papers according
to the type of tasks

We found that classification and regression models are
mainly used for two specific musical tasks. Firstly, they
have been used to build mappings, which consist of learning
to associate input data to output data. For example, it
associates gestures , or a set of control parameters from
an ad-hoc interface, to sound synthesis parameters [62, 76,
84]. These mapping methods have historically been based
on Shallow models, such as probabilistic methods based on
Gaussian Mixture Models [22]. One of the reasons is that
mapping design is preferably done iteratively by musicians
or performers, requiring fast training and short iteration
cycles between model training to testing.
Deep learning models have opened up new possibilities

in mapping applications by allowing the consideration of
parameter spaces of greater complexity. For example, these
methods have enabled video analysis to detect gestures [59],
or multi-modal analysis with virtual reality (VR) including
gesture, sound and images [51]. Increasing the complexity
of mapping with deep learning allowed the development of
more “open-ended mapping processes” [59] in which the cre-
ator looks for new musically expressive mappings, without
having a specific vision of what it might be, but opinions
and intuitions about whether something works or not.
Secondly, supervised ML methods have been used for au-

dio analysis, which includes all sound processing tasks such
as annotating sounds to recognise a played instrument [80,
48], predicting the mood of a sound environment (e.g. pleas-
ant, boring, chaotic) based on soundscape affect collected on
users [78], sorting sounds according to the user’s tastes [24],
or speech recognition [54].
With the significant increase in the use of deep learning

methods between 2017 and 2022, we notice the development
of contributions involving generation tasks (see Figure 4),
which have been commonly used for sound synthesis. Syn-
thesis concerns tasks for generating sound signals with, for
example, Variational Auto-Encoders (VAEs) [88, 27, 87] or
Generative Adversarial Networks (GANs) [74]. This also
applies to melodic pattern generation tasks in MIDI for-
mat, which, prior to the use of deep learning models, used
hidden Markov chains (HMMs) (e.g. with drum pattern
generation[40]). Methods based on HMMs were still lim-
ited, especially on the size of the generated sequence. The
generation of longer sequences was made possible with deep
learning via the use of recurrent neural networks (RNNs) [5,
66, 60] and then an extension of RNNs with networks known
as Long Short Time Memory (LSTM) [16], which are par-
ticularly well suited to the analysis of time series, to learn
and memorise past events.

4.2 Designing interactions with ML
In this section we focus on the analysis of how users inter-
act with the proposed systems from different perspectives:
whether it is their ability to act on the system, their in-
clusion in the design process, or the way they evaluate the
systems.

4.2.1 Users’ control on the system
We analysed the extent to which the user had control over
the learning models embedded in the musical system. We
define control as the ability of the user to act and influence
the ML model behavior. We observed that this is charac-
terised by changing either the training data or the model
parameters such as the learning rate or the architecture of
the model. The Table 1 represents the percentage of items
in which a user has the ability to modify the model he or
she is using, either on the model’s training data or its pa-
rameters.

There is a general trend, with 54% of the publications,
where the proposed approaches do not allow users to act
on the training data or on the model parameters, in other
words, most papers propose a “black box” system for users.
We believe that this result may come from the fact that it is
difficult to have interpretable parameter changes for a user
on a deep learning model, and that training is often done on
large dataset where the user is less often left with the possi-
bility to personalise it. That said, these articles also include
a minority of publications (16% for model parameters and
19% for model training data) that do not explicitly state
whether such interactions with training or model parame-
ters are possible. This lack of information is partly due to
articles presenting a system built and used by the authors
themselves, which do not always document certain parts of
the system design.

Users’ control Authorized
Not specified No Yes

Parameters 16% (11) 54% (37) 30% (21)
Training data 19% (13) 54% (37) 27% (19)

Table 1: Percentage distribution of articles according to the
possibility left to the users to modify the model by acting
on its parameters or its training data

4.2.2 Inclusion of the user in the design process
We analysed the extent to which the user was included in
the process of design, conception or evaluation of the inter-
active musical system or instrument based on ML methods.
This analysis is reported in Table 2. We found that 43% of
the publications do not include users in the system design
process or giving no information to suggest that they do.

None Begin Middle End

43% (29) 15% (10) 13% (9) 29% (20)

Table 2: Percentage distribution of articles defining at what
point in the process of designing and conceiving the contri-
bution, the users intervened

When users are included in the development of the pro-
posed system, it is mostly at the end of the process (with
29% of the publications). In this context, one or more peo-
ple are invited to evaluate the proposed system and then



to give feedback on it, either through questionnaires or
through discussion with the authors (more details on the
evaluation methods are presented in Section 4.3.3).
Including users in the middle of the design process was

found in only 13% of the publications reviewed. This usu-
ally results in the evaluation of prototypes at intermediate
stages of system development so that the feedback given can
be put into practice in the next design iteration. In this way,
the evolution of the system can be reported in the research
documentation. These papers therefore use a user-centred
design (UCD) as their methodology. More precisely, we can
relate this approach with technology probe methods [37],
where the objective is to put parts of the system to be de-
signed in the hands of users in order to collect feedback on
them and to better understand interaction phenomena in
an ecological context.
Finally, 15% of the publications include a user or a group

of users in the whole design process. Two categories can
be distinguished. (1) When the authors are distinct from
the users. For example, Jordà et al. [40] following an UCD
approach, conducted preliminary studies in the form of in-
terviews in the target community of practice in order to
collect suggestions for the design of the system but also
to learn more about the musical practice of this commu-
nity and their potential interest in the system. (2) When
the authors are the users. Evaluation is then intrinsic to
the design process, but not necessarily made explicit in the
publications. The development of the author’s practice is
often poorly documented, i.e. these articles do not explicitly
inform about the design steps that led to the presented sys-
tem. In general, only the last prototype is presented in the
article. This practice is related to research-creation [11],
a research approach combining creative and academic re-
search practices.

4.2.3 Evaluation
We have analysed the evaluation methods used in the arti-
cles, categorising them as qualitative evaluation, quantita-
tive evaluation, or no evaluation. The results of this analy-
sis can be seen in Table 3, where we aggregated the results
over two 5-year periods. We note that a significant part
of the contributions do not carry out any evaluation or at
least no explicit evaluation, as often some systems are devel-
oped within the practice of the author who therefore does
not necessarily describe the development process based on
what he/she has assessed as limitations or advantages of the
system.

Years Qualitative Quantitative None

2012-2016 33% (9) 52% (14) 15% (4)
2017-2022 36% (16) 22% (10) 42% (19)

Table 3: Distribution of the percentage of articles according
to the type of evaluation carried out between 2012 and 2016
and between 2017 and 2022

On the one hand, 52% of the papers published between
2012 and 2016 use quantitative evaluation, while they are
22% between 2017 and 2022. This type of evaluation gen-
erally allows the performance of the proposed ML model to
be monitored, thanks to a training and test data set, or via
a predefined metric such as the accuracy [88, 94, 35]. This
type of evaluation is less represented in the last five years.
On the other hand, 33% of the papers published between
2012 and 2016 use qualitative evaluation and 36% between
2017 and 2022. This type of evaluation includes sessions

of use of the system or artistic performances by a person
or group of people. Users give feedback either through in-
terviews [64], questionnaires [46] or through feedback more
or less informally [33]. The number of articles using this
method is balanced over the two 5-year periods reported in
the Table 3.

To summarise, the NIME community develops systems
that rarely allow the user to modify and influence the be-
haviour of the ML model, but also to modify and influence
the design process. In addition, the publications produce
fewer evaluations of the proposed systems, especially at the
quantitative level.

4.3 Applications and terminology used
This section analyse how the authors of the publications
perceive and represent the systems they are developing through
terminology analysis, and for what purpose these systems
are used based on the application analysis.

4.3.1 The different applications
We have analysed the applications involved in the articles
of the literature review using the taxonomy proposed by
Scurto [69] and based on the interaction paradigms as pre-
sented by Beaudouin-Lafon for Human-Computer Interac-
tion (HCI) [3]. This taxonomy involves three families of
applications:

1. Music information retrieval: ML is seen as a tool. The
model is used to automate tasks related to musical
data. For example, annotating sounds according to
the emotions it provokes [78] or according to the type
of instrument used [48, 80]. 19% of the selected pub-
lications belong to this category.

2. Artificial creativity: ML is seen as a partner. Here the
model is used to automatically generate new sound
sequences. For example, the generation of realistic
drum sequences [61], MIDI sequences according to
the styles, genres or composers on which the model is
trained [53], or even MIDI sequences associated with
ways of playing them via rhythms to specify timing
and expressive dynamics [27]. 16% of the selected
publications belong to this category.

3. Human-machine improvisation: ML is seen as a medium.
Here the model is used to generate sounds but adapts
in real time to the user’s musical data in order to cre-
ate a dynamic process of interaction. The system can
thus be seen as musically expressive in order to be
able to improvise with the human. Scurto [69] differs
from the original definition given by Beaudouin-Lafon
[3] and talks about reflexive medium. For example,
through real-time motion-sound mapping [62, 75], or
by creating an agent capable of synthesising sounds
or generating melodies according to the way the mu-
sician plays his own instrument [16, 5]. 65% of the
selected publications belong to this category.

From this analysis, we see that the majority of the liter-
ature considers ML as a medium, focusing on creating pro-
cesses where the system adapts and reacts to the sounds,
gestures, and other ways of interacting of the user. This
type of application thus opens up the possibility of building
interactive music systems that support embodied forms of
human expression. This is specific to the NIME commu-
nity, which aims to create systems that make performative
musical practice possible and opens new prospects to build



interactive music systems that supports embodied forms of
human expression.

4.3.2 Terminology used and associated objectives
We analysed the terminology used to refer to ML methods
in the selected articles and grouped them into two cate-
gories associated with the way technology can be perceived:
Technology as technical object and Technology as musical
object.

Technology as technical object. It refers to system that
must achieve objective tasks. In this first category, we group
together articles which use the following terminologies: ”sys-
tem” [87, 59, 28, 56, 76, 18, 31, 33, 6, 7, 70, 90, 24, 35, 14,
82, 4, 23, 34], ”method” [96, 83, 19], ”technique” [88], ”algo-
rithm” [48, 38], ”instrument” [51, 74, 75, 32, 60, 54, 73, 26,
2], ou ”model”[93, 61, 47, 44]. Around 77% of the articles
use these different terminologies. They are accompanied
by objectives in terms of performance and quality assess-
ment in the accomplishment of the task aimed by the tool.
For example, these goals may be to provide a generator of
rhythmic sequences that are as realistic as possible [61], or
to produce a system that efficiently sorts a bank of sounds
according to the user’s tastes [24]. These terminologies are
used in music information retrieval applications and also
sometimes in the case of applications related to artificial
creativity (see Section 4.3.1).
Technology as musical object. It refers to system with

which users can dialogue. The intention here is to create a
musical relationship between the user and the technology,
whether for the purpose of improvisation, live performance,
or exploration. In this category, we group together arti-
cles that use the following terminologies to designate ML
methods: ”agent” [16, 94, 77, 5, 40], ”AI ” [27, 53, 80] or
”companion” [94]. Around 23% of the articles use these dif-
ferent terminologies. In this case, they imply the will to
ascribe some agency to the machine in the musical process
more than a tool as described by the human-machine im-
provisation applications in Section 4.3.1. This may refer to
methods of sound mapping with gestural inputs or prede-
fined parameters [32], co-creation [27] or collaboration [16].
To summarise, the vast majority of publications (around

77%) use tool-related terminologies to talk about ML tech-
nologies, regardless of the type of application that are di-
verse in these cases. The different terminology used are very
much related to how the systems developed are perceived by
the authors which may impact how the system interaction is
designed. But these aspects are rarely explicitly described
in the articles and may deserve to be better investigate.
However, for the few publications that use terminologies

associated with a technology as an musical object, the type
of application is generally associated with human-machine
improvisation process. For example, Benetatos et al. [5]
talk about a computer agent that improvises with a per-
former in real time, Erdem et al. [16] talk about a shared
exploration between a human performer and an artificial
agent for an interactive performance, or Gillick et al. [27]
use an AI for co-creation.

5. DISCUSSION
In this section, we propose to discuss in more depth three
aspects that we find interesting in view of the literature
review: the practice required to have expressive models,
the factors that limit interactivity and the limitations of
the review that call for further studies.

5.1 Expressive models call for practice

We have shown in Section 4.1 the transition from a lim-
ited use of deep learning models between 2012 and 2016,
to a predominant use between 2017 and 2022. This transi-
tion does not seem to be the effect of the emergence of new
musical tasks but is linked to the increasing complexity of
these tasks. For example, in motion-sound mapping appli-
cations, deep learning has made it possible to move from
the exploration of a limited number of manually selected
descriptors [22] to the possibility of continuous exploration
with a large number of descriptors automatically extracted
by the model, as for example in gesture recognition from
video streams [59].

However, their integration into a long-term musical prac-
tice remains an open question because there is a compro-
mise between being able to do increasingly complex tasks
and the limits this raises in terms of the practical complex-
ity of use, such as the need for large dataset, the difficulty to
understand the behavior of the model, the biases that can
be implicitly learned in the training, among others. Get-
ting to grips with these systems takes time, in the same
way that learning a musical instrument takes time. This
temporality, maybe specific to NIME, may also contribute
to the fact the community uses only a limited number of
deep learning techniques (e.g. VAE, RNN, MLP) compared
to published ML models. Some authors use personal ar-
chitecture of GAN [74] or Transformer [61, 53] but they are
rare and necessitate knowledge to be able to personalize and
play with the architecture of the models and adapt them to
specific needs. We assume that the community primarily
values models for which tools are available and robust, en-
abling the development of practice, which does not yet seem
to be the case for a large part of deep learning models.

5.2 The limits of interactivity
Although a majority of the publications studied in this re-
view give the user relatively few possibilities to act on the
training data and the model parameters, 27% of the publica-
tions propose systems where this is allowed. These articles
highlight the value of exposing users, without a technical
background, to the underlying learning mechanisms in order
to infer greater creative possibilities. These forms of inter-
action with ML has been formalised under the name Inter-
active Machine Learning (IML) in HCI, and ML-mediated
musical expression was part of the genesis of this endeav-
our [1]. IML involves the user in the process of selecting,
creating and labelling examples and then parameterising
the model. Several contributions have aimed at developing
interfaces that allow easy development of interactive ML
models in music making, such as Wekinator [21], which is a
tool still used by the community. However, the increasing
complexity of deep learning models creates disincentives for
their use in an interactive context for discovery, exploration,
and shaping.

Indeed, paradoxically, the use of deep learning has en-
abled more complex interactions to be created but has, at
the same time, reduced user agency over the models. These
become designed to produce automated processing and the
user has rarely access to how these models are formed. For
example, this implies that the training phase, which takes
place offline, remains opaque to the user, which can some-
times limit her understanding of the system’s behaviour.
There are technical options to partially overcome these lim-
itations, for example by using transfer learning, where part
of the model is pre-trained and another part is refined ac-
cording to specific needs. This solution remains a compro-
mise: one part of the model remains a black box, with its
biases and flaws, while another part will be adapted to the



user’s wishes. Further study of such trade-offs (including
their ethical and political implications) would then be nec-
essary.

5.3 Limitations
In general, this review suffers from a double penalty: the
choice of features used for the analysis, which are not ex-
haustive, and the lack of information given in the articles
studied on a large number of extracted and analysed fea-
tures. For example, with regard to the techniques used, the
majority of articles give information on the type of model
used but generally without giving further details and some-
times even giving only the name of a toolkit used. By con-
sidering the features about the techniques used and the de-
sign of the interaction (see the items 1. and 2. in Section
3.3), around 65% of the articles do not explicitly provide
information on at least one feature analyzed in the review.
This lack of documentation has already been raised in NIME
community by Calegario et al. [9]. The authors argue that
the presence of a documentation such as detailed text de-
scription, source code or models is a necessary process to
make the system ”live”, evolve and reuse by the commu-
nity. We believe that this documentation effort should be
accompanied by good practice in ML, and previous work
on the construction and documentation of datasets [25] and
models [58] is a good starting point for the community to
build on. Finally, by considering only paper proceedings,
the analysis deprives itself of an important part of NIME’s
practices, whether in musical performances, sound instal-
lations, or pedagogical workshops. Some of the knowledge
of the NIME community does not come from scientific ar-
ticles but from practices. This would require going beyond
the framework of systematic review to open the analysis to
other archives. To go beyond the articles and better under-
stand the practices around ML in the community, we con-
ducted a thematic analysis based on a series of interviews
with seven researchers and artists from the community [41].

6. ETHICS STATEMENT
Within the literature review only publicly available resources
were used. All the publications that have been used for the
reported work were cited.

7. CONCLUSION
In this literature review we have looked at how previous
works involving ML in instrument making and musical in-
teraction. This literature helped us to understand the types
of models and tasks used, the involvement of ‘users’ in the
design process of the musical instrument, and finally the
interaction styles used. Given the increasing importance of
ML models in the systems developed, we believe that there
is an interest in the NIME community, and the wider HCI
community, to question the design of interactions with ML
and in particular deep learning models so that they can be
more inclusive of users. This inclusion can take place in de-
sign and evaluation methodologies, as well as in interaction
techniques that improve their agency over systems, mak-
ing them more transparent and explainable. This literature
review provides research avenues in the current theme of
integrating ML technologies in an interactive and creative
context.
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[74] K. Tahiroğlu, M. Kastemaa, and O. Koli. AI-terity
2.0: An autonomous NIME featuring
GANSpaceSynth deep learning model. 2021.
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Table 4: Summary of results by year, model type and task type. Abbreviations used: LSTM (Long Short Time Mem-
ory), MDN (Mixture Density Network), VAE (Variational Auto-Encoder), HMM (Hidden Markov Model), KNN (K-Nearest
Neighbors), CNN (Convolutionnal Neural Network), VGG (Visual Geometry Group), MLP (Multi Layer Perceptron), GAN
(Generative Adversarial Network), RNN (Recurrent Neural Network), HHMM (Hierarchical Hidden Markov Model), CPG
(Central Pattern Generator), RL (Reinforcement Learning), SVM (Support Vector Machine), DT (Decision Tree), GVF
(Gesture Variation Follower), GRT (Gesture Recognition Toolkit), LR (Linear Regression), MLR (Multiple Linear Regres-
sion), LDA (Linear Discriminant Analysis), GMM (Gaussian Mixture Model), ESN (Echo State Network), SMO (Sequential
Minimal Optimization), GA (Genetic Algorithm)

Author Year Shallow or Deep Learning Type of model Type of task

Erdem et al. [16] 2022 Deep LSTM, MDN Generation
Warren et al. [87] 2022 Deep VAE, HMM Generation
Wyse et al. [93] 2022 Deep Not specified Generation
Graf et al. [30] 2022 Shallow Wekinator, KNN Classification
Nuttall et al. [61] 2021 Deep Transformer Generation
Lee et al. [51] 2021 Deep CNN (VGG-Style) Classification
Xambó et al. [94] 2021 Deep MLP Classification
Lupker et al. [53] 2021 Deep Transformer Generation
Gillick et al. [27] 2021 Deep VAE, LSTM Generation
Murray-Browne et al. [59] 2021 Deep VAE Generation
Gioti et al. [28] 2021 Deep MLP Classification,Regression
Tahiroğlu et al. [74] 2021 Deep GAN Generation
Gregorio et al. [32] 2021 Deep AE + Regressor Regression
Thelle et al. [77] 2021 Shallow Not specified Classification
Benetatos et al. [5] 2020 Deep RNN Generation
McCallum et al. [56] 2020 Deep Not specified Classification-Regression
Kobayashi et al. [48] 2020 Deep CNN (MobileNetV2) Classification
Tahiroğlu et al. [75] 2020 Deep GAN (GANSynth) Generation
DeSmith et al. [15] 2020 Deep Wekinator (NN) Regression
Nyström et al. [62] 2020 Deep NeuralNet(SuperCollider) Classification
Tsiros et al. [80] 2020 Not specified Not specified Classification, Generation
Proctor et al. [66] 2020 Deep RNN Generation
Næss et al. [60] 2019 Deep RNN Generation
Yaremchuk et al. [98] 2019 Deep RNN,MLP Classification
Weber et al. [88] 2019 Deep VAE Generation
Tanaka et al. [76] 2019 Deep HHMM,MLP (Wekinator) Regression
Parke-Wolfe et al. [64] 2019 Shallow,Deep KNN,MLP Classification,Regression
Martin et al. [55] 2019 Deep LSTM Regression
Faitas et al. [18] 2019 Deep LSTM Generation
Schedel et al. [68] 2019 Deep Wekinator Regression
Gregorio et al. [31] 2019 Deep LSTM - Autoencoder Regression
Yang et al. [97] 2019 Deep VAE Generation
Macionis et al. [54] 2018 Shallow Wekinator Classification
Ianigro et al. [38] 2018 Deep Novelty Search + RNN Generation
Hantrakul et al. [33] 2018 Deep LSTM, Wekinator Generation
Visi et al. [84] 2018 Not specified Wekinator Regression
Bennett et al. [6] 2018 Not specified Central Pattern Generator (CPG) Generation
Beyls et al. [7] 2018 Deep RL (Q-learning) Generation
Wu et al. [92] 2017 Shallow KNN, SVM, DT, MLP Classification
Zbyszyński et al. [100] 2017 Not specified Not specified Regression
Visi et al. [83] 2017 Deep GVF Regression
Vogl et al. [85] 2017 Deep Not specified Generation
Scurto et al. [70] 2017 Shallow GMM Regression
Jordà et al. [40] 2016 Shallow HMM Generation
Volioti et al. [86] 2016 Shallow HMM Classification
Schacher et al. [67] 2015 Shallow, Deep GRT, GVF Classification
Bullock et al. [8] 2015 Shallow, Deep GRT, GVF Regression, Classification
Xia et al. [95] 2015 Shallow LR Regression

Wikstŕ’om et al. [90] 2014 Shallow MLR Regression
Fried et al. [24] 2014 Shallow LDA, Kernlized Sorting, K-means Classification

Kĺ’ugel et al. [46] 2014 Shallow Generative Topographic Map, KNN, Kmeans Generation
Françoise et al. [22] 2014 Shallow GMM, HMM Regression
Zandt-Escobar et al. [99] 2014 Shallow HMM Classification, Recognition
Kiefer et al. [43] 2014 Shallow ESN, RNN Classification
Snyder et al. [73] 2014 Deep Wekinator, MLP Classification
Hashimoto et al. [34] 2014 Shallow Markov model Generation
Fried et al. [23] 2013 Deep Autoencoder Classification
Thorogood et al. [78] 2013 Shallow MLR Classification, Regression

Kĺ’ugel et al. [47] 2013 Shallow, Deep Naives Bayes, Bayes Net, Random Forest, SVM Classification
Kim et al. [44] 2013 Shallow HMM Regression
Ben-Asher et al. [4] 2013 Shallow Bayes Classifier Classification
Fasciani et al. [19] 2013 Shallow LDA Classification
Van Nort et al. [82] 2012 Shallow GA Regression
Derbinsky et al. [14] 2012 Shallow RL Generation
Gillian et al. [26] 2012 Not specified Not specified Classification
Smith et al. [72] 2012 Shallow Self-Organising maps, Adaptive resonnance theory, MLP Classification
Hochenbaum et al. [35] 2012 Shallow MLP, DT, Naive Bayes, SVM, SMO, LR Classification
Levy et al. [52] 2012 Not specified Not specified Generation
Astrinaki et al. [2] 2012 Shallow HMM Generation



Table 5: Summary of the results according to the criteria of task detail, terminology and training by the authors

Author Task details Terminology Author training

Erdem et al. [16] Parameter-Gesture Mapping CAVI, musical agent Complete
Warren et al. [87] MIDI synthesis (drumming generation) intelligent musical system, Latent Drummer Complete
Wyse et al. [93] Audio synthesis model Complete
Graf et al. [30] Sound-Gesture Mapping mixed reality musical interface (MRMI) Partial
Nuttall et al. [61] MIDI synthesis Model Complete
Lee et al. [51] Sound-Gesture Mapping Entangled, a multi-modal instrument Complete
Xambó et al. [94] Sound annotation Agent, companion Partial
Lupker et al. [53] MIDI synthesis an artificially intelligent assistant Complete
Gillick et al. [27] MIDI synthesis AI Complete
Murray-Browne et al. [59] Sound-Gesture Mapping project Sonified Body, a system Complete
Gioti et al. [28] Sound annotation Bias, a computer music system None
Tahiroğlu et al. [74] Audio synthesis AI-terity instrument Complete
Gregorio et al. [32] Parameter-Sound Mapping Instrument prototype Complete
Thelle et al. [77] Sound-parameter mapping Musical agent Complete
Benetatos et al. [5] MIDI synthesis BachDuet, computer agent Complete
McCallum et al. [56] Parameter-Sound Mapping IML systems, MaxiInstruments, musical system Not specified
Kobayashi et al. [48] Sound label Deep Learning, deep learning inferences Complete
Tahiroğlu et al. [75] Audio synthesis AI-terity instrument Complete
DeSmith et al. [15] Gesture-Sound Mapping SQUISHBOI, controller Not specified
Nyström et al. [62] Sound-Gesture Mapping Continuous MIDI controllers Not specified
Tsiros et al. [80] Intrument recognition, settings generation Channel-AI (product name) Not specified
Proctor et al. [66] MIDI synthesis, volume an assistance tool None
Næss et al. [60] MIDI synthesis intelligent interactive instrument Complete
Yaremchuk et al. [98] Gesture classification The Rulers, DMI Complete
Weber et al. [88] MIDI synthesis machine learning technique Not specified
Tanaka et al. [76] Sound-Gesture Mapping system None
Parke-Wolfe et al. [64] Sound-Gesture Mapping Toolkit None
Martin et al. [55] Parameter-Gesture Mapping DMI Complete
Faitas et al. [18] MIDI synthesis System Complete
Schedel et al. [68] Parameter-Gesture Mapping NIME Not specified
Gregorio et al. [31] Parameter-Sound Mapping System Complete
Yang et al. [97] MIDI synthesis method Complete
Macionis et al. [54] Timbre et speech recognition Sansa, hyper-instrument Not specified
Ianigro et al. [38] Audio synthesis algorithm, search algorithm Not specified
Hantrakul et al. [33] Synthesis of position/parameter System Complete
Visi et al. [84] Parameter-Gesture Mapping modosc Complete
Bennett et al. [6] Audio synthesis (Rythms) Neurythmic, interactive system Not specified
Beyls et al. [7] MIDI synthesis Pock, system Not specified
Wu et al. [92] Sound-Gesture Mapping Embodied Sonic Meditation Complete
Zbyszyński et al. [100] Sound-Gesture Mapping CodeCircle Not specified
Visi et al. [83] Sound-Gesture Mapping Method Complete
Vogl et al. [85] MIDI synthesis rythmic patterns Prototype interface Complete
Scurto et al. [70] Sound-Gesture Mapping Tool, system Not specified
Jordà et al. [40] MIDI synthesis rythmic patterns generative drumming agent Not specified
Volioti et al. [86] Sound gesture mapping x2Gesture, engine None
Schacher et al. [67] Sound-Gesture Mapping workbench Not specified
Bullock et al. [8] Open-source toolkit ml:lib (set of opensource tools) Not specified
Xia et al. [95] Timing prediction an artificial performer Complete

Wikstŕ’om et al. [90] Sound-Gesture Mapping System Not specified
Fried et al. [24] Sound annotation AudioQuilt , system Complete

Kĺ’ugel et al. [46] Parameter-Sound Mapping prototype Complete
Françoise et al. [22] Sound-Gesture Mapping prototype application None
Zandt-Escobar et al. [99] Sound-Gesture Mapping PiaF, augmented piano Complete
Kiefer et al. [43] Parameter-Gesture Mapping open source library Complete
Snyder et al. [73] Parameter-Gesture Mapping The Birl, instrument None
Hashimoto et al. [34] Parameter synthesis system Complete
Fried et al. [23] Sound-Gesture Mapping System Complete
Thorogood et al. [78] Sound annotation Impress system Not specified

Kĺ’ugel et al. [47] Sound annotation Model Complete
Kim et al. [44] Gesture Detection Model Complete
Ben-Asher et al. [4] Emotion-Gesture Mapping System Complete
Fasciani et al. [19] Parameter-Gesture Mapping method None
Van Nort et al. [82] Sound-Gesture Mapping FILTER, system Complete
Derbinsky et al. [14] MIDI synthesis System Partial
Gillian et al. [26] Sound-Gesture Mapping Digito, virtual musical instrument Not specified
Smith et al. [72] ML toolkit toolbox Not specified
Hochenbaum et al. [35] Gesture recognition System Complete
Levy et al. [52] Audio synthesis et MIDI OMax, software Not specified
Astrinaki et al. [2] speech synthesis MAGE platform + instrument Complete



Table 6: Summary of results according to criteria of target user, user intervention, modifiable parameters, user training

Author Target user User intervention Modifiable parameters User training

Erdem et al. [16] Author’s practice Not specified No No
Warren et al. [87] Author’s practice Not specified Not specified Not specified
Wyse et al. [93] Sound designers, engineers End of process Yes Not specified
Graf et al. [30] Musicians Not specified No Yes (fine tuning)
Nuttall et al. [61] Musician , No expert en ML End of process No No
Lee et al. [51] Not specified End of process No No
Xambó et al. [94] Livecoder Middle of process Yes Yes
Lupker et al. [53] Musician Middle of process Yes Yes (fine tuning)
Gillick et al. [27] Musician Not specified No No
Murray-Browne et al. [59] Musician, Composer, artist Middle of process No No
Gioti et al. [28] Musician Middle of process No Yes
Tahiroğlu et al. [74] Author’s practice Not specified No No
Gregorio et al. [32] Sound designer and musicians End of process No No
Thelle et al. [77] Instrumentalist End of process Yes No
Benetatos et al. [5] Musician End of process No No
McCallum et al. [56] Musician Not specified Yes Yes
Kobayashi et al. [48] Performers No user in the process No No
Tahiroğlu et al. [75] Author’s practice Not specified No No
DeSmith et al. [15] DMI practitioners No user in the process Yes Yes
Nyström et al. [62] Author’s practice Not specified No No
Tsiros et al. [80] Sound engineers End of process No No
Proctor et al. [66] Group of performer End of process Yes No
Næss et al. [60] DMI practitioners End of process Yes No
Yaremchuk et al. [98] Not specified Not specified No No
Weber et al. [88] Pianist End of process Yes No
Tanaka et al. [76] Performer End of process Yes Yes
Parke-Wolfe et al. [64] Teacher and therapist Beginning of process Yes Yes
Martin et al. [55] DMIers End of process No Yes
Faitas et al. [18] Musician No user in the process No No
Schedel et al. [68] Author’s practice Beginning of process Yes Yes
Gregorio et al. [31] Researchers Not specified Not specified Not specified
Yang et al. [97] Not specified Not specified Not specified Not specified
Macionis et al. [54] Not specified End of process No Not specified
Ianigro et al. [38] Not specified Not specified No Not specified
Hantrakul et al. [33] Not specified Middle of process No No
Visi et al. [84] Musician End of process No Yes
Bennett et al. [6] Composer, sound designer End of process No No
Beyls et al. [7] Not specified Not specified Yes Not specified
Wu et al. [92] Performer No user in the process No No
Zbyszyński et al. [100] Sound designers, NIMErs Not specified Not specified Not specified
Visi et al. [83] Musician Beginning of process No No
Vogl et al. [85] Musician and producer (EDM) Middle of process Yes No
Scurto et al. [70] Novice et expert Fin de process Yes Yes
Jordà et al. [40] Musician and producer (EDM) Beginning of process Yes No
Volioti et al. [86] Pianist End of process No Yes
Schacher et al. [67] Instrumentalist End of process No Not specified
Bullock et al. [8] Novices Fin de process Yes Yes (offline)
Xia et al. [95] Musician Not specified No No

Wikstŕ’om et al. [90] Not specified None No No
Fried et al. [24] Musician Middle of process No Yes

Kĺ’ugel et al. [46] Sound designer Not specified No No
Françoise et al. [22] Musician End of process No Yes
Zandt-Escobar et al. [99] Pianist End of process No No
Kiefer et al. [43] DMIers Not specified No No
Snyder et al. [73] Saxophonist Middle of process No Yes
Hashimoto et al. [34] Author’s practice Not specified Yes Yes
Fried et al. [23] Not specified Not specified No No
Thorogood et al. [78] Composers Not specified No No

Kĺ’ugel et al. [47] Novices Not specified No No
Kim et al. [44] Not specified None No No
Ben-Asher et al. [4] Pianist End of process Yes No
Fasciani et al. [19] Not specified End of process Yes Yes
Van Nort et al. [82] Author’s practice Not specified Not specified Not specified
Derbinsky et al. [14] Drummer Not specified Yes Yes
Gillian et al. [26] Musician Not specified Not specified Not specified
Smith et al. [72] No expert users Not specified Not specified Not specified
Hochenbaum et al. [35] Drummer Not specified Not specified Not specified
Levy et al. [52] Musician Middle of process Not specified Not specified
Astrinaki et al. [2] Not specified End of process Yes No
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