
HAL Id: hal-04075467
https://hal.science/hal-04075467

Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Numerical Analysis of Quasi-Static Unilateral Contact
Problems with Local Friction

Rémi Rocca, Marius Cocou

To cite this version:
Rémi Rocca, Marius Cocou. Numerical Analysis of Quasi-Static Unilateral Contact Prob-
lems with Local Friction. SIAM Journal on Numerical Analysis, 2001, 39 (4), pp.1324-1342.
�10.1137/S0036142900382600�. �hal-04075467�

https://hal.science/hal-04075467
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


NUMERICAL ANALYSIS OF QUASI-STATIC UNILATERAL

CONTACT PROBLEMS WITH LOCAL FRICTION∗

REMI ROCCA† AND MARIUS COCOU‡

Abstract. A mixed finite element method is adopted to approximate the quasi-static unilateral
contact problem with local Coulomb friction. The existence of a solution with bounds independent
of the discretization parameter is obtained by an incremental scheme. This approach enables us to
select a sequence of discrete solutions which converges strongly towards a solution of the quasi-static
unilateral contact problem with Coulomb friction law.
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1. Introduction. The aim of this paper is to study the approximation of the
unilateral quasi-static contact problem with local Coulomb friction by a mixed finite
element method.

The first result concerning the unilateral contact problem with local friction was
obtained by Nečas, Jarušek, and Haslinger [1] for the static case by using a shifting
technique and a fixed point argument. This result was extended by Jarušek [2] for do-
mains in which the contact zone is smooth enough. Haslinger [3] proved the existence
of solutions for the discrete problem obtained by a mixed finite element method and
the existence of solutions converging towards a solution of the static unilateral contact
problem with local friction when the discretization parameters tend to zero. To obtain
this result he assumed that the normal component of the stress vector, the solution
of the static unilateral contact problem, is sufficiently regular at the boundary of the
contact zone.

The quasi-static unilateral contact problem has been recently studied by Ander-
sson [4] and Rocca and Cocou [5, 6] who proved that there exists a solution if the
friction coefficient is sufficiently small and smooth. The proof is based on a regular-
ization of the contact functional and a shifting technique.

This paper is organized as follows. In section 2, we present the continuous and
discrete variational formulations for the initial problem and its approximation. In
section 3, we obtain a regularity result for the normal component of the stress vector
for an auxiliary problem where the threshold of sliding is given. In section 4 we prove
the existence of a saddle point for the incremental regularized discrete problem. Using
some error estimates and the result of section 3 we prove that the Lagrangian mul-
tiplier is bounded in H−1/2+α independently of the spatial discretization parameter,
provided that the friction coefficient is small enough in an L∞ norm. Section 5 deals
with convergence results.
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†Laboratoire de Mécanique et d’Acoustique, CNRS, 31 chemin Joseph Aiguier, 13402 Marseille

Cedex 20, France (rocca@lma.cnrs-mrs.fr).
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2. Variational formulation and approximation. A linear elastic body oc-
cupies a polygonal set Ω of R

d, d = 2 or 3, and its boundary ∂Ω is denoted by Γ. Let
Γ1, Γ2, and Γ3 be three open disjoint parts of Γ such that Γ = Γ1∪Γ2∪Γ3, Γ1∩Γ3 = ∅,
and mes(Γ1) > 0. We assume for the sake of simplicity that Γ3 is a segment for d = 2
and a rectangle for d = 3. We denote by u = ( u1, . . . , ud) the displacement field,
ǫ = (ǫij (u)) = (1

2 ( ui,j + uj,i)) the strain tensor, and σ = (σij (u)) = (aijkl ǫkl(u))
the stress tensor with the usual summation convention, where i, j, k, l = 1, . . . , d. We
adopt the following notation for the normal and tangential components of the displace-
ment vector and stress vector: uN = uini, uT = u − uNn, σN = σijninj , (σT )i =
σijnj − σNni, where n = (ni) is the outward unit normal vector to ∂Ω.

Let us denote by φ and ψ the densities of the body forces and traction forces,
respectively. The initial displacement of the body is denoted by u0, and we assume
that aijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d, with the usual conditions of symmetry and
ellipticity, that is,

aijkl = ajikl = aklij , 1 ≤ i, j, k, l ≤ d,

∃ m0 > 0 ∀ ζ = (ζij) ∈ R
d2

, ζij = ζji, 1 ≤ i, j ≤ d, aijklζijζkl ≥ m0 |ζ|2.

The classical problem is as follows: Find u = u(t,x) such that u(0, ·) = u0(·) in Ω
and for all t ∈ [0, T ]

div σ(u) = −φ in Ω,(2.1)

σij(u) = aijklǫkl(u) in Ω,(2.2)

u = U(t,x) on Γ1,(2.3)

σn = ψ on Γ2,(2.4)

uN ≤ 0, σN (u) ≤ 0, uN σN (u) = 0 on Γ3,(2.5)

|σT | ≤ −μ σN on Γ3 and

{
|σT | < −μ σN ⇒ u̇T = 0,
|σT | = −μ σN ⇒ ∃λ ≥ 0, u̇T = −λ σT .

(2.6)

The prescribed displacement U on Γ1 is such that there exists U ∈ W 1,2(0, T ;
[H3/2(Ω)]d) satisfying U = U a.e. on Γ1 and U(t,x) = 0 in a neighborhood of Γ3 for
all t ∈ [0, T ]. Therefore, by a translation we are able to choose U(t,x) = 0, which we
shall assume in what follows.

We require also that aijkl are of class C0,1/2+ι with 1/2 > ι > 0 in Ω.
The friction coefficient μ is assumed to belong to L∞(Γ) and to the set of the

multipliers of H1/2(Γ) (see [7]) denoted by M(H1/2(Γ)). Therefore, the mapping

H1/2(Γ) ∋ v → μv ∈ H1/2(Γ)

is bounded by the norm ‖μ‖M(H1/2(Γ)).

We define V and K by V = {v ∈ [H1(Ω)]d,v = 0 a.e. on Γ1}, K = {v ∈
V ; vN ≤ 0 a.e. on Γ3}. The duality pairings on H1/2(Γ), H−1/2(Γ) and on [H1/2(Γ)]d,
[H−1/2(Γ)]d are denoted by 〈 , 〉. Let us introduce B(Γ), the space of bounded mea-
sures h on Γ with respect to the norm given by

sup
ϕ∈C(Γ)

‖ϕ‖L∞(Γ)≤1

∫

Γ

ϕ(x)dh(x),

where C(Γ) is the space of continuous functions on Γ. Let B−(Γ) be the set of bounded
negative measures on Γ.



In the following, we will denote f(t, .) by f(t) for any mapping f = f(t,x).
We suppose that u0 ∈ K,φ ∈ W 1,2(0, T ; [L2(Ω)]d),ψ ∈ W 1,2(0, T ; [L2(Γ)]d) with

supp(ψ(t)) ⊂ Γ2 for all t ∈ [0, T ]. In what follows we shall use the notation

〈 s σN (u), wN 〉 = 〈σN (u), s wN 〉 ∀s ∈ M(H1/2(Γ)).

By Green’s formula, one can show a variational formulation of (2.1)–(2.6) as the
following problem: Find a mapping t → u(t) such that u ∈ W 1,2(0, T ;V ), u(0) = u0,
and for almost all t∈]0, T [, u(t)∈K, and

a(u,v − u̇) − 〈μθσN (u), |vT | − |u̇T |〉 ≥ (φ,v − u̇) + 〈ψ,v − u̇〉(2.7)

+〈 θσN (u), vN − u̇N 〉 ∀ v ∈ V,

〈 θσN (u), zN − uN 〉 ≥ 0 ∀ z ∈ K,(2.8)

where a(u,v) =
∫

Ω
aijklǫij(u)ǫkl(v) dx. We denote by m,M, respectively, the con-

stants of coercivity and continuity of the bilinear form a(., .).

The cut-off function θ has the property that θ = 1 on Γ3 and θ = 0 on Γ
0

2 with Γ0
2

an open subset such that for all t ∈ [0, T ], supp ψ(t) ⊂ Γ0
2 ⊂ Γ

0

2 ⊂ Γ2. For all w ∈ V,
such that wT = 0 a.e. on Γ, we have

〈θσN (u), wN 〉 = a(u,w) − (φ,w).(2.9)

Using Green’s formula, it is straightforward to verify that (2.7), (2.8) is equivalent
to the following mixed variational formulation.

Problem P. Find two mappings t → u(t) and t → λ(t) such that u ∈ W 1,2(0, T ;V ),
λ ∈ W 1,2(0, T ;H−1/2(Γ)), u(0) = u0, λ(0) = λ0 = θσN (u0), λ(t) ∈ C∗− for almost
all t ∈]0, T [, and

a(u,v − u̇) + j(λ,v) − j(λ, u̇) ≥ (φ,v − u̇) + 〈ψ,v − u̇〉(2.10)

+〈 λ, vN − u̇N 〉 ∀ v ∈ V,

〈 π − λ, uN 〉 ≥ 0 ∀ π ∈ C∗−,(2.11)

where C∗− = {π ∈ H−1/2(Γ); supp(π) ⊂ Γ3} ∩ B−(Γ), j(λ,v) = −〈μλ, |vT |〉.
The Lagrange multiplier λ satisfies λ = θσN (u).
We assume that the initial displacement field u0 satisfies the compatibility con-

dition

a(u0,v − u0) + j(λ0,v) − j(λ0,u0) ≥ (φ(0),v − u0)(2.12)

+〈ψ(0),v − u0〉 ∀v ∈ K.

In order to prove the existence of discrete solutions converging towards u, we
consider the following finite element approximations.

Let (Th)h be a set of regular triangulations of Ω (see [8]). Each triangulation
is a collection of elements Ωi such that Ω =

⋃

i∈Ih
Ωi with Ωk ∩ Ωl = ∅ for all

k, l ∈ Ih, k �= l. We assume that each triangulation is compatible with the partition
of Γ; that is, each point where the boundary condition changes is a node of a set Ωi.

Let (T
′

H)H be a set of triangulations of Γ3 =
⋃

i∈JH
Γ3,i. We suppose that the

elements Γ3,i, i ∈ JH , are segments for d = 2 and rectangles for d = 3. We set
Hi = length(Γ3,i) for d = 2, and H1,i, H2,i are the lengths of the edges of Γ3,i for



d = 3. We assume that the triangulations are regular; that is, there exists a constant
γ > 0 such that

min
i∈JH

(Hi)/H ≥ γ, where H = max
i∈JH

(Hi) for d = 2,

min
i∈JH
j=1,2

(Hj,i)/H ≥ γ, where H = max
i∈JH
j=1,2

(Hj,i) for d = 3.

We consider the sets

Vh =
{

vh ∈ [C(Ω)]d;vh|Ωi
∈ [P1(Ωi)]

d ∀i ∈ Ih, vh = 0 on Γ1

}

,

Ṽh =
{

vh ∈ Vh;vhT = 0 on Γ, vhN = 0 on Γ\Γ3

}

,

LH =
{

πH ∈ L2(Γ), πH = 0 on Γ\Γ3, πH|Γ3,i
∈ P0(Γ3,i) ∀i ∈ JH

}

,

ΠH =
{

πH ∈ LH , πH ≤ 0 on Γ3,i ∀i ∈ JH

}

,

KhH =
{

vh ∈ Vh; 〈πH , vhN 〉 ≥ 0 ∀ πH ∈ ΠH

}

,

where Pk(ω) denotes the space of polynomials of degree lower or equal to k on ω.
We introduce rh and RH , the orthogonal projection operators from V on Vh and

from L2(Γ) on LH . Therefore the following properties hold:

∀v ∈ V, rh(v) → v in [H1(Ω)]d, h → 0+,(2.13)

∀π ∈ L2(Γ), π = 0 a.e. on Γ\Γ3, RH(π) → π in L2(Γ), H → 0+,(2.14)

∀α ∈]0, 1[, ∀v ∈ [H1+α(Ω)]d, ‖rh(v) − v‖[H1(Ω)]d ≤ Chα‖v‖[H1+α(Ω)]d ∀h,(2.15)

∀α ∈]0, 1/2], ∀π ∈ L2(Γ) π = 0 a.e. on Γ\Γ3,(2.16)

‖RH(π) − π‖H−1/2(Γ) ≤ CHα‖π‖H−1/2+α(Γ) ∀H

with C a constant which depends on α.
As rH is the orthogonal projection operator from V on Vh, we have that

‖rH(v) − v‖[H1(Ω)]d ≤ ‖wh − v‖[H1(Ω)]d ∀wh ∈ Vh.

For v ∈ [H2(Ω)]d we can choose the Lagrange interpolate as wh, so that we have

‖wh − v‖[H1(Ω)]d ≤ Chα‖v‖[H1+α(Ω)]d .

We obtain (2.15) by a density argument; see, e.g., [3] to obtain relation (2.16).
We consider the following semidiscrete variational problem.
Problem PhH . Find two mappings t → uh(t) and t → λH(t) such that uh(0) =

u0
h, λH(0) = λ0

H , uh ∈ W 1,2(0, T ;Vh), λH ∈ W 1,2(0, T ;LH), λH(t) ∈ ΠH , and

a(uh,vh − u̇h) + j(λH ,vh) − j(λH , u̇h) ≥ (φ,vh − u̇h) + 〈ψ,vh − u̇h〉(2.17)

+〈 λH , vhN − u̇hN 〉 ∀ vh ∈ Vh,

〈 πH − λH , uhN 〉 ≥ 0 ∀ πH ∈ ΠH .(2.18)

We assume that u0 is such that there exist two sequences (u0
h)h, (λ0

H)H which
satisfy the following properties:



(u0
h, λ

0
H) is a solution of the discrete problem

a(u0
h,vh − u0

h) + j(λ0
H ,vh) − j(λ0

H ,u0
h) ≥ (φ(0),vh − u0)(2.19)

+〈ψ(0),vh − u0
h〉 + 〈λ0

H , vhN − u0
hN 〉 ∀vh ∈ Vh,

〈πH − λ0
H , u0

hN 〉 ≥ 0 ∀πH ∈ ΠH .(2.20)

u0
h → u0in[H1(Ω)]d, λ0

H → λ0 = θσN (u0)inH−1/2(Γ).

We remark that we obtain (2.12) by passing to the limit with respect to h,H in (2.19)
and (2.20).

We adopt the following time discretization. For all n ∈ N
∗ we use the notation

φi = φ(iΔt) and ψi = ψ(iΔt) for i = 0, . . . , n, where Δt = T/n. We consider the
following incremental problem for i = 0, . . . , n− 1.

Problem P i
hH . For ui

h ∈ KhH , find ui+1
h ∈ KhH , λi+1

H ∈ ΠH such that

a(ui+1
h ,vh−ui+1

h ) + j(λi+1
H ,vh−ui

h)−j(λi+1
H ,ui+1

h −ui
h) ≥ (φi+1,vh−ui+1

h )

+〈ψi+1,vh−ui+1
h 〉 + 〈 λi+1

H , vhN − ui+1
hN 〉 ∀ vh ∈ Vh,(2.21)

〈 πH − λi+1
H , ui+1

hN 〉 ≥ 0 ∀ πH ∈ ΠH .(2.22)

We also consider the following regularized problem: For ui
h ∈ KhH , find uhν ∈

KhH , λHν ∈ ΠH such that

a(uhν ,vh−uhν) + jν(λHν ,vh−ui
h)−jν(λHν ,uhν−ui

h) ≥ (φi+1,vh−uhν)(2.23)

+〈ψi+1,vh−uhν〉 + 〈 λHν , vhN − uhνN 〉 ∀ vh ∈ Vh,

〈 πH − λHν , uhνN 〉 ≥ 0 ∀ πH ∈ ΠH ,(2.24)

where jν(λ,v) = −〈μλ, ην(|vT |)〉 with (ην)ν a family of functions such that for all
ν > 0, ην is convex, ην ∈ C1(R), 0 ≤ η

′

ν ≤ 1, ην(0) = η
′

ν(0) = 0, and 0 ≤ s−ην(s) ≤
ν for all s ∈ R. A family of functions satisfying the previous properties is given, for
example, by ην(x) = |x| − ν/2 if |x| > ν and ην(x) = x2/2ν if |x| ≤ ν.

3. A regularity result. In order to obtain a convergence result, we need to
prove a regularity result for the following problem, where the threshold of sliding is
given: For g ∈ C∗−, find ug = u(g) ∈ K such that

a(ug,v − ug) − 〈μg, ην(|vT − ui
hT |) − ην(|ugT − ui

hT |)〉 ≥ (φi+1,v − ug)(3.1)

+〈ψi+1,v − ug〉 ∀v ∈ K.

We assume, only in this section, that Ω belongs to the class of domains such that
Γ3 is of class C1,1/2+ι. This means that every point of Γ3 has a neighborhood where
Γ can be locally represented by xd = Ψ(x1, . . . , xd−1), x = (x

′

, xd) ∈ R
d, and Ψ is of

class C1,1/2+ι in its neighborhood. The domain considered in section 2 is a particular
case of it.

In the next section we will use the notation λ(g) = θσN (ug).
Theorem 3.1. If μ is sufficiently small and, if under the assumptions of section

2 the following relation holds: For all α ∈ [0, 1/2[,

‖θσN (ug)‖H−1/2+α(Γ) ≤ C1‖μ‖L∞(Γ)‖g‖H−1/2+α(Γ)(3.2)

+C2

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

,



then we equally have

‖θσN (ug)‖L2(Γ) ≤ C3 ‖μ‖L∞(Γ)‖g‖L2(Γ)(3.3)

+C4

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

Proof. First, by an argument on variational inequalities of the second kind, we
note that problem (3.1) has a unique solution. Then we consider the following auxil-
iary problem: Find uε ∈ V such that

a(uε,v − uε) − 〈μg, ην(|vT − ui
hT |) − ην(|uεT − ui

hT |)〉 ≥ (φi+1,v − uε)

+〈ψi+1,v − uε〉 −
1

ǫ

∫

Γ3

[uεN ]+(vN − uεN )ds ∀v ∈ V.

We consider a covering (Uj)j∈I of Γ3 and (ρj)j∈I a subordinate C∞ partition of unity.
In order to obtain estimate (3.2) we use a shifting technique which is valid because
the test functions are in V and Γ1 ∩Γ3 = ∅. As supp (θσN (uε)) ⊂ Γ3, we obtain as in
[6, 9] the relation

‖ρj θσN (uε)‖H−1/2+α(Γ) ≤ C5‖μ‖L∞(Γ)‖ρj g‖H−1/2+α(Γ)

+C6

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

By the equivalence of ‖.‖H−1/2+α(Γ) and the norm induced by the partition of unity
(ρj)j∈I we obtain

‖θσN (uε)‖H−1/2+α(Γ) ≤ C1 ‖μ‖L∞(Γ)‖g‖H−1/2+α(Γ)

+C2

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

We can pass to the limit with respect to the parameter ǫ so that we obtain (3.2).
Relation (3.3) is a consequence of the following trace lemma (see [10]).

Lemma 3.2. There exists a constant c > 0 such that for all u ∈ H1,1/2(Rd−1×]0, r[),
r > 0, such that u(x1, . . . , xd−1, r) = 0, the following relation holds:

‖u(x1, . . . , xd−1, 0)‖H1(Rd−1) ≤ c ‖u‖H1,1/2(Rd−1×]0,r[),

where H1,α(Rd−1×]0, r[), 0 < α < 1, is the subset of elements w of H1(Rd−1×]0, r[)
which satisfy

∫

Rd−1

∫

Rd−1×]0,r[

((
∂w

∂xi

)

−t

−
∂w

∂xi

)2

|t|−d+1−2αdxdt < +∞

with w−t(x) = w(x1 + t1, . . . , xd−1 + td−1, xd).

4. Existence of incremental solution. In order to prove the existence of a
solution for problem (2.21), (2.22) we consider the following auxiliary problem asso-
ciated with (2.23), (2.24): For gH ∈ ΠH , find uh = uh(gH) ∈ KhH , λH ∈ ΠH such
that

a(uh,vh−uh) − 〈μgH , ην(|vhT −ui
hT |)−ην(|uhT −ui

hT |)〉 ≥ (φi+1,vh−uh)

+〈ψi+1,vh−uh〉 + 〈 λH , vhN − uhN 〉 ∀ vh ∈ Vh,(4.1)

〈πH − λH , uhN 〉 ≥ 0 ∀ πH ∈ ΠH .(4.2)



Theorem 4.1. For all h,H there exists a solution (uh, λH) for the problem

(4.1), (4.2). Moreover, uh is unique and, if we assume that the following condition

holds:

〈λH , vhN 〉 = 0 ∀ vh ∈ Ṽh =⇒ λH = 0,(4.3)

then λH is unique.

Proof. Let J(v) = 1
2a(v,v) − 〈μgH , ην(|vT − ui

hT |)〉 − (φi+1,v) − 〈ψi+1,v〉 and
L(v, πH) = J(v) − 〈πH , vhN 〉. The Lagrangian functional L(., .) has a saddle point
(uh, λH) on Vh × ΠH (see [11, Prop. 2.2, p. 161]).

From the coercivity of a(.,.) and relation (4.1) it follows that uh is unique. The
properties of functions ην imply that inequality (4.1) is equivalent to the following:
For all vh ∈ Vh

a(uh,vh) −

〈

μgH , η
′

ν(|uhT − ui
hT |) vhT .

uhT − ui
hT

|uhT − ui
hT |

〉

= (φi+1,vh)

+〈ψi+1,vh〉 + 〈λH , vhN 〉.

From this inequality we have that for all vh ∈ Ṽh

〈λH , vhN 〉 = a(uh,vh) − (φi+1,vh).(4.4)

By condition (4.3), we obtain that λH is also unique.
Condition (4.3) is fulfilled if 2h ≤ H, and we will assume that this relation holds

in the following. Theorem 4.1 enables us to define the mapping ΦH as follows:

ΠH ∋ gH → ΦH(gH) = λH ∈ ΠH ,

where λH is the solution of (4.1), (4.2). The end of this section is devoted to proving
that ΦH has a fixed point with an estimate independent of h,H for the Lagrange
multiplier λH . In order to prove this estimate, we remark that there exists a constant
β (see [12]) independent of h and H such that

β ‖πH‖H−1/2(Γ) ≤ ‖πH‖h,H−1/2(Γ) ∀πH ∈ ΠH(4.5)

when the ratio h/H is sufficiently small. We will assume in what follows that this
condition holds. We denote

‖πH‖h,H−1/2(Γ) = sup
vh∈Ṽh, vh �=0

〈πH , vhN 〉

‖vhN‖H1/2(Γ)

,

which is a norm by (4.3).
Lemma 4.2. The mapping ΦH is continuous on H−1/2(Γ).
Proof. Let (uh, λH) and (ũh, λ̃H) be the solutions of problem (4.1), (4.2) for gH

and g̃H , respectively. By setting vh = ũh for gH and vh = uh for g̃H , we get

a(uh − ũh,uh − ũh) ≤ 〈μ(gH − g̃H), ην(|uhT − ui
hT |) − ην(|ũhT − ui

hT |)〉.

By the coercivity of a(.,.) we obtain

m‖uh−ũh‖
2
[H1(Ω)]d ≤ ‖μ‖L∞(Γ)‖gH−g̃H‖L2(Γ)‖ην(|uhT−ui

hT |)−ην(|ũhT−ui
hT |)‖L2(Γ)



and finally

‖uh − ũh‖[H1(Ω)]d ≤ C7 ‖gH − g̃H‖L2(Γ).

Thus by (4.4) we obtain that

〈λH − λ̃H , vhN 〉 ≤ M ‖uh − ũh‖[H1(Ω)]d ‖vhN‖H1/2(Γ)

so that there exists a constant C8 > 0 such that

‖λH − λ̃H‖h,H−1/2(Γ) ≤ C8 ‖gH − g̃H‖L2(Γ).

Theorem 4.3. Under the above hypotheses there exists a solution of problem

(2.23), (2.24) for any value of the friction coefficient.

Proof. By introducing vh = ui
h in (4.1) and as 〈λH , uhN 〉 = 0, one obtains that

a(uh,u
i
h−uh)+〈μgH , ην(|uhT −ui

hT |)〉
︸ ︷︷ ︸

≤0

≥ (φi+1,ui
h−uh)+〈ψi+1,ui

h−uh〉+〈λH , ui
hN 〉

︸ ︷︷ ︸

≥0

.

There exists a constant C9 > 0 such that

‖uh‖[H1(Ω)]d ≤ C9

(
‖ui

h‖[H1(Ω)]d + ‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d
)
.

By relation (4.4) one obtains

‖λH‖h,H−1/2(Γ) ≤ C10

(
‖ui

h‖[H1(Ω)]d + ‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d
)
.

We conclude by (4.5) and by Schauder’s second fixed point theorem (see [13]) that
the mapping ΦH has a fixed point which is a solution of (2.23), (2.24).

Lemma 4.4. There exist two constants C
′

1 > 0, C
′

2 > 0 such that for all

(vh, πH) ∈ Vh × ΠH we have

‖λ(gH) − λH‖H−1/2(Γ) ≤ C
′

1

(

‖u(gH) − uh‖[H1(Ω)]d + ‖λ(gH) − πH‖H−1/2(Γ)

)

,(4.6)

‖u(gH) − uh‖
2
[H1(Ω)]d ≤ C

′

2

(

‖u(gH)−vh‖
2
[H1(Ω)]d + ‖λ(gH)−πH‖2

H−1/2(Γ)(4.7)

+〈θσT ,vhT − uT (gH)〉 + 〈πH − λ(gH), uN (gH)〉

−〈μgH , ην(|vhT − ui
hT |) − ην(|uT (gH) − ui

hT |)〉
)

.

Proof. By (4.4) and (4.5), it follows that

〈πH − λH , vhN 〉 = 〈πH , vhN 〉 − a(uh,vh) + (φi+1,vh)

= a(u(gH) − uh,vh) + 〈πH − λ(gH), vhN 〉

≤ C
′

3(‖u(gH) − uh‖[H1(Ω)]d + ‖πH − λ(gH)‖H−1/2(Γ)) ‖vhN‖H1/2(Γ).

We conclude by the triangle inequality.
In order to prove (4.7) we introduce the notation U = (u(gH), λ(gH)),V =

(v, π), UH = (uh, λH),VH = (vh, πH) with H = (h,H). We also set A(U ,V) =
a(u(gH),v)−〈λ(gH), vN 〉+〈π, uN (gH)〉, j(V) = −〈μgH , ην(|vT−ui

hT |)〉, and (Φ,V) =
(φi+1,v) + 〈ψi+1,v〉. Problems (3.1) and (4.1), (4.2) can be written as follows: Find
U such that for all V ∈ V × C∗−

A(U ,V − U) + j(V) − j(U) ≥ (Φ,V − U),



and find UH such that for all Vh ∈ Vh × ΠH

A(UH,VH − UH) + j(VH) − j(UH) ≥ (Φ,VH − UH).

Therefore, we have (see, e.g., [14])

A(U − UH,U − UH) = A(U − UH,U − VH) + A(U ,VH − UH) −A(UH,VH − UH)

≤ A(U − UH,U − VH) + A(U ,VH − U) + A(U ,U − UH)

+ j(VH) − j(UH) + (Φ,Uh − Vh)

≤ A(U − UH,U − VH) + A(U ,VH − U) + j(VH) − j(U)

+ (Φ,U − VH).

The previous relation can be written as follows:

a(u(gH) − uh,u(gH) − uh) ≤ a(u(gH) − uh,u(gH) − vh) + (φi+1,u(gH) − vh)

+〈ψi+1,u(gH) − vh〉 + a(u(gH),vh − u(gH)) + 〈λ(gH) − λH , uhN (gH) − vhN 〉

+〈λ(gH), vhN − uN (gH)〉 − 〈μgH , ην(|vhT − ui
hT |) − (|uT (gH) − ui

hT |)〉

+〈λ(gH) − πH , uhN (gH) − uhN 〉 − 〈λ(gH) − πH , uhN (gH)〉.

By Green’s formula, one obtains

a(u(gH),vh − u(gH)) = (φi+1,vh − u(gH)) + 〈ψi+1,vh − u(gH)〉

+〈θσT (u(gH)),vhT − uT (gH)〉 + 〈θσN (u(gH)), vhN − uN (gH)〉.

Thus we have

m‖u(gH) − uh‖
2
[H1(Ω)]d ≤ a(u(gH) − uh,u(gH) − vh) + 〈θσT (u(gH)),vhT − uT (gH)〉

+〈λ(gH) − λH , uhN (gH) − vhN 〉 + 〈λ(gH) − πH , uhN (gH) − uhN 〉

+〈πH − λ(gH), uN (gH)〉 − 〈μgH , ην(|vhT − ui
hT |) − ην(|uT (gH) − ui

hT |)〉.

By Young’s inequality we finally get

C
′

4 ‖u(gH) − uh‖
2
[H1(Ω)]d ≤ C

′

5 ‖λ(gH) − λH‖2
H−1/2(Γ) + C

′

6 ‖λ(gH) − πH‖2
H−1/2(Γ)

+ C
′

7 ‖u(gH) − vh‖
2
[H1(Ω)]d + 〈πH − λ(gH), uN (gH)〉

−〈μgH , ην(|vhT − ui
hT |) − ην(|uT (gH) − ui

hT |)〉

+〈θσT (u(gH)),vhT − uT (gH)〉.

We conclude by (4.6).
Lemma 4.5. Let Th and T

′

H be such that there exist τ1 > 0, τ2 > 0 independent

of h and H with τ1 ≤ h/H ≤ τ2. Then there exist positive constants D1, D2, D3, D4

such that for 0 < α < 1/2 the following estimates hold:

‖λ(gH) − λH‖H−1/2(Γ) ≤ D1 ‖μ‖L∞(Γ) h
α ‖gH‖H−1/2+α(Γ)(4.8)

+D2 hα
(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

,

‖u(gH) − uh‖[H1(Ω)]d ≤ D3 ‖μ‖L∞(Γ) h
α ‖gH‖H−1/2+α(Γ)(4.9)

+D4 hα
(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.



Proof. From the regularity result of section 3, it follows that

‖u(gH)‖[H1+α(Ω)]d ≤ D4 ‖μ‖L∞(Γ) ‖gH‖H−1/2+α(Γ)(4.10)

+D5

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

We also have

−〈μgH , ην(|vhT − ui
hT |) − ην(|uT (gH) − ui

hT |)〉 ≤ ‖μ‖L∞(Γ) ‖gH‖L2(Γ)

×‖vhT − uT (gH)‖[L2(Γ)]d

and

〈θσT (u(gH)),vhT − uT (gH)〉 ≤ −

∫

Γ3

μgH |vhT − uT (gH)| ds.

We introduce vh = rh(u(gh)) in (4.7) and πH = RH(λ(gH)) in (4.6), (4.7). Using
(2.16), (4.10), and the fact that ‖πH‖L2(Γ) ≤ c1 H−1/2+α ‖πH‖H−1/2+α(Γ) for all
πH ∈ LH , we obtain

‖gH‖L2(Γ)‖vhT −uT (gH)‖[L2(Γ)]d ≤ c2H
−1/2+α‖gH‖H−1/2+α(Γ)h

1/2‖vh−u(gH)‖[H1(Ω)]d

≤ c3 hα Hα ‖gH‖H−1/2+α(Γ) ‖u(gH)‖[H1+α(Ω)]d

≤ c4 h2α ‖gH‖2
H−1/2+α(Γ) + c5 h2α

(
‖φi+1‖[L2(Ω)]d

+‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)
.

As 0 < α < 1/2, we equally have by (3.3) and (4.10) (see, e.g., [3])

〈πH − λ(gH), uN (gH)〉≤ c̃1 h1/2+α ‖λ(gH)‖L2(Γ)‖u(gH)‖[H1/2+α(Γ)]d

≤ h1/2+α
(

c̃2 ‖μ‖L∞(Γ) ‖gH‖L2(Γ) + c̃3

(
‖φi+1‖[L2(Ω)]d

+‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

))

‖u(gH)‖[H1+α(Ω)]d

≤ h1/2+α
(

c̃4 ‖μ‖L∞(Γ) H
−1/2+α ‖gH‖H−1/2+α(Γ)

+ c̃3

(
‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui

h‖[H1(Ω)]d
))

×
(

c̃5 ‖μ‖L∞(Γ) ‖gH‖H−1/2+α(Γ) + c̃6

(
‖φi+1‖[L2(Ω)]d

+‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

))

≤
(

c̃7 ‖μ‖L∞(Γ) h
2α ‖gH‖H−1/2+α(Γ)

+ c̃8 h2α
(
‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui

h‖[H1(Ω)]d
))

×
(

c̃5 ‖μ‖L∞(Γ) ‖gH‖H−1/2+α(Γ) + c̃6

(
‖φi+1‖[L2(Ω)]d

+‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

))

≤ c̃9 ‖μ‖2
L∞(Γ) h

2α ‖gH‖2
H−1/2+α(Γ) + c̃10 h2α

(
‖φi+1‖2

[L2(Ω)]d

+‖ψi+1‖2
[L2(Γ)]d + ‖ui

h‖[H1(Ω)]d
)
.

By the previous relations, we obtain relation (4.9). Inequalities (2.16), (3.2), (4.6),
and (4.10) enable us to obtain relation (4.8).



Theorem 4.6. Let Th, T
′

H , and α satisfy the same conditions as in Lemma 4.5.
Then there exists a value μ∗ > 0 such that the following relation holds:

‖λH‖H−1/2+α(Γ) ≤ ‖μ‖L∞(Γ)/μ
∗ ‖gH‖H−1/2+α(Γ)(4.11)

+C1

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

Thus for μ ∈ M(H1/2(Γ)) such that ‖μ‖L∞(Γ) < μ∗, there exists r0 > 0 such that

the mapping ΦH has a fixed point in {πH ∈ ΠH ; ‖πH‖H−1/2+α(Γ) ≤ r0}. Consequently,

problem (2.23), (2.24) has a solution.

Proof. By the triangle inequality, (2.16), (4.8), and by taking πH as in Lemma
4.5, one obtains

‖λ(gH) − λH‖H−1/2+α(Γ) ≤ ‖λ(gH) − πH‖H−1/2+α(Γ) + ‖πH − λH‖H−1/2+α(Γ)

≤ ĉ1 H1/2−α ‖λ(gH)‖L2(Γ) + ĉ2 H−α ‖πH − λH‖H−1/2(Γ)

≤ ĉ1 H1/2−α ‖λ(gH)‖L2(Γ) + ĉ2 H−α
(

‖πH − λ(gH)‖H−1/2(Γ)

+‖λ(gH) − λH‖H−1/2(Γ)

)

≤ ĉ3 H1/2−α ‖λ(gH)‖L2(Γ) + ĉ2 H−α ‖λ(gH) − λH‖H−1/2(Γ)

≤ ĉ4 ‖μ‖L∞(Γ) ‖gH‖H−1/2+α(Γ) + ĉ5

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

Using (3.2), we deduce that

‖λH‖H−1/2+α(Γ) ≤ ‖λH − λ(gH)‖H−1/2+α(Γ) + ‖λ(gH)‖H−1/2+α(Γ)

≤ ‖μ‖L∞(Γ)/μ
∗ ‖gH‖H−1/2+α(Γ)

+ C1

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[L2(Γ)]d + ‖ui
h‖[H1(Ω)]d

)

.

We conclude by Schauder’s fixed point theorem.
Theorem 4.7. There exists a solution (ui+1

h , λi+1
H ) to problem (2.21), (2.22)

satisfying the following estimate:

‖λi+1
H ‖H−1/2+α(Γ)(4.12)

≤ C2

(

‖ψi+1‖[L2(Γ)]d , ‖φ
i+1‖[L2(Ω)]d , ‖ψ

i‖[L2(Γ)]d , ‖φ
i‖[L2(Ω)]d

)

.

Moreover, (ui+1
h , λi+1

H ) satisfies the following relation for all vh ∈ Ṽh:

〈λi+1
H , vhN 〉 = a(ui+1

h ,vh) − (φi+1,vh).(4.13)

Proof. The solution uhν satisfies the following relation:

a(uhν ,uhν) −

〈

μλHν , η
′

ν(|uhνT − ui
hT |) uhνT ·

uhνT − ui
hT

|uhνT − ui
hT |

〉

= (φi+1,uhν)

+〈ψi+1,uhν〉 + 〈λH , uhνN 〉,

which implies that

m‖uhν‖
2
[H1(Ω)]d ≤ −〈μλHν , |uhνT |〉 + |(φi+1,uhν)|

+|〈ψi+1,uhν〉| + |〈λH , uhνN 〉|.



As 〈λH , uhνN 〉 = 0, we obtain that

m‖uhν‖[H1(Ω)]d ≤ ‖μ‖L∞(Γ)Ctr‖λHν‖H−1/2(Γ) + ‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d ,

and relations (4.4) and (4.5) enable us to prove that

‖λHν‖H−1/2(Γ) ≤ (Mctr)/β ‖uhν‖[H1(Ω)]d + ctr/β ‖φi+1‖[L2(Ω)]d ,

where Ctr, ctr are two constants depending on the trace operators. If ‖μ‖L∞(Γ) <
μ̃ = m/(MCtrctr), then there exists a constant C3 > 0 such that

‖uhν‖[H1(Ω)]d ≤ C3

(

‖φi+1‖[L2(Ω)]d + ‖ψi+1‖[H−1/2(Γ)]d

)

.(4.14)

This enables us to select a sequence still denoted by (ν) such that

ν → 0+,

uhν ⇀ ui+1
h in [H1(Ω)]d,

λHν ⇀ λi+1
H in H−1/2+α(Γ).

It follows that

a(ui+1
h ,ui+1

h ) ≤ lim inf
ν→0+

a(uhν ,uhν),

(φi+1,vh − ui+1
h ) = lim

ν→0+
(φi+1,vh − uhν),

〈ψi+1,vh − ui+1
h 〉 = lim

ν→0+
〈ψi+1,vh − uhν〉.

From the relation
∣
∣
∣ην(|vhT − ui

hT |) − |vhT − ui
hT |

∣
∣
∣ ≤ ν

one obtains

j(λi+1
H ,vh − ui

h) = lim
ν→0+

jν(λHν ,vh − ui
h).(4.15)

We also have by the compact imbedding of H−1/2+α(Γ) in H−1/2(Γ) that

lim
ν→0+

j(λHν ,uhν − ui
h) = lim

ν→0+
j(λHν − λi+1

H ,uhν − ui
h) + lim

ν→0+
j(λi+1

H ,uhν − ui
h)

= j(λi+1
H ,ui+1

h − ui
h).

By the same manner as for (4.15), we get

lim inf
ν→0+

jν(λHν ,uhν − ui
h) ≥ lim inf

ν→0+
j(λHν ,uhν − ui

h).

Therefore,

lim inf
ν→0+

jν(λHν ,uhν − ui
h) ≥ j(λi+1

H ,ui+1
h − ui

h).

The following relations are also valid:

lim
ν→0+

〈λHν , uhνN 〉 ≥ lim
ν→0+

〈λHν − λi+1
H , uhνN 〉

+ lim
ν→0+

〈λi+1
H , uhνN 〉 = 〈λi+1

H , uhN 〉

and

lim
ν→0+

〈πH , uhνN 〉 = 〈πH , ui+1
hN 〉.

All the previous relations concerning the limits with respect to the parameter ν enable



us to pass to the limit in (2.23), (2.24) and to obtain (2.21), (2.22).
Relation (4.13) is obtained by passing to the limit in (4.4). In order to get (4.12)

we used (4.11) and (4.14) for index i.

5. Convergence results. The aim of this section is to prove that there exists a
sequence of discrete solutions of problem (2.21), (2.22) which converges towards the
(u, λ) solution of problem (2.10), (2.11).

Theorem 5.1. There exists a solution to problem (2.17), (2.18) such that

‖λH(t)‖H−1/2+α(Γ) ≤ C4

(

sup
s∈[0,T ]

‖ψ(s)‖[L2(Γ)]d , sup
s∈[0,T ]

‖φ(s)‖[L2(Ω)]d

)

on ]0, T [.(5.1)

Proof. We introduce vh = ui
h in (2.21). It follows that

a(ui+1
h ,ui

h−ui+1
h ) −j(λi+1

H ,ui+1
h − ui

h) ≥ (φi+1,ui
h−ui+1

h ) + 〈ψi+1,ui
h−ui+1

h 〉(5.2)

due to the fact that (2.22) implies that

〈λi+1
H , ui+1

hN 〉 = 0,

and as ui
h ∈ KhH we have

〈λi+1
H , ui

hN 〉 ≥ 0.

Similarly, we set vh = ui+1
h in relation (2.21) corresponding to i− 1 and vh = u1

h in
(2.19) if i = 0. Thus one obtains that

a(ui
h,u

i+1
h −ui

h) + j(λi
H ,ui+1

h −ui−1
h )−j(λi

H ,ui
h−ui−1

h ) ≥ (φi,ui+1
h −ui

h)(5.3)

+〈ψi,ui+1
h −ui

h〉.

It is straightforward to verify that

j(λi
H ,ui+1

h − ui−1
h ) − j(λi

H ,ui
h − ui−1

h ) ≤ j(λi
H ,ui+1

h − ui
h).

From (5.2), (5.3), and by setting Δf i = f i+1 − f i, we have that

a(Δui
h,Δui

h) ≤ −j(Δλi
H ,Δui

h) + (Δφi,Δui
h) + 〈Δψi,Δui

h〉

and

j(Δλi
H ,Δui

h) ≤ ‖μ‖M(H1/2(Γ)) ‖Δλi
H‖H−1/2(Γ) ‖Δui

h‖H1/2(Γ).

Relations (4.13) and (4.5) enable us to prove that

β‖Δλi
H‖H−1/2(Γ) ≤ Mctr ‖Δui

h‖[H1(Ω)]d + ctr ‖Δφi‖[L2(Ω)]d .

If ‖μ‖M(H1/2(Γ)) < μ̃, then there exist two constants C5 > 0, C6 > 0 such that

‖Δui
h‖[H1(Ω)]d ≤ C5

(

‖Δφi‖[H1(Ω)]d + ‖Δψi‖[H−1/2(Γ)]d

)

,

‖Δλi
H‖H−1/2(Γ) ≤ C6

(

‖Δφi‖[H1(Ω)]d + ‖Δψi‖[H−1/2(Γ)]d

)

.



These two estimates allow us to construct some sequences of discrete solutions
for the displacement fields and the Lagrange multipliers which converge towards some
absolutely continuous mappings with respect to time, as follows.

For i = 0, . . . , n, we set

uhn(t) = ui+1
h ,

λHn(t) = λi+1
H ,

ũhn(t) = ui
h + (t− ti)(u

i+1
h − ui

h)/Δt,

λ̃Hn(t) = λi
H + (t− ti)(λ

i+1
H − λi

H)/Δt,

uhn(0) = ũhn(0) = u0
h, λHn(0) = λ̃Hn(0) = λ0

H

with t ∈]ti, ti+1], ti = iΔt. There exist two elements uh, λH and a subsequence
(nk)k∈N such that

ũhnk
⇀ uh in W 1,2(0, T ; [H1(Ω)]d),

λ̃Hnk
⇀ λH in W 1,2(0, T ;H−1/2(Γ)),

uhnk
(t) ⇀ uh(t) in [H1(Ω)]d ∀t ∈ [0, T ],

λHnk
(t) → λH(t) in H−1/2(Γ) ∀t ∈ [0, T ].

The proof is similar to the one given in [6, 9]. In the following we still denote by
(ũhn), (λ̃Hn), (uhn), and (λHn) the previous subsequences.

By the weak convergence of (uhn(t)) and (λHn(t)) it follows that

lim
n→0

∫ T

0

a(uhn(t),vh(t))dt =

∫ T

0

a(uh(t),vh(t))dt,(5.4)

lim
n→0

∫ T

0

j(λHn(t),vh(t))dt =

∫ T

0

j(λH(t),vh(t))dt,(5.5)

lim
n→0

∫ T

0

〈λHn(t), vhN (t)〉dt =

∫ T

0

〈λH(t), vhN (t)〉dt.(5.6)

We also have, by setting φn(t) = φi+1, ψn(t) = ψi+1 for t ∈]ti, ti+1], the following
results:

lim
n→0

∫ T

0

(

φn(t),vh(t) −
dũhn

dt
(t)

)

dt =

∫ T

0

(

φ(t),vh(t) −
dũh

dt
(t)

)

dt,(5.7)

lim
n→0

∫ T

0

〈

ψn(t),vh(t) −
dũhn

dt
(t)

〉

dt =

∫ T

0

〈

ψ(t),vh(t) −
dũh

dt
(t)

〉

dt.(5.8)

Next we have

lim inf
n→0

∫ T

0

j

(

λHn(t),
dũhn

dt
(t)

)

dt ≥ lim inf
n→0

∫ T

0

j

(

λHn(t) − λH(t),
dũhn

dt
(t)

)

dt

+ lim inf
n→0

∫ T

0

j

(

λH(t),
dũhn

dt
(t)

)

dt.

We have limn→∞ ‖λHn(t) − λH(t)‖H−1/2(Γ) = 0 forall t ∈ [0, T ], and by the
Cauchy–Schwarz inequality we obtain that



∥
∥
∥
∥
∥

∫ T

0

j

(

λHn(t) − λH(t),
dũhn

dt
(t)

)

dt

∥
∥
∥
∥
∥
≤

(
∫ T

0

‖μ(λHn(t) − λH(t))‖2
H−1/2(Γ)dt

)1/2

×

(
∫ T

0

∥
∥
∥
∥

dũhn

dt
(t)

∥
∥
∥
∥

2

[H1(Ω)]d
dt

)1/2

.

We conclude by Lebesgue’s theorem that

lim
n→+∞

∫ T

0

j

(

λHn(t) − λH(t),
dũhn

dt
(t)

)

dt = 0,

and by the convexity of j(λH , .) we obtain that

lim inf
n→+∞

∫ T

0

j

(

λHn(t),
dũhn

dt
(t)

)

dt ≥

∫ T

0

j

(

λH(t),
dũh

dt
(t)

)

dt.(5.9)

As previously, we have

lim
n→+∞

∫ T

0

〈

λHn(t),
dũhNn

dt
(t)

〉

dt = lim
n→+∞

∫ T

0

〈

λHn(t) − λH(t),
dũhNn

dt
(t)

〉

dt

+ lim
n→+∞

∫ T

0

〈

λH(t),
dũhNn

dt
(t)

〉

dt,

lim
n→+∞

∫ T

0

〈πH − λHn(t), uhNn(t)〉dt = lim
n→+∞

∫ T

0

〈λH(t) − λHn(t), uhNn(t)〉dt

+ lim
n→+∞

∫ T

0

〈πH − λH(t), uhNn(t)〉dt.

We finally obtain that

lim
n→+∞

∫ T

0

〈

λHn(t),
dũhNn

dt
(t)

〉

dt =

∫ T

0

〈

λH(t),
dũhN

dt
(t)

〉

dt,(5.10)

lim
n→+∞

∫ T

0

〈πH − λHn(t), uhNn(t)〉dt =

∫ T

0

〈πH − λH(t), uhN (t)〉dt.(5.11)

By setting vh = Δt wh + ui
h in (2.21), we have

a

(

uhn,wh−
dũhn

dt

)

+ j(λHn,wh)−j

(

λHn,
dũhn

dt

)

≥

(

φn,wh −
dũhn

dt

)

+

〈

ψn,wh −
dũhn

dt

〉

+

〈

λHn, whN −
dũhNn

dt

〉

∀wh ∈ Vh,

〈πH − λHn, uhNn〉 ≥ 0 ∀πH ∈ ΠH .

Therefore, we get



∫ T

0

(

a

(

uhn(s),wh(s)−
dũhn

dt
(s)

)

+ j(λHn(s),wh(s))−j

(

λHn(s),
dũhn

dt
(s)

))

ds

≥

∫ T

0

((

φn(s),wh(s) −
dũhn

dt
(s)

)

+

〈

ψn(s),wh(s) −
dũhn

dt
(s)

〉)

ds

+

∫ T

0

〈

λHn(s), whN (s) −
dũhNn

dt
(s)

〉

ds ∀wh ∈ L2(0, T ;Vh),

∫ T

0

〈πH(s)−λHn(s), uhNn(s)〉 ds ≥ 0 ∀πH ∈ L2(0, T ;LH)

with πH ∈ ΠH a.e. on ]0, T [.

In order to pass to the limit by using the relations (5.4)–(5.10), we introduce wh(s) =
vh for s ∈ [t, t + τ ] and wh(s) = u̇(s) otherwise. Then, using Lebesgue’s theorem,
one obtains (2.17). In order to prove relation (2.18), we first use (5.11), and we set
πH(s) = πH for s ∈ [t, t + τ ] and πH(s) = λH elsewhere.

Relation (5.1) is a consequence of (4.12).
Theorem 5.2. Let (Thi)i∈N and (T

′

Hi
)i∈N be such that for all i ∈ N we have τ1 ≤

hi/Hi ≤ τ2. Let μ ∈ M(H1/2(Γ)) be such that ‖μ‖L∞(Γ) < μ∗ and ‖μ‖M(H1/2(Γ)) < μ̃.
Then there exists a subsequence (ik)k∈N such that (uhik

, λHik
)k∈N converges weakly

towards the (u, λ = θσN (u)) solution of (2.10), (2.11). Moreover, we have

‖uhik
− u‖[H1(Ω)]d → 0,(5.12)

‖λHik
− λ‖H−1/2(Γ) → 0.(5.13)

Proof. For all i ∈ N we have

‖uhi‖W 1,2(0,T ;[H1(Ω)]d) ≤ C7

(

‖φ‖W 1,2(0,T ;[L2(Ω)]d) + ‖ψ‖W 1,2(0,T ;[H−1/2(Γ)]d)

)

,

‖λHi‖W 1,2(0,T ;H−1/2(Γ)) ≤ C7

(

‖φ‖W 1,2(0,T ;[L2(Ω)]d) + ‖ψ‖W 1,2(0,T ;[H−1/2(Γ)]d)

)

.

It follows that there exists a constant C8 > 0 such that

‖uhi(t)‖[H1(Ω)]d ≤ C8 ∀t ∈ [0, T ],

‖λHi(t)‖H−1/2(Γ) ≤ C8 ∀t ∈ [0, T ].

Then there exist (u, λ) ∈ W 1,2(0, T ; [H1(Ω)]d) × W 1,2(0, T ;H−1/2(Γ)) and a subse-
quence (hik)k∈N such that

uhik
⇀ u in [H1(Ω)]d ∀t ∈ [0, T ],

λHik
→ λ in H−1/2(Γ) ∀t ∈ [0, T ],

uhik
⇀ u in W 1,2(0, T ; [H1(Ω)]d),

λHik
⇀ λ in W 1,2(0, T ;H−1/2(Γ)).

For the sake of simplicity, we still denote by (uhi , λHi)i∈N these subsequences. Then
the following relations hold:

lim inf
i→+∞

∫ T

0

a(uhi(s), u̇hi(s))ds ≥
1

2

(

lim inf
i→+∞

a(uhi(T ),uhi(T )) − lim
i→+∞

a(uhi(0),uhi(0))
)

≥
1

2

(

a(u(T ),u(T )) − a(u(0),u(0))
)

=

∫ T

0

a(u(s), u̇(s))ds,



lim inf
i→+∞

∫ T

0

j(λHi , u̇hi(s))ds ≥ lim inf
i→+∞

∫ T

0

j(λHi − λ, u̇hi(s))ds

+ lim inf
i→+∞

∫ T

0

j(λ, u̇hi(s))ds ≥

∫ T

0

j(λ, u̇(s))ds.

If we set vhi
= rhi

(v) with v ∈ L2(0, T ;V ), it follows that

lim
i→+∞

∫ T

0

j(λHi ,vhi(s))ds =

∫ T

0

j(λ,v(s))ds,

lim
i→+∞

∫ T

0

a(uhi(s),vhi(s))ds ≥

∫ T

0

a(u(s),v(s))ds,

lim
i→+∞

∫ T

0

(φ,vhi(s) − u̇hi(s))ds =

∫ T

0

(φ,v(s) − u̇(s))ds,

lim
i→+∞

∫ T

0

〈ψ,vhi
(s) − u̇hi

(s)〉ds =

∫ T

0

〈ψ,v(s) − u̇(s)〉ds.

If we set πHi = RHi(π) with π ∈ L2(0, T ;H−1/2(Γ)) such that π ∈ C∗− a.e. on ]0, T [,
then we have

lim
i→+∞

∫ T

0

〈πHi − λHi , uhiN (s)〉ds = lim
i→+∞

∫ T

0

〈πHi − λ, uhiN (s)〉ds

+ lim
i→+∞

∫ T

0

〈λ− λHi , uhiN (s)〉ds =

∫ T

0

〈π − λ, uN (s)〉ds.

Therefore, we obtain

∫ T

0

(

a

(

u(s),v(s)−
dũ

dt
(s)

)

+ j(λ,v(s))−j

(

λ,
dũ

dt
(s)

))

ds

≥

∫ T

0

((

φ(s),v(s) −
dũ

dt
(s)

)

+

〈

ψ(s),v(s) −
dũ

dt
(s)

〉)

ds

+

∫ T

0

〈

λ, vN (s) −
dũN

dt
(s)

〉

ds ∀ v ∈ L2(0, T ;V ),

∫ T

0

〈π−λ, uN (s)〉ds ≥ 0 ∀π ∈ L2(0, T ;H−1/2(Γ)) such that π ∈ C∗− a.e. on ]0, T [.

Next we set v(s) = w for s ∈ [t, t + τ ] and w(s) = u̇(s) otherwise, π(s) = π for
s ∈ [t, t + τ ], and π(s) = λ elsewhere. We pass to the limit with respect to τ using
Lebesgue’s theorem so that we obtain (2.10), (2.11), which is equivalent to (2.7), (2.8).
Thus we have λ = θσN (u) ∈ C∗−.

In order to prove (5.12) we proceed as follows. We set v = 0 and v = 2u̇ in
(2.10), which implies that

a(u, u̇) + j(u, u̇) = (φ, u̇) + 〈ψ, u̇〉 + 〈λ, u̇N 〉.

Then we set vh = rhi(u̇) in (2.17) corresponding to hi, Hi so that we obtain

a(uhi , u̇hi
) ≤ a(uhi

, rhi
(u̇)) + j(λHi

, rhi
(u̇)) − j(λHi

, u̇hi
) + (φ, rhi

(u̇) − u̇hi
)

+〈ψ, rhi(u̇) − u̇hi〉 + 〈λHi , (rhi(u̇))N − u̇hiN 〉.



Thus for all t ∈]0, T [ we get

lim sup
i→+∞

∫ t

0

a(uhi(s), u̇hi(s))ds ≤

∫ t

0

a(u(s), u̇(s))ds.

We conclude that

lim
i→+∞

∫ t

0

a(uhi
(s), u̇hi

(s))ds =

∫ t

0

a(u(s), u̇(s))ds,

which implies

lim
i→+∞

a(uhi(t),uhi(t)) = a(u(t),u(t)).

Finally, we have that for all t ∈ [0, T ]

‖uhi(t) − u(t)‖2
[H1(Ω)]d ≤

1

m

(

a(uhi(t) − u(t),uhi(t) − u(t))
)

≤
1

m

(

a(uhi(t),uhi(t)) + a(u,u) − 2a(uhi(t),u(t))
)

.

Passing to the limit, one obtains (5.12) and the proof is complete.

6. Conclusions. In this paper we have considered an implicit Euler scheme with
respect to time and a mixed finite element method for the space discretization. The
fully discrete problem is solved by a fixed point approach, and a regularity result on
the whole contact zone is established for the normal component of the stress vector.
This result and some estimates independent of the discretization parameters enable us
to pass to the limit with respect to mesh size and time. To our knowledge, this paper
presents the first convergence results for quasi-static unilateral contact problems with
local Coulomb friction.

It would be interesting to consider the numerical analysis of unilateral contact
problems with local friction for curved contact zone.

We have used an error estimate between the solutions of the fully discrete prob-
lem and a kind of “static problem” with given threshold of sliding. The problem of
obtaining rates of convergence for the quasi-static contact problem remains open.
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