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NUMERICAL ANALYSIS OF QUASI-STATIC UNILATERAL
CONTACT PROBLEMS WITH LOCAL FRICTION*

REMI ROCCAT AND MARIUS COCOU#

Abstract. A mixed finite element method is adopted to approximate the quasi-static unilateral
contact problem with local Coulomb friction. The existence of a solution with bounds independent
of the discretization parameter is obtained by an incremental scheme. This approach enables us to
select a sequence of discrete solutions which converges strongly towards a solution of the quasi-static
unilateral contact problem with Coulomb friction law.
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ments, mixed formulations, backward scheme, convergence results
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1. Introduction. The aim of this paper is to study the approximation of the
unilateral quasi-static contact problem with local Coulomb friction by a mixed finite
element method.

The first result concerning the unilateral contact problem with local friction was
obtained by Necas, Jarusek, and Haslinger [1] for the static case by using a shifting
technique and a fixed point argument. This result was extended by Jarusek [2] for do-
mains in which the contact zone is smooth enough. Haslinger [3] proved the existence
of solutions for the discrete problem obtained by a mixed finite element method and
the existence of solutions converging towards a solution of the static unilateral contact
problem with local friction when the discretization parameters tend to zero. To obtain
this result he assumed that the normal component of the stress vector, the solution
of the static unilateral contact problem, is sufficiently regular at the boundary of the
contact zone.

The quasi-static unilateral contact problem has been recently studied by Ander-
sson [4] and Rocca and Cocou [5, 6] who proved that there exists a solution if the
friction coefficient is sufficiently small and smooth. The proof is based on a regular-
ization of the contact functional and a shifting technique.

This paper is organized as follows. In section 2, we present the continuous and
discrete variational formulations for the initial problem and its approximation. In
section 3, we obtain a regularity result for the normal component of the stress vector
for an auxiliary problem where the threshold of sliding is given. In section 4 we prove
the existence of a saddle point for the incremental regularized discrete problem. Using
some error estimates and the result of section 3 we prove that the Lagrangian mul-
tiplier is bounded in H /2t independently of the spatial discretization parameter,
provided that the friction coefficient is small enough in an > norm. Section 5 deals
with convergence results.
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2. Variational formulation and approximation. A linear elastic body oc-
cupies a polygonal set  of R, d = 2 or 3, and its boundary 02 is denoted by I". Let
I'y, 'y, and I's be three open disjoint parts of I' such that I' = Ty UL, UT's, Ty NC3 = 0,
and mes(I';) > 0. We assume for the sake of simplicity that I's is a segment for d = 2

and a rectangle for d = 3. We denote by u = (‘uy,..., ug) the displacement field,
€= (¢g;(u)) = (%( u;j + u;;)) the strain tensor, and o = (0;; (0)) = (aijm €x(u))
the stress tensor with the usual summation convention, where 1,7, k,l=1,...,d. We

adopt the following notation for the normal and tangential components of the displace-
ment vector and stress vector: uy = u;n;, ur = u — uyn, oy = oiining, (O'T)i =
oijn; — onn;, where n = (n;) is the outward unit normal vector to 9.

Let us denote by ¢ and 1) the densities of the body forces and traction forces,
respectively. The initial displacement of the body is denoted by u®, and we assume
that a;jm € L>*(Q), 1 < 4,5,k 1 < d, with the usual conditions of symmetry and
ellipticity, that is,

Qijll = ikl = i, 1 < i72j, k.l <d,

Amoe >0V (= (CGj) €RY, Gij = Gjir 1 <4, < d, agjraCijCu > mo [C]>.
The classical problem is as follows: Find u = u(¢,x) such that u(0,-) = u’(:) in Q
and for all ¢ € [0, 7]
) dive(u)=—¢ in Q,
) oij(u) = aijper(a) in Q,
) u=U(x)on Iy,
) on=1 on Iy,
)
)

NN NN
T = W N =

uny <0, on(u) <0, uy on(u) =0on s,

(2.
(2.
(2.
(2.
(2.
(2. lor| < —pon = ur

=0,
2 ‘O'T|:—,MUN:>3)\ZO,I.1T:—)\O'T.

6 lor| < —pox onT's and {

The prescribed displacement U on T'; is such that there exists U € W2(0, T
[H?/2(Q)]%) satisfying U = U a.e. on I'; and U(t,x) = 0 in a neighborhood of '3 for
all t € [0,T]. Therefore, by a translation we are able to choose U(t,x) = 0, which we
shall assume in what follows.

We require also that a;j; are of class CO1/2+ with 1/2>:>01in Q.

The friction coefficient p is assumed to belong to L>°(I") and to the set of the
multipliers of H'/2(T") (see [7]) denoted by M(H'/?(T)). Therefore, the mapping

HY2(T) 3 v — pv e HY?(D)

is bounded by the norm ||| pq(m1/2(ry).

We define V and K by V = {v € [H}(Q)]%,v = 0 ae. on T}, K = {v €
V;vuy < 0a.e. on T'3}. The duality pairings on H'/2(T"), H~/2(T") and on [H/?(T")],
[H='/2(I")]¢ are denoted by ( , ). Let us introduce B(T'), the space of bounded mea-
sures h on I' with respect to the norm given by

swp [ pla)dh(o),
peC(T) T
el oo (ry <t

where C(T") is the space of continuous functions on I'. Let B_(T") be the set of bounded
negative measures on I'.



In the following, we will denote f(¢,.) by f(¢) for any mapping f = f(t,x).
We suppose that u’ € K, ¢ € Wh2(0,T; [L*(Q)]4), v € WL2(0,T; [L3(T)]?) with
supp(¢(t)) C Iy for all ¢ € [0,T]. In what follows we shall use the notation

(s on(),wy) = (on(u),s wy) Vs € M(HY?(T)).

By Green’s formula, one can show a variational formulation of (2.1)-(2.6) as the
following problem: Find a mapping t — u(t) such thatu € W2(0,T; V), u(0) = u’,
and for almost all t€]0,T[, u(t)e K, and

2.7)  alu,v—u)— (pon(u), |[vr| — [ar|) = (¢,v —a) + (¢, v — 1)
+(Oon(u), vy —un ) Vvev,
(28)  (fon(u),zy —un) >0 VzeK,

where a(u,v) = fQ a;jri€i5(0)eg (v) dz. We denote by m, M, respectively, the con-
stants of coercivity and continuity of the bilinear form a(.,.).
The cut-off function @ has the property that = 1 on I's and § = 0 on If with T'9

an open subset such that for all ¢ € [0,7T], supp ¥(t) C IS C fg CTIs. ForallweV,
such that wr = 0 a.e. on I', we have

(2.9) (fon(u),wy) = a(u,w) — (¢, w).

Using Green’s formula, it is straightforward to verify that (2.7), (2.8) is equivalent
to the following mixed variational formulation.

Problem P. Find two mappings t — u(t) and ¢ — A(t) such that u € W2(0,T;V),
A€ WH2(0,T; H-Y/2(T)), u(0) = u®, A\0) = \° = fon(u®), \(t) € C*~ for almost
all t €]0,T[, and

(2.10) a(u,v—1u)+jAv) —jAa) > (¢, v—1)+ (Pp,v—1)
+{ A on — N ) Vvev,
(211) (7= Aux)>0 Ve,

where C*~ = {r € H-'/2(T); supp(r) C T3} N B_(T), j(\, V) = —(u\, |vr|).

The Lagrange multiplier \ satisfies A = o (u).

We assume that the initial displacement field u® satisfies the compatibility con-
dition

(2'12) a(u07v - uO) +j(>‘0a V) - j(>‘0a uO) > ((f)(O),V - uO)
+((0),v —u’) Vv € K.

In order to prove the existence of discrete solutions converging towards u, we
consider the following finite element approximations.

Let (7;,)n be a set of regular triangulations of € (see [8]). Each triangulation
is a collection of elements €; such that Q = UieIh Q; with Q, N = 0 for all
k,l € Ip, k # 1. We assume that each triangulation is compatible with the partition
of I'; that is, each point where the boundary condition changes is a node of a set €);.

Let (T;;)m be a set of triangulations of T's = Uics, I's.i- We suppose that the
elements I's;, ¢ € Ju, are segments for d = 2 and rectangles for d = 3. We set
H; = length(T's ;) for d = 2, and Hy,;, Hs,; are the lengths of the edges of I's; for



d = 3. We assume that the triangulations are regular; that is, there exists a constant
7 > 0 such that

min (H;)/H >, where H = max(H;) for d = 2,

1€TH €Tn
min (H;;)/H >+, where H = max (H, ;) for d = 3.
€T ! iE€ETH

j=1% =13
We consider the sets
Vi, = {vh c [C(ﬁ)]d;vhmi c [Pl(Qi)]d Vi €1y, vip =0 on I’l},
Vi = {vh eViy;vhr=0on T, vpny =0 on F\Fg},
Ly — {«H € LA(T), 7y = 0 on T\Ts, 7gyr, , € Po(Ts;) Vi € JH},
My = {WH €Ly, 7y <0onTs,Vie jH},

Knpg = {Vh € Vi; (mH,unn) >0 Vg € HH},

where Py (w) denotes the space of polynomials of degree lower or equal to k on w.
We introduce 7, and Ry, the orthogonal projection operators from V on V;, and
from L2(T') on Ly. Therefore the following properties hold:

(2.13) Vv eV, r(v) — vin [H'(Q)]¢, h— 0T,

(2.14) Vr e L*), 7=0 a.e. onT\T'3, Ry(n) — 7in L*(T"), H — 07,

(2.15) Ve €]0,1[, Vv € [H'TQ)]% [[ra(v) = Vi @ye < Ch V]| rrsacaye Y,
(2.16) Va €]0,1/2], Vr € L*(I') 7 =0 a.e. on I'\T'3,

|Re (m) = 7l gr-1/2(ry < CH||7|| gr-1/240(ry VH

with C' a constant which depends on «.
As rp is the orthogonal projection operator from V on V},, we have that

||T‘H(V) — VH[Hl(Q)]d < Hwh — VH[HI(Q)]d Ywy, € Vj,.
For v € [H%(Q)]¢ we can choose the Lagrange interpolate as wy,, so that we have
[wWn = vz @)e < Ch[Vm1+a(0)a-

We obtain (2.15) by a density argument; see, e.g., [3] to obtain relation (2.16).

We consider the following semidiscrete variational problem.

Problem Ppp. Find two mappings ¢t — up(t) and ¢ — Ay (¢) such that u,(0) =
u), Ag(0) =AY, up € WH(0,T3 V), Ag € WH2(0,T; L), Au(t) € Iy, and

(2.17)  a(up, vy —ap) +§( Ay, Vi) — J(Am, n) > (@, v — ap) + (P, vy, — ap)
HAm,vny — Unn ) Vv €V,
(218) (ﬂH—AH,uhN>20 Vg €lly.

We assume that u® is such that there exist two sequences (u))),, (A%)x which
satisfy the following properties:



(0, A\%) is a solution of the discrete problem

(2.19) a(u),va—up) + Ay, vi) — §(AY,up) > (9(0), vi, — u°)
+(1p(0), v, —ud) + Ay, vy — uly) Vv € Vi,
(2.20) (mg — Ay, ub ) >0 Vi € 1ly.

u) — u’in[HY ()], AY — X0 = fon (u®)inH ~/2(ID).

We remark that we obtain (2.12) by passing to the limit with respect to h, H in (2.19)
and (2.20).

We adopt the following time discretization. For all n € N* we use the notation
¢' = P(iAt) and " = (iAt) for i = 0,...,n, where At = T//n. We consider the
following incremental problem for ¢ =0,...,n — 1.

Problem P,iH. For u}l € Ky, find uﬁfl € KhH,/\zH € Il such that

a(uytt v =it GO ve—w) — O L w T ) > (07 v —agtt)
(2.21) +<'¢i+17vh7u§f1) + < )\gl,vh]v — uzJ]er> \4 vp € Vh,
(2.22) (7 — Nfh i) >0 Vg €Tly.

We also consider the following regularized problem: For u} € Kpp, find up, €
K, Ay € Ty such that

(2.23)  a(Uny, Vi uny) + G i, Vi —1h) = A arws wp —uly) > (077 vi,—upy)
W v —un) + (A, onn — unon) Y vy € Vi,
(2.24) (T — Mgy, Upen ) >0 V 7y €lly,

where j, (A, v) = —(uA,n,(|vr|)) with (1,), a family of functions such that for all
v >0, n, is convex, n, € CY(R), 0<n, <1, 1,(0) =7,(0) =0, and 0 < s—1n,(s) <

v for all s € R. A family of functions satisfying the previous properties is given, for
example, by 1, (z) = |z| — v/2 if |z| > v and n,(z) = 22 /2v if |z| < v.

3. A regularity result. In order to obtain a convergence result, we need to
prove a regularity result for the following problem, where the threshold of sliding is
given: For g € C*~, find uy, = u(g) € K such that

) . -
(3.1)  a(uy, v —uy) = (ug,n(Ive = Wrl) = o ([agr = wirl)) > (¢, v — 1)
+p v —u,) WeEK.

We assume, only in this section, that €2 belongs to the class of domains such that
T3 is of class C'%1/2+¢, This means that every point of I's has a neighborhood where
I’ can be locally represented by x4 = W(x1,...,24-1), X = (x/, z4) € RY, and ¥ is of
class C11/2%¢ in its neighborhood. The domain considered in section 2 is a particular
case of it.

In the next section we will use the notation A(g) = fon(uy).

THEOREM 3.1. If v is sufficiently small and, if under the assumptions of section
2 the following relation holds: For all o € [0,1/2],

(3.2) N0on(ug)llgz—1r2+a ) < CillpllLo@)llgllg-1r24a
+Cs (16 iaqonpe + 197 -2 qeype + I s e )



then we equally have

(3.3) 160 (ag)ll2ry < Cs [l llgllLzr)
+Ca (16" agonpe + 19 lizaqeype + bl @y )
Proof. First, by an argument on variational inequalities of the second kind, we

note that problem (3.1) has a unique solution. Then we consider the following auxil-
iary problem: Find u, € V such that

a(ue,v —ue) = {ug. (Ve — whrl) = m(luer — wjr))) > (¢, v —ue)

) 1
+@ T v —u,) - ;/ [uen]+(on = uen)ds Vv € V.

Tz

We consider a covering (U;);er of I's and (p;)jes a subordinate C* partition of unity.
In order to obtain estimate (3.2) we use a shifting technique which is valid because
the test functions are in V and Ty NT5 = (). As supp (foy(u.)) C T's, we obtain as in
[6, 9] the relation

lpj 0on (ue)[pr-1/2+a(r) < CsllpllLoe o llog gllzr—1/2+0(r)

+Cs (1™ gz + 19 llr-vaope + Iuhllen o).

By the equivalence of ||.||g-1/2+a(r) and the norm induced by the partition of unity
(pj)jer we obtain

[0on (ue)ll g-1/2+0 ) < C1 lpllLoe @ lgll 17240 ()
+Ca (16" agenpe + 197 =1 r2qege + s oy )

We can pass to the limit with respect to the parameter e so that we obtain (3.2).
Relation (3.3) is a consequence of the following trace lemma (see [10]). 0

LEMMA 3.2. There exists a constant ¢ > 0 such that for allu € H'/?(R?~1x]0, r[),
r >0, such that uw(z1,...,x4-1,7) = 0, the following relation holds:

||u(x1, ey Ld—1, O)HHl(Rd*l) <c ||u||H1=1/2(Rd—1 x]0,7[)>

where HY*(RI=1x]0,7(),0 < a < 1, is the subset of elements w of H'(R4=1x]0,r])
which satisfy

2
/ / (a—w) _ O 20 gpgs < foo
Rd—1 JRA=1x]0,r[ 8132 _t 8131

with w_¢(x) = w(xy +t1,...,xg-1 + ta—1,2d)-

4. Existence of incremental solution. In order to prove the existence of a
solution for problem (2.21), (2.22) we consider the following auxiliary problem asso-
ciated with (2.23), (2.24): For gy € Iy, find up, = up(9y) € Kpy, Ay € g such
that

a(up, vi—up) = (pgu, o ([Ver —ah o) =0y ([upr —ujp])) > (@, vi—uy)
(4.1) " v —up) + (A, vy —unn) Y vy € Vi,
(4.2)  (mg —Ag,upn ) >0 Vg elly.



THEOREM 4.1. For all h,H there exists a solution (un,Ag) for the problem
(4.1), (4.2). Moreover, uy, is unique and, if we assume that the following condition
holds:

(4.3) Ay vpn) =0 Vv, € Vi, = Ay =0,

then A\g is unique.

Proof. Let J(v) = %a(v,v) —{ugm, . (|vr — i) — (@ v) — (T v) and
L(v,mg) = J(v) — (mrg,vpn). The Lagrangian functional £(.,.) has a saddle point
(up, Ag) on Vj, x Iy (see [11, Prop. 2.2, p. 161)).

From the coercivity of a(.,.) and relation (4.1) it follows that uy, is unique. The
properties of functions 7, imply that inequality (4.1) is equivalent to the following:
For all v, € V},

4 ; upT — u’ ;
ofunvi) = (g = wirl) vir. 2L (g,
[upr — )7
+(@W" T va) + (A vn).
From this inequality we have that for all v, € Vi

(4.4) M onn) = a(ug, vi) — (@7 vp).

By condition (4.3), we obtain that Ay is also unique. 0
Condition (4.3) is fulfilled if 2h < H, and we will assume that this relation holds
in the following. Theorem 4.1 enables us to define the mapping ® g as follows:

Uy > gu — Pu(9gn) = Mg € 1,

where Ay is the solution of (4.1), (4.2). The end of this section is devoted to proving
that &z has a fixed point with an estimate independent of h, H for the Lagrange
multiplier Ag. In order to prove this estimate, we remark that there exists a constant
0 (see [12]) independent of h and H such that

(4.5) Bllwallg-1/2y < 7w lln,m-r2@)  Vrm € Ma

when the ratio h/H is sufficiently small. We will assume in what follows that this
condition holds. We denote

TH, UhN
Hﬂ—HHh,H—IM(F) = sup u’
VREVH, Vh#D thNHHl/Z(F)

which is a norm by (4.3).

LEMMA 4.2. The mapping ® g is continuous on H~/?(T).

Proof. Let (up, \gr) and (@1, A7) be the solutions of problem (4.1), (4.2) for gy
and gy, respectively. By setting v;, = uy, for gg and v, = u,, for gy, we get

alup —ap,up —ap) < (ulgr — gu)s e (Janr — Wir|) =m0 (87 — Wr))-
By the coercivity of a(.,.) we obtain

mun—an|F qya < liallzoe oy |9 =g |l 2y 1 ([nr =,z ) =m0 ([nr —ah ) 220y



and finally
llun, — Gnll(g1 ) < C7 llgr — gullz2r)-
Thus by (4.4) we obtain that
(At = A, onw) < M |[up — Al e [onn | )
so that there exists a constant Cg > 0 such that
IAg = Mzl sr-1720) < Cs llgn = Gallzeqry. D

THEOREM 4.3. Under the above hypotheses there exists a solution of problem
(2.23), (2.24) for any value of the friction coefficient.
Proof. By introducing vy, = ul in (4.1) and as (Ag, unn) = 0, one obtains that

a(an, wj—up) + (ngm, o ([upr —whp))) > (¢ w)—up) + (" uf—up) + (A, ) -
————

<0 >0

There exists a constant Cy > 0 such that

lanlliz e < Co (Nl e + 10 lizz e + I Hlp-1r2a0y4) -
By relation (4.4) one obtains

i+1||[

IXet im0y < Cro (Nl e + 107 lpeye + 1190 lg-1/2rya) -

We conclude by (4.5) and by Schauder’s second fixed point theorem (see [13]) that
the mapping @y has a fixed point which is a solution of (2.23), (2.24). 0

LEMMA 4.4. There exist two constants C’i > 0, C’é > 0 such that for all
(Vi, ) € Vi, x Iy we have

(4.6)  [[Mgn) — )‘H”H*UQ(I‘) <C (HU(QH) - uhH[Hl(Q)]""" A (gm) — 7THHH*1/2(F))7

4.7)  algn) - uh||[2H1(Q)]d < Cé(Hu(gH)_VhH[zHl(Q)]d—"_ H/\(QH)—WHH?{—UZ(F)
+HOor,vir —ur(gn)) + (7 — Mgn), un(gm))
~(gasm(1vnr = irl) = mo(lar(gi) = whrl))).

Proof. By (4.4) and (4.5), it follows that
(T — A, vnn) = (T, 0aN) — a(Un, Vi) + (¢i+1avh)
= a(u(gn) —wn, va) + (g — Mgu), van)
< Cy(llulgr) — wnllim e + 7 — Mga)lla-1/20) lvan |2 )

We conclude by the triangle inequality.

In order to prove (4.7) we introduce the notation U = (u(gmy), Ngm)),V =

(v,m), U = (up, Am),Vn = (v, 7)) with H = (h, H). We also set AU,V) =

a(u(gn),v)=(Mgw), on)+(m un(gr)), §(V) = —=(ngm: v ([vr —ajp)), and (®,V) =

(¢, v) + (3" v). Problems (3.1) and (4.1), (4.2) can be written as follows: Find
U such that for all V e V x C*~

AUY =U) +5(V) —iU) = (®,V = U),



and find Uy such that for all V,, € Vj, x Ilg
AU, Vi — Up) + § (Vi) — §(Ur) > (2, Vi — Upy).
Therefore, we have (see, e.g., [14])
A(u —Un, U —Z/[H) = A(u — U, U — VH) +A(M,VH —Z/{H) — A(UH,VH —MH)
< AU —Up, U — Vi) + AUV —U) + AU U — Uy)
+ J (V) — jUw) + (2,Up — Vi)

< AU = U, U = Vi) + AUV —U) + § (Vi) — §(U)
+(,U — Vy).

The previous relation can be written as follows:

a(u(gn) —up,ulgn) —up) < a(u(gn) —up,ulgn) — vn) + (¢i+lau(9H) —Vh)
+(@" " ulgr) — vi) + a(ulgn), vi — u(gn)) + (Agr) — Mg, unn (9u) — van)
+(\gr),vny — un(gr)) = (pges o ([Var — wyrl) = (Jur(gr) — wirl))
+(Mgr) — 7m,unn(98) — unn) — (Mgr) — Tr, unN (9H))-

By Green’s formula, one obtains

a(u(g), v —u(gn)) = (", v, —ulgm)) + (@', vi, — ulgnm))
+(or(ulgn)), vir —ur(gn)) + (Gon(u(gn)), van — un(gm))-

Thus we have

mlu(gn) = wnlf e < alalgn) —wp,ulgn) = vi) + (Bor(algn)), var — ur(gn))

+(XNgm) — i, unn (9) — van) + (Mgwm) — 7w, unn (9m) — ULN)
+(mu — Mgu), un (g9u)) — (pge, o ([Var — whr|) — nu(jur(gm) — wjr)).

By Young’s inequality we finally get

Cy algr) = wnllf aye < Cs IMga) = M-y + Co INga) = T l31/2r
+C [algn) = Valltg e + (7 — Mgn), un(gn))
—(ugw, (Ve — whp|) = no(Jur(gn) — 7))

+(0or(ulgn)), vir — ur(gn))-

We conclude by (4.6). O
LEMMA 4.5. Let Ty, and Ty be such that there exist 71 > 0,72 > 0 independent
of h and H with 1 < h/H < 15. Then there exist positive constants D1, Da, D3, D4
such that for 0 < a < 1/2 the following estimates hold:
(4.8)  Mgr) = Aullg-120y < D1 llpllpery B gl g-1/240r)
+D; h* (I|¢i+1‘|[L2(Q)]d + 1" | 2y + HuZH[Hl(Q)]d),
(4.9)  lulgr) — wnlligr@ye < D3 llpllzee @y B 9wl g-1/2+0 ()

+Dy h* (||¢i+1“[L2(Q)]d + 1 Nl pe e + Hu;L”[Hl(Q)}d)-



Proof. From the regularity result of section 3, it follows that
(4.10)  [lulga)llimr+a(oye < Da llpllpee ) lgmllg-1/2+a
+Ds (16 z2(ne + 1™ 2oy + Il e ).
We also have

~(gr, o ([var = wirl) = n(lur (9) = whr D) < i) lomlzey
X||Vrr — uT(gH)||[L2(F)]d

and

(Bor(u(gn)), vir —ur(gny)) < */ wgu|vir —ur(gn)| ds.

s

We introduce vy, = rp(u(gr)) in (4.7) and 7 = Ry (A(gn)) in (4.6), (4.7). Using
(2.16), (4.10), and the fact that ||7xr2qy < co H Y2 ||mpllg-1/24a(r) for all
mg € Ly, we obtain

||9HHL2(F) HVhT—uT(gH)H[LZ(F)]d < 02H71/2+a”gH|‘H—1/2+“(F)h1/2|‘vh_u(gH)H[Hl(Q)]d
< s b H ||gu |l g-1/2+a(r) ulgn)||(ive )
< ea B \lgully-zvaqry + s 2167 120
™l p2 oy + 1ah @y e)-
As 0 < a < 1/2, we equally have by (3.3) and (4.10) (see, e.g., [3])
(m — Mgm), un(ga))< & B2 [Mgm) |z alge)lg/z+a oy
< pt/2te (52 el e oy Nlgellpery + S (11" L2 e
I gz ryge + 1 oge) ) o) e oo
< pt/Ere (54 el oo oy H24 Nl ga | gr-1/20ar
+ & (10" lp2e + 1" lp2aye + ||UZH[H1(Q)]d))
x (&5 Il vy Ngmllsz172v oy + T (167 220
HI™ gy + 0l ) )
< (57 el Lo 0y B2 Nl gl mr=1/2+0 )
+ @ B2 (16" paaye + 9™ parye + I i o))
x (@ lellzoeey ginl-1maqey + 6 (167 2y
HI ey + 10 ) )
< & H/J'H%OQ(F) h2e ||9H‘|§{—1/2+a(r) + &y B (”‘f’i“”[zm(g)]d
+||17bi+1||[2L2(1")]d + ||u§L||[H1(SZ)]d)'

By the previous relations, we obtain relation (4.9). Inequalities (2.16), (3.2), (4.6),
and (4.10) enable us to obtain relation (4.8). 0



THEOREM 4.6. Let Ty, TIZI, and « satisfy the same conditions as in Lemma 4.5.
Then there exists a value p* > 0 such that the following relation holds:

(4.11) INe [ r-1/240ry < lptllzoey/m" |98 | g-1/240
+C1 (16 iz + 10 izeoye + 10 s oy )

Thus for u € M(H"/?(T)) such that |1l oo vy < p*, there exists ro > 0 such that
the mapping ® has a fized point in {7y € Ily; (|7 | g-1/240 @) < 1o}, Consequently,
problem (2.23), (2.24) has a solution.

Proof. By the triangle inequality, (2.16), (4.8), and by taking 7 as in Lemma
4.5, one obtains

IMgm) = Aallg-1/2+0ry < Mgu) — Tallg-1/2400) + [T = AE || H-1/240(1)
<é HY27 [(Mygm)lle2ry + &2 H |lma = Aall -2y

< o Y2 N gm) ey + & H (Imn = Agan)ll-1/2r)
M) = Al )
<ég HY2 |\ Nga)ll oy + 62 H | Mgu) = Mallg-1r2r)
< ||pllpe(ry llgrllm-1/210 @) + é5<||¢i+1”[L2(Q)]d + 1" L2y + ||112||[H1(Q)]d)-
Using (3.2), we deduce that

H/\H”Hfl/zw(r) <A m - /\(gH)HH*1/2+a(I‘) + H/\(QH)HH*1/2+‘1(I‘)
< Alpllpoery/m* lgmll g-1/2+0(r)
+ €1 (16 e + 19 zaeye + 1 s o )

We conclude by Schauder’s fixed point theorem. O
THEOREM 4.7. There exists a solution (uj™',Nif') to problem (2.21), (2.22)
satisfying the following estimate:

(4.12) NGl r=1/20(ry
<C (||¢’i+1 lizzyas 167 lipz e 19 Iz aoya, |9 [LZ(sz)]d) .

Moreover, (u}j‘l, )\E'l) satisfies the following relation for all vy, € Vj:

(4.13) NG o) = a(upt vi) — (97, va).

Proof. The solution uy,, satisfies the following relation:

; uy - ui i
a(Up,, Upy) — <M>\Hm77;(\uhuT = Wyp|) Uppr - "Tifﬁ> = (¢ up)
|uhuT - uhT|

+(@ Y wn) + (A, unn),
which implies that
il B e < — (e [ ) + (67 un)

+|<¢i+17 uhu>‘ + |<)\H’ UhVN>|~



As (Mg, upyn) = 0, we obtain that

mlluny |z e < Il @) CorllAevllzr-1720y + 10 izze + 19l -1/2a040
and relations (4.4) and (4.5) enable us to prove that

INerwll =120y < (Meer) /B anoll iz e + cor/B 107 lp2a)e

where Cy, ¢4 are two constants depending on the trace operators. If |||z ) <
i =m/(MCirct), then there exists a constant C3 > 0 such that

(4.14) sl g < s (167 lipacappe + 197 lsr-vsaope ).

This enables us to select a sequence still denoted by () such that
v — 07,
wy,  — w i [HY(Q)),
Mg, — Naboin HOU2eT).
It follows that

a(uzﬂ, uﬁfl) < 11m%2fa(Uhu7 Uhu)v
N

(@, vi —ujt) = lim (¢, vy —up,),
rv—0+

<1/)Z+17vh — uﬁlﬂ) = lim <1[)Z+1,Vh —up,).
v—0t

From the relation
[V — Whr|) = Ve —whr| | < v
one obtains

(4.15) JOSF vy, —ul) = lim+ GoNpry, v —ulh).

v—0
We also have by the compact imbedding of H~1/?**(T") in H~/?(T) that
Jim G (Arr, why — u,) = Jim j (A — N un — ) + VE%l+J'(>\3}L17 up, — uj)
=505 w -y,

By the same manner as for (4.15), we get

limirifj,,()\Hl,, uy, —u}) > lim irifj()\Hl,, uy, —ul).

v—0 v—0
Therefore,

llm%)ef]V()\HV7 Upy — u;) > J(Al]—?lv u;’fl - uZ)

v—

The following relations are also valid:
. . _yifl
VEIEI+ <)\Hl/7uhVN> > VEIEI+ <)\H1/ )\H 7uhuN>

+Vli%l+<)\?lyuhuzv> = (5 ' unw)
and
Vlir&_ (7TH, UhyN> = <7TH7 u§z+]\/1>

All the previous relations concerning the limits with respect to the parameter v enable



us to pass to the limit in (2.23), (2.24) and to obtain (2.21), (2.22).
Relation (4.13) is obtained by passing to the limit in (4.4). In order to get (4.12)
we used (4.11) and (4.14) for index . o

5. Convergence results. The aim of this section is to prove that there exists a
sequence of discrete solutions of problem (2.21), (2.22) which converges towards the
(u, A) solution of problem (2.10), (2.11).

THEOREM 5.1. There exists a solution to problem (2.17), (2.18) such that

(5.1) Az @)l zr-1/240 1) <C4< sup |[|9(s)lliz2(ry«; sup |¢(S)|[L2(Q)]d) on ]0,77.
s€[0,T] s€[0,T]

Proof. We introduce v, = uj, in (2.21). It follows that
(5:2) a(uy™ w, —wt) = (=) > (97 ) —w ) (g )
due to the fact that (2.22) implies that
i uiy) =0,
and as uﬁl € Ky we have
(A Hub) 2 0.

Similarly, we set v, = uﬁ;rl in relation (2.21) corresponding to i — 1 and v, = uj, in

(2.19) if ¢ = 0. Thus one obtains that
(5.3)  a(uy,uptt—uy) N w T —wg ) =N w ) > (¢ ug )
+<’4/’i7u2+1*u2>~

It is straightforward to verify that

GO =) = GO wg, = wy) < (N wt - ).
From (5.2), (5.3), and by setting Af? = fi+1 — f? we have that

a(Auj, Auj) < (AN, Auj) + (A", Auj) + (Ay', Auj,)
and

F(ANy, Aug) < |l pcerz ey 1AXg | g-172 ) 1A ]| /2 ).
Relations (4.13) and (4.5) enable us to prove that

BIAN | r-1/2) < Megr |AW |71 e + cor 1A [[[£2(0)0-

If [l pmerrrr2qryy < i, then there exist two constants C5 > 0, Cg > 0 such that

lAuh oy < Co (1A s @ppe + 1A% gr-1/2ope ),

IAN | =172 () < CG(||A¢i|\[H1(Q)]d + HAWH[H—UZ‘(F)]«I)



These two estimates allow us to construct some sequences of discrete solutions
for the displacement fields and the Lagrange multipliers which converge towards some
absolutely continuous mappings with respect to time, as follows.

Fori=0,...,n, we set

up,(t) = u?‘l,

Arn(t) = )‘glv

W (£) = wj, + (¢ — 1) (! — ) /AL,

Atrn(t) = Ny + (8 = t) (NG = M) /AL,

W (0) = W (0) = uf), A (0) = A (0) = Ay

with ¢ €]t;,tit1], t; = iAt. There exist two elements up, Ay and a subsequence
(nk)keN such that

Upp, — Uy in W20, 7; [HY(Q)]),
Nitn, — Ag in WH2(0,T; H-V/2(T)),
Upp, () — wp(t) in [HY(Q)]? Vt € [0,T],
M, () = Ag(t) in  H-YT) vt € [0,T).

The proof is similar to the one given in [6, 9]. In the following we still denote by
(QWhn)s (AEn), (Upn), and (Agy,) the previous subsequences.
By the weak convergence of (up,(t)) and (A, (t)) it follows that

T T

(5.4) Jim | (6), vi ()t = /O a(un(t), vi(t))dt,
T T

(5.5) timy [ a0 v ()t = [ 30, v (o)t
OT . OT

(56) 7111% o <)\Hn(t),UhN(t)>df:/0 <)\H(t),UhN(t)>dt.

We also have, by setting ¢,,(t) = ¢'*, 4, (t) = 4" for t €]t;, t;11], the following
results:

60t [ (60w - @) ar= [ (00 - ) ar

n—0

I
c\
N
/\
<
=
<
>
=
|
o8
SE
=
\/
QL
oy

T ~
68t [ (wa0v - o)) a

Next we have

lim inf / ! 7 [ Amn(®) dﬁh"(t) dt > liminf / ! G Amn(t) = A (t) dﬁh”(t) dt
n—0 Jq Todt - =0 Jy Todt
T
+11£111H1(1)1f/0 ]<)\H(t), g (t)> dt.

We have lim, o [[Arn(t) — Au(t)|g-1/2qry = 0 forall t € [0,T], and by the
Cauchy—Schwarz inequality we obtain that




[ (vt = . 2 0))

. 1/2
< </0 [ Arn (t) — /\H(t))”%{lmr)dt)

- 5 1/2
X / ‘ dt .
0 [H1(2)]?

dup,,

(1)

We conclude by Lebesgue’s theorem that

T ~
duhn
li j ( Arn(t) = Au(t), t))dt=o0,
nirfwoj(H() u(t) dt())

and by the convexity of j(Ag,.) we obtain that

(59  liminf /0 " ()\Hn(t), d‘;:" (t)) dt > /0 Y (AH(t), d;t” (t)) dt.

As previously, we have

lim OT <)\Hn(t), d{‘g;v" (t)> dt = lim OT <)\Hn (1) — A (1), Lnvn (t)> dt

n—-+oo n—-+oo
T
dipnn
+ lim <)\H(t), UhN (t)>dt,

n—-—+oo

T T
ﬁ:l_l <7TH - )\Hn(t), uhNn(t))dt = liril <>\H(t) - >\Hn(t)7 uhNn(t)>dt

T
+ lim <7TH — )\H(t), U}LNn(t»dt.

n—-—+oo 0

We finally obtain that

T ~ T ~
. duhNn dUhN
N 1 n B - 5 tv
(G10)  lm | <)\H (0. = (t)>dt /O <)\H(t) 7 (t)>d
T

T
(5.11) lim (7rH - )\Hn(t),uhNn(t)>dt = /O <7TH — )\H(t),uhzv(t»dt.

n—-+4oo 0
By setting v, = At wy, + u}, in (2.21), we have

Upn

d . . dﬁ n dﬁ mn
a<uhn,wh* L )+J()\Hn,wh)*] (>\Hna d: ) > (ﬁi)mwh* djt )

duy,, dipnn
+ <'¢’mwh - d: > + <)\HmwhN - (;L;V > Vwy, € Vy,

<7TH - /\anuhNn> > 0 Vﬂ'H S HH.

Therefore, we get



/OT ( (uhn@),wh(srdfﬁ" <s>) 3 (), wi(s)) = (AH”(S)’ i (S))) "

> [ (8060 m00 — 9} (w00 w06 — )Y ) s

T ~
+f <AHn<s>,whN<s> - i <s>> ds wi € L(0.T; Vi),
0

T
/ (21 (8) = At (5), wnnn () ds > 0 Vg € L2(0,T; L)
0
with 7 € Iy a.e. on ]0,T7.

In order to pass to the limit by using the relations (5.4)—(5.10), we introduce wy,(s) =
vy, for s € [t,t + 7] and wy(s) = u(s) otherwise. Then, using Lebesgue’s theorem,
one obtains (2.17). In order to prove relation (2.18), we first use (5.11), and we set
mp(s) = my for s € [t,t + 7] and 7wy (s) = Ay elsewhere.

Relation (5.1) is a consequence of (4.12). O

THEOREM 5.2. Let (73,,)ien and (Tﬁi)ieN be such that for all i € N we have 11 <
hi/H; < 5. Let p € M(HY*(T')) be such that ||p|| =1y < p* and Nl pp ez ryy < i
Then there exists a subsequence (iy)ren such that (uhik’)\Hik)keN converges weakly
towards the (u, A = o (u)) solution of (2.10), (2.11). Moreover, we have

(5.12) [, =l @pe — 0,
(5.13) [A#;, = Allz-1720) = 0.

Proof. For all i € N we have
[ lw.2 0,731 (1) < C7( l@llwr20,12200))4) + H1/1||W1,2(0,T;[H_1/2(F)]d)),
[Am w201 m-172(0)) < C7< lollwrzo,1iz2(@)e) + Hl[i\|W1,2(07T;[H71/2(F)]d>).
It follows that there exists a constant Cg > 0 such that
an, (Ol @)e < Cs V€ [0,T],
A, @) zr-1/2(r) < Cs VE € [0,T7.

Then there exist (u,\) € W52(0,T;[H'(Q)]%) x W'2(0,T; H-*/?(T)) and a subse-
quence (h;, )gen such that

w, — u in [HY(Q)]4 vt € [0,T],
Am, — A in HY*T)vtelo,T],
w,, — u in W90,T;[H ()],
A, — A in WB20,T; H-Y2(I)).

For the sake of simplicity, we still denote by (un,, Ag, )ien these subsequences. Then
the following relations hold:

71— 400 1——+00 1——+00

lim inf /O a(up, (s), ay, (s))ds > %(liminfa(uhi(T),uhi(T))— lim a(uhi(0)7uhi(0)))
> 1 (afu(T), (7)) - afu(0),u(0)))
T
[ atuts) s
0



T T
lim inf/ J g, an,(s))ds > l_iminf/ Jm, — A, (s))ds
0 0

i——+oo i——+o00

T T
—&—liminf/O j()\,l'lhi(s))dsz/o Jj(Aa(s))ds.

1——+00

If we set v, = 7, (V) with v € L2(0,T; V), it follows that

T T
im0, v (s))ds = / O v(s))ds,
1—+00 0 0

T

fim [ a(un,(s), v, (s))ds > /O a(u(s), v(s))ds,

i——+4o0 0

. T . T .
Jim [ 6 (s) =i, ()ds = [ (@v() — i),
i [ v ) = (s = [ v — i),

If we set mg, = Ry, (7) with @ € L?(0,T; H='/?(T")) such that @ € C*~ a.e. on |0, T,
then we have

T T
lim (7o, — Am,, up;N(s))ds = lim (mr, — A up,n(8))ds
i—+oo [ i—+oo [
T T
+‘li£_n / (A= Am;, up;n(s))ds = / (m— X un(s))ds.
oo Jo 0

Therefore, we obtain

@ (), v(5)~ M)} 45O vls) 7 (A D) ) ) s
OT d d
> [ (666 - D)) + (s vie) - D)) Y as

+/0T <,\,UN(S)_ daN(s)>ds Vv e L}0,T;V),

T
/ T—X\un(s))ds >0 VY e L*(0,T; HY/*(T")) such that 7 € C*~ a.e. on ]0, T7.
0

Next we set v(s) = w for s € [t,t + 7] and w(s) = u(s) otherwise, 7(s) = = for
s € [t,t + 7], and 7(s) = X elsewhere. We pass to the limit with respect to 7 using
Lebesgue’s theorem so that we obtain (2.10), (2.11), which is equivalent to (2.7), (2.8).
Thus we have A = 0oy (u) € C*~.

In order to prove (5.12) we proceed as follows. We set v = 0 and v = 21 in
(2.10), which implies that

a(u, ) + j(u, 1) = (¢, 1) + (¢, 1) + (A, iy).
Then we set v, = 1, (01) in (2.17) corresponding to h;, H; so that we obtain

a(uhw uhi) < a(uhﬂrhi (u)) + j()\Hi’rhi(l:l)) - j()‘Hm 1'lhi) + (¢v Th; (u) - ‘:lhi)
W, rn, (@) — ) + Amy, (7w, (@) N — tpy )



Thus for all ¢ €]0,T[ we get

limsup/0 a(uhi(s),ﬁhi(s))dsg/o a(u(s),u(s))ds.

1——+o00

We conclude that
t

im [ a(un (s), i, (s))ds = /0 a(u(s), a(s))ds,

i——+o00 0
which implies

lim_a(uy, (6), w,, (£)) = a(u(t), u(t)).

1——+00

Finally, we have that for all ¢ € [0, 7]

([ap, (t) — u(t)H[QHl(sz)]d < %(“(uhi () —ua(t), un, (1) - u(t))>
< % (alun (6), wn, (1)) + au, w) ~ 2a(un, (1), u(t)) ).

Passing to the limit, one obtains (5.12) and the proof is complete. 0

6. Conclusions. In this paper we have considered an implicit Euler scheme with
respect to time and a mixed finite element method for the space discretization. The
fully discrete problem is solved by a fixed point approach, and a regularity result on
the whole contact zone is established for the normal component of the stress vector.
This result and some estimates independent of the discretization parameters enable us
to pass to the limit with respect to mesh size and time. To our knowledge, this paper
presents the first convergence results for quasi-static unilateral contact problems with
local Coulomb friction.

It would be interesting to consider the numerical analysis of unilateral contact
problems with local friction for curved contact zone.

We have used an error estimate between the solutions of the fully discrete prob-
lem and a kind of “static problem” with given threshold of sliding. The problem of
obtaining rates of convergence for the quasi-static contact problem remains open.
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