Improved Complexity Results and an Efficient Solution for Connected Multi-Agent Path Finding

Isseïnie Calviac
Univ Rennes, Inria, CNRS
Rennes, France
isseinie.calviac@ens-rennes.fr

Ocan Sankur
Univ Rennes, Inria, CNRS
Rennes, France
ocan.sankur@cnrs.fr

François Schwarzentruber
Univ Rennes, CNRS
Rennes, France
francois.schwarzentruber@ens-rennes.fr

ABSTRACT

Connected multi-agent path finding (CMAPF) consists in computing paths for multiple agents which must reach a goal configuration while remaining connected at all steps. We prove the PSPACE-hardness of the problem when the underlying graph is a subgraph of a 3D grid and with range-based connectivity. Moreover, we provide an application of the WHCA∗ algorithm and show that it outperforms previously given algorithms by an order of magnitude in terms of the sizes of the instances it can handle.

KEYWORDS

AI planning; multi-agent path finding; connectivity; CA∗

ACM Reference Format:

1 INTRODUCTION

Multiple agents may have to cooperate in various situations in order to achieve a goal, such as search and rescue missions, or nuclear decommissioning. Some applications require agents to remain connected during the mission, for example, in order to transmit a video stream or other data to human operators [1].

In this article, we study the so-called Connected Multi-Agent Path Finding (CMAPF) problem [3, 6, 11, 16] which is the extension of the multi-agent path finding problem [8] to deal with connectivity constraints between agents. In this setting, the environment is modeled by a graph whose nodes are locations that can be occupied by a single agent at any time. There are two types of edges: movement and communication edges. Agents start in some starting locations (sources) and have to reach target locations, while forming a connected graph through communication edges at each step.

In [16], the authors prove that CMAPF is PSPACE-complete in general graphs, and give one deterministic and two randomized algorithms which consist in greedily selecting a successor configuration at each step so as to build an execution towards the targets. Surprisingly, their algorithms do not consider the collision constraints (i.e. allow collisions between agents). This study however does not fully settle the theoretical complexity of the problem. In fact, PSPACE-hardness result requires arbitrary graphs. Although the movement edges form a planar graph in their reduction, the communication graph has a very particular shape, and is far from being planar. So the PSPACE-hardness holds but on graphs that may look artificial. Many applications of MAPF are actually restricted to subgraphs of grids [7], and communication is often determined by range [1], that is, two agents can communicate whenever their distance is smaller than a given threshold. Our first objective in this paper was therefore to establish the complexity of the problem for subgraphs of grids and range-based communication. Second, algorithmic solutions given in [16] do not scale beyond about 10-20 agents (despite allowing collisions between agents). Our second objective was to show that it is possible to derive much more efficient algorithmic solutions for the CMAPF problem by exploiting the multi-agent planning literature. Moreover, we enforce collision constraints, since we believe that the CMAPF problem only makes sense when both collision and connectivity constraints are taken into consideration.

This paper provides two contributions.

(1) First we show that CMAPF is PSPACE-hard even when agents move in a subgraph of a 3D grid, and with range-based communication, that is, when two agents can communicate when their distance is within a given range. Our reduction is from non-deterministic constraint logic (NCL) [5], and is based on [16]. NCL is a computation model based on a so-called AND/OR graph in which edges are to be flipped sequentially. The main technical challenge we solve is to provide gadgets that mimic the sequential flips of edges.

(2) Second, we provide an algorithmic solution based on windowed hierarchical cooperative A∗ (WHCA∗), and provide a randomized conflict resolution mechanism well adapted to connectivity constraints, which scales to instances with an order of magnitude more agents than [16]. This solution has the advantage of being simple, and finding plans often quickly, and thus significantly improves over the previously given algorithms. Moreover, the randomization we introduce allows us to address the incompleteness of the basic WHCA∗ algorithm and solve more instances. For example, on some benchmarks, we were able to solve instances with about 80 agents where the performance of the previous algorithm dropped after about 10-20 agents.

Related Work. Connectivity constraints are very different in nature than collision constraints alone, so most techniques developed for MAPF in the literature do not easily apply to connectivity constraints. In fact, while collisions are often local (occur at a given time step) and mostly involve two or a few agents, connectivity constraints are global and continuous, that is, they involve the set...
of all agents and a violation of connectivity can span a large time window, if not the whole execution. So these conflicts cannot be dealt locally, unlike collision constraints.

The popular conflict-based search algorithm for MAPF [13] (without connectivity) is difficult to generalize connectivity constraints although some attempt was made [10] which allows collisions between agents and only focus on connectivity; but the scalability seemed limited. We also observe that allowing collisions has little interest in practice, and it renders the problem easier (this can also be observed in the experiments of [16]). In instances with particular communication graphs called sight-moveable, and in the presence of a basis vertex to which the group of agents are to be constantly connected, the problem was shown to be in LOGSPACE [3]. However, this does not apply to grid graphs with range-based communication.

MAPF with imperfect information has been considered in the literature, for instance [17] or [9]. The closer work seems to be [11]. They also use topological graphs with both movement and communication edges. The connectivity is then taken into account to compute the knowledge of each agents. In our work, we consider the perfect information case where connectivity must be maintained.

Improvements over WHCA* have been considered e.g. [2] that specifically target conflicts due to collisions. Some other algorithms that target collisions are [18, 19]. Algorithms combining plans for groups of agents such as [15] are also difficult to apply here due to connectivity being a global constraint on all agents.

Outline In Section 2 we recall the background about CMAPF. In Section 3, we first recall NCL and then explain our reduction to prove that CMAPF is PSPACE-hard for 3D instances. Section 4 provides our algorithm and its performance against the state-of-art ones. Section 5 is the conclusion.

2 SETTING

The environment of the CMAPF problem is represented by a so-called topological graph $G = (V, E_M, E_C)$ with a non-empty finite set V of vertices, and with two types of undirected edges: the movement edges (set E_M) and the communication edges (set E_C). We denote $G_M = (V, E_M)$ and $G_C = (V, E_C)$. Figure 1 shows such a graph which contains 8 vertices. The solid lines represent the movement edges and the dashed ones the communication edges. The agents can thus move along the solid lines and communicate with other agents along the dashed ones.

![Figure 1: Example of a topological graph for the CMAPF problem.](image)

We consider n agents that must move in G_M from their initial vertices to their target ones.

A configuration c of n agents in V is a tuple of n distinct vertices of V, denoted $(c_1, ..., c_n)$ where for $i \in \{1, ..., n\}$, c_i is the position of the agent a_i. The initial configuration is $s = (s_1, ..., s_n)$ and the final one $t = (t_1, ..., t_n)$. Two configurations c and c' of length n are consequent if and only if for each $i \in \{1, ..., n\}$ we have $(c_i, c'_i) \in E_M$; thus, each agent makes one move in G_M. We allow agents to idle. Moreover, the agents must stay connected along their movements. We say that a configuration c of n agents is connected if and only if it forms a connected sub-graph of G_C. In Figure 1, assume that we have 3 agents that must move from (s_1, s_2, s_3) to (t_1, t_2, t_3). The configuration (s_1, s_2, s_3) is connected because $(s_1, s_2), (s_1, s_3) \in E_C$. Intuitively, agent at s_3 can communicate with the agent at s_2 via the agent at s_1 (multi-hop).

An execution e of length ℓ is a sequence of configurations, denoted $(c', ..., c^\ell)$ such that for each $i \in \{1, ..., \ell - 1\}$, c^i and c^{i+1} are consequent. An execution e of length ℓ is connected in the graph of communication G_C if for each $i \in \{1, ..., \ell\}$, c^i is connected. We want a connected execution from s to t.

Importantly, as in MAPF (unlike [16]), we suppose that agents do not collide. In other words, agents have distinct positions in all configurations. We thus consider here a simple form of collision constraints; one could as well consider forbidding taking the same edge in opposite directions [20].

Example 2.1. Figure 2 shows an example of a connected execution from the Figure 1. Agents start in configuration (s_1, s_2, s_3) (see Figure 1(a)). Note that agent a_2 communicates indirectly with agent a_3, via the agent a_1. Then the agents move synchronously to configuration (s_2, v, u): agent a_1 moves to s_2 by taking the movement edge $s_1, s_2) \in E_M$; agent a_2 takes the edge $(s_2, v) \in E_M$ and a_3 takes $(s_3, u) \in E_M$. At step 2, the configuration is (v, t_2, t_1). Note that now agent a_2 communicates directly with agent a_3 via the communication edge $(t_2, t_1) \in E_C$; a_1 communicates with a_3 indirectly via a_2.

![Figure 2: Example of connected execution.](image)
We focus on 3D grid instances where the communication is range-based.

The CMAPF problem was proven to be PSPACE-complete on general graphs [16]. However, the reduction requires a connectivity based. In the next section, we establish the PSPACE-hardness of the problem on instances defined on subgraphs of 3D grids, and with range-based communication.

3 PSPACE-COMPLETENESS IN 3D

We focus on 3D grid instances where the communication is range-based.

Definition 3.1. A 3D grid topological graph is a triplet \((G, \text{pos}, \rho)\) where \(G = (V, E, E_C)\) is a topological graph, \(\text{pos}\) is a position function \(\text{pos} : V \rightarrow \mathbb{N}^3\), which is injective, and a radius \(\rho\) which respects the following conditions:

\[(\text{1})\text{ for all } (u, v) \in E_M, \quad |\text{pos}(u).x - \text{pos}(v).x| + |\text{pos}(u).y - \text{pos}(v).y| + |\text{pos}(u).z - \text{pos}(v).z| \leq 1,\]

where \(\text{pos}(u).x, \text{pos}(u).y, \text{pos}(u).z\) denote the three components of \(\text{pos}(u)\);

\[(\text{2})\text{ and } (u, v) \in E_C \text{ if and only if } d(\text{pos}(u), \text{pos}(v)) \leq \rho, \text{ where } d \text{ is the Euclidean distance (range-based communication).}\]

Example 3.2. Figure 3 shows a 3D grid topological graph with 13 vertices and with a radius \(\rho = 2\). The graph consists of two layers: the bottom layer \((z = 0)\) contains 9 vertices, while the top layer \((z = 1)\) contains 4 vertices. As shown, the graph can be seen a subgraph of the 3D grid. For instance, \(\text{pos}(u) = (0, 2, 0), \text{pos}(v) = (0, 1, 1)\) and \(\text{pos}(w) = (2, 0, 0)\). An agent can move from layer 0 to layer 1 throw a movement edge from the node at position \((1, 0, 0)\) to the node at position \((1, 0, 1)\). We have:

- \((u, v) \in E_C\) because \(\sqrt{0^2 + 1^2 + 1^2} = \sqrt{2} \leq 2\);
- \((u, w) \not\in E_C\) because \(\sqrt{2^2 + 2^2 + 0^2} = \sqrt{8} > 2\).

Now, a 3D grid instance for the CMAPF problem is described by a 3D topological graph \((G, \text{pos}, \rho, s, t)\) where \((G, \text{pos}, \rho)\) is a 3D grid topological graph, and two connected configurations \(s\) and \(t\).

In this section, we prove the following theorem:

Theorem 3.3. CMAPF is PSPACE-complete, even for a graph which is a 3D grid instance.

PSPACE membership holds because CMAPF is in PSPACE in the general case [16]. The PSPACE-hardness on arbitrary graphs relies on a reduction from the the PSPACE-complete problem related to Nondeterministic Constraint Logic (NCL) [5]. Here, we also provide a reduction from NCL, while our technical contribution consists in defining the reduction with the restrictions of a 3D grid graph, and only using range-based communication.

3.1 Nondeterministic Constraint Logic

Let us recall that a graph is planar if there exists an injective embedding of the set of nodes in \(\mathbb{N}^2\) such that edges do not cross. An AND/OR graph is an undirected planar graph \(\mathcal{G}\) such that:

- each edge has a weight of either 1 or 2;
- each node is either an OR node, or an AND node (see Figure 4; ignore the direction of edges for now).

As shown in Figure 4, a node has three incident edges \(e_1, e_2, e_3\). All are of weight 2 for an OR node. For an AND node, two of them, say \(e_1, e_3\), are of weight 1 while the third one, \(e_2\), is of weight 2.

Given an AND/OR graph \(\mathcal{G}\), a configuration \(\gamma\) is an orientation of \(\mathcal{G}\), defining a direction for each edge in \(\mathcal{G}\); \(\gamma\) is valid if the in-flow of each node (the sum of the weights of the incoming edges) is at least 2 (in the directed graph defined by the pair \((\mathcal{G}, \gamma)\)). Concretely, for an OR node, at least one edge must enter the node. For an AND node, either \(e_2\) enters the node or \(e_1\) and \(e_3\) both enter the node. Given two valid configurations \(\gamma, \gamma'\), we define an elementary step denoted \(\gamma \xrightarrow{\text{flip}} \gamma'\), iff \(\gamma'\) is obtained from \(\gamma\) by flipping the direction of exactly one edge. An NCL execution is a sequence of valid configurations \(\gamma_0, \ldots, \gamma_f\) with \(\gamma_i \xrightarrow{\text{flip}} \gamma_{i+1}\).

Definition 3.4. The NCL reconfiguration problem is defined as follows: given an AND/OR graph \(\mathcal{G}\) and two valid configurations \(\gamma_0, \gamma_f\), does there exist an execution \(\gamma_0 \xrightarrow{\text{flip}} \ldots \xrightarrow{\text{flip}} \gamma_f\)?

Theorem 3.5. [5] The NCL reconfiguration problem is PSPACE-complete.

3.2 Description of the reduction

Let us consider a NCL instance \((\mathcal{G}, \gamma_0, \gamma_f)\). We show how to construct in poly-time a 3D CMAPF instance written \(\text{tr}(\mathcal{G}, \gamma_0, \gamma_f) = (G, \text{pos}, \rho, s, t)\) such that \(\gamma_0 \xrightarrow{\text{flip}} \ldots \xrightarrow{\text{flip}} \gamma_f\) iff there is a connected execution from \(s\) to \(t\).

The 3D grid topological graph \((G, \text{pos}, \rho)\) contains 5 layers as shown in Figure 5. Each layer lies in a \(Oxy\)-plane (a plane in which...
the z-coordinate is constant). As we will see, each layer contains some gadgets. As indicated in Figure 5, layer 0 and 1 are at distance 2, and the Oxy-plane between layer 0 and 1 does not contain any node (in other words, it is an obstacle). In the same way, layer 1 and 2 are at distance 8 and are separated by 7 Oxy-planes without any node (obstacle), and so on. Let $p = 10$ be our communication radius.

![Diagram](image)

Figure 5: Sectional view of the organisation of the 3D topological graph G. Layers contain gadgets. Each layer is given with a summary of its contents.

Encoding of the AND/OR graph \mathcal{G}. We consider an embedding of \mathcal{G} in a 2D grid in which edges do not cross each other and follow the lines of the grid; such an embedding always exists and is computable in poly-time [12].

In layer 1, we place flipping agents that will simulate the directions of the edges on \mathcal{G}. This layer has the same shape as the embedding of the AND/OR graph \mathcal{G} and each node in \mathcal{G} is replaced by a gadget of the form given in Figure 6. The edge e_i in Figure 4 is symbolized by the path between nodes u_i and v_i, called an edge-path. For simplicity, in Figure 4, the edge-path is depicted as a straight line, but in general it follows the shape of that edge in the planar AND/OR graph embedding. The flip of e_i corresponds to the agent moving from u_i to v_i, or from v_i to u_i. We say that a flipping agent is near u_i (resp. v_i) when it is placed at a distance of at most 6 from u_i (resp. v_i) on the layer 1. When the agent is placed near u_i (resp. near v_i), it means that the edge e_i is going in (resp. out) the AND/OR node (in Figure 4). A flipping agent can in general be anywhere on its edge-path between u_i and v_i. But when they are all near extremities u_i or v_i, this corresponds to an AND/OR graph configuration.

In order to impose the dynamics of NCL, we introduce layer 4 which is far from layer 1 and thus is not connected to it directly. Layer 4 contains just a complete grid of stationary agents (see Figure 9) that are connected. We will introduce layer 2 and 3 that respectively impose that a configuration of the agents should represent a AND/OR configuration, and that a single flip occurs each time.

Connectivity for AND/OR configurations. Layer 2, shown in Fig. 7, provides connectivity to flipping agents who are near some edge-path extremities u_i or v_i. It consists of stationary agents placed at the vertices u_i' and v_i'. Vertex u_i' (resp. v_i') is placed exactly above u_i (resp. v_i). Layer 2 is placed at a distance of 8 from layer 1. Thereby, a stationary agent only communicates with the flipping agent that is just below them (or almost below but near the extremity). More precisely, the flipping agent is near the extremity if and only if it communicates directly with the stationary agent above it, as $\sqrt{6^2 + 8^2} = 10$. For instance, the stationary agent at u_i' communicates with the agent near u_i if there is one. Note that the stationary agents are all connected to layer 4.

Flips. An elementary step $y \rightarrow y'$ consists in flipping exactly one edge. In other words, we should ensure that at most one flipping agent should move from an extremity to another. To do that, we introduce layer 3 made of a fully connected grid with a relay agent on it (Figure 8). The idea is that the relay agent follows the flipping agent while she moves from u_i to v_i (or conversely). The layer 3 is at a distance of 10 from layer 1 to ensure that the relay agent provides the connectivity of layer 4 to at most one flipping agent that attempts to move.

NCL configurations should be valid. Last, we add layer 0 to ensure that the incoming flow in each AND/OR node is at least 2 (Figure 10).

(a) An OR node must be pointed to by at least one edge, since all edges e_1, e_2 and e_3 are of weight 2. In our construction, we need thus to ensure that at least one flipping agent must be near u_1, u_2 or u_3. To this aim, we introduce a line of agents a_1, a_2, a_3 that are all connected (see Figure 10a). For them to be connected with all the other agents, one flipping agent must be near u_1, u_2 or u_3.

For instance, a flipping agent in u_i provides direct connectivity to a_1: the distance between a_1 and the position u_i is $\sqrt{6^2 + 6^2 + 2^2} = \sqrt{76} < 10$. Note that agents a_1, a_2 and a_3 will not be connected otherwise: agents in layer 2 are too far from a_1, a_2 and a_3 to provide connectivity to a_1, a_2, a_3. For an AND node, recall that the edges e_1, e_2 and e_3 are of weights 1, 2 and 1 respectively. The constraint of having an inflow of at least 2 can be reformulated by:

(i) either e_1 or e_2 is pointing in (or both);
(ii) and either e_2 or e_3 is pointing in (or both).

We therefore add the line of agents a_1', a_2', a_3' (resp. a_1'', a_2'', a_3'') for handling condition (i) (resp. (ii)). If e_1 and e_2 are pointing out (condition (i) is unsatisfied), then it means no agent is in u_1 (or nearby) and no agent is in u_2 (or nearby), then the agents a_1', a_2' are disconnected from the rest of the group.

We defined the vertices of $tr(\mathcal{G}, y_0, y_f) = (G, s, t)$ as well as their positions. It remains to define s and t. We show how to map AND/OR graph configuration y to a configuration of agents c_y. We define $s := c_{y_0}$ and $t := c_{y_f}$. For an AND/OR configuration y, c_y is the configuration in which, at each AND or OR node, in the corresponding gadget of Figure 6, if e_i enters that node, then the corresponding agent is in u_i (and if e_i leaves that node, she is near v_i). The relay agent is, say, at the bottom-left corner as in Figure 8.

The other agents are stationary so their positions are obvious.

3.3 Properties of the reduction

Proposition 3.6. $tr(\mathcal{G}, y_0, y_f) = (G, pos, \rho, s, t)$ is computable in time polynomial in the size of \mathcal{G}, y_0, y_f.

Proof. The computation starts by computing an embedding for the graph \mathcal{G} in a grid in $poly(|\mathcal{G}|)$ (this is doable via the result of
4 ALGORITHM

In this section, we will present a simple algorithm to solve the connected MAPF problem. We first review previously published algorithms from [16], which will be the baseline for comparison.
We show here that a straightforward application of the windowed hierarchical cooperative A^* (WHCA*) [14] with a simple randomized conflict resolution mechanism performs much better than the above algorithms from the literature. The idea of CA*, explained in our setting, is the following. In order to compute a plan for n agents, we select a random total order of the agents. We first compute a shortest path ρ^1 for the first agent from their source to target vertices. At iteration i, we compute a shortest path ρ_i for the i-th agent from their source to target, but subject to the constraints of the previous agents: the i-th agent cannot occupy the same vertex as a previous agent at the same time step (that is, for each t, there exists $1 \leq j < i$ such that $(\rho^j_t, \rho^i_t) \in E_C$).

The algorithm tries different orderings until an execution is found. The window optimization consists in changing the order randomly after a certain number of steps. Furthermore, the hierarchical version uses heuristic values that are shortest path distances computed by ignoring all interactions between agents. With both optimizations, this defines the WHCA* algorithm. We call each iteration that starts from the source a trial.

It is known however that WHCA* is not complete [14]: on some instances that a solution, WHCA* does not find one. The source of incompleteness is due to the fact that the algorithm assumes that one of the agents follows a shortest path. Such a situation is depicted in Fig. 11. In the figure, the target of the upper agent is t_1, and their shortest path moves upwards, and disconnects from the bottom agent. The bottom agent’s situation is symmetric: they want to reach the vertex t_2, and their shortest path moves down, disconnecting from the other agent. The only solution is to pass through the path at the middle; but then none of the agents use a shortest path, and WHCA* fails. WHCA* can also fail due to collision conflicts if the execution requires agents to idle, for instance, to let other agents pass.

![Diagram of WHCA star algorithm](image)

Figure 11: An instance that is difficult for WHCA*. Agent at s_1 should reach t_1, agent at s_2 should reach t_2.

Randomized conflict resolution. We focus here on conflicts due to connectivity constraints, and introduce a simple mechanism to resolve such conflicts, well adapted to connectivity constraints. While running WHCA*, if no solution is found after ℓ trials, then we start each subsequent trial by randomly selecting a direction, and moving all agents from the source towards that direction for a number ℓ of steps using WHCA*, and continuing the trial from this new configuration to target. We also apply randomization inside each trial: if the execution has not been extended in the last ℓ' windows, then we move towards a random configuration, and continue our way towards target. We slowly increment ℓ after each trial so that if a longer execution towards a particular direction is necessary, this will be tried eventually. In Fig. 11, moving the agents towards left (including upper or bottom left), for a few steps suffices to unblock the situation, a solution is found eventually.

The resulting algorithm is probabilistically complete. In fact, when ℓ is sufficiently large, if there is a connected execution from the current configuration to goal configuration, then, there is a nonzero probability to pick precisely that execution. This holds at each step with a uniform lower bound on the probability; thus, it will eventually be picked with probability 1. Of course, no useful bound on the expected time can be obtained from this reasoning. Thus, we rather evaluate the algorithm empirically.

4.1 Our suggestion

We show here that a straightforward application of the windowed hierarchical cooperative A^* (WHCA*) [14] with a simple randomized conflict resolution mechanism performs much better than the above algorithms from the literature. The idea of CA*, explained in our setting, is the following. In order to compute a plan for n agents, we select a random total order of the agents. We first compute a shortest path ρ^1 for the first agent from their source to target vertices. At iteration i, we compute a shortest path ρ_i for the i-th agent from their source to target, but subject to the constraints of the previous agents: the i-th agent cannot occupy the same vertex as a previous agent at the same time step (that is, for each t, there exists $1 \leq j < i$ such that $(\rho^j_t, \rho^i_t) \in E_C$).

The algorithm tries different orderings until an execution is found. The window optimization consists in changing the order randomly after a certain number of steps. Furthermore, the hierarchical version uses heuristic values that are shortest path distances computed by ignoring all interactions between agents. With both optimizations, this defines the WHCA* algorithm. We call each iteration that starts from the source a trial.

It is known however that WHCA* is not complete [14]: on some instances that a solution, WHCA* does not find one. The source of incompleteness is due to the fact that the algorithm assumes that one of the agents follows a shortest path. Such a situation is depicted in Fig. 11. In the figure, the target of the upper agent is t_1, and their shortest path moves upwards, and disconnects from the bottom agent. The bottom agent’s situation is symmetric: they want to reach the vertex t_2, and their shortest path moves down, disconnecting from the other agent. The only solution is to pass through the path at the middle; but then none of the agents use a shortest path, and WHCA* fails. WHCA* can also fail due to collision conflicts if the execution requires agents to idle, for instance, to let other agents pass.

![Diagram of WHCA star algorithm](image)

Figure 11: An instance that is difficult for WHCA*. Agent at s_1 should reach t_1, agent at s_2 should reach t_2.

Randomized conflict resolution. We focus here on conflicts due to connectivity constraints, and introduce a simple mechanism to resolve such conflicts, well adapted to connectivity constraints. While running WHCA*, if no solution is found after ℓ trials, then we start each subsequent trial by randomly selecting a direction, and moving all agents from the source towards that direction for a number ℓ of steps using WHCA*, and continuing the trial from this new configuration to target. We also apply randomization inside each trial: if the execution has not been extended in the last ℓ' windows, then we move towards a random configuration, and continue our way towards target. We slowly increment ℓ after each trial so that if a longer execution towards a particular direction is necessary, this will be tried eventually. In Fig. 11, moving the agents towards left (including upper or bottom left), for a few steps suffices to unblock the situation, a solution is found eventually.

The resulting algorithm is probabilistically complete. In fact, when ℓ is sufficiently large, if there is a connected execution from the current configuration to goal configuration, then, there is a nonzero probability to pick precisely that execution. This holds at each step with a uniform lower bound on the probability; thus, it will eventually be picked with probability 1. Of course, no useful bound on the expected time can be obtained from this reasoning. Thus, we rather evaluate the algorithm empirically.

4.1 Our suggestion

We show here that a straightforward application of the windowed hierarchical cooperative A^* (WHCA*) [14] with a simple randomized conflict resolution mechanism performs much better than the above algorithms from the literature. The idea of CA*, explained in our setting, is the following. In order to compute a plan for n agents, we select a random total order of the agents. We first compute a shortest path ρ^1 for the first agent from their source to target vertices. At iteration i, we compute a shortest path ρ_i for the i-th agent from their source to target, but subject to the constraints of the previous agents: the i-th agent cannot occupy the same vertex as a previous agent at the same time step (that is, for each t, there exists $1 \leq j < i$ such that $(\rho^j_t, \rho^i_t) \in E_C$).

The algorithm tries different orderings until an execution is found. The window optimization consists in changing the order randomly after a certain number of steps. Furthermore, the hierarchical version uses heuristic values that are shortest path distances computed by ignoring all interactions between agents. With both optimizations, this defines the WHCA* algorithm. We call each iteration that starts from the source a trial.

It is known however that WHCA* is not complete [14]: on some instances that a solution, WHCA* does not find one. The source of incompleteness is due to the fact that the algorithm assumes that one of the agents follows a shortest path. Such a situation is depicted in Fig. 11. In the figure, the target of the upper agent is t_1, and their shortest path moves upwards, and disconnects from the bottom agent. The bottom agent’s situation is symmetric: they want to reach the vertex t_2, and their shortest path moves down, disconnecting from the other agent. The only solution is to pass through the path at the middle; but then none of the agents use a shortest path, and WHCA* fails. WHCA* can also fail due to collision conflicts if the execution requires agents to idle, for instance, to let other agents pass.

![Diagram of WHCA star algorithm](image)

Figure 11: An instance that is difficult for WHCA*. Agent at s_1 should reach t_1, agent at s_2 should reach t_2.

Randomized conflict resolution. We focus here on conflicts due to connectivity constraints, and introduce a simple mechanism to resolve such conflicts, well adapted to connectivity constraints. While running WHCA*, if no solution is found after ℓ trials, then we start each subsequent trial by randomly selecting a direction, and moving all agents from the source towards that direction for a number ℓ of steps using WHCA*, and continuing the trial from this new configuration to target. We also apply randomization inside each trial: if the execution has not been extended in the last ℓ' windows, then we move towards a random configuration, and continue our way towards target. We slowly increment ℓ after each trial so that if a longer execution towards a particular direction is necessary, this will be tried eventually. In Fig. 11, moving the agents towards left (including upper or bottom left), for a few steps suffices to unblock the situation, a solution is found eventually.

The resulting algorithm is probabilistically complete. In fact, when ℓ is sufficiently large, if there is a connected execution from the current configuration to goal configuration, then, there is a nonzero probability to pick precisely that execution. This holds at each step with a uniform lower bound on the probability; thus, it will eventually be picked with probability 1. Of course, no useful bound on the expected time can be obtained from this reasoning. Thus, we rather evaluate the algorithm empirically.
The approach of WHCA* is particularly well adapted for connected MAPF. In fact, due to connectivity, agents are tightly dependent on each other since none of them can travel far from the group. This makes the problem quite different than the disconnected case where interactions between agents can be sparse and local (only a few collisions might have to be addressed at distinct instants). In WHCA*, once an execution is found for a few agents, this can create a lot of room for the rest of the agents, and the search can find an execution quickly, or make progress towards the goal. Blocking situations are overcome by conflict resolution.

4.2 Experiments

We evaluate the WHCA* approach in comparison with the DFS algorithm from [16] on four benchmarks: the maps Offices and Cubicles are 2D grids; Obstacles and Pyramid are in 3D. The bitmap images corresponding to each map are shown in Fig. 12. The 3D maps were obtained from the bitmap image by copying it 5 times towards a third dimension, and adding obstacles at the free cells with a density of 15%. Similar benchmarks were considered in [6, 16]; Offices appears in [6]. For each $2 \leq n \leq 80$, we created 20 random instances with n agents, on each map. The instances on the Cubicles were particular: we placed two agents at a position similar to that of Fig. 11 while others were assigned random positions.

In our implementation, at each trial, we compute the longest possible execution before changing the order of the agents. So trials do not necessarily change the ordering of the agents at predetermined window sizes, but only when the current ordering does not allow to make further progress. The program attempts to extend each trial 100 times with a random order; let us call these extension trials. This parameter was observed to work well on our benchmarks. A too small value meant that trials ended without making enough progress so solutions were found less often; and a too large value meant that too much time was spent in each trial so less time could be spent for remaining trials. We show the performance with 300 extension trials in Fig. 15 where a performance drop was observed. We allowed the solver 5 minutes per instance. The parameters used in conflict resolution was $\theta = 5, \ell = 10$. A small (arbitrary) value for θ was convenient here because WHCA* alone could not make any progress from the source configuration in Cubicles, a small value meant that this initial conflict could be resolved quickly. Moving towards a random direction for a small number of steps does not affect the feasibility of the instance; it can only slightly increase the total length of the computed plan.
The results are shown in Fig. 13 which gives the average success rates for the instances per number of agents. The success rate of WHCA* was systematically higher than that of DFS. The former scaled up to 80 agents on Pyramid and Obstacles maps, and up to about 30-40 on Offices and Cubicles. The performance of DFS dropped quickly, often after 10 agents. Figure 14 compares the execution times; the WHCA* solved a large number of instances; for instance, in Obstacles, the algorithm solved about 1200 instances (out of 1580) each under a minute, while the DFS algorithm could only solve about 400 instances each under a minute.

Figure 15 compares the success rates of the WHCA* algorithm with 100, 200, and 300 extension trials. A larger number means that the algorithm insists in trying to extend each trial. The performance in Offices improved as this number increased, presumably because a larger number of ordering changes is often required in this map, but that in Cubicles was better with a smaller number. A smaller number has the advantage of inducing more fresh trials within the given deadline. There was no substantial difference in performance in Pyramid and Obstacles maps.

In Fig. 16, we show the effect of randomized conflict resolution on performance, particularly in the Cubicles instances which contain at least two agents placed in a position depicted in Fig. 11. The success rate without randomization is 0 for small instances. For larger numbers of agents, this varies, in a rather unpredictable way but stays clearly lower than the success rate with randomization. This is due to randomly generated instances in which some agents can be placed near the problematic situation and render the instance solvable by WHCA*. Overall, randomization helped increase and stabilize the success rate. It did not have a large impact on performance on other maps (not shown here) where instances were generated completely randomly. However, on several instances of Offices and Obstacles we noticed that situations similar to Figure 11 did occur, and randomization did help solve the instances; these were however not frequent enough to be noticed on average plots because instances were generated randomly.

5 Conclusion

In this work, we proved the PSPACE-hardness of the CMAPF problem when the topological graph is a subgraph of a 3D grid under range-based communication, establishing the computational complexity in a more realistic setting than in the literature. The hardness for subgraphs of the 2D grid is open. Our experiments contained both 2D and 3D maps, but the shape of the map seemed to have more impact on performance than its dimension. An important question is automatizing the choice of the parameters used in WHCA* (such as ℓ, θ, θ). We chose them empirically and specifically for our benchmarks, but other values might be preferable for maps of different shapes and sizes.

The connected coverage problem consists in finding an execution that visits all vertices and is similar to CMAPF [4]. In particular, it is also PSPACE-complete. We conjecture that our reduction could be adapted to prove the PSPACE-hardness of the coverage problem in 3D.
ACKNOWLEDGMENTS

This work was supported by the ANR EpiRL project ANR-22-CE23-0029.

REFERENCES

