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ABSTRACT
Connected multi-agent path finding (CMAPF) consists in comput-

ing paths for multiple agents which must reach a goal configuration

while remaining connected at all steps. We prove the PSPACE-

hardness of the problem when the underlying graph is a subgraph

of a 3D grid and with range-based connectivity. Moreover, we pro-

vide an application of the WHCA
∗
algorithm and show that it

outperforms previously given algorithms by an order of magnitude

in terms of the sizes of the instances it can handle.

KEYWORDS
AI planning; multi-agent path finding; connectivity; CA*

ACM Reference Format:
Isseïnie Calviac, Ocan Sankur, and François Schwarzentruber. . Improved

Complexity Results and an Efficient Solution for Connected Multi-Agent

Path Finding. In Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2023), London, United Kingdom,
May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Multiple agents may have to cooperate in various situations in

order to achieve a goal, such as search and rescue missions, or nu-

clear decommissioning. Some applications require agents to remain

connected during the mission, for example, in order to transmit a

video stream or other data to human operators [1].

In this article, we study the so-called Connected Multi-Agent

Path Finding (CMAPF) problem [3, 6, 11, 16] which is the extension

of the multi-agent path finding problem [8] to deal with connectiv-

ity constraints between agents. In this setting, the environment is

modeled by a graph whose nodes are locations that can be occu-

pied by a single agent at any time. There are two types of edges:

movement and communication edges. Agents start in some start-

ing locations (sources) and have to reach target locations, while

forming a connected graph through communication edges at each

step.

In [16], the authors prove that CMAPF is PSPACE-complete in

general graphs, and give one deterministic and two randomized

algorithms which consist in greedily selecting a successor configu-

ration at each step so as to build an execution towards the targets.

Surprisingly, their algorithms do not consider the collision con-

straints (i.e. allow collisions between agents). This study however

does not fully settle the theoretical complexity of the problem. In

fact, PSPACE-hardness result requires arbitrary graphs. Although

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023, London,
United Kingdom.

the movement edges form a planar graph in their reduction, the

communication graph has a very particular shape, and is far from

being planar. So the PSPACE-hardness holds but on graphs that may

look artificial. Many applications of MAPF are actually restricted

to subgraphs of grids [7], and communication is often determined

by range [1], that is, two agents can communicate whenever their

distance is smaller than a given threshold. Our first objective in

this paper was therefore to establish the complexity of the problem

for subgraphs of grids and range-based communication. Second,

algorithmic solutions given in [16] do not scale beyond about 10-20

agents (despite allowing collisions between agents). Our second

objective was to show that it is possible to derive much more effi-

cient algorithmic solutions for the CMAPF problem by exploiting

the multi-agent planning literature. Moreover, we enforce collision

constraints, since we believe that the CMAPF problem only makes

sense when both collision and connectivity constraints are taken

into consideration.

This paper provides two contributions.

(1) First we show that CMAPF is PSPACE-hard even when

agents move in a subgraph of a 3D grid, and with range-

based communication, that is, when two agents can com-

municate when their distance is within a given range. Our

reduction is from non-deterministic constraint logic (NCL) [5],
and is based on [16]. NCL is a computation model based on

a so-called AND/OR graph in which edges are to be flipped

sequentially. The main technical challenge we solve is to

provide gadgets that mimic the sequential flips of edges.

(2) Second, we provide an algorithmic solution based on win-
dowed hierarchical cooperative A∗

(WHCA
∗
), and provide

a randomized conflict resolution mechanism well adapted

to connectivity constraints, which scales to instances with

an order of magnitude more agents than [16]. This solution

has the advantage of being simple, and finding plans often

quickly, and thus significantly improves over the previously

given algorithms. Moreover, the randomization we introduce

allows us to address the incompleteness of the basic WHCA
∗

algorithm and solve more instances. For example, on some

benchmarks, we were able to solve instances with about 80

agents where the performance of the previous algorithm

dropped after about 10-20 agents.

Related Work. Connectivity constraints are very different in na-

ture than collision constraints alone, so most techniques developed

for MAPF in the literature do not easily apply to connectivity con-

straints. In fact, while collisions are often local (occur at a given

time step) and mostly involve two or a few agents, connectivity

constraints are global and continuous, that is, they involve the set
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of all agents and a violation of connectivity can span a large time

window, if not the whole execution. So these conflicts cannot be

dealt locally, unlike collision constraints.

The popular conflict-based search algorithm forMAPF [13] (with-

out connectivity) is difficult to generalize connectivity constraints

although some attempt was made [10] which allows collisions be-

tween agents and only focus on connectivity; but the scalability

seemed limited. We also observe that allowing collisions has lit-

tle interest in practice, and it renders the problem easier (this can

also be observed in the experiments of [16]). In instances with par-

ticular communication graphs called sight-moveable, and in the

presence of a basis vertex to which the group of agents are to be

constantly connected, the problem was shown to be in LOGSPACE

[3]. However, this does not apply to grid graphs with range-based

communication.

MAPF with imperfect information has been considered in the

literature, for instance [17] or [9]. The closer work seems to be [11].

They also use topological graphs with both movement and com-

munication edges. The connectivity is then taken into account to

compute the knowledge of each agents. In ourwork, we consider the

perfect information case where connectivity must be maintained.

Improvements over WHCA
∗
have been considered e.g. [2] that

specifically target conflicts due to collisions. Some other algorithms

that target collisions are [18, 19]. Algorithms combining plans for

groups of agents such as [15] are also difficult to apply here due to

connectivity being a global constraint on all agents.

Outline In Section 2 we recall the background about CMAPF.

In Section 3, we first recall NCL and then explain our reduction

to prove that CMAPF is PSPACE-hard for 3D instances. Section 4

provides our algorithm and its performance against the state-of-art

ones. Section 5 is the conclusion.

2 SETTING
The environment of the CMAPF problem is represented by a so-

called topological graph𝐺 = (𝑉 , 𝐸𝑀 , 𝐸𝐶 ) with a non-empty finite set

𝑉 of vertices, andwith two types of undirected edges: themovement

edges (set 𝐸𝑀 ) and the communication edges (set 𝐸𝐶 ). We denote

𝐺𝑀 = ⟨𝑉 , 𝐸𝑀 ⟩ and 𝐺𝐶 = ⟨𝑉 , 𝐸𝐶 ⟩. Figure 1 shows such a graph

which contains 8 vertices. The solid lines represent the movement

edges and the dashed ones the communication edges. The agents

can thus move along the solid lines and communicate with other

agents along the dashed ones.

𝑠2𝑠1

𝑠3 𝑢

𝑣 𝑡2

𝑡3𝑡1

movement

communication

Figure 1: Example of a topological graph for the CMAPF
problem.

We consider 𝑛 agents that must move in 𝐺𝑀 from their initial

vertices to their target ones.

A configuration 𝑐 of 𝑛 agents in 𝑉 is a tuple of 𝑛 distinct vertices

of 𝑉 , denoted (𝑐1, ...𝑐𝑛) where for 𝑖 ∈ {1, ..., 𝑛}, 𝑐𝑖 is the position
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(a) Step 0: agents are at the
initial configuration

(𝑠1, 𝑠2, 𝑠3)
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(b) Step 1: agents move to
configuration (𝑠2, 𝑣,𝑢)
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(c) Step 2: agents move to
configuration (𝑣, 𝑡2, 𝑡1)

𝑠2𝑠1

𝑠3 𝑢

𝑣 𝑡2

𝑡3𝑡1
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𝑎2
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(d) Step 3: agents are at the
final configuration

(𝑡1, 𝑡2, 𝑡3)

Figure 2: Example of connected execution.

of the agent 𝑎𝑖 . The initial configuration is 𝑠 = (𝑠1, ..., 𝑠𝑛) and the

final one 𝑡 = (𝑡1, ..., 𝑡𝑛). Two configurations 𝑐 and 𝑐 ′ of length
𝑛 are consequent if and only if for each 𝑖 ∈ {1, ..., 𝑛} we have

(𝑐𝑖 , 𝑐 ′𝑖 ) ∈ 𝐸𝑀 ; thus, each agent makes one move in 𝐺𝑀 . We allow

agents to idle. Moreover, the agents must stay connected along their

movements. We say that a configuration 𝑐 of𝑛 agents is connected if

and only if it forms a connected sub-graph of𝐺𝐶 . In Figure 1, assume

that we have 3 agents that must move from (𝑠1, 𝑠2, 𝑠3) to (𝑡1, 𝑡2, 𝑡3).
The configuration (𝑠1, 𝑠2, 𝑠3) is connected because (𝑠1, 𝑠2), (𝑠1, 𝑠3) ∈
𝐸𝐶 . Intuitively, agent at 𝑠3 can communicate with the agent at 𝑠2
via the agent at 𝑠1 (multi-hop).

An execution 𝑒 of length ℓ is a sequence of configurations, de-

noted (𝑐1, ..., 𝑐ℓ ) such that for each 𝑖 ∈ {1, ..., ℓ − 1}, 𝑐𝑖 and 𝑐𝑖+1 are
consequent. An execution 𝑒 of length ℓ is connected in the graph

of communication 𝐺𝐶 if for each 𝑖 ∈ {1, ..., ℓ}, 𝑐𝑖 is connected. We

want a connected execution from 𝑠 to 𝑡 .

Importantly, as in MAPF (unlike [16]), we suppose that agents

do not collide. In other words, agents have distinct positions in all

configurations. We thus consider here a simple form of collision

constraints; one could as well consider forbidding taking the same

edge in opposite directions [20].

Example 2.1. Figure 2 shows an example of a connected exe-

cution from the Figure 1. Agents start in configuration (𝑠1, 𝑠2, 𝑠3)
(see Figure 1(a)). Note that agent 𝑎2 communicates indirectly with

agent 𝑎3, via the agent 𝑎1. Then the agents move synchronously to

configuration (𝑠2, 𝑣,𝑢): agent 𝑎1 moves to 𝑠2 by taking the move-

ment edge (𝑠1, 𝑠2) ∈ 𝐸𝑀 , agent 𝑎2 takes the edge (𝑠2, 𝑣) ∈ 𝐸𝑀
and 𝑎3 takes (𝑠3, 𝑢) ∈ 𝐸𝑀 . At step 2, the configuration is (𝑣, 𝑡2, 𝑡1).
Note that now agent 𝑎2 communicates directly with agent 𝑎3 via

the communication edge (𝑡2, 𝑡1) ∈ 𝐸𝐶 ; 𝑎1 communicates with 𝑎3
indirectly via 𝑎2.
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Figure 3: 3D grid topological graph,with 13 vertices andwith
a radius 𝜌 = 2.

Definition 2.2 (CMAPF Problem). Given ⟨𝐺, 𝑠, 𝑡⟩ decide if there
is a connected execution (𝑐1, ..., 𝑐ℓ ) such that 𝑐1 = 𝑠 and 𝑐ℓ = 𝑡 . We

say that the execution is from 𝑠 to 𝑡 .

The CMAPF problem was proven to be PSPACE-complete on

general graphs [16]. However, the reduction requires a connectivity

graph 𝐺𝐶 that is arbitrary and unrealistic. In the next section, we

establish the PSPACE-hardness of the problem on instances defined

on subgraphs of 3D grids, and with range-based communication.

3 PSPACE-COMPLETENESS IN 3D
We focus on 3D grid instances where the communication is range-

based.

Definition 3.1. A 3D grid topological graph is a triplet (𝐺, 𝑝𝑜𝑠, 𝜌)
where 𝐺 = (𝑉 , 𝐸𝑀 , 𝐸𝐶 ) is a topological graph, 𝑝𝑜𝑠 is a position

function 𝑝𝑜𝑠 : 𝑉 → N3, which is injective, and a radius 𝜌 which

respects the following conditions:

(1) for all (𝑢, 𝑣) ∈ 𝐸𝑀 ,

|pos(𝑢) .𝑥 − pos(𝑣) .𝑥 | + |pos(𝑢) .𝑦 − pos(𝑣).𝑦 |+
|pos(𝑢) .𝑧 − pos(𝑣) .𝑧 | ≤ 1,

where pos(𝑢).𝑥, pos(𝑢) .𝑦, pos(𝑢) .𝑧 denote the three compo-

nents of pos(𝑢);
(2) and (𝑢, 𝑣) ∈ 𝐸𝐶 if and only if 𝑑 (pos(𝑢), pos(𝑣)) ≤ 𝜌 , where

𝑑 is the Euclidean distance (range-based communication).

Example 3.2. Figure 3 shows a 3D grid topological graph with

13 vertices and with a radius 𝜌 = 2. The graph consists of two

layers: the bottom layer (𝑧 = 0) contains 9 vertices, while the

top layer (𝑧 = 1) contains 4 vertices. As shown, the graph can be

seen a subgraph of the 3D grid. For instance, 𝑝𝑜𝑠 (𝑢) = (0, 2, 0),
𝑝𝑜𝑠 (𝑣) = (0, 1, 1) and 𝑝𝑜𝑠 (𝑤) = (2, 0, 0). An agent can move from

layer 0 to layer 1 throw a movement edge from the node at position

(1, 0, 0) to the node at position (1, 0, 1). We have:

• (𝑢, 𝑣) ∈ 𝐸𝐶 because

√
0
2 + 1

2 + 1
2 =

√
2 ≤ 2;

• (𝑢,𝑤) ∉ 𝐸𝐶 because

√
2
2 + 2

2 + 0 =
√
8 > 2.

Now, a 3D grid instance for the CMAPF problem is described

by a 3D topological graph (𝐺, 𝑝𝑜𝑠, 𝜌, 𝑠, 𝑡) where (𝐺, 𝑝𝑜𝑠, 𝜌) is a 3D
grid topological graph, and two connected configurations 𝑠 and 𝑡 .

In this section, we prove the following theorem:

Theorem 3.3. CMAPF is PSPACE-complete, even for a graph which
is a 3D grid instance.

2

𝑒1

2𝑒2

2

𝑒3

1

𝑒1

2𝑒2

1

𝑒3

Figure 4: The two types of nodes in an AND/OR graph: OR
node (left) and AND node (right). An OR node has three inci-
dent edges of weight 2 (blue), while anANDhas two incident
edges of weight 1 (red) and one of weight 2.

PSPACE membership holds because CMAPF is in PSPACE in the

general case [16]. The PSPACE-hardness on arbitrary graphs relies

on a reduction from the the PSPACE-complete problem related to

Nondeterministic Constraint Logic (NCL) [5]. Here, we also provide

a reduction from NCL, while our technical contribution consists in

defining the reduction with the restrictions of a 3D grid graph, and

only using range-based communication.

3.1 Nondeterministic Constraint Logic
Let us recall that a graph is planar if there exists an injective em-

bedding of the set of nodes in N2 such that edges do not cross. An

AND/OR graph is an undirected planar graph𝔊 such that:

• each edge has a weight of either 1 or 2;

• each node is either an OR node, or an ANDnode (see Figure 4;

ignore the direction of edges for now).

As shown in Figure 4, a node has three incident edges 𝑒1, 𝑒2, 𝑒3.

All are of weight 2 for an OR node. For an AND node, two of them,

say 𝑒1, 𝑒3, are of weight 1 while the third one, 𝑒2, is of weight 2.

Given an AND/OR graph𝔊, a configuration 𝛾 is an orientation of

𝔊, defining a direction for each edge in𝔊; 𝛾 is valid if the in-flow

of each node (the sum of the weights of the incoming edges) is at

least 2 (in the directed graph defined by the pair (𝔊, 𝛾)). Concretely,
for an OR node, at least one edge must enter the node. For an

AND node, either 𝑒2 enters the node or 𝑒1 and 𝑒3 both enter the

node. Given two valid configurations 𝛾 , 𝛾 ′, we define an elementary

step denoted, 𝛾
flip

−−→ 𝛾 ′, iff 𝛾 ′ is obtained from 𝛾 by flipping the

direction of exactly one edge. An NCL execution is a sequence of

valid configurations 𝛾0, . . . , 𝛾ℓ with 𝛾𝑖
flip

−−→ 𝛾𝑖+1.

Definition 3.4. The NCL reconfiguration problem is defined as

follows: given an AND/OR graph𝔊 and two valid configurations

𝛾0, 𝛾𝑓 , does there exist an execution 𝛾0
flip

−−→ . . .
flip

−−→ 𝛾𝑓 ?

Theorem 3.5. [5] The NCL reconfiguration problem is PSPACE-
complete.

3.2 Description of the reduction
Let us consider a NCL instance (𝔊, 𝛾0, 𝛾𝑓 ). We show how to con-

struct in poly-time a 3D CMAPF instance written 𝑡𝑟 (𝔊, 𝛾0, 𝛾𝑓 ) =

(𝐺, 𝑝𝑜𝑠, 𝜌, 𝑠, 𝑡) such that 𝛾0
flip

−−→ . . .
flip

−−→ 𝛾𝑓 iff there is a connected

execution from 𝑠 to 𝑡 .

The 3D grid topological graph (𝐺, 𝑝𝑜𝑠, 𝜌) contains 5 layers as
shown in Figure 5. Each layer lies in a𝑂𝑥𝑦-plane (a plane in which



the 𝑧-coordinate is constant). As we will see, each layer contains

some gadgets. As indicated in Figure 5, layer 0 and 1 are at distance

2, and the 𝑂𝑥𝑦-plane between layer 0 and 1 does not contain any

node (in other words, it is an obstacle). In the same way, layer 1

and 2 are at distance 8 and are separated by 7 𝑂𝑥𝑦-planes without

any node (obstacle), and so on. Let 𝜌 = 10 be our communication

radius.

8

2

8

2

layer 4: complete grid of agents

layer 3: relay agent

layer 2: stationary agents

layer 1: edge-paths

layer 0: inflow constraints

•
𝑦

𝑥

𝑧

Figure 5: Sectional view of the organisation of the 3D topo-
logical graph 𝐺 . Layers contain gadgets. Each layer is given
with a summary of its contents.

Encoding of the AND/OR graph𝔊. We consider an embedding

of 𝔊 in a 2D grid in which edges do not cross each other and

follow the lines of the grid; such an embedding always exists and

is computable in poly-time [12].

In layer 1, we place flipping agents that will simulate the di-

rections of the edges on𝔊. This layer has the same shape as the

embedding of the AND/OR graph𝔊 and each node in𝔊 is replaced

by a gadget of the form given in Figure 6. The edge 𝑒𝑖 in Figure 4 is

symbolized by the path between nodes𝑢𝑖 and 𝑣𝑖 , called an edge-path.
For simplicity, in Figure 4, the edge-path is depicted as a straight

line, but in general it follows the shape of that edge in the planar

AND/OR graph embedding. The flip of 𝑒𝑖 corresponds to the agent

moving from 𝑢𝑖 to 𝑣𝑖 , or from 𝑣𝑖 to 𝑢𝑖 . We say that a flipping agent

is near 𝑢𝑖 (resp. 𝑣𝑖 ) when it is placed at a distance of at most 6

from 𝑢𝑖 (resp. 𝑣𝑖 ) on the layer 1. When the agent is placed near

𝑢𝑖 (resp. near 𝑣𝑖 ), it means that the edge 𝑒𝑖 is going in (resp. out)

the AND/OR node (in Figure 4). A flipping agent can in general be

anywhere on its edge-path between 𝑢𝑖 and 𝑣𝑖 . But when they are

all near extremities 𝑢𝑖 or 𝑣𝑖 , this corresponds to an AND/OR graph

configuration.

In order to impose the dynamics of NCL, we introduce layer 4

which is far from layer 1 and thus is not connected to it directly.

Layer 4 contains just a complete grid of stationary agents (see Fig-

ure 9) that are connected. We will introduce layer 2 and 3 that

respectively impose that a configuration of the agents should rep-

resent a AND/OR configuration, and that a single flip occurs each

time.

Connectivity for AND/OR configurations. Layer 2, shown in Fig. 7,

provides connectivity to flipping agents who are near some edge-

path extremities 𝑢𝑖 or 𝑣𝑖 . It consists of stationary agents placed at

the vertices 𝑢 ′
𝑖
and 𝑣 ′

𝑖
: vertex 𝑢 ′

𝑖
(resp. 𝑣 ′

𝑖
) is placed exactly above 𝑢𝑖

(resp. 𝑣𝑖 ). Layer 2 is placed at a distance of 8 from layer 1. Thereby,

a stationary agent only communicates with the flipping agent that

is just below them (or almost below but near the extremity). More

precisely, the flipping agent is near the extremity if and only if

it communicates directly with the stationary agent above it, as√
6
2 + 8

2 = 10. For instance, the stationary agent at 𝑢 ′
𝑖
communi-

cates with the agent near 𝑢𝑖 if there is one. Note that the stationary

agents are all connected to layer 4.

Flips. An elementary step 𝛾
flip

−−→ 𝛾 ′ consists in flipping exactly
one edge. In other words, we should ensure that at most one flipping

agent should move from an extremity to another. To do that, we

introduce layer 3 made of a fully connected grid with a relay agent

on it (Figure 8). The idea is that the relay agent follows the flipping

agent while she moves from 𝑢𝑖 to 𝑣𝑖 (or conversely). The layer 3

is at a distance of 10 from layer 1 to ensure that the relay agent

provides the connectivity of layer 4 to at most one flipping agent

that attempts to move.

NCL configurations should be valid. Last, we add layer 0 to ensure

that the incoming flow in each AND/OR node is at least 2 (Figure

10).

(a) An OR node must be pointed to by at least one edge, since all

edges 𝑒1, 𝑒2 and 𝑒3 are of weight 2. In our construction, we

need thus to ensure that at least one flipping agent must be

near 𝑢1, 𝑢2 or 𝑢3. To this aim, we introduce a line of agents

𝑎1, 𝑎2, 𝑎3 that are all connected (see Figure 10a). For them to

be connected with all the other agents, one flipping agent

must be near 𝑢1, 𝑢2 or 𝑢3.

For instance, a flipping agent in 𝑢1 provides direct connec-

tivity to 𝑎1: the distance between 𝑢1 and the position 𝑎1 is√
6
2 + 6

2 + 2
2 =

√
76 < 10. Note that agents 𝑎1 −𝑎2 −𝑎3 will

not be connected otherwise: agents in layer 2 are too far

from 𝑎1 − 𝑎2 − 𝑎3 to provide connectivity to 𝑎1 − 𝑎2 − 𝑎3.

(b) For an AND node, recall that the edges 𝑒1, 𝑒2 and 𝑒3 are of

weights 1, 2 and 1 respectively. The constraint of having an

in-flow of at least 2 can be reformulated by:

(i) either 𝑒1 or 𝑒2 is pointing in (or both);

(ii) and either 𝑒2 or 𝑒3 is pointing in (or both).

We therefore add the line of agents 𝑎′
1
− 𝑎′

2
(resp. 𝑎′′

2
− 𝑎′′

3
)

for handling condition (i) (resp. (ii)). If 𝑒1 and 𝑒2 are pointing

out (condition (i) is unsatisfied), then it means no agent is

in 𝑢1 (or nearby) and no agent is in 𝑢2 (or nearby), then the

agents 𝑎′
1
− 𝑎′

2
are disconnected from the rest of the group.

We defined the vertices of 𝑡𝑟 (𝔊, 𝛾0, 𝛾𝑓 ) = (𝐺, 𝑠, 𝑡) as well as their
positions. It remains to define 𝑠 and 𝑡 . We show how to map and

AND/OR graph configuration 𝛾 to a configuration of agents 𝑐𝛾 .

We define 𝑠 := 𝑐𝛾0 and 𝑡 := 𝑐𝛾𝑓 . For an AND/OR configuration 𝛾 ,

𝑐𝛾 is the configuration in which, at each AND or OR node, in the

corresponding gadget of Figure 6, if 𝑒𝑖 enters that node, then the

corresponding agent is in 𝑢𝑖 (and if 𝑒𝑖 leaves that node, she is near

𝑣𝑖 ). The relay agent is, say, at the bottom-left corner as in Figure 8.

The other agents are stationary so their positions are obvious.

3.3 Properties of the reduction
Proposition 3.6. 𝑡𝑟 (𝔊, 𝛾0, 𝛾𝑓 ) = (𝐺, 𝑝𝑜𝑠, 𝜌, 𝑠, 𝑡) is computable in

time polynomial in the size of𝔊, 𝛾0, 𝛾𝑓 .

Proof. The computation starts by computing an embedding for

the graph𝔊 in a grid in 𝑝𝑜𝑙𝑦 ( |𝔊|) (this is doable via the result of
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𝑧

𝑥

𝑦

𝑣1

𝑢1 𝑢2

𝑣2

𝑣3

𝑢3⌣ ⌣

⌣

Figure 6: Layer 1: Three edge-paths that simulate an AND
or OR vertex in the AND/OR graph. Each path 𝑢𝑖 − 𝑣𝑖 , called
an edge-path, corresponds to an edge in the AND/OR graph.
For instance, the agent at 𝑢1 can move along its edge-path
until 𝑣1.

[12]). That embedding will then give the positions of the gadget on

layer 0 and 1. □

Proposition 3.7. With 𝑡𝑟 (𝔊, 𝛾0, 𝛾𝑓 ) = (𝐺, 𝑠, 𝑡), we have: 𝛾0
flip
−−−→

. . .
flip
−−−→ 𝛾𝑓 iff there is a connected execution from 𝑠 to 𝑡 .

Proof. ⇒ Suppose 𝛾0
flip

−−→ . . .
flip

−−→ 𝛾𝑓 . We construct an ex-

ecution from that sequence of flips as follows. For each flip of a

given edge, we move the corresponding flipping agent to the other

extremities (𝑢𝑖 to 𝑣𝑖 , or 𝑣𝑖 to 𝑢𝑖 ) with the relay agent moving above

that flipping agent on the same way in its own layer 3. The obtained

execution is connected. On the one hand, when flipping agents are

at some 𝑢𝑖 /𝑣𝑖 , the connectivity is guaranteed by the agents of layer

2. On the other hand, when a flipping agent is moving, its connec-

tivity is guaranteed by the relay agent. Agents 𝑎1 − 𝑎2 − 𝑎3 and

𝑎′
1
− 𝑎′

2
− 𝑎′′

2
− 𝑎′′

3
of Figure 10 remain connected to the rest of the

group because the in-flow at each AND/OR node is at least 2.

⇐ Conversely, consider a connected execution from 𝑠 to 𝑡 .

We extract a sequence of flips as follows. When a flipping agent

moves far from an edge-path extremity, it must be accompanied

by the relay agent in order to remain connected to the rest of the

agents. During its move, it starts near some 𝑢𝑖 (or 𝑣𝑖 ). If it goes

back near the same extremity (𝑢𝑖 to 𝑢𝑖 , or 𝑣𝑖 to 𝑣𝑖 ), the move is

simply ignored. Otherwise, if the flipping agent goes near the other

extremity (𝑢𝑖 to 𝑣𝑖 , or 𝑣𝑖 to 𝑢𝑖 ), that move is interpreted as a flip

of the corresponding edge. The sequence of flips extracted in that

way transform 𝛾0 into 𝛾𝑓 . Again, as the agents of layer 0 are always

connected, it guarantees that the in-flow at each AND/OR node

during the extracted sequence of flips is at least 2. □

4 ALGORITHM
In this section, we will present a simple algorithm to solve the

connected MAPF problem. We first review previously published

algorithms from [16], which will be the baseline for comparison.
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Figure 7: Layer 2: Stationary isolated agents placed above the
extremities of the edge-paths.
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Figure 8: Layer 3: a complete connected grid with a single
so-called relay agent being moving on it.
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Figure 9: Layer 4: a complete grid of isolated agents.

One of the main difficulties in multi-agent path finding is com-

binatorial explosion due to the number of agents. In fact, from

each configuration, there is, in general, an exponential number

of successor configurations despite the connectivity constraints.

Searching for a plan in an exponentially-branching state space is

infeasible, and even choosing a good successor configuration is a

nontrivial task. To deal with the large branching factor, a greedy

approach was presented [16] in which a heuristic A
∗
search is used

to select a successor configuration step by step to minimize the

remaining distance to the target configuration. This becomes theo-

retically complete with an additional backtracking mechanism. The

resulting algorithm is similar to a DFS over the configuration space

guided by a heuristic; so it will be named simply DFS in our experi-

ments. We use here the authors’ own implementation modified to

take collision constraints into account; this was a straightforward

adaptation. The authors also present sampling-based algorithms
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(a) Simulating an OR node: agents from 𝑎1 − 𝑎2 − 𝑎3 must be
connected.
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be connected.

Figure 10: Layer 0: handling the inflow of at least 2 at each
node. Agents 𝑎1 − 𝑎2 − 𝑎3, 𝑎′1, 𝑎′

2
, 𝑎′′

2
, 𝑎′′

3
are all isolated and

thus stationary. Vertices shown in gray are those in Layer 1.

in which the successors are selected with a randomization scheme.

These scale up to 10 agents [16] but become inefficient above 20

agents. We will only consider the deterministic DFS algorithm as a

representative of this approach. An algorithm is described in [6]

but within a different setting requiring only periodic connectivity.

4.1 Our suggestion
We show here that a straightforward application of the windowed

hierarchical cooperative A
∗
(WHCA

∗
) [14] with a simple random-

ized conflict resolution mechanism performs much better than the

above algorithms from the literature. The idea of CA
∗
, explained

in our setting, is the following. In order to compute a plan for 𝑛

agents, we select a random total order of the agents. We first com-

pute a shortest path 𝜌1 for the first agent from their source to target

vertices. At iteration 𝑖 , we compute a shortest path 𝜌𝑖 for the 𝑖-th

agent from their source to target, but subject to the constraints of

the previous agents: the 𝑖-th agent cannot occupy the same ver-

tex as a previous agent at the same time step (that is, 𝜌𝑖𝑡 ≠ 𝜌
𝑗
𝑡 for

all 1 ≤ 𝑗 < 𝑖 and all 𝑡 ), and moreover they must be connected to

one of the previous agents at all moments (that is, for each 𝑡 , there

exists 1 ≤ 𝑗 < 𝑖 such that (𝜌 𝑗𝑡 , 𝜌𝑖𝑡 ) ∈ 𝐸𝐶 ).

The algorithm retries different orderings until an execution is

found. The window optimization consists in changing the order

randomly after a certain number of steps. Furthermore, the hierar-
chical version uses heuristic values that are shortest path distances

computed by ignoring all interactions between agents. With both

optimizations, this defines the WHCA
∗
algorithm. We call each

iteration that starts from the source a trial.
It is known however that WHCA

∗
is not complete [14]: on some

instances that a solution, WHCA
∗
does not find one. The source

of incompleteness is due to the fact that the algorithm assumes

that one of the agents follows a shortest path. Such a situation is

depicted in Fig. 11. In the figure, the target of the upper agent is

𝑡1, and their shortest path moves upwards, and disconnects from

the bottom agent. The bottom agent’s situation is symmetric: they

want to reach the vertex 𝑡2, and their shortest path moves down,

disconnecting from the other agent. The only solution is to pass

through the path at the middle; but then none of the agents use a

shortest path, and WHCA
∗
fails. WHCA

∗
can also fail due to colli-

sion conflicts if the execution requires agents to idle, for instance,

to let other agents pass.

𝜌 = 4

⌣

⌣𝑠1

𝑠2

𝑡1

𝑡2

Figure 11: An instance that is difficult for WHCA∗. Agent
at 𝑠1 should reach 𝑡1, agent at 𝑠2 should reach 𝑡2.

Randomized conflict resolution. We focus here on conflicts due

to connectivity constraints, and introduce a simple mechanism

to resolve such conflicts, well adapted to connectivity constraints.

While running WHCA
∗
, if no solution is found after \ trials, then

we start each subsequent trial by randomly selecting a direction,

and moving all agents from the source towards that direction for

a number ℓ of steps using WHCA
∗
, and continuing the trial from

this new configuration to target. We also apply randomization

inside each trial: if the execution has not been extended in the last

\ ′ windows, then we move towards a random configuration, and

continue our way towards target. We slowly increment ℓ after each

trial so that if a longer execution towards a particular direction

is necessary, this will be tried eventually. In Fig. 11, moving the

agents towards left (including upper or bottom left), for a few steps

suffices to unblock the situation, a solution is found eventually.

The resulting algorithm is probabilistically complete. In fact,

when ℓ is sufficiently large, if there is a connected execution from

the current configuration to goal configuration, then, there is a

nonzero probability to pick precisely that execution. This holds at

each step with a uniform lower bound on the probability; thus, it

will eventually be picked with probability 1. Of course, no useful

bound on the expected time can be obtained from this reasoning.

Thus, we rather evaluate the algorithm empirically.
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Cubicles 2D
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Figure 12: The four maps used to obtain topological graphs. Obstacles are black pixels. The communication range is 1 pixel
for Offices and Obstacles, and 3 pixels for Cubicles and Pyramid.

(a) Offices 2D (b) Cubicles 2D (c) Pyramid 3D (d) Obstacles 3D

Figure 13: Average success rate of the algorithms as a function of the number of agents. Each point (𝑥,𝑦) means that a percent-
age of 𝑦 among the 20 instances with 𝑥 agents were solved each within the timeout (5 minutes).

(a) Offices 2D (b) Cubicles 2D (c) Pyramid 3D (d) Obstacles 3D

Figure 14: Cactus plots of the execution times: point (𝑥,𝑦) means that 𝑥 instances were solved each within 𝑦 seconds.

The approach of WHCA
∗
is particularly well adapted for con-

nected MAPF. In fact, due to connectivity, agents are tightly depen-

dent on each other since none of them can travel far from the group.

This makes the problem quite different than the disconnected case

where interactions between agents can be sparse and local (only a

few collisions might have to be addressed at distinct instants). In

WHCA
∗
, once an execution is found for a few agents, this can create

a lot of room for the rest of the agents, and the search can find an

execution quickly, or make progress towards the goal. Blocking

situations are overcome by conflict resolution.

4.2 Experiments
We evaluate the WHCA

∗
approach in comparison with the DFS

algorithm from [16] on four benchmarks: the maps Offices and

Cubicles are 2D grids; Obstacles and Pyramid are in 3D. The bitmap

images corresponding to each map are shown in Fig. 12. The 3D

maps were obtained from the bitmap image by copying it 5 times

towards a third dimension, and adding obstacles at the free cells

with a density of 15%. Similar benchmarks were considered in

[6, 16]; Offices appears in [6]. For each 2 ≤ 𝑛 ≤ 80, we created 20

random instances with 𝑛 agents, on each map. The instances on the

Cubicles were particular: we placed two agents at a position similar

to that of Fig. 11 while others were assigned random positions.

In our implementation, at each trial, we compute the longest pos-

sible execution before changing the order of the agents. So trials do

not necessarily change the ordering of the agents at predetermined

window sizes, but only when the current ordering does not allow

to make further progress. The program attempts to extend each

trial 100 times with a random order; let us call these extension trials.
This parameter was observed to work well on our benchmarks. A

too small value meant that trials ended without making enough

progress so solutions were found less often; and a too large value

meant that too much time was spent in each trial so less time could

be spent for remaining trials. We show the performance with 300

extension trials in Fig. 15 where a performance drop was observed.

We allowed the solver 5 minutes per instance. The parameters used

in conflict resolution was \ = 5, ℓ = 10. A small (arbitrary) value

for \ was convenient here because WHCA
∗
alone could not make

any progress from the source configuration in Cubicles, a small

value meant that this initial conflict could be resolved quickly. Mov-

ing towards a random direction for a small number of steps does

not affect the feasibility of the instance; it can only slightly increase

the total length of the computed plan.



(a) Offices 2D (b) Cubicles 2D

(c) Pyramid 3D (d) Obstacles 3D

Figure 15: Success rates of WHCA∗ with 100, 200, and 300 extension trials with a 5 minute timeout per instance.

Figure 16: Success rates of WHCA∗ with and without ran-
domized conflict resolution (for 100 extension trials).

The results are shown in Fig. 13 which gives the average success

rates for the instances per number of agents. The success rate of

WHCA
∗
was systematically higher than that of DFS. The former

scaled up to 80 agents on Pyramid and Obstacles maps, and up

to about 30-40 on Offices and Cubicles. The performance of DFS

dropped quickly, often after 10 agents. Figure 14 compares the

execution times; the WHCA
∗
solved a large number of instances;

for instance, in Obstacles, the algorithm solved about 1200 instances

(out of 1580) each under a minute, while the DFS algorithm could

only solve about 400 instances each under a minute.

Figure 15 compares the success rates of the WHCA
∗
algorithm

with 100, 200, and 300 extension trials. A larger number means that

the algorithm insists in trying to extend each trial. The performance

in Offices improved as this number increased, presumably because

a larger number of ordering changes is often required in this map,

but that in Cubicles was better with a smaller number. A smaller

number has the advantage of inducing more fresh trials within the

given deadline. There was no substantial difference in performance

in Pyramid and Obstacles maps.

In Fig. 16, we show the effect of randomized conflict resolution

on performance, particularly in the Cubicles instances which con-

tain at least two agents placed in a position depicted in Fig. 11. The

success rate without randomization is 0 for small instances. For

larger numbers of agents, this varies, in a rather unpredictable way

but stays clearly lower than the success rate with randomization.

This is due to randomly generated instances in which some agents

can be placed near the problematic situation and render the instance

solvable by WHCA
∗
. Overall, randomization helped increase and

stabilize the success rate. It did not have a large impact on per-
formance on other maps (not shown here) where instances were

generated completely randomly. However, on several instances of

Offices and Obstacles we noticed that situations similar to Figure 11

did occur, and randomization did help solve the instances; these

were however not frequent enough to be noticed on average plots

because instances were generated randomly.

5 CONCLUSION
In this work, we proved the PSPACE-hardness of the CMAPF prob-

lem when the topological graph is a subgraph of a 3D grid un-

der range-based communication, establishing the computational

complexity in a more realistic setting than in the literature. The

hardness for subgraphs of the 2D grid is open. Our experiments

contained both 2D and 3D maps, but the shape of the map seemed

to have more impact on performance than its dimension. An im-

portant question is automatizing the choice of the parameters used

in WHCA
∗
(such as ℓ, \, \ ′). We chose them empirically and specif-

ically for our benchmarks, but other values might be preferable for

maps of different shapes and sizes.

The connected coverage problem consists in finding an execution

that visits all vertices and is similar to CMAPF [4]. In particular, it

is also PSPACE-complete. We conjecture that our reduction could

be adapted to prove the PSPACE-hardness of the coverage problem

in 3D.
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