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Abstract 

  

The fully developed turbulent flow of pseudoplastic ( 0.75n = ) and Newtonian fluids in an isothermal 

axially rotating cylinder has been carried out using a large eddy simulation (LES) with an extended Sma-

gorinsky model. The simulation Reynolds number of the present predictions has been assumed to be

Re 4000s = at various rotation rates (0 3)N  . This investigation seeks to assess the influence of the cen-

trifugal force induced by the swirl on the mean flow quantities, turbulent statistics, and instantaneous turbu-

lence structure to describe the rheological behavior and the turbulence features. The predicted results indicate 

that with increasing rotation rate, the pseudoplastic fluid tends to behave like a liquid when approaching the 

pipe center due to the lower apparent fluid viscosity in the logarithmic region as the pipe wall rotates. Moreo-

ver, the reduction in the pseudoplastic apparent viscosity in the core region induces a pronounced increase in 

the axial velocity profile further away from the pipe wall toward the core region. It is interesting to note that 

the growth of the centrifugal force induced by the swirl driven by the rotating pipe wall results in an apparent 

attenuation in turbulence intensities of the axial velocity fluctuation and, consequently, in the kinetic energy of 

turbulent fluctuations and the turbulent Reynolds shear stress of the axial-radial velocity fluctuations, as the 

pipe wall rotates. Moreover, the increased rotation rate leads also to a noticeable increase in the Root mean 

square (RMS) of the radial and tangential fluctuations. It can be said that the transport mechanism of turbu-

lence intensities from the axial components to the other ones exhibits a marked increase with increasing pipe 

wall rotation.  

Keywords: LES; Non-Newtonian; Pseudoplastic fluid; Turbulent flow; Rotating cylinder 

1. Introduction: 
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Flow in swirling systems is not only of great importance to practical applications in mechanical and en-

gineering fields (heat exchangers, combustion chambers, nuclear reactors, and turbomachines) but also of con-

siderable fundamental interest. To better understand the laminarization phenomena and analyze the influence of 

the rotation pipe wall on the mean properties and turbulence statistics, many authors performed experimental [1], 

[2], [3], [4], and [5], theoretical and numerical [6], [7], [8], [9] and [10] studies. But most of them are based on 

the turbulent flow of Newtonian fluids. They found that the rotating pipe wall significantly influences the turbu-

lence due to the centrifugal force, which has a stabilizing effect: the increased rotation velocity of the cylinder 

wall results in a pronounced increase in the mean axial velocity profile along the radial coordinate, where this 

profile progressively approaches to a laminar one; this is called the laminarization phenomena.  

However, relatively few works focused on non-Newtonian fluids, whose viscosity depends on the shear 

rate. Some authors conducted theoretical and experimental investigations devoted to the turbulent flow of non-

Newtonian fluids flow through a straight axial pipe [11], [12], [13], and [14]. To provide detailed information on 

the turbulence statistics and flow characteristics, numerical investigations were performed [15], [16], [17], [18], 

[19], [20], [21], and [22]. In their paper, Dodge and Metzner [13] developed for the first time a theoretical study 

for the Non-Newtonian fluids in turbulent flow through straight cylinders; they derived a semi-theoretical ex-

pression for the pressure loss and mean flow rate and predicted the non-Newtonian turbulent velocity profiles, as 

well as a correlation for friction factor. In 1990, Pinho and Whitelaw [14] measured the streamwise velocity and 

the three normal stresses for the Non-Newtonian fluids in a fully developed flow for a Reynolds number ranging 

from 240 to 111000. Malin [15] investigated numerically the fully developed laminar and turbulent flows of 

shear-thinning, Newtonian, and shear-thickening fluids in a straight cylinder, at various values of Reynolds 

numbers, using a modified version of the Lam-Bremhorst K − Model for the turbulent flow.  

Rudman et al. [16] reported one of the first numerical attempts to provide some important insights into 

the turbulence features and flow behavior of the shear-thinning and Herschel-Bulkley fluids through an isother-

mal axially pipe at different generalized Reynolds numbers. Their emerged predicted results suggest that the 

decreased flow behavior index results in a pronounced increase in the axial velocity profile further away from 

the pipe wall, and a reduction in the friction factor, due to the higher apparent viscosity of the shear-thinning 

fluid in the flow core region. Gnambode et al.[17] implemented a LES technique with an extended Smagorinsky 

model to perform numerically the turbulent flow of pseudoplastic and dilatant fluids with flow behavior index 

ranging from 0.5 to 1.4 at different Reynolds numbers (4000, 8000, and 12000). The findings suggest that the 

increased Reynolds number increases the velocity profiles along the pipe radius, especially in the logarithmic 
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flow region. The friction factor decreases noticeably as the flow behavior index is decreased, while this friction 

also decreases with increasing Reynolds number for both shear-thinning and shear-thickening fluids. Moreover, 

a clear trend of decrease in the apparent fluid viscosity when approaching the core region when the flow behav-

ior index is increased. Gavrilova and Rudyak [18], [19] provided an extensive investigation of DNS of fully 

developed turbulent pipe flows of shear-thinning (0.4≤n≤1) fluids at two generalized Reynolds numbers 10000 

and 20000. To critically assess the effects of the flow behavior index and the Reynolds number on the main 

turbulence features and the rheological behavior. The relevant predicted results are in accord with Rudman et al. 

[16] study, indicating that the decreased flow behaviour index results in a pronounced increase of the apparent 

fluid viscosity further away from the pipe wall towards the pipe core region, where the shear-thinning tends to 

behave like a solid when approaching to the pipe centre. Which leads to increase the axial velocity in the core 

region, and attenuate significantly the friction factor [18]. It is observed that with decreasing flow behavior in-

dex, the fluctuations of the radial and tangential velocity components exhibit marked attenuation. This deviation 

leads to an increase of the axial fluctuations, consequently integral fluctuations and kinetic energy of turbulent 

fluctuations. Singh et al. (2017) [20] reported a DNS investigation of turbulent power-law fluids across the axial-

ly stationary pipe at a friction Reynolds number of 323 over a flow behavior index range of (0.4≤n≤1.2). It is 

found that the decreased flow behavior index leads to a marked reduction in the Reynolds shear stress where the 

turbulence structures become finer with decreasing flow index. Moreover, the apparent fluid viscosity of the 

shear-thickening fluid is lower than those of the shear-thinning fluids out of the viscous sublayer. More recently, 

to ensure the accuracy and efficiency of the OpenFOAM library, Zheng et al. (2019) [22] have performed nu-

merical DNS of the fully developed turbulent flow of shear-thinning fluids through a pipe. The results show that 

the predicted velocity and viscosity profiles are well resolved, while the turbulence statistics have marked a 

noticeable difference compared with those obtained from the spectral element-Fourier DNS code. Interestingly, 

the turbulent intensities and Reynolds stresses profiles differ with a maximum of 16% and 10% at Reynolds 

numbers 5000 and 7500, respectively. 

A literature survey reveals that very few studies deal with the turbulent swirling flow of non-Newtonian 

fluids. In contrast, the relevant numerical research aforementioned has been devoted to the turbulent flow of the 

non-Newtonian fluids inside a stationary pipe. Therefore, a noticeable paucity of studies describing the impact of 

the centrifugal force induced by the swirl driven by a rotating pipe wall on the rheological and turbulence behav-

ior. It should be noted that the fully developed turbulent flow of the non-Newtonian fluid through the axially 

rotating pipe was treated theoretically by Vidyanidhi and Sithapathi [23] and theoretically and experimentally by 
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Gunn et al. [24]. Gunn et al. (1974) [24] provide theoretically and experimentally an extensive analysis of lami-

nar and turbulent Newtonian and non-Newtonian fluids through an axially rotating pipe to examine the effects of 

the rotation rate on the flow patterns. The experiment results indicate that in the laminar flow, the flow rate of 

the Newtonian fluid decreases significantly when the pipe is rotating, this trend is more pronounced as the 

Reynolds number is increased, and the flow rate becomes nearly independent of the rotation rate at the high 

Reynolds number in the laminar regime. In contrast, the flow rate of the non-Newtonian exhibits a marked in-

crease when the pipe rotates, where the rotation rate induces a gradually increase in the flow rate in the laminar 

regime. In the turbulent flow, the rotation rate results a slightly increase in the pressure gradient of Newtonian 

fluid, while that this increase is more pronounced in the non-Newtonian fluid, it is interesting to note that this 

enhancement is more important as the flow rate increases. 

More recently, Abdi et al. [25] have performed for the first time a fully developed turbulent forced con-

vection of thermally independent pseudoplastic fluid with a flow behavior index of 0.75 through an axially heat-

ed rotating pipe by mean of LES with an extended Smagorinsky model. With a rotation rate ranging from 0 to 3, 

the simulation Reynolds and Prandtl numbers of the working fluid were assumed to be 4000 and 1, respectively. 

It is observed that the increased rotation rate induces a marked attenuation in the temperature along the pipe 

radius. The centrifugal force induced by the rotating pipe wall leads to a noticeable increase in the mean axial 

velocity profile as the pipe wall rotates due to the reduction in the apparent fluid viscosity in the core region. It is 

also demonstrated that the turbulence intensities of temperature fluctuations and the axial turbulent heat flux 

exhibit an apparent attenuation when the pipe rotates. When the rotation rate increases, there is a clear reduction 

trend in the transfer mechanism of the temperature fluctuations between the conductive layer and the flow core 

region. Their findings indicate that the Nusselt number reduces when the rotation rate is less than 0.5, while it 

increases with an increasing rotation rate for N greater than 1. As for the higher-order statistics, it is demonstrat-

ed that the influence of the rotation rate on the skewness and flatness coefficients is mainly restricted in the near-

wall region; these profiles seem nearly independent of the centrifugal force induced by the rotating pipe wall 

further away from the pipe wall. 

It is clear that a comprehensive study on the turbulent pipe flow with a swirl of non-Newtonian fluids 

through an axially rotating pipe is still lacking for hydrodynamic and rheological investigations. To this end, 

under the same investigation hypothesis as that of Abdi et al. [25], the present study deals numerically with the 

fully developed turbulent flow through an isothermal axially rotating pipe of a pseudoplastic (n=0.75) and New-

tonian fluids by mean of LES with extended Smagorinsky model. The current study set out to reveal the effects 
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of the centrifugal force induced by the rotating pipe wall on the hydrodynamic and rheological behavior as well 

as the turbulent statistics and instantaneous turbulence structure of the shear-thinning fluids, via analyzing and 

discussing critically the mean flow and rheological properties as well as the main turbulence characteristics.  

The fluid modeled in this study is power-law (pseudoplastic) fluid, the shear stress is related to the 

shear rate by: ( )
n

K = , where   is the shear rate K is the consistency index and n is the flow behavior in-

dex. The apparent viscosity   is not constant for the power-law fluid; a function of the magnitude of the shear 

rate is written in the form: 1nK  −= . For 1n  , the apparent viscosity decreases with increasing shear rate, 

and fluid is called shear-thinning (pseudoplastic). 1n   , the apparent viscosity increases with the increased 

shear rate, and fluid is termed shear-thickening (dilatant), which the Newtonian flow behavior is expected for 

1n = . Metzner and Reed (1955) [11] were the first to propose a definition of the generalized Reynolds num-

ber of the power-law fluids based on the effective viscosity ( ) ( )
1

3 1 4 8
n n

eff K n n U D
−

= + ; thus, the Metzner 

and Reed Reynolds number is defined as ( )2 1Re 8 3 1 4
nn n n

MR U D K n n − −= + . Another commonly used gen-

eralized Reynolds number Reg based on the apparent viscosity of the fluid at the wall ( )
1n

w wK 
−

= , where 

this Reynolds number reflects the flow behavior in the vicinity of the wall. Moreover, the friction Reynolds is 

based on the wall friction velocity and the mean viscosity on the wall Re wu D  = . Whereas the distance 

from the wall in wall units Y +  is also based on the viscosity of the fluid at the wall, it thus follows that 

wY yu + = . 

The present paper is organized as follows; the governing equations and numerical procedure are de-

scribed in section 2. the effect of rotating pipe wall on the mean quantities and turbulent flow statistics (axial and 

tangential velocities, Root mean square of the fluctuating velocity, turbulent Reynolds stress and instantaneous 

turbulence structure), are presented in section 3. Section 4 summarizes the main findings of this study and con-

cludes.    

2. Governing equations and computational method: 

2.1. Governing equations: 

A large eddy simulation approach with an extended Smagorinsky model has been applied to study the 

turbulent flow of the pseudoplastic (n<1) fluid through a straight axially rotating cylinder of 20R as a length in 

the axial direction (see Fig.1). The flow behavior index (n) was chosen to be 0.75 at the simulation Reynolds 

number of 4000, and the rotation rate in this paper set out to be (N=0, 0.5, 1, 2, and 3). 
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The filtered equations are written as: 

      0i

i

u

x


=


                                                                                                                   (1) 

      11

Re

j i j j ij ijn i

ijk k l

i i s i j i i i

u u u u Tup
N u

t x x x x x x x


  −

       
+ + = − + + − +  

           

                             (2) 

 
Where 2k k CLN R U=  is defined as the rotation rate and k the rotational pipe wall velocity. Res is the Reyn-

olds number of the simulations and is defined as 2Re n n
s CLU R K −= . 

2.2. Computational method: 

Filtering the Navier-Stokes equations eliminates scales smaller than the filter . These eliminated 

scales, called subgrid-scale (SGS) motions (small eddies), are unresolved small-scale fluid motions in the fil-

tered equations that govern the resolved large-scale scales. The SGS motions' effects on the resolved scales are 

modeled using an eddy-viscosity closure and the strain rate tensor. According to Ohta and Miyashita, the cur-

rently filtered equations were closed by an extended Smagorinsky model, where the additional terms were 

ignored [26]. 

The present LES investigations were performed with a laboratory code; for more details on the com-

putational procedure, see the investigation of Gnambode et al. [17]. The grid resolution 653 grid points in r, z, 

and directions, respectively, with a domain length of 20R in the streamwise direction, was chosen for all 

simulations presented in this work (this choice is based on the mesh independence study performed by Gnam-

bode et al. [17] for n=0.75). We applied a non-uniform distribution grid defined by a hyperbolic tangent func-

tion in the radial direction, in addition to periodic boundary conditions and an equally spaced computational 

grid in the axial and the azimuthal directions. 

 It is worth noting that Montreuil [27] pointed out that the LES with high resolution can be carried out 

with z+ equal to 35 wall units and ( )r 
+

 less than 10 wall unites, while Zang [28] reported that the adequate 

LES could be carried out using z+ and ( )r 
+

 less than 80 and 40 wall units, respectively. It can be seen from 

the data in Tab.1 that the first grid points away from the wall in the current work are placed at 1Y +  , where 

the first mesh point is located at 0.0239 and 0.0241 wall units for the lowest (N=0) and the highest (N=3) rota-

tion rate, respectively. In addition, 24 grid points at least are located within the viscous sublayer 5Y +   for all 

simulations. One can also see from Tab.1 the maximum and the minimum values z+ are 66.01 and 70.55 wall 

units, respectively, while that r  +  ranging from 20.74 to 22.16 wall units. The stationary case (N=0) varies 
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from 0.0506 at the pipe wall to 12.4 wall units at the pipe center. However, it varies from 0.0511 at the pipe 

wall to 12.5 wall units at the pipe center for the highest rotation rate case (N=3). The mesh discerption men-

tioned above shows that the current grid resolution used in the LES simulations can be considered reasonable.  

The computational procedure was performed using a finite difference scheme, which was second-

order accurate in space and time. Convective terms were evaluated using Runge-Kutta explicit third-order 

schemes, while diffusive terms were evaluated using Crank-Nicolson implicit schemes. The time integral was 

calculated using a fractional step method. The time is made dimensionless using the pipe radius (R) and the 

maximum velocity of the laminar flow (UCL). A constant CFL (Courant, Friedrichs, and Lewy) condition was 

used in the calculations. The statistics are computed by averaging in the periodic directions and in time. The 

final data are obtained by ensemble averaging over the time interval from the dimensionless time t =250 until t 

=8000 for the lowest rotation rate. At the highest rotation rate, the statistics are sampled from the dimension-

less time t = 250 until t =10000. 

3. Results and discussion: 

The current section seeks to analyze and discuss the influence of the rotation cylinder wall on the 

mean flow and turbulence statistics critically to describe the rheological and hydrodynamic behavior of the 

swirling flow of pseudoplastic fluid. The emerged LES predictions were validated by comparing some numer-

ical findings results of the shear-thinning and Newtonian fluids with those available in the literature in the 

following cases: the experimental data of Rudman et al. [16] in the stationery cylinder, the DNS of Rudman et 

al. [16] for flow behavior index of 0.75 through a stationary cylinder, the experimental data by Reich and Beer 

[4] for 1n = at 0,1,3N = , the DNS data of Redjem-Saad et al. [29] for 1n = at 0N = , the experimental data 

by Eggels et al. [7] for Newtonian fluid at 0N = , and the DNS data of Ould-Rouiss et al. [30] for Newtonian 

fluid at 0,1,3N = .  

3.1. Apparent viscosity:  

The present subsection seeks to reveal the effect of the rotating pipe wall on the different fluid rheo-

logical characteristics to describe the rheological behavior of the pseudoplastic fluid. The main emerged rheo-

logical properties, such as the apparent fluid viscosity and a shear rate of the shear-thinning, have been criti-

cally analysand and discussed in the following paragraphs. 

The normalized shear rate  and apparent fluid viscosity  distributions of the shear-thinning 

(n=0.75) and Newtonian (n=1) fluids along the pipe radius (R) are depicted in Fig.2 and Fig.3, respectively, 

against the distance from the wall-in-wall units Y+ at a simulation Reynolds number of 4000 and over a rota-
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tion rate range of ( )0 3N  . It can be seen from Fig.2 that the shear rate of the shear-thinning and Newtoni-

an fluids is nearly linear and remains constant along the viscous sublayer ( )0 5Y +  for all rotation rates. The 

effect of the flow behavior index on the shear rate distributions is significant in the vicinity of the wall, where 

the shear-thinning profiles lie above those of the Newtonian ones along the near-wall region for all rotation 

rates.  It can be said that the decreased flow behavior index results in a marked increase in the shear rate distri-

butions over the pipe radius. On the other hand, the rotating pipe wall significantly affects the shear rate distri-

butions of both fluids in the viscous sublayer; the increased rotation rate (N) induces a pronounced attenuation 

in the shear rate for the Newtonian fluid.  

Beyond approximately Y+=3, the shear rate profiles begin to drop progressively with the distance 

from the wall (Y+) towards the core region, where this reduction is sharped in the buffer region (5≤Y+≤30) for 

all cases. It is worth noting that the shear rate profiles seem slightly higher with an increasing rotation rate in 

the logarithmic region; this trend is more pronounced as the rotation rate increases. 

It is apparent in Fig.3 that no significant noteworthy difference is observed between the normalized 

apparent viscosity profile of the shear-thinning (n=0.75) fluid for all rotation rates in the near-wall region. In 

turn, the apparent viscosity profile of the Newtonian fluid is linear and equals the apparent viscosity at the wall 

along the pipe radius at every rotation rate. It can be said that the apparent viscosity of the pseudoplastic fluid 

seems independent of the rotation rate (N), over the viscous sublayer ( )0 5Y +  . Beyond the buffer region 

(Y+>5), the apparent viscosity profiles begin to increase gradually far away from the pipe wall towards the 

core flow region with the distance from the wall ( )Y + , there is a clear trend of gradually increasing in the 

apparent fluid viscosity, where the pseudoplastic (n=0.75) fluid becomes more viscous in the buffer 

( )5 30Y +  and logarithmic ( )30 200Y +  regions. In other words, the pseudoplastic fluid behaves like a 

solid when approaching the pipe center. On the other hand, it appears that the viscosity profiles of the shear-

thinning fluid are slightly affected by the rotating pipe wall; the profiles of the rotating pipe are very close to 

each other and sensibly higher than the stationary pipe in the buffer layer. As shown in Fig.3, this deviation is 

more pronounced in the logarithmic region, where the increased rotation rate results in a marked attenuation in 

the apparent viscosity in this flow region.  

Fig.4 presents the distribution of apparent fluid viscosity normalized by viscosity at the wall ( )w

against the shear rate scaled by the shear rate at the pipe wall ( )w . The apparent viscosity of the pseudo-

plastic fluid (n=0.75) is not constant where is a function of the shear rate, where the apparent viscosity of the 
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pseudoplastic fluid varies with the shear rate along the pipe radius (Fig.4). It is evident that the shear rate at-

tenuates gradually from the wall towards the core region (Fig.2), where this decreased shear rate results in a 

marked increase in the apparent viscosity of the shear-thinning (Fig.3). Moreover, the apparent viscosity of the 

pseudoplastic fluid is inversely proportional to the shear rate: the shear rate decreases as the apparent viscosity 

increases considerably for all rotation rates. Because of the reduced shear rate in the pipe core region, the fluid 

has a tendency to act more like a solid than a liquid as it moves away from the pipe wall. This causes the vis-

cosity to rise. 

On the other hand, with increasing rotation rate, the shear rate and the apparent pseudoplastic viscosi-

ty exhibit marked increase and attenuation, respectively, beyond the end of the buffer layer (logarithmic layer), 

as shown in Fig.2 and Fig.3. It can be said that the increased rotation rate induces in a noticeable increase in 

the shear rate in the logarithmic region (Fig.2), leading to reduce the apparent viscosity (Fig.3) in the core 

region. In other words, the pseudoplastic fluid behaves like a liquid approaching the pipe center as the pipe 

wall rotates (Fig.4).  

3.2. Mean velocity profile: 

  The streamwise velocity profile U U U

+ = , normalized by the friction velocity ( )
1 2

wU  = , is 

depicted in Fig.5, for Re 4000s = . At a fixed pipe, the predicted velocity profile is in good agreement with 

those of Rudman et al. [16] for pseudoplastic fluid and with the experimental results of Eggels et al. [7] and the 

DNS of Ould-Rouiss et al. [30] and Redjem et al. [29] for a Newtonian fluid. The universal laws in the viscous 

sublayer and the log region are well predicted for 1n = at 0N = . The predicted Newtonian velocity profiles 

normalized by the mean velocity ( / )z bU U , at various N , Fig.6, agree very well with the experimental results 

of Reich and Beer [4] and DNS predictions of Ould-Rouiss et al. [30]. 

When the pipe rotates, the velocity profiles for the shear-thinning fluid, like the Newtonian fluid, de-

viate from the logarithmic law because of the flow laminarization, Fig.7. Indeed, many investigations results 

[31], [32], [10], and [30] reported such a deviation from the logarithmic law in the case of a Newtonian fluid. 

This trend is more pronounced as the rotation rate increases, meaning that the predicted axial velocity profiles 

have a logarithmic shape ln( )A Y B+ + , where the constants A and B depend on the rotation rate N . This ten-

dency is due to the turbulence level attenuation in the pipe with increasing rotation rate [30]. In the log re-

gions, the predicted velocity for the Newtonian fluid at 3N = is larger than that for the shear-thinning one 

because the apparent viscosity at 0.75n = is greater than that at 1n = . Indeed, the strain  decreases towards 
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the pipe for the shear-thinning fluid, inducing an increase in the apparent viscosity : the shear-thinning fluid 

becomes more and more viscous when approaching the pipe center. The fluids become more viscous with 

decreasing shear rates, which induce a marked higher viscosity, where the pseudoplastic fluid does not flow 

more quickly towards the pipe center. 

The streamwise velocity profile scaled by the centreline velocity versus le radial position, Fig.8, clear-

ly exhibits a turbulence reduction as the rotation rate N is increased. At very high N, the pseudoplastic mean 

axial profile gradually approaches the laminar non-Newtonian Poiseuille profile. This is called the laminariza-

tion phenomenon. This sort of laminarization has also been observed in the Newtonian fluid and has been 

pointed out by many researchers [3], [6], [10], and [30]. The LES predictions [33] for N up to 18 confirm these 

trends: the axial velocity profile 1n = reaches the laminar parabolic distribution when 18N  . Note that the 

axial velocity distribution moves towards the laminar profile more rapidly than 1n = when approaching the 

pipe center because the shear-thinning fluid is more viscous in this region, and thus, the laminarization of the 

fluid flow is more quickly. 

Fig.9 is depicted the tangential mean velocity profiles scaled with the wall rotational velocity. The 

profiles show a concave shape close to a parabolic curve, and the concavity seems to decrease with increasing 

rotation rates N for both fluids. Similar trends were also observed in the experimental and numerical studies 

1n = by other authors [5], [4], and [10]. 

3.3. Turbulence intensity: 

Fig.10 and Fig.11 present the evaluations of RMS of velocity fluctuations for the Newtonian and 

shear-thinning fluids, respectively at 0N = . The predicted RMS are in satisfactory agreement with the results 

of Rudman et al. [16] for pseudoplastic fluid and with DNS results [30] and [29] for Newtonian fluid. The 

slight deviations may be raised because of the difference in the Reynolds value or/and the different numerical 

methods.  

The influence of rotation rate on the RMS of the fluctuating axial velocity zU  normalized by the fric-

tion velocity against the wall distance Y +
is shown in Fig.12 at various values N . In the non-rotating case, the 

maximum in the axial velocity fluctuations occurs at a distance 17Y +   for 1n = and 19Y +  for 0.75n = . 

The peak reaches the value of 2.54 for 1n =  and 2.91 for 0.75n = . The peak value of 2.54 for the Newtonian 

fluid and its position 17Y +  is in accordance with the results of literature [29] and [30]. In the vicinity of the 

wall, the RMS of the streamwise velocity fluctuations is reduced with increasing rotation rate N in the buffer 
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and log regions (between 5Y +  and 70Y +  ) for 0.75n = and mainly in the buffer region (between 5Y + 

and 35Y +  ) for 1n = , Fig.12. Beyond the log region, the RMS of the axial velocity is increased with in-

creasing rotation rate. This is because the axial velocity zU + diminishes with increasing rotation rate N  for the 

Newtonian fluid in the buffer region (5 35)Y +  and the shear-thinning fluid in the buffer and log regions

(5 70)Y +  , see Fig.7, it decreases when N raised beyond these regions. Thus, when N increases, the turbu-

lent fluctuations are reduced near the wall on a widened zone for 0.75n = . 

It can be seen that the fluctuations of the axial velocity are larger than the azimuthal and radial ones, 

Fig.13, Fig.14. It is worth noting that both azimuthal and radial turbulence intensities increase with increasing 

rotation rate in the vicinity of the wall, the azimuthal up to 10Y +   for 1n =  and 13Y +  for 0.75n = (which 

correspond to the peaks of the axial velocity fluctuations). However, beyond these positions, both RMS is 

increased with increasing N , when N ranges from 0 to 2, and reduced for 2N  . 

This trend also appears clearly on the turbulent kinetic energy profile, Fig.15. This observation is sim-

ilar to that reported for the Newtonian case by some authors [30], [10], and [32], who showed, in their numeri-

cal investigations, that the turbulence is suppressed for high rotation rates. Note that the wall peaks of the axial 

velocity RMS, Fig.12, and the turbulent kinetic energy, Fig.15, are reduced until a flat region 2N  is 

achieved. A similar outcome was found by Ould-Rouiss et al. [30] and by Orlandi and Fatica [8] in their nu-

merical simulations for the Newtonian fluid. 

The axial-radial distribution of the Reynolds shear stress r zU U  at 0N = of the shear-thinning fluid 

agrees reasonably well with the DNS results [16], Fig.16. This stress is the only non-null stress in the station-

ary pipe. With increasing rotation rate, r zU U   it is reduced far from the wall, Fig.17, and its distribution is 

moved to the pipe wall for both fluids, while the stress rU U
  is increased, Fig.18, and the stress zU U

 

shows an oscillatory behavior, Fig.19. Near the wall, the peak of zU U
  is related to the tilting of the near-

wall vortical structures that increase the amount of correlation between zU  andU
 by [8], Fig.19. Near the rotat-

ing wall, higher values of zU U
   the shear-thinning fluid than those for the Newtonian one, especially at 

3N = (in comparison to 1N = ), suggest that the amount of correlation between zU  and U
 is stronger for

0.75n = , and it gets stronger and stronger with increase N . Further away from the wall, the normal-wall oscil-

lations of zU U
  becoming noticeable at high rotation rates, and the increased apparent fluid viscosity towards 

the core region generates larger streamwise vortices at high rotation rates. 



12 
 

 

 

3.4. Friction factor:  

The friction factor of the pseudoplastic (n=0.75) fluid for the stationary pipe (N=0), is compared to 

different correlations of the literature for validation (see Tab.2), where
DMf FSGf and

HRf correspond, respec-

tively, to Dodge and Metzner [13], Gomes [34] and Hanks and Ricks [35] correlations (Tab.2). 

/ b

DM MRf a Re=  where  0.0665  0.01175a n= +  2 0.365  0.177  0.062b n n= − +  

0.616 0.287 0.110FSG MRf n Re −=  

( )1/ 1.87 2.390.5 0.0682 /
n

HR MRf n Re
+−=  

PGf and Rf , being respectively the LES and DNS predictions by Rudman et al. [16] and Gnambode et al. [17]. 

The present LES friction factor is in satisfactory agreement with the literature results: it is within 3.8% and 

6.5% , respectively, and 15.3% accuracy compared with DMf  . The present friction factor is slightly overesti-

mated in comparison to DMf . Rudman et al. [16] reported a similar observation: their predicted friction factor 

is higher than Dodge and Metzner's correlation [13] by about 10-15% (Tab.2). 

For the pseudoplastic fluid (n=0.75), table 1 shows a slight diminution of the friction factor when N it 

varies from 0 to 0.5 and augmentation when. 1N  , with increasing N . For the pseudoplastic fluid, the aug-

mentation of the rotation rate N induces a rise of the shear stress at the cylinder wall leading to an increase in 

the friction factor because the fluid becomes more viscous near the wall. As it approaches the cylinder center 

with increasing rotation pipe wall rate, the attenuation in the apparent fluid viscosity generates less large and 

less weak axial vortices, leading to less dissipation and increasing the wall drag. 

3.5. Visualizations: 

The effects of the rotation rate on the resolved axial and radial velocity fluctuations are depicted in 

Fig.20 and Fig.21, respectively, for pseudoplastic and at the lowest (N=0) and highest (N=3) rotation rates. 

Contours of the resolved axial velocity in r −  a plane at the stationary pipe, Fig.20a, show that the turbu-

lence activity is attenuated in the core region of the pipe where the shear rate is lower (and thus the viscosity 

higher) than that near the pipe wall. On the contrary, due to the higher shear rate near the wall, the turbulent 

structures are essentially located close to the pipe wall. In the rotating case, the shear rate is slightly increased 

(beyond 5Y +  ) towards the pipe center (see Fig.2), inducing an augmentation of the turbulent structures in 
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the core region, Fig.20b, giving a clear picture that the pipe’s rotation is responsible for the transport of the 

fluctuations from the wall towards the core region. A similar picture is given by the contour lines of the radial 

velocity fluctuations when the rotation rate increases, Fig.21a, Fig.21b. These figures also show that for 3N =  

(Fig.21b), the number of contour levels 
rU   is more than that for 0N =  (Fig.21a), which explains the increase 

of the peak of the RMS of rU   in Fig.14 when the rotation rate varies from 0 to 3. Indeed, in the core region, 

the viscosity of the shear-thinning fluid is slightly decreased (see Fig.3) with an increased rotation rate (while 

the shear rate is slightly increased), inducing a rise of the turbulent structures in the core region and hence an 

augmentation in radial momentum transfer: the turbulent structures are shorter and stronger and bring more 

high-speed fluid from the wall region to the core region, reducing the production of turbulent energy near the 

wall and an increase in the core region (see Fig.15). 

4. Conclusions: 

In the present work, a large eddy simulation is performed to investigate the turbulent flow of pseudo-

plastic fluid in an axially rotating cylinder by using an extended Smagorinsky model. Focus is made on the 

influence of the rotation rate on the mean flow and turbulence statistics. Results indicated a significant de-

pendence of the dynamic field on this parameter. Some of the results are pointed out below: 

The centrifugal force induced by the swirl flow induces a marked increase in the shear rate of the 

pseudoplastic fluid far away from the vicinity of the pipe wall, resulting in a pronounced reduction in the ap-

parent viscosity of the shear-thinning fluid in the logarithmic region, where this trend is more noticeable as the 

rotation rate increases. It should be noted that the variation in the apparent viscosity leads to a redistribution of 

the axial velocity profile along the pipe radius. The decreased apparent viscosity of the pseudoplastic fluid in 

the logarithmic layer with an increasing rotating rate results in a gradual increase in the axial velocity profile 

far away from the pipe wall towards the core region as the pipe wall rotates. 

On the other hand, the swirl driven by the rotating pipe wall results in an apparent attenuation in the 

generation and the transport mechanism of turbulence intensities of the axial velocity fluctuation from the wall 

vicinity towards the core region for the pseudoplastic fluid. This reduction in the RMS of the axial velocity 

fluctuations leads to a decrease in the kinetic energy of turbulent fluctuations and, consequently, in the turbu-

lent Reynolds shear stress of the axial-radial velocity fluctuations as the pipe wall rotates. In turn, the turbu-

lence intensities of the radial and tangential velocity fluctuations exhibit a pronounced increase when the pipe 

wall is rotating, where this trend is more evident as the rotation rate increases. In other words, the centrifugal 

force induced by the swirl flow results in a noticeable amelioration in the transport mechanism of the energy 
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fluctuations from the axial one to the other as the pipe wall rotates. Furthermore, the friction factor for the 

pseudoplastic fluid exhibits a reduction when the rotation rate varies from 0 to 0.5 and increase when 1N   

with an increasing rotation rate. 

Further studies are needed to study the influence of other rotation rates, flow behavior index ranges, 

and other effective parameters such as the Reynolds and Prandtl numbers. Moreover, further research could 

also be conducted to determine the effect of the rotation rate on another model of Non-Newtonian fluids. 
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 NOMENCLATURE 

 

bU  Average velocity, ( )1.m s−  

U   Friction velocity ( )
1 2

wU  = , ( )1.m s−  

CLU  Centreline axial velocity for analytical fully developed laminar profile 

( ) ( )3 1 1CL bU n U n= + + , ( )1.m s−  

R  Pipe radius, ( )m  

n  Flow index 

K   Consistency index ( ). npa s  

k   Turbulent kinetic energy 

Y +
 Distance from the wall in wall unites ( ) wY U r R + = −  

k  Rotational velocity of the pipe wall 

kN   Rotation rate 2k k CLN R U=   

f  Mean friction factor ( )22 W bf U =  
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ijS  Strain rate tensor ( )1 2ij i j j iS u x u x=   +    

Res  Reynolds number of the simulations 2Re n n

s CLU R K −=  

ReMR  Metzner-Reed Reynolds number ( )2Re 8 6 2
nn

MR bU K n −= +  

Reg  Generalized Reynolds number Reg b WU D =  

Recr
 Critical Reynolds number ( )( ) ( )( )2

Re 2100 4 2 5 3 3 3 1cr n n n= + + +  

Greek symbols  

   Shear rate ij ijS S = ( )1s−  

   Computational grid 

  
apparent viscosity 1nK  −= ( )1.Kg s−  

   
Density ( )3.Kg m−

 

ij  Subgrid stress tensor 2ij t ijS = −  

Subscripts  

d   Dimensionless 

, ,z r    Axial, radial, tangential velocity 

b   Average 

C    Centreline 

L   Laminar 

t   Turbulent 

s   Simulation 

w   Wall 

g   Generalized 

Superscripts  

  Statistically averaged 

( )
+

  Normalized by U , or T   

( )
'
  Fluctuation component 

( )   Filtered variable 
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Table 1: parameters of present LES simulations and mean flow quantities for 0.75n =  and Re 4000s =  

 

N 0 0.5 1 2 3 

z+   69.89 66.01 67.76 68.61 70.55 

r  +  21.95 20.74 21.29 21.55 22.16 

minr+  0.0506 0.0478 0.0491 0.0497 0.0511 

maxr+  12.4 11.71 12 12.17 12.5 

b clU U   0.5329 0.5312 0.5304 0.5287 0.5278 

c clU U  0.6863 0.7542 0.7947 0.8688 0.9048 

1.10clU U  0.3393 0.3278 0.333 0.3355 0.3412 

,d w   6.6818 8.0258 6.770 6.6340 8.210 

,d w  0.6334 0.6069 0.6315 0.6305 0.6036 

Recr   2250 2250 2250 2250 2250 

Res  4000 4000 4000 4000 4000 

ReMR  4873.2 4854.2 4845.6 4826.1 4815.4 

Reg  7135.8 6953 7016 7028.2 7094.3 

Re  227.16 214.56 220.24 222.99 229.29 

1Y +
  0.0239 0.0226 0.0232 0.0235 0.0241 

f .
310   9.2099 8.6003 8.8741 9.0072 9.3133 
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Table 2: Friction factor at Re 4000s =  

3
.10f  

3
.10

DM
f  3

.10
FSG

f  3
.10

HR
f  3

.10
PG

f  
3

.10
R

f  

9.20 7. 79 8.05 7.75 8.85 8.6 
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Fig. 1: Geometry of problem 

 

 

 

 

 

 

 

 
Fig. 2: Behaviour of mean dimensionless shear rate 

 

 

 
Fig. 3: Apparent viscosity behaviour 
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Fig. 4: Normalised apparent viscosity behavior 

 

 

 
Fig. 5: Turbulent axial velocity 
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Fig. 6: Axial velocity distribution  

 

 

 

 
 

Fig. 7: Turbulent axial velocity profile 
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Fig. 8: Mean streamwise velocity distribution  

 

 
 

Fig. 9: Tangential velocity distribution 
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(a) (b) 
Fig. 10: Validation of Turbulence intensity (Newtonian) 

 

 

 
Fig. 11: Validation of Turbulence intensity (Pseudoplastic) 
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Fig. 12: RMS of axial velocity fluctuations 

 

 

 
 

Fig. 13: RMS of tangential velocity fluctuations profile 
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Fig. 14: RMS of radial velocity fluctuations profile 

 

 

 

 

 

 

 
Fig. 15: Distribution of the turbulent kinetic energy  
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Fig. 16: Validation of Reynolds shear stress 

 

 

 

 

 

 

 
Fig. 17: Reynolds shear stress of normal-wall and streamwise velocity fluctuations 
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Fig. 18: Reynolds shear stress of tangential and normal-wall velocity fluctuations 

 

 

 

 

 

 

 

 
Fig. 19: Reynolds shear stress of tangential and axial velocity fluctuations 
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Fig. 20: Contour lines of the axial velocity fluctuations 

 

 

 

 
Fig. 21: Contour lines of the radial velocity fluctuations  
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