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Abstract: Diagnosability is the property of a system to have sufficient observable information to
guarantee the diagnosis of a fault. Here, the considered fault is a timed fault, i.e. an unobservable
event that occurs in bounded time since the start of the system. Starting with a system
modeled as a Time Petri net that is not diagnosable, this work proposes a method that provides
adjustments by restriction of static time intervals to ensure the system becomes ∆-diagnosable
for that fault. These adjustments are characterized by a set of constraints over interval bounds
and then provide a set of solutions, if any, to ensure the diagnosability of the system.
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1. INTRODUCTION

Fault diagnosis of a partially observable dynamic dis-
crete event system is the problem of determining the
occurrence in the system of unobservable faulty events
based on the sequence of observations emitted by the
system (Zaytoon and Lafortune (2013)). In this paper,
the complete behaviour of the system is modeled as a
Time Petri Net (Berthomieu and Menasche (1983)) and
a fault is defined as the occurrence of a single faulty
event in a bounded time interval. In other words, a fault
is characterized by the occurrence of single event that is
considered to be abnormal as soon as it occurs within a
fixed set of time bounds: such a timed fault can model, for
instance, time shifts of critical events, delays... This paper
deals with the ∆-diagnosability of such timed faults. If the
system is ∆-diagnosable, it means that the occurrence of
the timed fault is always determined with certainty after
∆ time units (Tripakis (2002); Basile et al. (2016); Pencolé
and Subias (2021)). Here, we suppose that the system is
not yet ∆-diagnosable and we aim at providing a set of ad-
justments in the system to ensure that the system becomes
∆-diagnosable. In this paper, we firstly propose a formal
definition of this problem that we call diagnosabilization.
More precisely, the type of modifications that we propose
is to restrict some static time intervals associated with
some transitions of the Time Petri nets. This paper then
proposes a first and original method that is based on a
diagnosability analysis detailed in Coquand et al. (2022)
and that characterizes a set of solutions as constraints over
interval bounds in static intervals that ensures, if it exists,
that the system can be ∆-diagnosable by just applying
time restrictions complying with this set of constraints.

The problem of synthesizing requirements to design a
discrete event system so that it is diagnosable has not
yet received a lot of attention in the literature. Recently,
He et al. (2022) proposes to use a Sat Modulo Theory
method to add delay blocks into an untimed automaton

to disambiguate observable events and ensure the overall
diagnosability of the system. As far as timed discrete
event systems are concerned, closest contributions are
not directly focussing on fixing diagnosability but more
on repairing the model wrt to the real process via pro-
cessing mining techniques (Fahland and van der Aalst
(2012)). Basile et al. (2015) proposes to repair Time Petri
Nets by adjusting the static intervals, using Mixed-Integer
Linear Programming techniques.

The paper is organized as follows. Section 2 recalls the
necessary formal background and introduces the diagnos-
abilization problem. Then Section 3 presents a diagnos-
ability analysis based on the enumeration of critical pairs.
Using this enumeration, Section 4 proposes time constraint
synthesis for which if the system satisfies them it will be
∆-diagnosable.

2. DIAGNOSABILIZATION OF TIME PETRI NETS

After some reminders on Time Petri nets and their se-
mantics, this section formally introduces the problem of
diagnosabilization.

2.1 Safe Labeled Time Petri Nets

Definition 1. A safe Labeled Time Petri Net (LTPN) is a
6-uple N = 〈P, T,A,Σ, `, Is〉 where:

• P is a finite set of places
• T is a finite set of transitions (P ∩ T = ∅)
• A ⊆ (P × T ) ∪ (T × P ) is a binary relation modeling

the arcs between the transitions and the places
• Σ is a finite alphabet of transition labels
• ` : T → Σ is the transition labeling function
• Is : T → IQ+ is a static interval function Is(t),

for which the lower bound, also called the date of
earlier firing is denoted ↓ (Is(t)) ∈ Q+, and its upper
bound, also called the date of later firing, is denoted
↑ (Is(t)) ∈ Q+ ∪ {+∞}



A marking M of the net is a function M : P → {0, 1}.

The preset of a transition t is the set of input places
pre(t) = {p ∈ P | (p, t) ∈ A}, and similarly the postset of
t is the set of output places post(t) = {p ∈ P | (t, p) ∈ A}.
For a safe LTPN, a state is a couple S = 〈M, I〉 where I
is the partial firing interval application (I: T → IQ+) that
maps to any transition a time interval of Q+ in which t can
be fired as soon as it is enabled. S0 = 〈M0, I0〉 is the initial
state of the net where M0 is the initial marking of the net
and I0 is defined as follows: for any transition t enabled
by M0, I0(t) = Is(t), else I0(t) = ∅. For a marking M , a
transition t is firable at the date θ if and only if:

• t is enabled (i.e. ∀p ∈ pre(t), M(p) = 1)
• θ ∈ I(t) and for all t′ enabled by M, θ ≤↑ (I(t′))

The firing of a transition t at a date θ is denoted:

〈M, I〉 θt−→ 〈M ′, I ′〉 and defined such that

• M ′ is such that ∀p ∈ pre(t) \ post(t),M ′(p) = 0,
∀p ∈ post(t) \ pre(t), M ′(p) = 1 else M ′(p) = M(p)
• for any transition t′ ∈ T (t′ 6= t) enabled in M

and still enabled in M ′, I(t′) = [a, b] ⇒ I ′(t′) =
[max(0, a− θ), b− θ]
• for every transition t′ enabled by M ′, and for each

transition disabled by the firing of t and newly en-
abled by it (loops), I ′(t′) = Is(t

′)

A state S is reachable in a marked LTPN if there exists

a run r = θ1t1 . . . θntn, n ∈ N∗ such that S0
θ1t1−−→ S1

θ2t2−−→
S2 . . .

θntn−−−→ S. The set of reachable states of a LTPN N
is denoted R(N,S0). A run r = θ1t1 . . . θntn of a LTPN
N is said to be admissible if there exists {S1, . . . Sn} ∈
R(N,S0)

n
such that S0

θ1t1−−→ S1
θ2t2−−→ S2 . . .

θntn−−−→ Sn. A
timed sequence over an alphabet Σ is a sequence of pairs
(d, e) ∈ R+ × Σ where d corresponds to the relative date
of firing of the label e. A run produces a unique timed
sequence.

Definition 2. The language L(N) of a LTPN N is the
set composed of every timed sequence ρ such that there
exists an admissible run for N r = θ1t1 . . . θntn with
ρ = θ1`(t1) . . . θn`(tn).

2.2 System and fault modelings

A system is modeled as a partially observable safe LTPN.
The set of observable (resp. unobservable) events is de-
noted Σo (resp. Σu). The following assumptions are con-
sidered:

A0 each static firing interval Is(t) is bounded (∀t ∈ T ,
↑ (Is(t)) < +∞);

A1 the system is ultimately observable, that is at any
time, from any reachable state, every run will even-
tually lead to the fire of an observable transition in
bounded time;

A2 the system has no zeno run (a zeno run is an infinite
sequence of transitions that can occur in a finite
amount of time).

Example 1. Figure 1 shows an example of a system. The
observable alphabet of the system is ΣoΘ = {o1, o2, o3}.
The unobservable one is ΣuΘ0

= {f, uo, l}. The blue
(resp. the red) transitions are labeled by observable

(resp. unobservable) events. r = 3t0.7t1.1t2.3t3.1t4.5t6.3t0
is a run of Θ. Its associated timed sequence is ρ =
3o1.7f.1o2.3f.1o2.5o3.3o1.

In untimed DES, a fault is modeled as a single event that
may occur in the system. One way to refine this modeling
is to add a time constraint on the occurrence of the event,
as the event may only become troublesome after a certain
time in the system’s life. A timed fault is modeled here as
an unobservable event that may occur in the system in a
finite time window.

Definition 3. A timed fault Ωf over a system Θ is an
unobservable event f ∈ Σu associated with a bounded
rational interval IΩf

∈ Q2
+. The bounds are denoted aΩf

and bΩf
. The language associated with Ωf is L(Ωf ) =

{dif |di ∈ IΩf
}.

As most of the systems are maintained on a regular basis,
dealing with a fault occurring in a finite time window is a
reasonable hypothesis.

The occurrence of the fault in the system is formulated as
a fault matching problem (Coquand et al. (2021)). It can
be seen as a synchronization between the system and the
fault.

Definition 4. A timed sequence ρ ∈ L(Θ) matches a timed
fault Ωf (denoted ρ c Ωf ) if there exists a sub-word ρ′ of
ρ (i.e ρ′ is an ordered set of events extracted from ρ) such
that ρ′ ∈ L(Ωf ).

A run matches a fault if its timed sequence matches the
fault. If a run matches many times a timed fault, only the
first matching is considered.

Example 2. Figure 2 shows an example of a timed fault
on Θ. The timed sequence ρ of Example 1 matches Ωf
(ρ c Ωf ) as ρ′ = 10f is a sub-word of ρ, and ρ′ ∈ L(Ωf ).
As the first occurrence of f in ρ matches Ωf , no other
matching is considered.

The projection of a timed sequence onto the observable
alphabet of the system (also called observable timed trace)
is defined as follows:

• PΣΘ→Σo
Θ

(θ1e1.θ2e2 . . . θnen) = θ1e1.PΣΘ→Σo
Θ

(θ2e2 . . .

θnen) if e1 ∈ ΣoΘ

• PΣΘ→Σo
Θ

(θ1e1.θ2e2 . . . θnen) = PΣΘ→Σo
Θ

((θ1 + θ2)e2 . . .

θnen) otherwise

In this work a method is proposed to guarantee the diag-
nosis of a timed fault on a time system. A guaranteed diag-
nosis is a diagnosis for which there is no ambiguity whether
the fault has occurred or not. In the diagnosis community
this notion is called diagnosability. Diagnosability is the
property of a system that guarantees that there is enough
observations to decide that a fault has definitively occurred
a bounded amount of time after its occurrence. In timed
systems it can be reformulated in terms of timed elapsed
since the occurrence of the fault. Based on the definition
of Pencolé and Subias (2021), diagnosability for timed
fault can be defined as:

Definition 5. Θ is said to be Ωf -diagnosable if ∃τ ∈ R+

s.t. ∀(ρ1, ρ2) ∈ L(Θ)2, ρ1 = ρ′1.ρ
′′
1 , time(ρ

′′
1) ≥ τ , ρ′1 c Ωf∧

PΣ→Σo
Θ

(ρ2) = PΣ→Σo
Θ

(ρ1)⇒ ρ2 c Ωf .
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Fig. 2. Fault Ωf on Θ: event f between dates 9 and 13
after the start of the system

Where time is the function that associates with each timed
sequence its duration. There also exists a restricted version
of the diagnosability definition where the time bound τ
is fixed (τ = ∆) which is a property that ensures the
timed fault will be diagnosed with certainty ∆ time units
after its occurrence in any case: this property is the ∆-
diagnosability.

Definition 6. Let be ∆ ∈ R+. Θ is said to be ∆-Ωf -
diagnosable if ∀(ρ1, ρ2) ∈ L(Θ)2, ρ1 = ρ′1.ρ

′′
1 , time(ρ

′′
1) ≥

∆, ρ′1 c Ωf ∧PΣ→Σo
Θ

(ρ2) = PΣ→Σo
Θ

(ρ1)⇒ ρ2 c Ωf .

2.3 Problem statement

If a system Θ is not diagnosable, the diagnosis of a timed
fault Ωf cannot be guaranteed. Therefore guaranteeing
the diagnosis of Ωf requires changes in the model of Θ.
As it can be expensive to add sensors on the system, we
propose to focus on the development of methods that only
modify the scheduling of the system, i.e. modifying the
static time intervals of the system. To do so, we suppose
in the following that there exists a subset of transitions in
the system whose static time intervals can be adjusted: in
other words, the bounds of these intervals are now consid-
ered as parameters. This set of parameterized transitions is
denoted Tp ⊆ T . The label of a transition of Tp can either
be observable or not, as there are cases in which the date
of some observable transitions may not be modified and
some unobservable transitions may be controllable before
the start of the system. The proposed adjustments will
be only restrictions of time intervals so that we ensure
the causality of the system is preserved. In the following,
such a solution will be called a diagnosabilisation by time
restrictions (TR-diagnosabilisation for short).

Definition 7. A timed system is (∆-)TR-diagnosabilisable
for a timed fault Ωf and a set of parameterized transitions
Tp if there exists at least a valuation set Vd = {Ids (t), t ∈
Tp, I

d
s (t) ⊆ Is(t)} such that, by replacing Is(t) with Ids (t)

for every transition t ∈ Tp in Θ, Θ becomes (∆-)Ωf -
diagnosable. Such a solution Sd is also called a (∆-)TR-
diagnosabilisation of Θ.

Through the rest of this paper, we now propose a
method that provides a solution that ensures that ∆-Ωf -
diagnosability holds in the system Θ. For the sake of sim-
plicity in the following, we will omit ∆− and only expres-
sions like TR-diagnosabilisation, TR-diagnosabilisable. . .

3. ∆-DIAGNOSABILITY ANALYSIS: CRITICAL PAIR
BASED ANALYSIS

Consider ∆ ∈ R+, the proposed method aims at guaran-
teeing that ∆-Ωf -diagnosability holds in the system. This
TR-diagnosabilization method is based on the enumera-
tion of so-called critical pairs (Pecheur et al. (2002)). In
the context of ∆-diagnosability, a critical pair is a couple
of runs, one faulty and one safe, that shares the same
observable trace.

Definition 8. A critical pair is a couple (r, r′) of runs such
that :

• let ρ (resp. ρ′) be the timed sequence produced by r
(resp. r′),

• ρ = ρ0ρ1, ρ0 c Ωf , no prefix ρ′0 of ρ0 matches Ωf ,
time(ρ1) ≥ ∆

• ρ′ 6c Ωf
• time(ρ) = time(ρ′)
• PΣΘ→Σo

Θ
(ρ) = PΣΘ→Σo

Θ
(ρ′)

The existence of a critical pair characterizes an ambiguity
in the system’s behaviour so that it is sometimes impossi-
ble to decide whether the timed fault has occurred or not
after ∆ time units, based on the system’s observations.

Proposition 1. A system Θ is ∆-Ωf -diagnosable iff there
is no critical pair in Θ.

The enumeration of critical pairs in the system relies
on a finite abstraction of the system behaviours inspired
by Coquand et al. (2022). This abstraction is a set of 3-
uples (π,Π,Πo) called path in the following, where π is a
sequence of firable transitions from the system also called a
transition support, Π is the set of constraints representing
the earliest and latest dates of firing of the transitions
of π and Πo is the observable projection of Π, i.e. the
set of time constraints representing the earliest and latest
firing dates of every observable transition in π relatively
to the firing date of the previous observable transition.
Section 3.1 briefly presents and illustrates the computation
of this abstraction.



The proposed TR-diagnosabilization method is a two
step process. First, critical pairs involving one path
only are identified (see Section 3.2) and a first TR-
diagnosabilization is obtained as detailed in Section 4.1.
Then critical pairs involving two paths are identified (see
Section 3.3) and a final TR-diagnosabilization is obtained
as detailed in Section 4.2.

3.1 Abstraction of system behaviours: paths

The objective of a path is to represent a possibly infinite
set of runs that share the same transition support π and
that might be involved in a critical pair. The computation
of the constraint set representing the earliest and latest
firing dates of each transition is detailed in Coquand et al.
(2022). A support π = t0. . . . tn. . . . .tn+l. . . . .tn+k of a
given path has the following characteristics:

(1) tn, tn+l, tn+k are transitions labeled with observable
events (0 ≤ l ≤ k), no transition tn+m, (l < m < k)
is observable.

(2) the earliest firing date of tn is greater than bΩf
, so

that after tn there cannot be any transition in the
path involved in the matching of the timed fault;

(3) if k 6= 0, the earliest firing date of tn+l is lower than
∆ + bΩf

;
(4) the earliest firing date of tn+k is greater or equal to

∆ + bΩf
.

The support π can be seen as a path in the State Class
Graph of the system (SCG) defined in Berthomieu and
Menasche (1983). There are a finite number of supports
to extract as a consequence of Assumptions A0-A1-A2
and bΩf

< +∞ and any run r of the system such that
time(r) ≤ ∆ + bΩf

is represented by exactly one of these
supports, especially every run r with time(r) ≤ ∆ + bΩf

such that r c Ωf . Finally, as Ωf is a timed fault whose
occurrence date is bounded by bΩf

, any faulty run with
time(r) > ∆ + bΩf

has, as a prefix, a run r′ such that
time(r′) ≤ ∆ + bΩf

.

Example 3. Considering the system of Figure 1 and ∆ = 1,
π0 = t0.t1.t2.t3.t4.t6.t0 is a possible support. The firing
dates of the second occurrence of t0 relatively to the start
of the system are necessarily greater than 15 (the execution
of a loop in the system to fire t0 is greater than the
sum of the lower bounds of the static time intervals of
the transitions) so it is greater than bΩf

, moreover t0 is
observable. Note also here that as ∆ = 1, the earliest date
of t0 is also greater than ∆ + bΩf

= 14 (special case where
k = 0 so this occurrence of t0 corresponds to transition
tn = tn+l = tn+k as defined in the characteristics of
the support hereabove). The constraints representing the
earliest and latest firing dates of π0 are in the set Π0

={2 ≤ θ0 ≤ 6, 3 ≤ θ1 ≤ 7, 1 ≤ θ2 ≤ 2, 2 ≤ θ3 ≤ 4,
1 ≤ θ4 ≤ 2, 4 < θ5 ≤ 5, 2 ≤ θ6 ≤ 6}. (Here θi (resp.
θoi ) corresponds to the date of firing of the i-th transition
of the sequence (resp. of the observable sequence)). The
observable constraint set associated with Π0 finally is Πo

0
= {2 ≤ θo0 ≤ 6, 4 ≤ θo1 ≤ 9, 3 ≤ θo2 ≤ 6, 4 < θo3 ≤ 5,
2 ≤ θo4 ≤ 6}. 1

1 As the running example in this paper is simple for the sake of
readability, there is actually no parallelism so the computation of the
constraints is straightforward. However, in the general case, Π0 and

3.2 Critical pair extracted from one path only

Let us consider a path (π,Π,Πo) such that there is a run
of this path that matches Ωf . This means that there is
at least one transition label by the faulty event and whose
firing fits the constraint of Ωf . Such a transition occurrence
is called a faulty transition candidate in the following of
this paper. For example, let us consider again the support
π0, occurrences of t1 and t3 in π0 are faulty transition
candidates. Given the same path π it is also possible that
it abstracts another run such that it does not match Ωf ,
which means that the path itself characterizes some critical
pairs.

Example 4. Back to Figure 2, run r1 = 5t0.4t1.1t2 matches
the fault Ωf while run r′1 = 5t0.3t1.2t2 does not match Ωf .
Both runs share their observable projection PΣΘ→Σo

Θ
(r1)

= PΣΘ→Σo
Θ

(r′1) = 5o1.5o2. Now, it can be noticed that

there exists a common continuation r2 of r1 and r′1, that
is r2 = 2t3.1t4.5t6.2t0 so that run r (= r1r2) and run r′

(= r′1r2) are both represented in the path (π0,Π0,Π
o
0) and

(r, r′) is a critical pair.

Fig. 3. Faulty and safe areas for a timed fault occurring
between aΩf

and bΩf
t.u.

A faulty transition candidate can be source of an am-
biguity, i.e. it is involved in critical pairs that can be
extracted from the same support π. Figure 3 represents
this situation. Transition tf is a faulty transition candidate
and to is the first observable transition that is fired after
tf in the considered path. af (resp. bf ) is the earliest
(resp. latest) firing date of tf relatively to the start of the
system, and ao (resp. bo) is the earliest (resp. latest) firing
date of to relatively to the firing of tf . The red and green
polyhedra correspond to admissible firing of tf and to in
the considered path. The red area corresponds to faulty
firing of tf and the green ones correspond to faultless
firings. The observation of the system that captures the
firing of tf corresponds to the firing of to, i.e. the first
observed date tobso after the fire of tf relatively to the start
of the system is such that tobso = tf + to. A straight blue
line in Figure 3 then represents the set of couples of firing
dates (tf , to) that are possible for a given value θobs of the
observed date tobso . Obviously, if θobs is associated with a
blue line that only intersects the red (resp. green) area
then the firing date of tf ensures the run is faulty (resp.
safe). On the contrary, if θobs is associated with a blue line
that intersects both the red and the green areas, it means

Πo
0 also contain parallelism constraints that require more complex

computations, see Coquand et al. (2021) for details.



Fig. 4. Ambiguous and non-ambiguous polyhedra for the
timed fault of Figure 3

that observing tobso = θobs leads to an ambiguity as the
firing date of tf may be faulty or not. From this analysis, it
follows that it is possible to characterize polyhedra by a set
of constraints over θobs, aΩf

, bΩf
, ao, bo that assert for any

couple (tf , to) whether the situation is safe, certainly faulty
or ambiguous (see Figure 4). The polyhedra are defined as
follows:

safe (Πs,L and Πs,R):

θobso < aΩf
+ ao (1a)

bΩf
+ bo < θobso (1b)

certain (Πc):

aΩf
+ bo ≤ θobso ≤ bΩf

+ ao (1c)

ambiguous (Πa,L and Πa,R):

ao + aΩf
≤ θobso < aΩf

+ bo (1d)

ao + bΩf
< θobso ≤ bΩf

+ bo (1e)

Note that some areas may be empty regarding the different
values of af bf , aΩf

, bΩf
, ao and bo. Such constraints, if

added to the observable projection Πo of the path, lead
to the definition of a set of polyhedra representing three
different types of run in a path

• Πo
a = Πo ∪ ambiguous: the set of observable timed

sequences leading to an ambiguity
• Πo

s = Πo∪safe the set of observable timed sequences
involving safe runs only

• Πo
c = Πo ∪ certain the set of observable timed

sequences involving faulty runs only

The existence of critical pairs inherent to one path only is
then determined by the following result.

Proposition 2. Considering a path (π,Π,Πo), S(Πo
a) = ∅

iff

• there exists a faulty transition candidate tf such that
aΩf
≤ af ≤ bf ≤ bΩf

, or
• for each faulty transition candidate tf , the earliest

and latest firing dates of to are equal (ao = bo).

Based on Proposition 2, we can apply the first step of the
TR-diagnosabilization to ensure that S(Πo

a) = ∅, this step
is described in Section 4.1.

3.3 Critical pair extracted from two different paths

We assume that a first TR-diagnosabilization has been
successfully performed based on Section 4.1 to get a

new set of parameters Sd such that S(Πo
a) = ∅. By

using again Equations 1a,1b and 1c, it is then possible
to update Πc,Π

o
c and Πs,Π

o
s for each path to take into

account this set of parameters Sd. But, still, this first TR-
diagnosabilization is not sufficient as there may be some
critical pairs involving a faulty run from a path and a
safe run from another path. The faulty (resp. faultless)
polyhedron for a path (π,Π,Πo) can be written as (π,Πo

c)
(resp. (π,Πo

s)). Coquand et al. (2022) shows that the
search for critical pairs between two different paths is then
equivalent to checking for the intersection between their
safe and certain polyhedron:

Proposition 3. If there exists ((π,Π,Πo), (π′,Π′,Πo′))

such that ∃(r, r′) ∈ (π,Πo
s) × (π′,Πo′

c ),PΣ→Σo
(r) =

PΣ→Σo
(r′), then the system is not ∆-Ωf -diagnosable.

Example 5. The observable timed sequence ρo = 2o1.9o2.
3o2.4, 5o3.4o1.5o2.5o2.4, 2o3 is produced by a faulty run of
π0 and by a non-faulty run of π1 = t7.t8.t9.t10.t11.t7. It
belongs to the intersection between the certain polyhedron
of π0 and the safe polyhedron of π1.

Based on Proposition 3, the second and final step of the
TR-diagnosabilization is finally described in Section 4.2.

4. DISAMBIGUATION OF CRITICAL PAIR

Section 3 shows that the sources of critical pair, i.e. the
reasons of undiagnosability of a system can be divided in
two classes: the first is the ambiguities inherent to a path
(S(Πo

a) 6= ∅), the second is the ambiguities coming from
the intersection of the safe and certain polyheron abstract-
ing two different paths. As the number of paths and the
number of faulty candidate transitions are bounded, there
are a bounded number of sources of critical pairs. After
enumerating the different sources of critical pairs using
the results of the previous section, the proposed method
synthetises new time constraints the system must satisfy to
delete ambiguities, i.e. to make the system ∆-diagnosable.

4.1 Ambiguities inherent to a path (S(Πo
a) 6= ∅)

Considering a support π = t0 . . . tf1
. . . tof1

. . . tf2
. . . tfn

. . . tm, its faulty transition candidates {tf1
, . . . , tfn}, and

suppose that there is at least one faulty transition candi-
date that induces that S(Πo

a) 6= ∅. For each tfi , the first
observable transition following it in π is denoted tofi .

Proposition 2 defines the conditions of emptiness of S(Πo
a).

As a consequence, the type of adjustments by time restric-
tion to empty S(Πo

a) are the following ones:

S0: trivialization of the firing date of tofi relatively to the
firing of tfi for each tfi that is source of an ambiguity

S1: enforcement of the ambiguous transition to become
always faulty (by adjusting the set of its firing dates to
always match the fault behaviour for this particuliar
sequence)

Lemma 1. Let’s consider tfi , tofi and tuo0 , . . . tuok the
unobservable transitions between tfi and tofi in π. S0 can
be formalized as the set of constraints:

∀j ∈ [0, k], ↓ (tuoj ) =↑ (tuoj ), ↓ (tofi ) =↑ (tofi )

Solution S0 can be seen as a determinisation of the time
elapsed since the firing of the faulty transition candidate,



for each faulty transition candidate. This solution, how-
ever, cannot be applied as soon as one of the transitions
tofi , tuo0 , . . . tuok is not in Tp (a transition cannot be pa-

rameterized). Consider now solution S1.

Lemma 2. Let Fπ = {tf1
, . . . , tfn} be the set of faulty

transition candidates of π. S1 can be formalized as:

∃tf ∈ Fπ, aΩf
≤ atf ≤ btf ≤ bΩf

where atf and btf are respectively the earliest and latest
dates of firing of tf relatively to the start of the system.

Solution S1 can be seen as forcing the system to be faulty
if its behaviour follows a particuliar support. As for S0,
its implementation depends on the transitions involved in
the time constraints and their belonging to Tp.

For a path (π,Π,Πo), the constraint set that characterizes
the disambiguation from Πa can be written Π ∧ (S0∨S1).
Considering that a system contains k ambiguous path (k
sequences of transition for which there are inherent am-
biguities), the constraints set providing a non-ambiguous

solution can be written
k−1∧
j=0.

(Πj ∧ (S0j ∨ S1j).

Example 6. Let’s consider Tp = {t0, t4, t5, t7, t11}. For the
path π0, solution S1 can be implemented as the following
constraints: aΩf

≤ at0 + at1 and bt0 + bt1 ≤ bΩf
. As t0

is parameterized, there is a solution for these constraints:
at0 = bt0 = 6.

4.2 Ambiguities from two different paths

Considering two paths (π,Π,Πo) and (π′,Π′,Πo′) such

that (π,Πo
s)∩(π′,Πo′

c ) 6= ∅, Proposition 3 states that there
is a source of critical pairs. This source of critical pairs
comes from the fact that for each observable transition
of the two paths there is at least one common observable
date. In order to delete such an ambiguity, one need:

S2: modification for one of the observable transition of π
of its earliest observable date such that it becomes
greater than the latest observable date of the corre-
sponding transition in π′.

Lemma 3. Considering two polyhedra (π,Πo
c) and (π′,

Πo′

s ) sharing their untimed observable trace, S2 can be
formalized as follows. Let (tn+l, t

′
n+l′) be a couple of

observable transitions with same label and common firing
dates from π and π′:

S2 =
∨

set of (tn+l,t′n+l′
)

(atn+l
> bt′

n+l′
) ∨ (at′

n+l′
> btn+l

).

To disambiguate pair (π, π′) such that (π,Πs)∩ (π′,Π′c) 6=
∅, constraint S2 must be added to the previous constraints.

Example 7. Considering the paths π0 and π1 = t7.t8.t9.t10

.t11.t7, there is an ambiguity as π0 can be faulty and π1

is safe. Solution S2 can be implemented as at7 > bt0
∨ at0 > bt7 . Using at0 = bt0 = 6 and bt7 = 4, Θ is
1-diagnosable, so for the set of parametrised transitions
Tp, the valuation set Vd = {Is(t0) = [6, 6], Is(t4) =
[1, 2], Is(t5) = [2, 3], Is(t7) = [2, 4], Is(t11) =]4, 5[} is a
solution of TR-diagnosabilisation.

5. CONCLUSION

This paper introduces the problem of TR-diagnosabilisation
of a system modeled as a safe LTPN and proposes a first
resolution method that ensures ∆-diagnosability. Based on
a ∆-diagnosability analysis that enumerates the sources
of critical pairs, time constraints that delete critical pairs
are synthetized. Those constraints are added to the time
constraints relative to the structure of the system, and if
there is a solution to this constraints set, this solution is a
solution for TR-diagnosabilisation.

The proposed method relies on a sufficient condition for
TR-diagnosabilisation. Future works will focus on the de-
termination of a necessary and sufficient condition for TR-
diagnosabilization and the extension to Ωf -diagnosability.
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