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An application of Sparre Andersen’s fluctuation theorem

for exchangeable and sign-invariant random variables
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Abstract

We revisit here a famous result by Sparre Andersen on persistence probabilities P(Sk ≥ 0 ∀ 0 ≤
k ≤ n) for symmetric random walks (Sn)n≥0. We give a short proof of this result when
considering sums of random variables that are only assumed exchangeable and sign-invariant.
We then apply this result to the study of persistence probabilities of (symmetric) additive
functionals of Markov chains, which can be seen as a natural generalization of integrated random
walks.

Keywords: Randoms walks; exchangeability; fluctuation theory; persistence problem; additive
functionals, Markov chains.
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1 Introduction

We discuss in this paper several results on persistence problems for symmetric random walks, in
particular the well known (but nonetheless striking) fluctuation theorem due to Sparre Ander-
sen [21]. To introduce the result, let ξ1, . . . , ξn be real random variables and let us denote S0 = 0,
and Sk =

∑k
i=1 ξi for 1 ≤ k ≤ n. Then, one is interested in estimating the persistence probabilities

P
(
Sk > 0 for all 1 ≤ k ≤ n

)
or P

(
Sk ≥ 0 for all 1 ≤ k ≤ n

)
.

Sparre Andersen’s result [21] states that if the (ξi)1≤i≤n are i.i.d., symmetric and have no atom,
then these probabilities do not depend on the law of ξ.

Theorem A. If the (ξi)1≤i≤n are i.i.d. and if the distribution of ξi is symmetric and has no atom,
then we have

P
(
Sk > 0 for all 1 ≤ k ≤ n

)
=

(2n− 1)!!

(2n)!!
=

1

4n

(
2n

n

)
.

In fact, [21] proves a number of results for exchangeable random variables, but the indepen-
dence plays an important role in obtaining fluctuation’s results, such as arcsine laws or persistence
probabilities. Chapter XII in Feller’s book [11] provides a streamlined approach to Sparre Ander-
sen’s result, using a duality argument together with a (purely combinatorial) cyclic lemma, see [11,
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XII.6]: these two ingredients only require the law of (X1, . . . ,Xn) to be exchangeable. Indepen-
dence is required in the last step of the proof, in order to obtain that the ladder epochs defined
iteratively by T+

0 = 0 and T+
k = min{n ≥ T+

k−1, Sn > max0≤j<n{Sj}} form a renewal sequence.
The following is then deduced, see [11, XII.7, Thm. 1]:

Theorem B. If the (ξi)i≥1 are i.i.d., then 1 − E
[
sT

+
1
]
= exp

(
− ∑∞

n=1
sn

n P(Sn > 0)
)
for any

s ∈ [0, 1).

Theorem B can be seen as a particular case of a Wiener–Hopf factorization, also known as Spitzer–
Baxter formula, which gives the joint Laplace transform/characteristic function of the first ladder
epoch and ladder height, see [11, XII.9]. Note that if the law of Xi is symmetric and has no atom,

one has P(Sn > 0) = 1
2 for all n, so the generating function of T+

1 is given by E[sT
+
1 ] = 1−

√
1− s.

Let us mention that another proof of Theorem A is presented in [9, Prop. 1.3]: the proof is
remarkably simple and elegant and relies on a decomposition with respect to the first time that
(Sk)k≥0 hits its minimum min1≤j≤n{Sj}, using the independence of the (ξi)1≤i≤n. The goal of
our paper is to present a version of Theorem A valid for exchangeable and sign-invariant random
variables (ξi)1≤i≤n, going beyond the independent and symmetric setting. Sparre Andersen was
already aware of this result, see [21, Thm. 4] (its proof is however a bit laconic), but we give
here a short and self-contained proof (with no combinatorial lemma), taking inspiration from [9].
We then present some application to persistence probabilities for symmetric additive functionals
of birth-death chains, giving in particular a simple proof of Sinai’s result [20] on the integrated
simple random walk.

2 The case of exchangeable and sign-invariant random variables

Below, we consider examples in which there is no independence: one is however still able to obtain
the same conclusion as in Theorem A, using some weaker but natural assumption. Let us introduce
some terminology: the law P of (ξ1, . . . , ξn) is said to be:

(E) exchangeable if for any permutation σ ∈ Sn, (ξσ(1), . . . , ξσ(n)) has the same distribution as
(ξ1, . . . , ξn);

(S) sign-invariant if for any ε = (ε1, . . . , εn) ∈ {−1, 1}n, (ε1ξ1, . . . , εnξn) has the same distribution
as (ξ1, . . . , ξn).

One can think about these two assumptions as an invariance of P under the action of the groups:
of permutations Sn for condition (E); of sign changes {−1, 1}n for condition (S).

The following result is actually already mentioned in [21, Thm. 4]: the present paper is meant
as a way to put more emphasis on this result; we then provide some applications.

Theorem 2.1. Assume that (ξ1, . . . , ξn) satisfies conditions (E)-(S). Then, if P has no atom,

P
(
Sk > 0 for all 1 ≤ k ≤ n

)
=

(2n− 1)!!

(2n)!!
=

1

4n

(
2n

n

)
.

In general, if P has atoms, we have

P
(
Sk > 0 for all 1 ≤ k ≤ n

)
≤ (2n − 1)!!

(2n)!!
=

1

4n

(
2n

n

)
≤ P

(
Sk ≥ 0 for all 1 ≤ k ≤ n

)
.
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One can easily see that both conditions (E)-(S) are necessary to obtain the statement of Theo-
rem 2.1, see for instance Section 4.2 below.

Remark 2.2 (About sign-invariance). The sign-invariance of (ξ1, . . . , ξn) can be seen as a strong
form of symmetry for the law of (ξ1, . . . , ξn). Let us mention the article [6] which derives some prop-
erties of sign-invariant sequences: in particular, [6, Lem. 1.2] tells that sign-invariant (ξ1, . . . , ξn)
are independent conditionally on (|ξ1|, . . . , |ξn|). In other words, any exchangeable and sign-
invariant law can be obtained by taking a random vector (Z1, . . . , Zn) (that can be constrained
to have 0 ≤ Z1 ≤ · · · ≤ Zn) and by shuffling and changing the signs of its coordinates ran-
domly, that is setting ξi = εiZσ(i) for 1 ≤ i ≤ n, where the (εi)1≤i≤n are i.i.d. signs (i.e. such

that P(εi = ±1) = 1
2) and σ is a random uniform permutation of {1, . . . , n} (i.e. such that

P(σ = ν) = 1
n! for all ν ∈ Sn).

Remark 2.3 (Finite vs. infinite sequences). The law of an infinite sequence (ξi)i≥1 of random
variables is called exchangeable, resp. sign-invariant, if for any n ≥ 1 the law of (ξ1, . . . , ξn) is
exchangeable, resp. sign-invariant. By de Finetti’s theorem, one knows that the law of ξ = (ξi)i≥1

is exchangeable if and only if it is conditionally i.i.d.: in other words, there exists a random
probability distribution µ such that P(ξ ∈ · | µ) = µ⊗∞, where µ⊗∞ denotes the law of an infinite
sequence of i.i.d. random variables with law µ. In [5, Thm. 1], it is shown that an exchangeable
sequence (ξi)i≥1 is sign-invariant if and only if µ is almost surely symmetric. From this, it is easy
to derive Theorem 2.1 for an exchangeable and sign-invariant sequence (ξi)i≥1, simply by working
conditionally on the realization of µ. Hence, the truly remarkable fact about Theorem 2.1 is that
it holds for a finite exchangeable and sign-invariant (ξ1, . . . , ξn).

3 Persistence probabilities of f-integrated birth-death chains

Let us consider (Xn)n≥0 a birth and death Markov chain, starting from X0 = 0: it is a Markov
chain on Z such that |Xn −Xn−1| ≤ 1, with transition probabilities

px = p(x, x+ 1), qx = p(x, x− 1), rx = p(x, x) = 1− px − qx for x ≥ 1.

We assume that (Xn)n≥0 is symmetric, in the sense that (−Xn)n≥0 has the same distribution as
(Xn)n≥0; in other words, the transition probabilities verify p(x, y) = p(−x,−y) for any x, y ∈ Z.
For x = 0, we also set p0 = p(0, 1) ∈ (0, 12 ], q0 = p(0,−1) = p0 and r0 = p(0, 0) = 1− 2p0.

Let f : Z → R be any anti-symmetric function which preserves the sign of x, i.e. such that
f(x) > 0 for x > 0 and f(x) < 0 for x < 0 (and naturally f(0) = 0). Then we define the
f -integrated Markov chain, or additive functional, as follows: ζ0 = 0 and, for n ≥ 1,

ζn :=

n∑

i=1

f(Xi) . (3.1)

We are now interested in the persistence (or survival) probabilities

P(ζk > 0 for all 1 ≤ k ≤ n) or P(ζk ≥ 0 for all 1 ≤ k ≤ n) .

A classical, well-studied example is when (Xn)n≥0 is the simple symmetric random walk and f
is the identity: then (ζn)n≥0 is the integrated random walk and the persistence probabilities are
known to be of order n−1/4, see [20]. We prove the following result.
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Theorem 3.1. Let (Xn)n≥0 be a symmetric recurrent birth-death chain and let f be an anti-
symmetric function which preserves the sign of x. Let p := P(X1 ≥ 0) = 1 − p0 and let g(m) :=
1
4m

(2m
m

)
, with by convention g(m) = 0 if m < 0. Then we have for all n ≥ 1

P
(
ζk > 0 for all 1 ≤ k ≤ n

)
≤ E

[
g(Ln)

]
≤ p−1P

(
ζk ≥ 0 for all 1 ≤ k ≤ n

)
,

where Ln :=
n∑

k=1

1{Xk=0} is the local time of the chain at 0 up to time n. We also have

P
(
ζk > 0 for all 1 ≤ k ≤ n

)
≥ p(1− p)E

[
g(Ln − 1)1{Ln≥1}

]
.

Let us mention that our approach is based on an excursion decomposition of the process (Xn)n≥0.
Our results would still be valid for Markov chains that “cannot jump above 0”, i.e. such that
P(Xn ≤ 0 | Xn−1 = x) = P(Xn = 0 | Xn−1 = x) for any x ∈ N. We have chosen to stick with
the birth-death setting since it is the most natural example of such chains (and already contains
a wide class of behaviors).

In the Theorem 3.1 above, since we have g(m) = 1
4m

(2m
m

)
∼ (πm)−1/2 as m → ∞ and since the

chain is assumed to be recurrent (which implies that Ln → ∞ a.s.), it is tempting to replace the
term E[g(Ln)] by (1 + o(1))π−1/2E[(1 +Ln)

−1/2]. However, one needs a bit of caution: let us give
a sufficient condition (often verified in practice) to obtain such a result1.

Lemma 3.2. Assume that:

(i) there is a sequence (bn)n≥1, limn→∞ bn = +∞, such that ( 1
bn
Ln)n≥1 converges in distribution

to a random variable X ;

(ii) for all t > 0 we have supn≥1P( 1
bn
(1 +Ln) ≤ t) ≤ Ch(t), for some constant C > 0 and some

non-decreasing function h that verifies
∫∞
0 h(u)u−3/2du < +∞.

Then the random variable X verifies E[X−1/2] < +∞ and, as n → ∞,

E
[
g(Ln − 1)1{Ln≥1}

]
∼ E

[
g(Ln)

]
∼ 1√

π
E
[
(1 + Ln)

−1/2
]
∼ 1√

πbn
E
[
X−1/2

]
.

If (Xn)n≥0 is positive recurrent, then E[g(Ln)] ∼
√

E[τ1]√
πn

, where τ1 := inf{n ≥ 1,Xn = 0}.
Example 3.3. We give below a class of example where Lemma 3.2 can be applied, but let us
comment on the case of the simple symmetric random walk (Xn)n≥0. In that case, Lemma 3.2 is
verified with bn =

√
n/2 and X = |Z|, Z ∼ N (0, 1); and with the function h(u) = min(u, 1). We

then get that the persistence probabilities for the integrated random walk verify

(1 + o(1))14c0n
−1/4 ≤ P

(
ζk > 0 for all 1 ≤ k ≤ n

)
≤ (1 + o(1))c0n

−1/4 , (3.2)

with c0 := π−1/221/4E[|Z|−1/2] = π−1Γ(1/4). This recovers a result by Sinai [20] (in the case
f(x) = x) and makes the constants explicit.

Remark 3.4. We stress here that the asymptotic bounds that we obtain combining Theorem 3.1
and Lemma 3.2 do not depend on the (anti-symmetric) function f in the definition (3.1) of ζn. In
particular, the bounds (3.2) obtained in the case of the simple random walk (and in Proposition 3.5
below for Bessel-like random walks) are valid for any anti-symmetric function function f .

1For non-asymptotic bounds, one could also use the following: for m ≥ 1, e−
1

6m ≤
√
πmg(m) ≤ e

− 1

24m .
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A class of examples: Bessel-like random walks

Let us give more precise result in the case of symmetric Bessel-like random walk, see [1, 13, 16].
This is a class of birth-death chains that includes the simple symmetric random walk. They have
the following transition probabilities: for x ≥ 1

px := p(x, x+ 1) =
1

2

(
1− δ + εx

2x

)
, p(x, x− 1) = 1− px , (3.3)

where δ ∈ R and εx is such that limx→∞ εx = 0; we take p(−x,−x − 1) = p(x, x + 1) and
p(0, 1) = p(0,−1) = 1

2 , for symmetry reasons. We also assume uniform ellipticity, i.e. there is
some η > 0 such that px ∈ [η, 1 − η] for all x ∈ Z. The parameter δ is called the drift parameter
and we have the following behavior: the walk (Xn)n≥0 is transient if δ < −1, recurrent if δ > −1,
positive recurrent if δ > 1; in the cases δ = −1 and δ = 1, the behavior depends on the function εx.

More precisely, letting λx =
∏x

k=1
px

1−px
, the random walk (Xn)n≥1 is recurrent if and only if∑∞

x=1 λx = +∞. Moreover, with the notation (3.3), there is a constant K0 > 0 such that

λx =
x∏

k=1

1− pk
pk

∼ K0 x
δℓ(x)−1 as x → ∞, where ℓ(x) := exp

( x∑

k=1

εk
k

)
. (3.4)

Note that ℓ is a slowly varying function.
Then, in [1], the sharp tail of the distribution of τ1 := inf{n ≥ 1,Xn = 0} is derived: we

reported the result in Section 5.3 below, see (5.1). This enables us to verify that Ln satisfies the
assumptions of Lemma 3.2 and to show the following result. We focus on the null-recurrent case,
since the positive recurrent case is treated in Lemma 3.2.

Proposition 3.5. Assume that (Xn)n≥0 is null-recurrent (necessarily δ ∈ [−1, 1]). Then let us
set κ := 1+δ

2 ≥ 0 and define

bn :=





nµ(n)−1 if δ = 1 ,
K0Γ(κ)

21−κΓ(1−κ)
nκℓ(

√
n)−1 if δ ∈ (−1, 1) ,

K−1
0 ν(n)−1 if δ = −1 ,

with

µ(n) :=

n∑

k=1

P(τ1 ≥ k) ,

ν(n) :=
∑

x≤n, x even

1

xℓ(
√
x)

.

(3.5)

In the case δ = 1, µ(n) is slowly varying (and limn→∞ µ(n) = E[τ1]); in the case δ = −1, ν(n) is
slowly varying and the recurrence is equivalent to having limn→∞ ν(n) = +∞.

We then have that

(1 + o(1)) 1
4cκ(bn)

−1/2 ≤ P
(
ζk > 0 for all 1 ≤ k ≤ n

)
≤ (1 + o(1)) cκ(bn)

−1/2 ,

with: cκ = 1 if δ = 1; cκ = E[Zκ/2] if δ ∈ (−1, 1), where Z is a one-sided κ-stable random variable
of Laplace transform e−tκ ; cκ =

√
π if δ = −1.
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Further comments and comparison with the literature

Let us stress that there are several directions in which one could extend our results. First, one
could consider more general underlying random walks or Markov chains, for instance random walks
with non-necessarily symmetric increments or Markov chains that can “jump over 0”. One could
also consider more general functions f , not necessarily symmetric. Another room for improvement
is to obtain sharp asymptotics for the persistence probabilities, i.e. for instance finding the correct

constant ĉκ such that P(ζk > 0 for all 1 ≤ k ≤ n) ∼ ĉκb
−1/2
n in Proposition 3.5.

A big part of the literature has considered the case of integrated random walks, that is con-
sidering the Markov chain Xn =

∑n
k=1 ξk with (ξk)k≥0 i.i.d. random variables and ζn =

∑n
i=1 Xi

(i.e. taking f(x) = x), starting with the work of Sinai [20]. Under the condition that the ξk’s
are centered with a finite second moment, the persistence probability P(ζk > 0 for all 1 ≤ k ≤ n)
has been proven to be of order n−1/4 in [9], and the sharp asymptotic ∼ c1n

−1/4 in [10]. The
case where ξk does not have a finite second moment remains mostly open, except in some specific
(one-sided) cases, see e.g. [9, 22]. Our result can be seen as an extension to persistence problems
for additive functionals of Markov chains (Xn)n≥0; with the major restriction of symmetry and of
the fact that the underlying Markov chain cannot jump above 0 (but with the advantage of having
an elementary proof).

Another line of works considered persistence problems for additive functionals of continuous-
time Markov processes (Xt)t≥0. Let us mention [12] that considered the case of an integrated
Brownian motion, and [14, 19] who considered the f -integral of a Brownian motion or a skew-Bessel
process respectively, for the (possibly asymmetric) functional f(x) = |x|γ(c+1{x>0} − c−1{x<0})
for some γ > −1. More recently, in [4], we have pushed further the existing techniques (based on a
Wiener–Hopf decomposition of a bi-variate Lévy process associated to the problem): we obtained
the sharp asymptotics for persistence probabilities for a wide class of Markov processes (including
one-dimensional generalized diffusions, see [15]) and of functions f . In particular, [4, Example 6]
shows that the result applies to continuous-time birth-death processes, giving the existence of
the constant ĉκ mentioned above. The present article can be seen as a elementary approach to
obtaining a sub-optimal result.

4 Exchangeable and symmetric sequences: proof of Theorem 2.1

Let us introduce some notation. For n ∈ N and for a fixed x = (x1, . . . , xn) ∈ R
n, we define

an exchangeable and symmetric vector ξ = (ξ1, . . . , ξn) with law denoted P(x) by permuting the
coordinates of (x1, . . . , xn) by a random uniform permutation and by changing the signs of the
coordinates uniformly at random. More precisely, let (εi)1≤i≤n be i.i.d. random variables with law
P(ε1 = 1) = P(εi = −1) = 1

2 and let σ be a random permutation of {1, . . . , n} with uniform
distribution P(σ = ν) = 1

n! for all ν ∈ Sn, independent of (εi)1≤i≤n: we then define

(ξ1, . . . , ξn) := (ε1xσ(1), . . . , εnxσ(n)) . (4.1)

Note that we can restrict to the case where xi ∈ R+ for all 1 ≤ i ≤ n.
We then construct the random walk Sk =

∑k
i=1 ξi for any 0 ≤ k ≤ n, and we are interested in

6



the persitence probabilities

pn(x) := P(x)
(
Sk > 0 for all 1 ≤ k ≤ n

)
and p̄n(x) := P(x)

(
Sk ≥ 0 for all 1 ≤ k ≤ n

)
.

We set by convention these probabilities equal to 1 for n = 0.

Proposition 4.1. If x = (x1, . . . , xn) is such that
∑

i∈I
xi 6=

∑

j∈J
xj for all I, J ⊂ {1, . . . , n} with I 6= J (H)

(by convention
∑

i∈∅ xi = 0), then we have that

pn(x) = p̄n(x) =
1

4n

(
2n

n

)
=

(2n − 1)!!

(2n)!!
=

n∏

i=1

(
1− 1

2i

)
.

and in particular it does not depend on x. In general, we have pn(x) ≤ (2n−1)!!
(2n)!! ≤ p̄n(x).

Theorem 2.1 follows directly from Proposition 4.1, noting that the law P of (ξ1, . . . , ξn), con-
ditionally on |ξ| = (|ξ1|, . . . , |ξn|), is P(|ξ|).

4.1 Proof of Proposition 4.1

Our proof is greatly inspired by that of [9, Prop. 1.3]. We start with the first statement: we are
going to prove by recurrence on n that for any x = (x1, . . . , xn) that verifies the assumption (H),
the quantities pn(x) = p̄n(x) do not depend on x. The statement is trivial for n = 1 since we have
P(x)(ξ1 > 0) = P(x)(ξ1 ≥ 0) = 1

2 if x 6= 0, so we directly proceed to the induction step.
Let us fix n ≥ 2 and some x = (x1, . . . , xn) that verifies assumption (H). We now apply a path

decomposition used in [9]. Let W = min{k, Sk = max1≤i≤n Si}: then, for any ℓ ∈ {0, . . . , n}, we
have

{W = ℓ} = {ξℓ > 0,ξℓ + ξℓ−1 > 0, . . . , ξℓ + · · ·+ ξ1 > 0}
∩ {ξℓ+1 ≤ 0, ξℓ+1 + ξℓ+2 ≤ 0, . . . , ξℓ+1 + · · ·+ ξn ≤ 0} .

Now, we have no independence at hand, but we can further decompose over permutations of
(x1, . . . , xn) with a fixed image I = σ({1, . . . , ℓ}): we get

P(x)(W = ℓ) =
∑

I⊂{1,...,n},|I|=ℓ

∑

ν1:{1,...,ℓ}→֒→I

∑

ν2:{ℓ+1,...,n}→֒→Ic

1

n!
P
( j∑

i=0

εℓ−ixν1(ℓ−i) > 0 for all 0 ≤ j ≤ ℓ− 1 ,

j∑

i=1

εℓ+ixν2(ℓ+i) ≤ 0 for all 1 ≤ j ≤ n− ℓ
)
,

where ν : A →֒→ B means that ν is a bijection from A to B. By independence and symmetry of the
(εi)1≤i≤n, then recombining the sums over the permutations and using the exchangeability, we get
that P(x)(W = ℓ) is equal to

∑

I⊂{1,...,n},|I|=ℓ

ℓ!(n− ℓ)!

n!
P(xI )

(
Sk > 0 for all 1 ≤ k ≤ ℓ

)
P(xIc)

(
Sk ≥ 0 for all 1 ≤ k ≤ n− ℓ

)
,
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where we have defined xJ = (xi)i∈J for any J ⊂ {1, . . . , n}. Since both xI and xIc verify the
assumption (H), we can apply the induction hypothesis: we have that pℓ(xI), pn−ℓ(xIc) does not
depend on xI , xIc , for 1 ≤ ℓ ≤ n− 1. Hence, denoting pℓ := pℓ(xI), pn−ℓ := pn−ℓ(xIc), we end up
with P(x)(W = ℓ) = pℓpn−ℓ, for any ℓ ∈ {1, . . . , n− 1}.

Since we have P(x)(W = n) = P(x)(ξn > 0, ξn + ξn−1 > 0, . . . , ξ1 > 0) = pn(x) by exchange-
ability and P(x)(W = 0) = P(x)(Sk ≤ 0 for all 1 ≤ k ≤ n) = p̄n(x) by symmetry, we get

1 =

n∑

ℓ=0

P(x)(W = ℓ) = pn(x) +

n−1∑

ℓ=1

pℓpn−ℓ + p̄n(x) .

Using that
∑

i∈I xi 6=
∑

j∈J xj for all I, J ⊂ {1, . . . , n} with I 6= J , we obtain that pn(x) = p̄n(x):
the above identity shows that pn(x) = p̄n(x) =: pn does not depend on x.

We can now determine the value of pn, as done in [9]. From the above, (pn)n≥0 satisfies
the recursive relation 1 =

∑n
ℓ=0 pℓpn−ℓ for every n ≥ 0 (recall that p0 = 1). Constructing the

generating function, we get that for any |x| < 1,

∞∑

n=0

xn =
1

1− x
=

( ∞∑

ℓ=0

pℓx
ℓ
)2

.

Therefore, the generating function of (pn)n≥0 is equal to (1−x)−1/2, from which one deduces that

pn = 1
4n

(
2n
n

)
= (2n−1)!!

2n!! for all n ≥ 0.

For the general bounds, for any fixed x, for any δ > 0 fixed, one can choose y = y(x, δ) such
that x + y verifies the assumption (H) and

∑n
i=1 |yi| ≤ δ (take e.g. a typical realization of i.i.d.

random variables uniform in [0, δ/n]). Then, we clearly have that

P(x+y)
(
Sk ≥ 0 for all 1 ≤ k ≤ n

) ≥ P(x)
(
Sk ≥ δ for all 1 ≤ k ≤ n

)
,

≤ P(x)
(
Sk ≥ −δ for all 1 ≤ k ≤ n

)
.

Since x + y verifies assumption (H), we get that the probability on the left-hand side does not

depend on x, y (and is equal to (2n−1)!!
2n!! ), so

P(x)
(
Sk ≥ δ for all 1 ≤ k ≤ n

)
≤ (2n− 1)!!

2n!!
≤ P(x)

(
Sk ≥ −δ for all 1 ≤ k ≤ n

)
.

Since δ is arbitrary, letting δ ↓ 0 concludes the proof.

4.2 On the necessity of conditions (E)-(S)

Let us stress that in the construction (4.1) of the exchangeable and symmetric vector (ξ1, . . . , ξn),
the two assumptions are essential:

(a) The signs (εi)1≤i≤n need to be independent. As a counter-example, take (εi)1≤i≤n uniform
on {ω ∈ {−1, 1}n,∑n

i=1 ωi ∈ {2−n, n−2}}, so that ξ is still symmetric. Let x = (x1, . . . , xn) ∈ R
n
+

with x1 ≥ x2 ≥ · · · ≥ xn (this is no restriction by definition of ξ). Then to have Sk > 0 for all
1 ≤ k ≤ n, we need to have ε1 = +1 (which happens with probability 1/2n) and then, since all
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other signs are εi = −1, we need to place x1 in the first position (which happens with probability
1/n): we get

pn(x) = P(x)
(
Sk > 0 for all 1 ≤ k ≤ n

)
=

{
1

2n2 if x1 >
∑n

i=2 xi ,

0 if x1 ≤
∑n

i=2 xi .

Therefore pn(x) depends on x.

(b) The signs (εi)1≤i≤n need to be independent from the permutation σ. As a counter-example,
take n = 3 and x = (x1, x2, x3) ∈ (R+)

3 with x1 > x2 > x3 > 0: then the probability P(x)(S1 >
0, S2 > 0, S3 > 0) is equal to (one needs to have ε1 = +1)

P(ε1 = ε2 = ε3 = 1) +P(ε1 = ε2 = 1, ε3 = −1, xσ(3) < xσ(1) + xσ(2))

+P(ε1 = ε3 = 1, ε2 = −1, xσ(2) < xσ(1)) +P(ε1 = 1, ε2 = ε3 = −1, xσ(2) + xσ(3) < xσ(1)) .

Now, if the joint distribution of (ε, σ) is such that ε = (εi)1≤i≤3 is uniform on {−1, 1}3 and
P(σ(3) = 3 | ε1 = ε2 = +1, ε3 = −1) = 1, P(σ(2) = 3 | ε1 = ε2 = +1, ε3 = −1) = 1 and
P(σ(1) = 1 | ε1 = +1, ε2 = ε3 = −1) = 1, since x1 > x2 > x3 > 0, we get that

P(x)(S1 > 0, S2 > 0, S3 > 0) =
1

4
+

1

8
1{x1>x2+x3} ,

which depends on x. It simply remains to see that the above conditions on the joint distribution
of (ε, σ) can be satisfied, which can be checked by hand.

5 Integrated birth and death chains

5.1 Persistence for integrated birth-death chains: Proof of Theorem 3.1

Let us define iteratively τ0 = 0 and, for k ≥ 1, τk = min{n > τk−1,Xn = 0}. Then, we define for
k ≥ 1, the random variable

ξk =

τk∑

i=τk−1+1

f(Xi) ,

i.e. the contribution of the k-th excursion of (Xn)n≥0 to the f -integrated Markov chain. Note that
by the Markov property, the (ξk)k≥1 are i.i.d. We can therefore write ζn :=

∑n
i=1 f(Xi) as

ζn =
Ln∑

k=1

ξk +Wn, Wn =
n∑

i=τLn
+1

f(Xi)

where we recall that Ln =
∑n

i=1 1{Xi=0} is the local time at 0. Since there is no change of sign
during an excursion (recall that (Xn)n≥0 is a birth-death chain), we have that (ζ)n≥0 is monotonous
on each interval (τk−1, τk].

We therefore get the following upper bound: removing the positivity condition on the last
segment (τLn

, n], we get

P(ζk > 0 for all 1 ≤ k ≤ n) ≤ P
( ℓ∑

k=1

ξk > 0 for all 1 ≤ ℓ ≤ Ln

)
.
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The difficulty here is that the number of terms in the sum is random and that ξi and Ln are not
independent. If we condition on Ln and on τLn

, we get that

P
( ℓ∑

k=1

ξk > 0 for all 0 ≤ ℓ ≤ Ln

)
= E

[
P
( ℓ∑

k=1

ξk > 0 for all 0 ≤ ℓ ≤ Ln

∣∣∣Ln, τLn

)]
.

Then, for any 0 ≤ m ≤ j ≤ n, conditionally on {Ln = m, τm = j}, the random variables (ξi)1≤i≤m

are not independent, but they are easily seen to be exchangeable and sign-invariant (thanks to
the Markov property and the fact that the chain (Xn)n≥0 is symmetric). We can therefore apply
Theorem 2.1 to obtain that

P
( ℓ∑

k=1

ξk > 0 for all 0 ≤ ℓ ≤ m
∣∣∣Ln = m, τm = j

)
≤ 1

4m

(
2m

m

)
=: g(m) .

This enables us to bound the conditional probability and we end up with

P
(
ζk > 0 for all 1 ≤ k ≤ n

)
≤ E

[
g(Ln)

]
.

As far as the lower bound is concerned, imposing that the excursion straddling n is non-negative
(with probability p) so that Wn ≥ 0, and using that the sign of Wn is independent from the past
by symmetry, we get

P(ζk ≥ 0 for all 1 ≤ k ≤ n) ≥ pP
( ℓ∑

k=1

ξk ≥ 0 for all 1 ≤ ℓ ≤ Ln

)
.

As above, conditioning with respect to Ln, τLn
and using Theorem 2.1, we get that

P(ζk ≥ 0 for all 1 ≤ k ≤ n) ≥ pE
[
g(Ln)

]
.

Let us now derive the last lower bound in Theorem 3.1. On the event {Ln ≥ 1}, let us stress
that ξ1 > 0 if and only if X1 > 0. Then, imposing on this event the first excursion to be positive
and the last to be non-negative, we get that

P(ζk > 0 for all 1 ≤ k ≤ n) ≥ p(1− p)P
( ℓ∑

k=2

ξk > 0 for all 1 ≤ ℓ ≤ Ln, Ln ≥ 1
)
.

Then, conditioning with respect to {Ln = m, τm = j}, and using the exchangeability and sign-
invariance of (ξi)2≤i≤m, we get thanks to Theorem 2.1

P
( ℓ∑

k=2

ξk ≥ 0 for all 1 ≤ ℓ ≤ Ln Ln ≥ 1
∣∣∣Ln = m, τm = j

)
≥ g(m− 1)1{m≥1} ,

since there are only m− 1 terms in the sum. This concludes the proof.

10



5.2 Proof of Lemma 3.2

Let us start by giving the asymptotic of E[(1 + Ln)
−1/2]. First, we have that

E
[
(1 + Ln)

−1/2
]
=

∫ ∞

0
P
(
(1 + Ln)

−1/2 ≥ t
)
dt =

∫ ∞

0
P
(
1 + Ln ≤ t−2

)
dt

= b−1/2
n

∫ ∞

0
P
(
b−1
n (1 + Ln) ≤ u

)
1
2u

−3/2du .

Now, using that P(b−1
n (1+Ln) ≤ u) ≤ Ch(u) with

∫∞
0 h(u)u−3/2du < +∞, together with the fact

that 1
bn
(1 + Ln) converges in distribution to X , we get by dominated convergence that the last

integral converges to

1

2

∫ ∞

0
P(X ≤ u)u−3/2du =

∫ ∞

0
P(X ≤ t−2)dt = E

[
X−1/2

]
,

where the integral is convergent since P(X ≤ u) ≤ Ch(u) with
∫∞
0 h(u)u−3/2du < +∞. This

proves that E[(1 + Ln)
−1/2] = b

−1/2
n E[X−1/2] as n → ∞.

It remains to see that the first expectations are asymptotically equivalent. We simply need to
show that the contribution to E[g(Ln)] is mostly concentrated on large values of Ln. Let us fix
K > 0 arbitrarily large, and notice that since g(m) ≤ 1,

E
[
g(Ln)1{Ln≤K}

]
≤ P(Ln ≤ K) = P

(
b−1
n (1 + Ln) ≤ b−1

n (1 +K)
)
≤ Ch

(
(K + 1)b−1

n

)
.

Now, since h is non-decreasing with
∫ 1
0 h(u)u−3/2du < +∞, we get that h(x)x−1/2 goes to 0 as

x ↓ 0. Hence, for any fixed K > 0, we have that P(Ln ≤ K) = o(b
−1/2
n ). Choosing K = Kn that

goes to infinity slowly enough, this proves that

E
[
g(Ln)

]
= E

[
g(Ln)1{Ln>Kn}

]
+ o(b−1/2

n ) ,

and similarly for E[(1 + Ln)
−1/2]. Now, we clearly have that g(m) = (1 + o(1))π−1/2m−1/2 with

the o(1) uniform in m ≥ Kn. We therefore end up with

E
[
g(Ln)

]
∼ π−1/2E[(1 + Ln)

−1/2] .

The expectation E[g(Ln − 1)1{Ln≥1}] is treated similarly.

We conclude by showing that the assumptions are verified in the case where (Xn)n≥1 is positive
recurrent. The ergodic theorem already shows that limn→∞ 1

nLn = 1
E[τ1]

a.s., so we can take bn = n.
We now show that

P
( 1

n
(1 + Ln) ≤ t

)
= P(1 + Ln ≤ tn) ≤ Ch(t) with h(t) = min(1, t3/4).

Let us consider the successive return times τk = min{n > τk−1,Xn = 0}, which form a renewal
process τ = (τi)i≥0. Then, our starting point is to write that, for any t > 0, we have

P(1 + Ln ≤ tn) = P(τtn > n)
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(we omit the integer part in ⌊tn⌋ for simplicity). If t > 1
4E[τ1]

, we bound this probability by 1. If

t ≤ 1
4E[τ1]

, then we use a standard bound: let δ(t) > 0 to be chosen in a moment, and write

P(τtn > n) ≤ P(∃ k ≤ tn, τk − τk−1 > δ(t)n) +P
( tn∑

k=1

(τk − τk−1)1{τk−τk−1≤δ(t)n} > n
)

≤ tnP(τ1 > δ(t)n) + e−unE
[
exp

(
uτ11{τ1≤δ(t)n}

)]tn
,

with u = 1
δ(t)n . By Markov’s inequality, the first term is bounded by tδ(t)−1E[τ1]. For the second

term, we use that ex ≤ 1 + (e− 1)x ≤ 1 + 2x for all x ∈ [0, 1]: hence, for u = 1
δ(t)n , we have

e−unE
[
exp

(
uτ11{τ1≤δ(t)n}

)]
≤ e−un

(
1 + 2uE[τ1]

)tn ≤ e−
1
2
un ,

where we have also used that (1 + 2uE[τ1])
tn ≤ e

1
2
un since 2tE[τ1] ≤ 1

2 . We therefore end up with

P(1+Ln ≤ tn) ≤ C( t
δ(t) +e

− 1
2δ(t) ) for t ≤ 1

4E[τ1]
. Thich concludes the proof, taking δ(t) = t1/4.

5.3 About Bessel-like random walks: proof of Proposition 3.5

The proof of Proposition 3.5 boils down to the proof of the following lemma, together with an
application of Theorem 3.1 and Lemma 3.2. Recall the notation from Section 3, in particular (3.3)
and (3.4). Recall also the definition (3.5) of the sequence (bn)n≥1.

Lemma 5.1. In the null-recurrent case, ( 1
bn
Ln)n≥1 converges in distribution to:

(i) X = 1 if δ = 1; (ii) X = Z−κ if δ ∈ (−1, 1); (iii) X ∼ Exp(1) if δ = −1.

Additionally we have, uniformly in n, P( 1
bn
(1 + Ln) ≤ t) ≤ Cmin(t, 1) for all t > 0.

Proof. Let us report (part of) the statement of [1, Thm. 2.1]. Let δ ≥ −1 and set κ := 1+δ
2 , then

as n → ∞

if δ > −1 (κ > 0), P(τ1 ≥ x) ∼ 21−κ

K0Γ(κ)
x−κℓ(

√
x) ,

if δ = −1 (κ = 0), P(τ1 ≥ x) ∼ 1
K0

ν(x)−1 ,
(5.1)

where ν(x) is defined in (3.5); also, (Xn)n≥0 is recurrent if and only if limx→∞ ν(x) = ∞.
Since the tail distribution P(τ1 ≥ n) is regularly varying with exponent −κ, we have the

following convergences in distribution for (τn)n≥1; we can then transfer these convergences to Ln,
writing again, for any t > 0, P(1 + Ln ≤ tbn) = P(τtbn > n). Recall that we focus on the null-
recurrent case, so δ ∈ [−1, 1], κ ∈ [0, 1]. Let (an)n≥1 be a sequence such that P(τ1 ≥ an) ∼ n−1 as
n → ∞, then:

(i) Case δ = 1, κ = 1. Then a−1
n (τn − nµ(an)) converges in distribution to a 1 stable law,

see [11, IX.8] (see Eq. (8.15) for the centering): in particular, τn
nµ(an)

converges in probability to 1

(recall that µ(·) is defined in (3.5)).
Setting bn such that bnµ(abn) ∼ n, then we have that

τtbn
n converges to t in probability, so

b−1
n Ln converges in probability to 1. Then, we simply have to notice that if bn is given by the
above relation then we have µ(abn) ∼ µ(n), see e.g. [3, Lem. 4.3], so bn ∼ n/µ(n) as defined in (3.5).
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(ii) Case δ ∈ (−1, 1), κ ∈ (0, 1). Setting ãn = Γ(1 − κ)1/κan we have that 1
ãn
τn converges

in distribution to a one-sided κ-stable random variable Z with Laplace transform e−tκ , see [11,
XIII.6].

Let us set bn such that ãbn ∼ n; using that ãn is regularly varying with exponent 1/κ, we get
that atbn ∼ t1/κabn ∼ t1/κn. We therefore get that limn→∞P(τtbn > n) = P(Z > t−1/κ), showing
that b−1

n (1+Ln) converges in distribution to Zκ. Now, recalling the definition of an and of ãn, we
get that

P(τ1 ≥ n) ∼ P(τ1 ≥ ãbn) ∼ Γ(1− κ)−1P(τ1 ≥ abn) ∼ Γ(1− κ)−1b−1
n ,

which, combined with (5.1), gives the definition of bn in (3.5).

(iii) Case δ = −1, κ = 0. Then n
K0ν(τn)

converges in distribution to an Exp(1) variable, see [8,

Thm. 8].
Let bn = 1

K0ν(n)
. The slowly varying function ν is asymtpotically equivalent to a strictly

increasing and continuous function, so assume that ν is strictly increasing and continuous. Then,
for any t > 0,

P(1 + Ln ≤ tbn) = P(τtbn > n) = P
( tbn
K0ν(τtbn)

<
tbn

K0ν(n)

)
−−−→
n→∞

1− e−t ,

which proves the last claim.

It remains to show the uniform bound on the tail of Ln. Here again, we simply need a uniform
bound on the tail of τn, of the type P(τtbn > n) ≤ Ch(t) for some “good” function h. These
estimates are standard and fall in the “big-jump” phenomenon: in all the cases we consider, there
exists a constant C > 0 such that for any t < 1 (the event τtbn > n is an upper large deviation)
we have

P(1 + Ln ≤ tbn) = P(τtbn > n) ≤ C × tbnP(τ1 > n) . (5.2)

If δ = 1, this is given by [17, Thm. 1.2]; note also that in this case limn→∞ bnP(τ1 > n) = 0, thanks
to [7, Prop. 1.5.9.a.]. If δ ∈ (−1, 1), this is contained in [17, Thm. 1.1]; note that by definition
of bn we have that bnP(τ1 > n) remains bounded in this case. In the case δ = −1, this is due
to [18] (see also [2]); and bnP(τ1 > n) also remains bounded in this case, by definition of bn. In all
cases, bounding the probability by 1 if t ≥ 1, we get that P(1+Ln ≤ tbn) ≤ Cmin(t, 1) uniformly
in n.
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