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Abstract

In this article, we consider additive functionals ζt =
∫ t
0
f(Xs)ds of a càdlàg Markov process

(Xt)t≥0 on R. Under some general conditions on the process (Xt)t≥0 and on the function f ,
we show that the persistence probabilities verify P(ζs < z for all s ≤ t) ∼ V(z)ς(t) t−θ as
t → ∞, for some (explicit) V(·), some slowly varying function ς(·) and some θ ∈ (0, 1).
This extends results in the literature, which mostly focused on the case of a self-similar
process (Xt)t≥0 (such as Brownian motion or skew-Bessel process) with a homogeneous
functional f (namely a pure power, possibly asymmetric). In a nutshell, we are able to
deal with processes which are only asymptotically self-similar and functionals which are only
asymptotically homogeneous. Our results rely on an excursion decomposition of (Xt)t≥0,
together with a Wiener–Hopf decomposition of an auxiliary (bivariate) Lévy process, with
a probabilistic point of view. This provides an interpretation for the asymptotic behavior of
the persistence probabilities, and in particular for the exponent θ, which we write as θ = ρβ,
with β the scaling exponent of the local time of (Xt)t≥0 at level 0 and ρ the (asymptotic)
positivity parameter of the auxiliary Lévy process.
Keywords: Persistence problems; Markov processes; additive functionals; fluctuation theory.
MSC2020 AMS classification: 60G51; 60J55; 60J25.
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1 Introduction

The study of persistence (or survival) probabilities for stochastic processes is a widely investigated
problem and an extensive literature exists on this matter. It consists in estimating the probability
for a given stochastic process to remain below some level (or more generally below some barrier),
at least in some asymptotic regime. For instance, for a general random walk (Sn)n≥0 or a Lévy
process (Zt)t≥0 in R, fluctuation’s theory and the Wiener–Hopf factorization gives the following
characterization, see e.g. [13]. Letting Tz, for z ≥ 0, denote the first hitting of (Sn)n≥0 (resp.
of (Zt)t≥0) above level z, then t 7→ P(Tz > t) is regularly varying with index −ρ, ρ ∈ (0, 1), if
and only if limn→∞

1
n

∑n
k=1 P(Sk > 0) = ρ (resp. if and only if limt→∞

1
t

∫ t
0 P(Zs > 0)ds = ρ).

The latter condition is known as Spitzer’s condition.

1.1 Persistence problems for additive functionals

In this paper, we consider a one-dimensional càdlàg strong Markov process (Xt)t≥0 with values
in R, and we assume that 0 is recurrent for (Xt)t≥0. We denote by Px the law of the process
starting from X0 = x; we also write P = P0 for simplicity. For a measurable function f : R→ R,
we consider the following additive functional of (Xt)t≥0:

ζt =

∫ t

0
f(Xs)ds . (1.1)

We are now interested in the asymptotic behavior of the persistence (or survival) probabilities for
the (non-Markovian) process (ζt)t≥0, i.e. probabilities that the process ζ avoids a barrier during
a long period of time.

For z > 0, we denote by Tz = inf{t > 0, ζt ≥ z} the first hitting time of (ζt)t≥0 at the level z.
We aim at describing the asymptotic behavior of the probability Px(Tz > t). More precisely we
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show that, under some natural conditions on f and (Xt)t≥0 (presented below in Section 2.2),
there exist a persistence exponent θ ∈ (0, 1), a slowly varying function ς(·) and a constant V(z)
such that

P(Tz > t) ∼ V(z)ς(t) t−θ as t→∞ . (1.2)

1.2 Overview of the literature and main contribution

The study of persistence probabilities for additive functionals of random walks or Lévy processes
processes has a long history; we refer to the survey [2] for a thourough review. Let us here present
some quick (and updated) overview of the literature and outline what are the main novelties of
our paper.

The discrete case: integrated random walks. A question that has attracted a lot of
attention since the seminal work of Sinai [44] is that of persistence probabilities for the integrated
random walk. Let (Ui)i≥1 be i.i.d. random variables and let Xn :=

∑n
i=1 Ui. Then setting

ζn =
∑n

k=1Xk, Sinai [44] proved that if (Xn)n≥0 is the simple random walk (i.e. Ui is uniform
in {−1, 1}), then

P(ζk ≥ 0 for all 0 ≤ k ≤ n) � n−1/4 ,

where un � vn means that there are two constants c, c′ > 0 such that c′vn ≤ un ≤ cvn.
In the case where E[Xi] = 0 and E[X2

i ] < +∞, this result has then been extended to include
the case of more general random walks. Vysotsky [48] gave the same � n−1/4 asymptotic for
double-sided exponential and double-sided geometric walks (not necessarily symmetric). Dembo,
Ding and Gao [11] gave a general proof for the � n−1/4 asymptotic. Finally, Denisov and
Wachtel [12] proved the precise asymptotic behavior, i.e. there is some constant c0 such that

P(ζk ≥ 0 for all 0 ≤ k ≤ n) ∼ c0n
−1/4 as n→∞ .

The case where E[Xi] = 0 and (Xi)i≥1 is in the domain of attraction of an α-stable random
variable with α ∈ (1, 2) is still mostly open. An example of a one-sided random variable Xi

with pure power tail is given in [11], for which one has P(ζk ≥ 0 for all 0 ≤ k ≤ n) � n−θ

with θ = α−1
2α . Let us also mention [49], which gives the sharp asymptotic ∼ c0n

−θ in the case
of a one-sided random variables (more precisely, right-exponential or skip free), with the same
exponent θ.

Let us stress that in the discrete case, the main focus in the literature has been so far on
intergrated random walks rather than some more general additive functionals of a more general
Markov process. Nevertheless, let us mention a series of article by I. Grama and R. Lauvergnat
and E. Le Page [18, 19] where the authors study additive functional of discrete-time Markov
chain under a spectral-gap assumption. They show that the probability of persistence behave
like n−1/2 as the simple random walk and they continue the analysis further by proving local
limit theorem for the additive functional conditioned to be positive.

We do not pursue further in this article the case of an additive functional ζn =
∑n

k=1 f(Xn)
of a discrete-time Markov chain (Xn)n≥0, but we mention [3] which uses a generalization of
Sparre Andersen’s formula to treat general cases where X is symmetric (and skip free) and f
is also symmetric; we also refer to Section 2.5 where continuous-time Bessel random walks are
considered. We believe that the methods of the present paper are general and could be adapted
to treat some more general (i.e. non-symmetric) cases.

Integrated Brownian motion and α-stable Lévy processes. Analogously to the discrete
case, the question that first attracted a lot of attention was that of persistence probabilities
for the integrated Brownian motion. Consider (Xt)t≥0 a standard Brownian motion and let
ζt :=

∫ t
0 Xsds and Tz := inf{t, ζt ≥ z}. It is then proven in [17,24] that one also has

P(Tz > t) ∼ c0z
1/6t−1/4 as

t

z2/3
→ +∞ ,
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with an explicit constant c0 = 34/3Γ(2/3)

π213/12Γ(3/4)
. Let us also stress that there exists an explicit formula

for the density of (Tz, BTz), given by Lachal [32].
The case where (Xt)t≥0 is a strictly α-stable Lévy process has been treated more recently.

First, Simon [43] proved that if α ∈ (1, 2) and (Xt)t≥0 is spectrally positive, then, as t→∞ we
have P(Tz > t) = t−θ+o(1) with θ = α−1

2α . (Note that this is the same exponent as in the case of
random walks mentioned above.) In the case α ∈ (0, 2] and if (Xt)t≥0 has a positivity parameter
% := P(Xt > 0), Profeta and Simon [38] proved that, as t→∞,

P(Tz > t) = t−θ+o(1) with θ =
%

1 + α(1− %)
.

These results do not include the case of general Lévy processes (Xt)t≥0. A natural conjecture,
which is still open, is that the above asymptotic behavior for the persistence probabilities re-
mains valid if (Xt)t≥0 is in the domain of attraction of an α-stable Lévy process with positivity
parameter %.

Homogeneous additive functional of (skew-)Bessel processes. In the above, we only ac-
counted for the literature concerning integrated processes, i.e. additive functionals ζt =

∫ t
0 f(Xs)ds

with the identity function f(x) = x. The case of a more general function f has also been con-
sidered, starting with the work of Isozaki [22].

First, in the case where (Xt)t≥0 is a Brownian motion, Isozaki considered the function f is
homogeneous (and symmetric), given by f(x) = sign(x)|x|γ for some γ ≥ 0 and proved that
P(Tz > t) � t−1/4 as t → +∞. This work was inspired by the one of Sinaï [44] and exploits
the underlying idea that the fluctuations of ζt are related to the one of Zt := ζτt where τt is the
inverse local time time at 0 of the Brownian motion. Observing that Zt is a Lévy process for
which fluctuation theory is well known, Kotani managed to solve the persistence problem for ζt by
establishing a Wiener–Hopf factorization for the bi-dimensional Lévy process (τt, Zt)t≥0. Later,
Isozaki and Kotani [23] considered the case where f is homogeneous but possibly asymmetric,
i.e. f(x) = |x|γ(c+1{x>0} − c−1{x<0}) for some c+, c− > 0 and γ > −1: they prove the precise
asymptotic estimate P(Tz > t) ∼ Czt

−ρ/2 as t → +∞, where ρ is some asymmetry parameter
that depends (explicitly) on γ and the ratio c+/c−. Note that the tools used in [23] are somewhat
analytical and do not rely on the Wiener–Hopf factorization established by Isozaki in the previous
article [22].

Let us also mention the work of McGill [34] who considers the case of a Brownian motion,
and a generalized function f taking f(x)dx = 1{x≥0}m+(dx)−1{x<0}m−(dx), with m+ and m−
being Radon measures respectively on R+ and R−. The question raised in [34] is to give the
asymptotic behavior of P(Tz > t) as z ↓ 0, when t is fixed, which is slightly different from our
persistence problem. Using excursion theory of the Brownian motion, McGill proves, under some
technical conditions on m±, that P(Tz > t) ∼ CtV(z) as z → 0 where V is the renewal function
of the ladder height process associated to (Zt)t≥0 (see (2.4) for a definition), generalizing results
in [23].

More recently, Profeta [37] treated the case where (Xt)t≥0 is a skew-Bessel process with
dimension δ ∈ [1, 2) and skewness parameter η ∈ (−1, 1), i.e. roughly speaking a Bessel process
of dimension δ ∈ [1, 2) which has some asymmetry η when it touches 0 (see Example 2 for a proper
definition). Profeta also considers the case of a homogeneous but possibly asymmetric function
f , namely f(x) = |x|γ(c+1{x>0}−c−1{x<0}) for some c+, c− > 0 but his work is restricted to the
case γ > 0. He proves that P(Tz > t) ∼ Czt

−θ as t → ∞, with some explicit expression for the
constant Cz and the exponent θ (see section 2.5 below). Actually, [37] goes further and provides
some explicit expression for the law of different quantities related to this problem.

Let us also mention the work of Simon [43], which deals with the additive functional of a
strictly α-stable Lévy process (Xt)t≥0 with α ∈ (1, 2] and a (symmetric) homogeneous functional
f(x) = sign(x)|x|γ for some γ > −1

2(1 + α). Letting θ = α−1
2α , the first result of [43] is that one

always have P(Tz > t) ≤ Ct−θ; the second result is that if (Xt)t≥0 is spectrally positive, then
P(Tz > t) = t−θ+o(1).
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Our main contribution. Before we briefly describe our contribution, let us make a few com-
ments on the above-mentioned results.

First of all, all the results on persistence probabilities for additive functionals of processes
are limited to: (i) self-similar Markov processes, i.e. Brownian motion, (skew-)Bessel processes
and strictly stable Lévy processes; (ii) functions f that are homogeneous, i.e. also enjoy some
scaling property. These two points are important in the proofs, since it immediately entails some
scaling property for the additive functional (ζt)t≥0; which is then easily seen to be self-similar.

Second, the method of proof of Isozaki [22] relies on an excursion decomposition of the
process (Xt)t≥0, together with a Wiener–Hopf decomposition for the auxiliary process (τt, Zt)t≥0.
Further works, in particular [23,34], did not completely rely on this decomposition to obtain the
sharp asymptotic behavior (and in particular the constant Cz), but rather on a more analytical
approach. For instance, Profeta’s approach in [37] uses exact calculations to derive the densities
of various quantities of interest; the exact formulas available when dealing with Bessel processes
then becomes crucial.

Let us keep the following example in mind (from [37]), that we will use as a common thread:

Example 1.
(i) (Xt)t≥0 is a skew-Bessel process of dimension δ ∈ (0, 2) and skewness parameter η ∈ (−1, 1).
(ii) f is homogeneous f(x) = |x|γ(c+1{x>0} − c−1{x<0}) for some γ ∈ R and c+, c− > 0.

With that said, here are the main contribution of our paper
• We treat the case of a general Markov process (Xt)t≥0 (with some minimal assumption);

in particular, we only need asymptotic properties on (Xt)t≥0. Note that we also treat the
case where (Xt)t≥0 positive recurrent (e.g. an Ornstein-Uhlenbeck process), which seems
to have been left outside of the literature so far.

• We treat the case of a general function f ; in particular, we only need asymptotic properties
on f . In the case of Example 1, we also extend the range of parameters where (1.2) holds,
compared to [23,37], see Section 2.5.

Another contribution of our paper is that it somehow unifies all the above results, by using a
probabilistic approach. We push the excursion decomposition employed in [22, 23] (our main
assumption on (Xt)t≥0 ensures that it possess an excursion decomposition) and we prove on a
slightly more general Wiener–Hopf factorization for the bivariate process (τt, Zt)t≥0. In particu-
lar, this provides a probabilistic interpretation of the exponent θ in (1.2), which we decompose
into two parts: θ = βρ, with (i) β ∈ (0, 1] which descibes the scaling exponent of the local time
of (Xt)t≥0 at level 0 (we have β = 1 − δ/2 in Example 1); (ii) ρ ∈ (0, 1) which is an asymme-
try parameter, namely the asymptotic positivity parameter of (Zt)t≥0 (explicit in Example 1,
see (2.8)). Our approach also provides a natural interpretation of the constant V(z) in (1.2).

2 Main results

2.1 Main assumptions and notation of the article

Throughout this paper, we will consider a strong Markov process (Ω,F , (Ft)t≥0, (Xt)t≥0, (Px)x∈R)
with càdlàg paths and valued in E ⊂ R. We assume that the filtration is right-continuous and
complete and that the process is conservative, i.e. it has an infinite lifetime Px-a.s. for every
x ∈ R. We also assume that 0 ∈ E and we define (ζt)t≥0 as in (1.1), with a function f that
verifies the following assumption.

Assumption 1. The function f is measurable and locally bounded, except possibly around 0. It
is such that a.s. |ζt| < ∞ for any t ≥ 0. Moreover f preserves the sign of x, in the sense that
f(x) ≥ 0 if x > 0 and f(x) ≤ 0 if x < 0. Finally, we assume that f(0) = 0.

As far as the Markov process (Xt)t≥0 is concerned, we assume that 0 is regular for itself,
that is P0(η0 = 0) = 1, where η0 = inf{t > 0, Xt = 0}. We also assume that 0 is recurrent for
(Xt)t≥0. We make the following important assumption on (Xt)t≥0 (the most restricting one).
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Assumption 2. Under P0, the process (Xt)t≥0 is a.s. not of constant sign. Additionally, it
cannot change sign without touching 0.

These assumptions allow us to introduce the local time (Lt)t≥0 of the process (Xt)t≥0 at
level 0. Its right-continuous inverse (τt)t≥0 is a subordinator and we denote by Φ its Laplace
exponent:

tΦ(q) = − logE[e−qτt ] for any q ≥ 0 . (2.1)

We then introduce the process (Zt)t≥0 = (ζτt)t≥0 which we will refer to as the Lévy process
associated to the additive functional (ζt)t≥0. Indeed, (Zt)t≥0 is a pure jump Lévy process with
finite variations and should be understood this way:

Zt := ζτt =

∫ τt

0
f(Xs)ds =

∑
s≤t

∫ τs

τs−

f(Xu)du . (2.2)

We also introduce gt, the last zero before t, and It, the contribution of the last (unfinished)
excursion:

gt := sup{s < t, Xs = 0} and It = ζt − ζgt =

∫ t

gt

f(Xr)dr . (2.3)

To state our theorems, we need to introduce the renewal function V(·) of the usual ladder height
process (Ht)t≥0 associated with (Zt)t≥0, see Section 4.3 for a proper definition of (Ht)t≥0:

V(z) =

∫ ∞
0

P(Ht ≤ z)dt , z ∈ R+ . (2.4)

2.2 Main results I: persistence probabilities

There are two main assumptions under which we are able to obtain the exact asymptotic behavior
for the persistence probability. The first one corresponds to the case where 0 is positive recurrent
for (Xt)t≥0, in which case the last part of the integral, i.e. the term It (see (2.3)), becomes
irrelevant. The second one is a bit more involved since the last term It plays a role; the assumption
is discussed in more detail in Section 2.3 below.

Assumption 3. The point 0 is positive recurrent for (Xt)t≥0.

Under this hypothesis, we have a necessary and sufficient condition so that (1.2) holds. This
condition is the analog of Spitzer’s condition for Lévy processes or random walks.

Theorem 2.1. Suppose that Assumption 3 holds and let ρ ∈ (0, 1). The two following assertions
are equivalent:
(i) limt→∞

1
t

∫ t
0 P(ζs ≥ 0)ds = ρ

(ii) For any z > 0, the map t 7→ P(Tz > t) is regularly varying at ∞ with index −ρ.
Moreover, if (i) or (ii) holds for some ρ ∈ (0, 1), then there exists a slowly varying function ς(·)
such that for any z > 0

P(Tz > t) ∼ V(z)ς(t)t−ρ as t→∞.

For instance, Theorem 2.1 applies to an Ornstein-Uhlenbeck process (Xt)t≥0, see Section 2.5
below. Let us stress that the slowly varying function ς(·) and the so-called renewal function V(·)
can be described explicitly in some cases, see Section 2.5. In particular, if the process (Zt)t≥0 is
symmetric, for instance if (Xt)t≥0 is symmetric and f is odd, then ρ = 1

2 and the slowly varying
function ς(·) is constant (the expression in (5.2) is equal to 1).

Remark 2.2. It is shown below (see Theorem 5.2) that for any ρ ∈ (0, 1), condition (i) above
is equivalent to 1

t

∫ t
0 P(Zs ≥ 0)ds→ ρ as t→∞. Therefore, it is also equivalent to the stronger

condition P(Zt ≥ 0) → ρ as t → ∞, see for instance [6]. It is not clear whether or not these
conditions are equivalent to P(ζt ≥ 0) → ρ as t → ∞. Condition (i) of Theorem 2.1 is satisfied
if, for instance, there is some central limit theorem for (ζt)t≥0; we refer to [7, Thm 5 and 7] for
such instances, in the case of one-dimensional diffusions.
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We now turn to the case where 0 is null recurrent: our assumption is the following.

Assumption 4. The point 0 is null recurrent for (Xt)t≥0. Moreover, there exist α ∈ (0, 2],
β ∈ (0, 1), some functions a(·) and b(·) that are regularly varying around 0 with respective
indices 1/α and 1/β such that the following convergence in distribution holds (for the Skorokhod
topology): (

τht , Z
h
t

)
t≥0

:=
(
b(h)τt/h, a(h)Zt/h

)
t≥0

(d)−−→
(
τ0
t , Z

0
t

)
t≥0

as h→ 0,

where (τ0
t , Z

0
t )t≥0 is a Lévy process. We additionally assume that a(b−1(q))Ie converges in dis-

tribution as q → 0, where e = e(q) is an independent exponential random variable of parameter
q > 0 and b−1 is an asymptotic inverse of b.

Let us stress that Assumption 4 is about the auxiliary process (τt, Zt)t≥0 (and not directly about
the process (Xt)t≥0 and the function f), which may be difficult to verify. We present below in
Section 2.3 some conditions on (Xt)t≥0 and f for Assumption 4 to hold; these conditions are
easier to verify in practice.

Remark 2.3. The limiting process (τ0
t , Z

0
t )t≥0 necessarily satisfies the following scaling property:

(τ0
t , Z

0
t )t≥0

d
= (c−1/βτ0

ct, c
−1/αZ0

ct)t≥0 for any c > 0 .

Also, the fact that (b(h)τt/h)t≥0 converges in distribution to a β-stable subordinator (τ0
t )t≥0 is

actually equivalent to the fact that the Laplace exponent Φ(q) of (τt)t≥0 is regularly varying with
exponent β ∈ (0, 1) as q ↓ 0. In that case, b(·) is an asymptotic inverse of Φ(·) (up to a constant
factor), see Section 6.

Theorem 2.4. Suppose that Assumption 4 holds and assume that (Z0
t )t≥0 has positivity param-

eter ρ = P(Z0
t ≥ 0) ∈ (0, 1). Then there exists a slowly varying function ς(·) such that, for any

z > 0,
P(Tz > t) ∼ V(z)ς(t)t−βρ as t→∞,

where β ∈ (0, 1) is given by Assumption 4.

Let us observe that Example 1, where (Xt)t≥0 is a skew-Bessel process and f is homogeneous,
verify our Assumption 4. Indeed, if γ > −δ, the bivariate Lévy process (τt, Zt)t≥0 directly enjoys
a (β, α)-scaling property (and similarly for It) with β = 1− δ/2 and α = (2− δ)/(2 + γ) ∈ (0, 1),
so it trivially satisfies Assumption 4. Thus, Theorem 2.4 applies and the parameter ρ is also
explicit; we refer to Section 2.5 for further details. The advantage of our result is that we are
able to treat a general class of Markov processes (Xt)t≥0 (for instance that are “asymptotically
skew-Bessel processes”) and of function f (that are “asymptotically” homogeneous).

2.3 Main results II: application to one-dimensional generalized diffusions

In this section we apply our result to a large class of one-dimensional Markov processes. We
recall the Itô-McKean [27, 28] construction of generalized one-dimensional diffusions, based on
a Brownian motion changed of scale and time. Our main goal is to provide conditions on the
function f , the scale function s and speed measure m that ensure that Assumption 4 holds.

Let m : R → R be a non-decreasing right-continuous function sucht that m(0) = 0, and
s : R→ R a continuous increasing function. We assume that s(R) = R, s(0) = 0 and abusively,
we also denote by m the Radon measure associated to m, that is m((a, b]) = m(b) − m(a) for
all a < b. We introduce ms the image of m by s, i.e. the Stieltjes measure associated to the
non-decreasing function m ◦ s−1, where s−1 is the inverse function of s. Then, we define Ams

t the
continuous additive functional of a Brownian motion (Bt)t≥0 given by

Ams

t =

∫
R
Lxtm

s(dx),
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where (Lxt )t≥0,x∈R denotes the usual family of local times of the Brownian motion, assumed to
be continuous in the variables x and t. We let ρt the right-continuous inverse of Ams

t , and we set

Xt = s−1(Bρt).

Then it holds that (Xt)t≥0 is a strong Markov process valued in supp(m), where supp(m) is the
support of the measure m. We refer to Section 7 for more details. We will therefore assume that
0 ∈ supp(m) and in this framework, 0 is a recurrent point for (Xt)t≥0. When supp(m) is some
interval J , (Xt)t≥0 is a one-dimensional diffusion living in J and its generator is formally given
by

A =
d

dm

d

ds
.

Example 2. A skew-Bessel process of dimension δ ∈ (0, 2) and skewness parameter η ∈ (−1, 1),
is the linear diffusion on R whose scale function s and speed measure m are defined as

s(x) = sgn(x)
1− sgn(x)η

2− δ
|x|2−δ and m(dx) =

1

1− sgn(x)η
1{x 6=0}|x|δ−1dx.

Informally, this process can be constructed by concatenating independent excursions of the (usual)
Bessel process, flipped to the negative half-line with probability (1− η)/2.

Example 3. When ms is a sum of Dirac masses, then (Xt)t≥0 is a birth and death process,
see [45]. For instance, if s = id and m =

∑
n∈N δn, then (Xt)t≥0 is a continuous-time simple

random walk on Z.

For a function f as in Assumption 1, we also set dmf := f ◦ s−1dms. Note that mf is a signed
measure (recall that f preserves the sign). We suppose in addition that f◦s−1 is locally integrable
with respect to ms so that mf is also a Radon measure. We will also denote by mf the associated
function, i.e. mf (x) =

∫ x
0 f ◦ s

−1(u)ms(du), which is non-decreasing on R+ and non-increasing
on R−.

We now give practical conditions on the scale function s, the speed measure m and the
function f so that Assumption 4 holds. We will consider three different assumptions.

Assumption 5. There exist β ∈ (0, 1), a slowing variation function Λs at +∞, and two non-
negative constants m−,m+ with m− +m+ > 0, such that{

ms(x) ∼ m+Λs(x)x1/β−1 as x→ +∞,
ms(x) ∼ −m−Λs(|x|)|x|1/β−1 as x→ −∞.

Assumption 6. The function s is C1, and there exist a constant mf (∞) ∈ (0,∞) such that
limx→±∞mf (x) = mf (∞) and the function mf (∞)−mf belongs to L2(dx).

Assumption 7. There exist α ∈ (0, 2), a slowing variation function Λf at +∞, and two non-
negative constants f−, f+ with f− + f+ > 0, such that according to the value of α, we have
(i) If α ∈ (0, 1), then {

mf (x) ∼ f+Λf (x)x1/α−1 as x→ +∞,
mf (x) ∼ f−Λf (|x|)|x|1/α−1 as x→ −∞.

(2.5)

(ii) If α = 1, then the following limit exists limh↓0
1

Λf (1/h)(mf (1/h)−mf (−1/h)) = c and
lim
h→0

1

Λf (1/h)
(mf (x/h)−mf (1/h)) = f+ log x, ∀x > 0,

lim
h→0

1

Λf (1/h)
(mf (x/h)−mf (−1/h)) = f− log |x|, ∀x < 0.

(2.6)

Note that if the limit c exists, this implies that f+ = f−; we will assume for simplicity that
f+ = f− = 1.
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(iii) If α ∈ (1, 2), then there is a constant mf (∞) ∈ (0,∞) such that limx→±∞mf (x) = mf (∞)
and {

mf (∞)−mf (x) ∼ f+Λf (x)x1/α−1 as x→ +∞,
mf (∞)−mf (x) ∼ f−Λf (|x|)|x|1/α−1 as x→ −∞.

(2.7)

Note that if Assumption 6 holds, then Assumption 7 can not hold and conversely. The main
results of this section are the following.

Proposition 2.5 (Gaussian case). Suppose that Assumptions 5 and 6 hold. Then, Assumption 4
is verified with β ∈ (0, 1), α = 2, and the following choice for a(·), b(·):

a(h) = h1/2, b(h) = h1/β/Λs(1/h) .

As a consequence, Theorem 2.4 holds under Assumptions 5 and 6, with ρ = P(Z0
t ≥ 0) = 1/2.

Proposition 2.6 (α-stable case, α ∈ (0, 2)). Suppose that Assumptions 5 and 7 hold. Then,
Assumption 4 is verified with α ∈ (0, 2), β ∈ (0, 1) and the following choice for a(·), b(·):

a(h) = h1/α/Λf (1/h), b(h) = h1/β/Λs(1/h) .

As a consequence, Theorem 2.4 holds under Assumptions 5 and 7, with the following asymmetry
parameter ρ = P(Z0

t ≥ 0),

ρ =
1

2
+

1

πα
arctan(ϑ) where ϑ =

{fα+−fα−
fα++fα−

tan(πα/2) if α 6= 1 ,

c if α = 1 .

2.4 Main results III: starting with a non-zero velocity

In this section, we are interested in the hitting time of zero of the additive functional z + ζt,
with some initial velocity X0 = x. A motivation to consider such a question is to construct
the additive functional conditioned to stay negative; of course, the only reason we deal with a
condition to remain negative (and not positive) is because we have treated above the asymptotics
of P(Tz > t) for z > 0.

To avoid the introduction of lengthy notation, we only give an outline of our results, sum-
marizing the content of Section 8: the precise statement of the results are presented there. We
restrict ourselves to the case where (Xt)t≥0 is a regular diffusion process, valued in some open
interval J containing 0. We consider the process (ζt, Xt)t≥0 as a strong Markov process. For a
pair (z, x) ∈ R× J , we denote by P(z,x) the law of (ζt, Xt)t≥0 when started at (z, x), i.e. the law
of (z +

∫ t
0 f(Xs)ds,Xt)t≥0 under Px. Roughly, we derive two kind of results:

(i) We identify some finite function h : R× J → R+ such that, under Assumption 3 or 4, we
have for any (z, x) ∈ R× J \ {(0, 0)},

P(z,x)(T0 > t) ∼ h(z, x)ς(t) t−ρβ as t→∞,

for some slowly varying function ς (which does not depend on (z, x)) and some parameters
β ∈ (0, 1], ρ ∈ (0, 1) (given by the assumption). We refer to Theorem 8.4 for the precise
statement.

(ii) Secondly, we show that the function h is harmonic for the killed process (ζt∧T0 , Xt∧T0)t≥0,
see Corollary 8.5. This classicaly enables us to construct the additive functional conditionned
to stay negative, through Doob’s h-transform, see Proposition 8.6. This result generalizes the
previous work [21] on the integrated Brownian motion conditioned to be positive and have the
same flavor of some results from Grama-Lauvergnat-Le Page [18] in a discrete setting. It is also
related to Profeta’s article [36] where he investigated other penalizations for the integral of a
Brownian motion.
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2.5 A series of examples

In this section, we provide several examples of application to our main theorems. We start with
examples where Assumptions 3 or 4 are easy to verify; we then turn to examples where the
reformulation in terms of Assumptions 5, 6 or 7 are useful.

Ornstein-Uhlenbeck. Let (Xt)t≥0 be an Ornstein-Uhlenbeck process and f be some odd
function. Then 0 is positive recurrent for (Xt)t≥0 and since the Ornstein-Uhlenbeck process
started at 0 is symmetric (in the sense that the law of (−Xt)t≥0 equals the law of (Xt)t≥0) it is
clear that P(ζt ≥ 0) = 1/2 for any t > 0. Therefore Theorem 2.1 holds with ρ = 1/2 and the
slowly varying function ς is constant (the term (5.2) is equal to 1 since Zt is symmetric).

Skew-Bessel and homogeneous functional, back to Example 1. Let (Xt)t≥0 be a skew-
Bessel process of dimension δ ∈ (0, 2) and skewness parameter η ∈ (−1, 1), as defined in Ex-
ample 2 by its scale function s and speed measure m. This process can be constructed by the
following informal procedure: concatenate independent excursions of the (usual) Bessel process,
flipped to the negative half-line with probability (1 − η)/2. Let c+, c− be positive constants
and consider the function f defined as f(x) =

(
c+1{x>0} − c−1{x<0}

)
|x|γ , with γ > −δ. The

persistence probability of (ζt)t≥0 is studied in Profeta [37] (for δ ∈ [1, 2) and γ > 0).
The condition γ > −δ is here to ensure that |ζt| <∞ a.s. for all t > 0. One can verify in this

case that (τt)t≥0 is a β-stable subordinator where β = 1−δ/2. By the self-similarity of the skew-
Bessel process, it holds that the law of (τt, Xt)t≥0 is equal to the law of (c−1/βτct, c

−1/2βXc1/βt)t≥0

for any c > 0. This entails that the law of (τt, Zt)t≥0 is equal to the law of (c−1/βτct, c
−1/αZct)t≥0

for any c > 0, where α = (2 − δ)/(γ + 2) ∈ (0, 1). It also entails that for any t > 0, the law of
t−β/αIt is equal to the law of I1. These facts imply that Assumption 4 holds with a(h) = h1/α

and b(h) = h1/β (with an equality rather than a convergence in distribution); one can also verify
Assumptions 5 and 7 directly with the expressions of the scale function s and speed measure m
(which are pure powers, so the scaling properties are clear).

Therefore, Theorem 2.4 holds with β = 1−δ/2 and ρ = P(Zt ≥ 0). The positivity parameter ρ
can be computed, see for instance Zolotarev [51, §2.6]: we have

ρ =
1

2
+

arctan(ϑ tan(πα/2))

πα
where ϑ =

1 + η − (1− η)( c−c+ )α

1 + η + (1− η)( c−c+ )α
. (2.8)

The computation of ϑ can be done as in [7, Lem. 11]. Finally, since (Zt)t≥0 is a stable process,
the renewal function V is such that V(z) = b+z

αρ for some constant b+ > 0. It is also clear that,
by self-similarity, the slowing varying function ς is constant. Hence, we fully recover and extend
the results of Profeta [37] to δ ∈ (0, 1) and γ ∈ (−δ, 0].

Kinetic Fokker-Planck. Let (Xt)t≥0 be a solution of the following stochastic differential
equation

Xt = x0 −
µ

2

∫ t

0

Xs

1 +X2
s

ds+Bt

where (Bt)t≥0 is a Brownian motion, µ > −1 and x0 ∈ R. The scaling limit of the process
(ζt)t≥0 = (

∫ t
0 Xsds)t≥0, i.e. with the choice f = id, is studied in [10,15,33,35]. The corresponding

scale function and speed measure are given by

s(x) =

∫ x

0
(1 + v2)µ/2dv and m(x) =

∫ x

0
(1 + v2)−µ/2dv,

see for instance [15]. Then one can check that:
(i) If θ ∈ (−1, 1), Assumption 5 is satisfied with β = 1

2(µ + 1) ∈ (0, 1) and Assumption 7 is
satisfied with α = 1

3(µ+1) ∈ (0, 2
3). Since m, s and f are odd functions, Theorem 2.4 holds

with β = 1
2(µ+ 1), ρ = 1

2 and a constant slowly varying function ς(·).
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(ii) When µ > 1, 0 is positive recurrent for (Xt)t≥0 and since x 7→ x/(1+x2) is odd, the process
(ζt, Xt)t≥0 is symetric (when X0 = 0) so that P(ζt ≥ 0) = 1/2 for any t > 0. Therefore
Theorem 2.1 holds with ρ = 1/2 and a constant slowly varying function ς(·).

Note that our results would also be able to deal with (ζt)t≥0 = (
∫ t

0 f(Xs)ds)t≥0 for more general
functions f .

Non-homogeneous functionals of Bessel processes. The previous examples are limited
to the case where α ∈ (0, 1) in Assumption 4 (or Assumption 7). Let us give here an example
where one has α ∈ [1, 2]; we consider a simplified example for pedagogical purposes.

Consider a symmetric Bessel process (Xt)t≥0 of dimension δ ∈ (0, 2), i.e. a diffusion with
scale function s(x) = sign(x)

2−δ |x|
2−δ and speed measure m(dx) = 1{x 6=0}|x|δ−1dx. Then, one can

check that Assumption 5 holds with β = 1 − δ/2. Now, let f be some odd function such that:∫ 1
0 f(u1/(2−δ))u1/β−1du < +∞, for instance if f is bounded, to ensure that f ◦ s−1 is locally
integrable with respect to ms (so that ζt < +∞ for all t > 0); f(x) ∼ sign(x)|x|γ as x→∞, for
some γ ∈ R. Then, we can check that
(i) if γ > −(1 + δ) then Assumption 7 holds with α = (2− δ)(γ + 2) ∈ (0, 2) and f+ = f− (by

symmetry);
(ii) if γ < −(1 + δ), then Assumption 6 holds.

In all cases, we have the asymptotic behavior P(Tz > t) ∼ c0V(z)t−β/2, since ρ = 1
2 and ς(·) is

constant, by symmetry. Note that our Assumption 6 does not deal with the case γ = −(1 + δ),
but the result should still hold in that case (one would need to deal with non-normal domain of
attraction to the normal law, which would require further technicalities).

Continuous-time birth and death chains (and Bessel-like walks). Let (X̃n)n≥0 be a
birth and death process on Z with transition probabilities given by

P(X̃n+1 = i+ 1|X̃n+1 = i) = pi ∈ (0, 1) and P(X̃n+1 = i− 1|X̃n+1 = i) = qi = 1− qi,

for i ∈ Z. We then define Xt := X̃Nt , with (Nt)t≥0 an independent Poisson process of unit
intensity. Then (Xt)t≥0 is a continuous-time birth and death chain, and can be described as a
generalized diffusion associated to a scale function s and a speed measure m as follows; we refer
to Stone [45] for more details. Let us define ∆0 = 1 and

∆i =
i∏

k=1

qk
pk
, ∀i ≥ 1 and ∆i =

0∏
k=i+1

pk
qk
, ∀i ≤ −1.

The scale function s : R → R is increasing piecewise linear and such that s(i) = xi for i ∈ Z,
with (xi)i∈Z defined iteratively by x0 = 0 and ∆i = xi+1 − xi, ∀i ∈ Z. The speed measure m is
defined as

m :=
∑
i∈Z

( 1

2∆i
+

1

2∆i−1

)
δi.

In a companion paper [3], the first two authors use an elementary approach to obtain two-
sided bounds for the persistence of integrated symmetric (discrete-time) birth and death process
with an odd function f ; they apply their results to symmetric Bessel-like random walk (see [1]
for a recent account). Let us now observe that we can apply our machinery to continuous-
time Bessel-like random walks and obtain sharps asymptotics for the persistence probabilities
P(ζs ≤ 0 for all s ≤ t).

We define a symmetric Bessel-like random walk as a birth and death process with transition
probabilities

pi :=
1

2

(
1− µ+ εi

2i

)
, for i ≥ 1 , pi = q−i for i ≤ −1 , p0 = q0 =

1

2
.

Here, µ is a real parameter and εi is such that limi→∞ εi = 0. Then, we have that the process is
recurrent if µ > 1 and null-recurrent if µ ∈ (−1, 1); the case µ = 1 depends on (εi)i≥0.
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(i) In the case µ > 1, by Theorem 2.1 we directly obtain the asymptotics

P(Tz > t) ∼ c0V(z)t−1/2 as t→∞ . (2.9)

(We have ρ = 1
2 and ς(·) constant thanks to the symmetry.)

(ii) In the case µ ∈ (−1, 1), we use the following asymptotics: there exists a constant C0 and
a slowly varying function L(i) = exp(−

∑i
k=1

εk
k ) such that ∆i ∼ C0 i

µL(i) as i → +∞ (and
symmetrically for i → −∞). From this asymptotics we obtain that s(i) = xi =

∑i−1
k=0 ∆k ∼

C ′0 i
1+µL(i) as i → +∞ and also that m(x) ∼ C ′′0 x

1−µL(x)−1 as x → ∞. One can therefore
show that Assumption 5 is satisfied with β = 1

2(1 + µ) ∈ (0, 1) (and m+ = m−). If we consider
the function f(x) = x, Assumption 7 is satisfied with α = 1

3(1 + µ) and ρ = 1
2 (by symmetry).

Finally, Theorem 2.4 states that

P(Tz > t) ∼ V(z)ς(t)t−(1+µ)/4 as t→∞ , (2.10)

with ς some slowing variation function (depending on (εi)i≥0).
Obviously, by a simple de-Poissonization argument, the asymptotics (2.9)-(2.10) remain also

valid for discrete-time Bessel-like random walks. This therefore matches the results from [3] and
additionnally gives the sharp asymptotics of the persistence probabilities; obviously one could
consider a function f(x) = sign(x)|x|γ with γ ∈ R withour affecting the conclusion (the exponent
α of Assumption 4 does not affect the persistence exponent θ in the symmetric case).

3 Ideas of the proof and further comments

3.1 Ideas of the proof: path decomposition of trajectories

Recall from (2.3) that It = ζt − ζgt , we introduce

ξt = sup
[0,t]

ζs and ∆t = It − (ξgt − ζgt) . (3.1)

We refer to Figure 1 for an illustration of ζt, ξt, ξgt , It and ∆t. Then, to study the probability
P(Tz > t) = P(ξt < z), the main idea is to decompose it into two parts: for any z > 0, we have

P
(
ξt < z

)
= P

(
ξgt < z,∆t ≤ 0

)
+ P

(
ξgt + ∆t < z, 0 < ∆t ≤ z

)
. (3.2)

(The second term will turn out to be negligible.) As a first consequence of (3.2), we see that
P(ξgt < z,∆t ≤ 0) ≤ P(ξgt < z) ≤ P(ξgt < z,∆t ≤ z), from which one easily gets that

ct P
(
ξgt < z

)
≤ P

(
ξt < z

)
≤ P

(
ξgt < z

)
.

with ct = P(It ≤ 0) ∈ (0, 1). We will show that we actually have some constant c1 ∈ (0, 1] such
that

P(ξt < z) ∼ c1P(ξgt < z) as t→∞ . (3.3)

We will then control the probability P(ξgt < z) by using the fact that ξτt = sup[0,t] Zs (see
Remark 4.1 below).

A standard trick to gain independence. To handle the quantities in (3.2), we will use the following
trick: letting e = e(q) be an exponential random time e with parameter q independent of (Xt)t≥0,
we will look at the quantity P(ξe < z) instead of looking directly at P(ξt < z). This corresponds
to taking the Laplace transform of P(ξt < z) and we loose no information by doing this: indeed,
a combination of the Tauberian theom and the monotone density theorem (see [8, Thms. 1.7.1
and 1.7.2]) tells us that having an asymptotic of P(ξe < z) as q → 0 is equivalent to having an
asymptotic of P(ξt < z) as t→∞.

The first advantage of this trick is that it allows us to factorize functionals of trajectories
before time ge and functionals of trajectories between times ge and e. The precise statement
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Figure 1: Graphical representation of the trajectory of a realization of (ζs)0≤s≤t and of its decomposition.
The above is a simulation in the setting of Bessel-like random walk (see Section 2.5): (Xt)t≥0 is a (symmetric)
Bessel-like random walk with µ = 0.4, i.e. β = 0.7, and with the function f(x) = sign(x). The dots represent
the returns to 0 of (Xs)0≤s≤t. In this particular realization, we have It > 0 and ∆t < 0.

is presented in Proposition 4.2, which is inspired by [40]. This enables us to operate a first
reduction, treating Ie separately from ξge , ζge . More precisely, using Proposition 4.2 below, by
independence, the first term in (3.2) (with t replaced by an exponential random variable e) can
be rewritten as

P(ξge < y,∆e ≤ 0) = P(ξge < y, Ie ≤ ξge − ζge) = E
[
FIe(ξge − ζge)1{ξge<y}

]
,

where FIe is the c.d.f. of Ie.

Wiener–Hopf factorization. A second key tool is a Wiener–Hopf factorization for the bivariate
Lévy Process (τt, Zt)t≥0, that among other things allows us to obtain the joint distribution
of ξge and ξge − ζge , see Corollary 4.6 below. In particular, it shows that ξge and ξge − ζge are
independent, so (3.4) can further be decomposed as

P(ξge < y,∆e ≤ 0) = E
[
FIe(ξge − ζge)

]
P
(
ξge < y

)
= P(∆e ≤ 0)P

(
ξge < y

)
. (3.4)

From this, we will be able to prove that P(ξe < y) ∼ c1P(ξge < t) as q ↓ 0, i.e. (3.3), where the
constant c1 is c1 = limq→0 P(Ie ≤ ξge − ζge) ∈ (0, 1]. Moreover, the Wiener–Hopf factorization
will also help us obtain the asymptotic behavior of P(ξge < y) as q ↓ 0.

Conclusion. With this picture in mind, we split our results into two categories, that correspond
to Assumptions 3 and 4:

(i) If X is positive recurrent. Then, limt→∞
1
t gt = 1 and It will typically be much smaller

than ξgt − ζgt as t → ∞, so limq↓0 P(Ie ≤ ξge − ζge) = 1: we will have c1 = 1 in (3.3), that is
P(ξe < y) ∼ P(ξge < y) as q ↓ 0. Loosely speaking, the part of the trajectory between time gt
and t will have no impact on the behavior of the persistence probability. Then, the behavior of
P(ξge < y) is studied thanks to the Wiener–Hopf factorization, with the assumption that (Zt)t≥0

satisfies the so-called Spitzer’s condition.
(ii) If X is null recurrent then there are two cases, depending on whether α = 2 or α ∈ (0, 2)

in Assumption 4 (or corresponding to Assumptions 6 and 7). First, if (Zt)t≥0 is in the (normal)
domain of attraction of a normal law, then also in that case It will typically be much smaller
than ξgt − ζgt as t → ∞ and we again have limq↓0 P(Ie ≤ ξge − ζge) = 1, that is c0 = 1 in (3.3).
Second, if (Zt)t≥0 is in the domain of attraction of some α-stable law, α ∈ (0, 2), then under
Assumption 4 we have that limq↓0 P(Ie ≤ ξge − ζge) = P(I ≤ W ) =: c1 ∈ (0, 1), where I,W are
independent random variables, the respective limits in law of a(b−1(q))Ie and a(b−1(q))(ξge−ζge).
Then, the behavior of P(ξge < y) is again studied thanks to the Wiener–Hopf factorization, with
the assumption that (τt)t≥0 is in the domain of attraction of a stable subordinator.
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3.2 Comparison with the literature

We now discuss the novelty of our results and techniques and compare them with the existing
litterature.

Let us first start with the work of Isozaki [22], which treats the case of integrated powers of
the Brownian motion. Isozaki first uses the following Wiener–Hopf factorization of (τt, Zt)t≥0.
If e = e(q) denotes an independent exponential random variable and St = sup[0,t] Zs, then the
product of the Laplace transforms of (τe, Se) and (τe, Ze − Se) can be expressed in terms of the
characteristic function of (τt, Zt)t≥0. The rest of Isozaki’s method is somehow more analytic
and involves inversion of Fourier transforms. Also, he exploits deeply the self-similarity of the
Brownian motion. Of course, our work has been inspired by [22], but regarding the Wiener–Hopf
factorization, we go one step further. If we set Gt = sup{s < t, Zt = St}, then we are able to show
that the law of (Ge, τGe , Se) and (e−Ge, τe − τGe , Ze − Se) are independent, infinitely divisible
and can be expressed with the law of (τt, Zt)t≥0. This enables us to the study the quantities of
interest in the spirit of fluctuation’s theory for Lévy processes. We refer to Subsection 4.3 and
Appendix A for more details.

Let us now discuss the work of McGill [34], which seems to be the closest to our work. McGill
considers general additive functionals of the Brownian, i.e. ζt =

∫
R L

x
tm(dx) where (Lxt )t≥0,x∈R is

the family of local times of the Brownian motion and m(dx) = 1{x≥0}m+(dx)−1{x<0}m−(dx) is
a signed measure. With the above notation, he caracterizes the behavior of P(ξe < z) as z → 0,
for a fixed q > 0; whereas we study P(ξe < z) when q → 0, for a fixed z. Let us quickly explain
the content of [34]. First, if we fix q > 0 and set v(z) = P(ξe < z), he establishes the following
identity:

v(z) =

∫ z

0
V(dy)

∫
R−
V̂(dx)k(z − y − x), (3.5)

where V̂ denotes the dual renewal function, V(dx) and V̂(dx) the Stieltjes measures associated
with the non-decreasing function V and V̂ and the function k depends on v and on q. This identity
is derived using martingale techniques and tools from the excursion theory of (Zt)t≥0 below its
supremum. With this key identity at hand, McGill proves under some technical conditions his
main result: v(z) ∼ C(q)V(z) as z → 0, where C(q) is some unknown constant. We emphasize
that we can (more or less) recover (3.5) and his main results from our work. Our interpretation
of (3.5) is the following: the random variable ξe can be decomposed as

ξe = ξge + ∆e ∨ 0,

where ξge and ∆e := Ie − (ξge − ζge) are independent, see (3.1). Our bivariate Wiener–Hopf
factorization yields the following result (see Section 4.4): P(ξge ∈ dz) = C(q)Vq(dz), where the
constant C(q) is known and Vq is a non-decreasing function, which is close to V in the sense
that for any fixed z ≥ 0, Vq(z) increases to V(z) as q → 0. Then, we claim that we are able to
show that v(z) ∼ C(q)Vq(z) as z → 0. To match the result of Mcgill, it remains to show that
Vq(z) ∼ V(z) as z → 0 and we believe this should hold, at least if V is regularly varying at 0: we
can show that their Laplace transforms are equivalent at infinity.

We insist on the fact that all of the above approach more or less relies on the fact that the
integrated process is a Brownian motion, whereas we are able to consider a very large class of
Markov process and of functions f , leading to a wide range of possible behaviors.

3.3 Related problems and open questions

Let us now give an overview of questions that we have chosen not to develop in the present
paper, that either fall in the scope of our method or represent important challenges.

Further examples in our framework. Let us give a couple of additional examples that we
are able to treat with our method (but that we have chosen not to develop), since they are
defined via their excursions (and satisfy Assumption 2).
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Jumping-in diffusions. A jumping-in diffusion in R is a strong Markov process (Xt)t≥0 which has
continuous paths up until its first hitting time of 0. When the process touches 0, it immediately
jumps back into R \ {0} and starts afresh. These processes are somehow again a generalization
of diffusion processes and are typically constructed via excursion theory; we refer to the book of
Itô [25] for more details. Such processes obviously satisfy Assumption 2 and we can apply our
results.

Stable processes reflected on their infimum. The following example is not related to a diffusion
process and shows that our method are not only concerned with generalized diffusions. Let
(Sαt )t≥0 be an α-stable process with some α ∈ (0, 2) such that (|Sαt |)t≥0 is not a subordinator.
We consider (Rαt )t≥0 = (Sαt − inf [0,t] S

α
s )t≥0 the process reflected on its infimum. It is a positive

strong Markov process and 0 is a regular and recurrent point for (Rαt )t≥0. Informally, we construct
the strong Markov process (Xt)t≥0 by concatenating independent excursions of (Rαt )t≥0 flipped to
the negative half-line with probability 1/2. Then it also clear that (Xt)t≥0 satisfies Assumption 2.
It is also clear that this process is self-similar with index α, and as for (skew-)Bessel processes
(see Section 2.5), it entails that Assumption 4 is satisfied if we consider f to be homogeneous,
for instance f(x) = sgn(x)|x|γ for some γ ∈ R (with some restriction to ensure that ζt < +∞
a.s., e.g. γ ≥ 0).

Asymptotics uniform in t, z. A natural question that we have chosen not to investigate
further is the case when the barrier z is “far away”. In other words, we are interested in knowing
for which regimes of t, z the asymptotics (1.2) remains valid. We would like to find some function
ϕ(·) with ϕ(t)→∞ as t→∞ so that the following statement holds:

P(Tz > t) ∼ V(z)ς(t) t−θ uniformly for t, z > 0 with ϕ(t)/z →∞ . (3.6)

In particular, this would allow to consider both the case when z is fixed and t→∞ and the case
when t fixed and z ↓ 0.

We have not pursued this issue further to avoid lengthening further the paper, but we believe
that our method should work to obtain such a result. Indeed, thanks to (3.3), we are reduced to
estimating P(ξge < z) in terms of t, z, which is standard in fluctuation theory for Lévy processes,
see [31]. Since we have identified that the correct scaling for ξge (and ξge−ζge) is a(b−1(q)) under
Assumption 4, it is natural to expect that (3.6) holds with ϕ(t) = a(b−1(t)).

In view of our proof, the main (and only?) step where an improvement is needed is in a
control of the convergence Vq(z) ↑ V(z) as q ↓ 0, where Vq is defined in (4.9), see Corollary 4.7.

Additive functional conditioned on being negative. In Section 8, we construct the ad-
ditive functional (ζt, Xt) (under P(z,x) with (z, x) 6= 0) conditioned to remain negative, see
Proposition 8.6. But there are several questions that we have left open.
Starting from (0, 0). First of all, a natural question would be to construct the additive functional
conditioned to stay negative, but with starting point (0, 0), that is starting from 0 with a zero
speed. One should take the limit (z, x) → 0 inside Proposition 8.6, but this brings several
technical difficulties and requires further work.
Scaling limit of the conditioned process. Another natural question is that of obtaining the long-
term behavior of the additive functional (conditioned to be negative or not) and in particular
scaling limits. Our approach should yield all necessary tools to obtain such results, and let us
give an outline of what one could expect:

(i) If (Xt)t≥0 is positive recurrent, i.e. under Assumption 3, then one should have that the
conditioned process converges to either a Brownian motion or an α-stable Lévy process condi-
tioned to be negative (depending on whether the process (Zt)t≥0 is in the domain of attraction
of an α-stable law with α = 2 or α ∈ (0, 2)).

(ii) If (Xt)t≥0 is null-recurrent and Assumption 4 holds, then one should have that the
conditioned process converges to:
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Figure 2: Graphical representation of the trajectory of a realization of (ζs)0≤s≤t conditioned to be positive.
These are simulations in the setting of Bessel-like random walks: (Xt)t≥0 is a (symmetric) Bessel-like random
walk and f(x) = sign(x)|x|γ for some γ ∈ R; the dots represent the returns to 0 of (Xs)0≤s≤t. The first
two simulations are when (Xt)t≥0 is positive recurrent and (Zt)t≥0 converges either to a Brownian motion
(first) or an α-stable Lévy process (second). The last two simulations are when (Xt)t≥0 is null recurrent and
Assumption 4 holds either with α = 2 (third, corresponding to Assumption 6) or with α ∈ (0, 2) (fourth,
corresponding to Assumption 7).

• If α = 2, a time-changed Brownian motion conditioned to stay negative, namely (B0
L0
t
)t≥0,

where B0 is a Brownian motion Z0 conditioned to stay negative and L0
t is the inverse of

the β-stable subordinator τ0; note that necessarily τ0 and Z0 are independent.
• If α ∈ (0, 2), a “squeleton” given by a time-changed α-stable Lévy process conditioned to stay

negative, namely B0
L0
t
as above (with here Z0 an α-stable Lévy process), then “filled” with

the integrals of excursions conditioned to bridge the squeleton (i.e. excursions of lengths
τ0
t − τ0

t− with the integral
∫ `

0 (εs)
γds conditioned to be equal to Z0

t − Z0
t−).

We refer to Figure 2 for illustrative simluations. Let us also mention that one might also be
interested in some local limit theorems for the conditioned process, in the spirit of [9] for random
walk and [18] for additive functional of Markov chain under a spectral gap assumption.

Additive functionals of Markov processes with jumps. Finally we stress that our main
assumption on the process (Xt)t≥0, i.e. Assumption 2, is not satisfied for a large class of pro-
cesses, including Lévy processes with jumps (except for the difference of two independent Poisson
processes). When Assumption 2 is not satisfied, it is not clear how to attack the problem and the
only result so far in this direction seems to focus only on (symmetric) homogeneous functionals of
strictly α-stable Lévy processes, see [43]. Generalizing this result, for instance to aymptotically
α-stable processes, remains an important open problem.

3.4 Overview of the rest of the paper

The rest of the paper is organized as follows.
• In Section 4, we develop several key tools that are crucial in our proof. We decompose

the paths of the process (Xt)t≥0 around the last excursion and we establish a Wiener–Hopf
factorization for the bi-dimensional Lévy process (τt, Zt)t≥0, using the excursions of Zt below
its supremum, in the spirit of Greenwood-Pitman [20]. With these tools at hand we are able
to compute the Laplace transform of (ξge , ξge − ζge) which is the key identity of our paper, see
Corollary 4.6, and seems to be new to the best of our knowledge.

• Using the tools of Section 4, we are able to show our persistence result in two different
settings. In Section 5 we prove Theorem 2.1 under the assumption that 0 is positive recurrent;
in Section 6 we prove Theorem 2.4 under Assumption 4 (corresponding to the case where 0 is
null recurrent).

• In Section 7 we consider the case of generalized diffusions and we give tangible conditions
which ensure that Assumption 4 holds.

• Finally in section 8 we treat the case where (Xt, ζt)t≥0 does not start at (0, 0). To handle
the proof we assume that (Xt)t≥0 has continuous paths.

• We also collect some technical results in Appendix: in Appendix A we prove our Wiener–
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Hopf factorization are related results (based on well-established techniques), in Appendix B we
present results on convergences of Lévy processes and of their Laplace exponents that serve in
Section 7, in Appendix C we give technical results on generalized one-dimensional diffusions that
are used in Section 8.

4 Path decomposition and Wiener–Hopf factorization

4.1 Preliminaries on excursion theory

Recall we assumed that 0 is regular for itself, that is P(η0 = 0) = 1 where η0 := inf{t > 0, Xt = 0}
(and P = P0), and that 0 is a recurrent point. In this setting, we have a theory of excursions of
(Xt)t≥0 away from 0, see for instance Bertoin [4, Chapter IV] or Getoor [16, Section 7]. Setting
S = inf{t ≥ 0, Xt 6= 0}, then Blumenthal 0-1 law gives that either P(S = 0) = 1 or P(S = 0) = 0:
in the first case, 0 is called an instantaneous point; in the second case, 0 is called a holding point.

The process (Xt)t≥0 possesses a local time (Lt)t≥0 at the level 0, in the sense that there is a
non-decreasing and continuous additive functional whose support is the closure of the zero set
of (Xt)t≥0. Then there exists some m ≥ 0 such that a.s. for any t ≥ 0

mLt =

∫ t

0
1{Xs=0}ds.

The right-continuous inverse (τt)t≥0 of the local time is a (càdlàg) subordinator and we will denote
by Φ its Laplace exponent, see (2.1). The subordinator (τt)t≥0 has the following representation:
for any t ≥ 0

τt = mt+
∑
s≤t

∆τs, with ∆τs := τs − τs− .

Let us also recall that there are two cases:
• If 0 is an instantaneous point, then the Lévy measure of (τt)t≥0 has infinite mass.
• If 0 is a holding point, then the Lévy measure of (τt)t≥0 has finite mass and m > 0. In other

words, (τt)t≥0 is a drifted compound Poisson process.

We denote by D the usual space of càdlàg functions from R+ to R, and for ε ∈ D, let us
introduce the length of ε

`(ε) = inf{t > 0, εt = 0} ,

and we will often write for simplicity ` instead of `(ε).
Then the set of excursions E is the set of functions ε ∈ D such that: (i) 0 < `(ε) < ∞; (ii)

εt = 0 for every t ≥ `(ε); (iii) εt 6= 0 for every 0 < t < `(ε). This space is endowed with the
usual Skorokhod’s topology and the associated Borel σ-algebra.

We now introduce the excursion processes of (Xt)t≥0, denoted by (et)t≥0, which take values
in E0 = E ∪ {Υ}, where Υ is an isolated cemetery point. The excursion process is given by

et =

{
(Xτt−+s)s∈[0,∆τt] if ∆τt > 0,

Υ otherwise, .

A famous result, essentially due to Itô [26], states that (et)t≥0 is a Poisson point process and we
denote by n its characteristic measure, which is defined for any measurable set Γ by

n(Γ) =
1

t
E [Nt,Γ] where Nt,Γ =

∑
s≤t

1Γ(es) .

Here again, let us distinguish two cases:
• If 0 is an instantaneous point, then n has infinite mass
• If 0 is a holding point, then n has finite mass and is proportional to the law of e1 under P.
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For a non-negative measurable function F : E0 → R, we also write n(F ) =
∫
E F (ε)n(dε).

Let us stress that, from the exponential formula for Poisson point processes, we can express the
Laplace exponent Φ of (τt)t≥0 in terms of m and n:

Φ(q) = mq + n(1− e−q`).

Recall the definition (2.2) of the Lévy process (Zt)t≥0, and recall Assumption 1 on the
function f . Let us stress that if 0 is an instantaneous point, then the Lévy measure ν has
infinite mass, whereas if 0 is a holding point, then (Zt)t≥0 is a compound Poisson process.

Recalling the last expression in (2.2), the Lévy measure ν of (Zt)t≥0 can be expressed through
the excursion measure n. For ε ∈ E , we define

F(ε) =

∫ `

0
f(εs)ds . (4.1)

Then the exponential formula for Poisson point processes ensures that ν(dz) = n(F ∈ dz). Then,
Assumption 2 that the process (Xt)t≥0 cannot change sign without touching 0 (and is not of
constant sign) can be reformulated as follows:

Assumption 2’. The measure n is supported by the set of excursions of constant sign. Moreover,
n is neither supported by the set of positive excursions, nor by the set of negative excursions.

This assumption, combined with Assumption 1 on the function f , leads to the following
remark, which is crucial in our study.

Remark 4.1. Under Assumptions 1 and 2’, (|Zt|)t≥0 is not a subordinator. Moreover we have
almost surely sup[0,τt] ζs = sup[0,t] Zs, for every t ≥ 0. Indeed, for every s ≥ 0, (Xt)t≥0 is of
constant sign on the time-interval [τs−, τs] and consequently t 7→ ζt is monotone on every such
interval. As a consequence, the supremum is necessarily reached at the extremities, i.e. we have
supu∈[τs−,τs] ζu = ζτs− ∨ ζτs.

4.2 Decomposing paths around the last excursion

We now show a path decomposition at an exponential random time. Recall the definition (2.3)
of gt = sup{s ≤ t ,Xs = 0}, the last return to 0 of X before time t. The following result,
inspired by Salminem, Vallois and Yor [40, Thm 9] allows us to decouple the path of X at an
exponential random time into two independent parts, before and after the last return to 0. An
important application of this independence has already been presented in (3.4). Additionally,
Proposition 4.2 provides useful formulas for computing functionals of the path before and after
the last zero, respectively.

To make the statement more precise, let us introduce some notation: for t > 0 we let Dt
denote the space of càdlàg funtions from [0, t) to R, and for t ≥ 0 we let D̃t denote the space of
càdlàg funtions from [0, t] to R.

Proposition 4.2. Let e = e(q) be an exponential random variable of parameter q, independent
of (Xt)t≥0. Then the processes (Xu)0≤u<ge and (Xge+v)0≤v≤e−ge are independent. Moreover, for
all non negative functionals F1 :

⋃
t>0Dt → R+ and F2 :

⋃
t≥0 D̃t → R+, we have

E [F1((Xu)0≤u<ge)] = Φ(q)

∫ ∞
0

E
[
F1((Xu)0≤u<τt)e

−qτt]dt (4.2)

and

E [F2((Xge+v)0≤v≤e−ge)] =
q

Φ(q)

(
mF2(0̃) + n

(∫ `

0
e−quF2

(
(εv)0≤v≤u

)
du
))

, (4.3)

where 0̃ denotes the null function of D̃0.

Let us stress that the strict inequality in considering (Xu)0≤u<ge is crucial in the proof.
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Proof. Let F1 and F2 be as in the statement. We have

E
[
F1((Xu)0≤u<ge)F2((Xge+v)0≤v≤e−ge)

]
= E

[
q

∫ ∞
0

e−qtF1((Xu)0≤u<gt)F2((Xgt+v)0≤v≤t−gt)dt

]
.

We decompose the above integral in two parts, according to whether Xt = 0 or not. If g and
d denotes the left and right endpoints of an excursion, then the excursion straddling time t is
the only excursion such that g ≤ t ≤ d. Indexing the excursions by their left endpoint g, i.e. by
G = {τt−; ∆τt > 0, t ∈ R+}, the previous display is then equal to

E
[
q

∫ ∞
0

e−qtF1((Xu)0≤u<t)F2(0̃)1{Xt=0}dt

]
+ E

[
q

∫ ∞
0

e−qt
∑
g∈G

F1((Xu)0≤u<g)F2((Xg+v)0≤v≤t−g)1{g<t<d}dt

]
.

Regarding the first term, it is equal to

mF2(0̃)qE
[ ∫ ∞

0
e−qtF1((Xu)0≤u<t)dLt

]
= mF2(0̃)q

∫ ∞
0

E
[
F1((Xu)0≤u<τt)e

−qτt]dt.

For the second term, it is equal to

E
[∑
g∈G

F1((Xu)0≤u<g)e
−qg

∫ `

0
qe−qtF2((Xg+v)0≤v≤t)dt

]
,

where we simply used that (τt)t≥0 is the right-continuous inverse of Lt.
Using the compensation formula for Poisson point processes, we end up with

E
[ ∫ ∞

0
F1((Xu)0≤u<τt)e

−qτtn
(∫ `

0
e−quF2

(
(εv)0≤v≤u

)
du
)

dt

]
=

∫ ∞
0

E
[
F1((Xu)0≤u<τt)e

−qτt]dt× n
(∫ `

0
e−quF2

(
(εv)0≤v≤u

)
du
)
.

To summarize, we have showed that E[F1((Xu)0≤u<ge)F2((Xge+v)0≤v≤e−ge)] is equal to∫ ∞
0

E
[
F1((Xu)0≤u<τt)e

−qτt]dt× q
(

mF2(0̃) + n
(∫ `

0
e−quF2

(
(εv)0≤v≤u

)
du
))

,

and the result follows since we have Φ(q) = (
∫∞

0 E[e−qτt ]dt)−1 = mq + n(1− e−q`).

4.3 Wiener–Hopf factorization

In this section, we derive a Wiener–Hopf factorization for the bivariate Lévy process (τt, Zt)t≥0.
This factorization is similar to the one in Isozaki [22] although the factorization therein is some-
how incomplete and our method is a bit different: we follow the approach of Greenwood and
Pitman [20] which can also be found in Bertoin [4, Chapter VI]. We will only display in this
section the results needed as it is not the main purpose of the paper: the proofs are postponed to
Appendix A. In fact, our results hold for any bivariate Lévy process (τt, Zt)t≥0 for which (τt)t≥0

is a subordinator.
We define St = sup[0,t] Zt the running supremum of Zt. Then the reflected process (Rt)t≥0 =

(St − Zt)t≥0 is a strong Markov process (see [4, Proposition VI.1]) and possesses a local time
(LRt )t≥0 at 0 and we denote by (σt)t≥0 its right-continuous inverse, called the ladder time process.
Next we define θt := τσt and Ht := Sσt the ladder heights processes. Then (σt, θt, Ht)t≥0 :=
(σt, τσt , Sσt)t≥0 is a trivariate subordinator possibly killed at some exponential random time,
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according to wether or not 0 is recurrent for (Rt)t≥0 (see Lemma A.1 in Appendix A). We denote
by κ its Laplace exponent: for any non-negative α, β, γ:

κ(α, β, γ) = − logE
[
e−ασ1−βθ1−γH11{1<LR∞}

]
. (4.4)

If 0 is transient for (Rt)t≥0, then κ(0, 0, 0) > 0 and LR∞ has an exponential distribution of
parameter κ(0, 0, 0) whereas if 0 is recurrent, then κ(0, 0, 0) = 0 and LR∞ = ∞ a.s. In any case,
using the convention e−∞ = 0, we have for any α, β, γ ≥ 0 such that α+ β + γ > 0,

E
[
e−ασt−βθt−γHt

]
= exp (−κ(α, β, γ)t) . (4.5)

Let us also set Gt = sup{s < t, Zs = Ss} be the last time before t where (Zt)t≥0 attains its
supremum, or equivalently the last return to 0 before t of (Rt)t≥0.

We now state a Wiener–Hopf factorization for the process (τt, Zt)t≥0, which will allow us
below to obtain (among other things), the joint Laplace transform of ξge and ξge − ζge , see
Corollary 4.6 below. Let us stress that we need to separate two cases, according to whether 0 is
regular or irregular for the reflected process (Rt)t≥0.

Theorem 4.3 (Wiener–Hopf factorization). Let e = e(q) be an exponential random variable
of parameter q, independent of (τt, Zt)t≥0.
(A) If 0 is irregular for the reflected process (Rt)t≥0, then we have the following:
(i) The triplets (Ge, τGe , Se) and (e−Ge, τe − τGe , Ze − Se) are independent.
(ii) The law of (Ge, τGe , Se) is infinitely divisible and its Lévy measure is

µ+(dt,dr, dx) =
e−qt

t
P(τt ∈ dr, Zt ∈ dx)dt, for t > 0, r ≥ 0, x ≥ 0.

(iii) The law of (e−Ge, τe − τGe , Ze − Se) is infinitely divisible and its Levy measure is

µ−(dt,dr, dx) =
e−qt

t
P(τt ∈ dr, Zt ∈ dx)dt, , for t > 0, r ≥ 0, x < 0.

(B) If 0 is regular for the reflected process, then the same statements hold with τGe replaced by
τGe− and τe − τGe replaced by τe − τGe−.

Let us give a corollary, which is key in our analysis, that expresses the Laplace transform of
(Se, Se −Ze, τe); let us stress that a more general formula is available, see (A.1) in Appendix A.

Proposition 4.4. Let e = e(q) be an exponential random variable of parameter q, independent
of (τt, Zt)t≥0. There exists a constant c > 0 such that

κ(α, β, γ) = c exp

(∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr−γx

t
1{x≥0}P(τt ∈ dr, Zt ∈ dx)dt

)
.

Also, for any positive α, β, γ, we have

E
[
e−αSe−β(Ze−Se)−γτe

]
=
κ(q, 0, 0)

κ(q, γ, α)

κ̄(q, 0, 0)

κ̄(q, γ, β)
, (4.6)

where we have defined

κ̄(α, β, γ) = exp

(∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr+γx

t
1{x<0}P(τt ∈ dr, Zt ∈ dx)dt

)
.

Remark 4.5. We can also introduce the same objects as above for the dual process (Ẑt)t≥0 =
(−Zt)t≥0. If we set (Ŝt)t≥0 = (sup[0,t] Ẑt)t≥0, then the dual reflected process (R̂t)t≥0 = (Ŝt−Ẑt)t≥0

also posesses a local time at 0 denoted by (LR̂t )t≥0, with right-continuous inverse (σ̂t)t≥0. Finally,
we set (σ̂t, θ̂t, Ĥt)t≥0 = (σ̂t, τσ̂t , Ŝσ̂t)t≥0, which is again a trivariate subordinator possibly killed at
some exponential random time with Laplace exponent that we denote κ̂, i.e. such that κ̂(α, β, γ) =

− logE
[
e−ασ1−βθ1−γH11{1<LR̂∞}

]
for any non-negative α, β, γ. Then, we prove in Appendix A that

if (Zt)t≥0 is not a compound Poisson process, there exists a constant ĉ > 0 such that κ̂ = ĉ κ̄.
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4.4 Consequences of the Wiener–Hopf factorization

From Proposition 4.4, using also Proposition 4.2, we can compute the Laplace transform of
(ξge , ξge−ζge) in terms of κ and κ̄, where e = e(q) is an exponential random variable of parameter
q > 0 independent of the rest.

Corollary 4.6. Let e = e(q) be an exponential random variable of parameter q, independent
of (Xt)t≥0. Then for every λ, µ ≥ 0, we have

E
[
e−λξge−µ(ξge−ζge )

]
=
κ(0, q, 0)

κ(0, q, λ)

κ̄(0, q, 0)

κ̄(0, q, µ)
. (4.7)

As a consequence, ξge and ξge−ζge are independent, the law of ξge, ξge−ζge and ζge are infinitely
divisible.

Proof. Since (ζt)t≥0 and (ξt)t≥0 are continuous, we have ζge = ζge− and ξge = ξge− and we can
apply Proposition 4.2-(4.2):

E
[
e−λξge−µ(ξge−ζge )

]
= Φ(q)

∫ ∞
0

E
[
e−λξτt−µ(ξτt−ζτt )−qτt

]
dt

= Φ(q)

∫ ∞
0

E
[
e−λSt−µ(St−Zt)−qτt

]
dt.

In the last equality, we have used Remark 4.1 which tells us that ξτt = St a.s. We now introduce
some additional Laplace variable q̃ > 0 so that the above integral becomes a quantity evaluated
at an exponential random variable ẽ of parameter q̃. We write:

E
[
e−λξge−µ(ξge−ζge )

]
= lim

q̃→0
Φ(q)

∫ ∞
0

E
[
e−λSt−µ(St−Zt)−qτt−q̃t

]
dt

= lim
q̃→0

Φ(q)

q̃
E
[
e−λSẽ−µ(Sẽ−Zẽ)−qτẽ

]
,

where ẽ = ẽ(q̃) is an independent exponential random variable of parameter q̃. Therefore,
using (4.6), we obtain

E
[
e−λξge−µ(ξge−ζge )

]
= lim

q̃→0

Φ(q)

q̃

κ(q̃, 0, 0)

κ(q̃, q, λ)

κ̄(q̃, 0, 0)

κ̄(q̃, q, µ)
. (4.8)

Using Frullani’s formula
∫∞

0
e−u−e−bu

u du = ln(b), we can write

Φ(q) = exp

(∫ ∞
0

e−t − e−Φ(q)t

t
dt

)
,

1

q̃
= exp

(
−
∫ ∞

0

e−t − e−q̃t

t
dt

)
,

so that writing e−Φ(q)t = E[e−qτt ], we obtain

Φ(q)

q̃
= exp

(∫ +∞

0

∫ +∞

0

e−q̃t − e−qr

t
P(τt ∈ dr)dt

)
=

(
Φ(q)

q̃

)+(Φ(q)

q̃

)−
,

where we have set(
Φ(q)

q̃

)+

:= exp

(∫ +∞

0

∫
[0,+∞)×R

e−q̃t − e−qr

t
1{x≥0}P(τt ∈ dr, Zt ∈ dx)dt

)
,(

Φ(q)

q̃

)−
:= exp

(∫ +∞

0

∫
[0,+∞)×R

e−q̃t − e−qr

t
1{x<0}P(τt ∈ dr, Zt ∈ dx)dt

)
.

Then, by Proposition 4.4, we observe that for all q̃ > 0,(
Φ(q)

q̃

)+

κ(q̃, 0, 0) = c exp

(∫ +∞

0

∫
[0,+∞)×R

e−t − e−qr

t
1{x≥0}P(τt ∈ dr, Zt ∈ dx)dt

)
= κ(0, q, 0) ,
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and (
Φ(q)

q̃

)−
κ̄(q̃, 0, 0) = exp

(∫ +∞

0

∫
[0,+∞)×R

e−t − e−qr

t
1{x<0}P(τt ∈ dr, Zt ∈ dx)dt

)
= κ̄(0, q, 0).

Finally equation (4.8) gives that

E
[
e−λξge−µ(ξge−ζge )

]
= lim

q̃→0

κ(0, q, 0)

κ(q̃, q, λ)

κ̄(0, q, 0)

κ̄(q̃, q, µ)
=
κ(0, q, 0)

κ(0, q, λ)

κ̄(0, q, 0)

κ̄(0, q, µ)
,

which is the desired result.
Finally, we show that the law of ξge and ξge−ζge are infinitely divisible. Let us start with ξge .

By Proposition 4.4 and the expression of κ(α, β, γ), we have for any λ > 0,

E
[
e−λξge

]
= exp

(∫ ∞
0

∫
[0,+∞)×R

t−1e−qr(e−λx − 1)1{x≥0}P(τt ∈ dr, Zt ∈ dx)dt

)
= exp

(∫
(0,∞)

(e−λx − 1)µ(dx)

)
,

where we have set

µ(dx) = 1{x>0}

∫
[0,∞)2

t−1e−qrP(τt ∈ dr, Zt ∈ dx)dt.

It only remains to show that
∫

(0,∞) 1 ∧ xµ(dx) <∞. We have∫
(0,∞)

1 ∧ xµ(dx) =

∫ ∞
0

t−1E
[
e−qτt(1 ∧ Zt)1{Zt>0}

]
.

It can be shown, see for instance Lemma B.3, that there exists a constant C > 0 such that for
any t ≥ 0, E[1 ∧ |Zt|] ≤ C

√
t which is enough to check that

∫
(0,∞) 1 ∧ xµ(dx) <∞. This shows

that ξge is infinitely divisible. The same proof carries on for ξge − ζge . Since these variables are
independent, it comes that ζge = ξge + (ζge − ξge) is also infinitely divisible.

From this result, we can deduce a formula for P(ξge < z) with z > 0 by inverting Laplace
transforms. For q > 0, define the function Vq on R+ as

Vq(z) = E
[∫ ∞

0
e−qθt1{Ht≤z}dt

]
, (4.9)

where we recall that (θt, Ht)t≥0 are the ladder heights, defined in Section 4.3. Recalling from
(2.4) that for any z ≥ 0, V(z) =

∫∞
0 P(Ht ≤ z)dt, we observe that Vq(z) increases to V(z) as

q → 0.

Corollary 4.7. For any z > 0, P(ξge < z) = κ(0, q, 0)Vq(z).

Proof. By Corollary 4.6, we have for any q > 0 and any λ > 0

λ

∫ ∞
0

e−λzP(ξge < z)dz = E
[
e−λξge

]
=
κ(0, q, 0)

κ(0, q, λ)
.

By the definition of Vq, we also have

λ

∫ ∞
0

e−λzVq(z)dz = E
[∫ ∞

0
e−qθt−λHt

]
dt =

∫ ∞
0

e−tκ(0,q,λ)dt =
1

κ(0, q, λ)
,

and the results holds by injectivity of the Laplace transform.

22



We finally end this section with the following proposition, which allows us to decompose
P(ξe < z), our quantity of interest.

Proposition 4.8. The random variables ξge, ξge − ζge and Ie are mutually independent. More-
over, we have for any z > 0,

P(ξe < z) = P(ξge < z)P(∆e ≤ 0) + P(ξge + ∆e < z,∆e ∈ (0, z)), (4.10)

where ∆e = Ie + ζge − ξge = ζe − ξge.

Proof. By Proposition 4.2 and since ξge = ξge− and ζge = ζge−, we get that Ie is independent of
(ξge , ξge − ζge). Then by Corollary 4.6, ξge and ξge − ζge are independent. This implies that the
three random variables are mutually independent.

Now observe that thanks to Assumptions 1 and 2, s 7→ ζs is monotone on the interval [gt, t]
for every t > 0. This implies that sups∈[gt,t] ζs = ζgt ∨ ζt which in turn implies that ξt = ξgt ∨ ζt.
We get the identity

ξt = ξgt1{∆t≤0} + (ξgt + ∆t)1{∆t>0} = ξgt + max(∆t, 0). (4.11)

This allows to derive the desired identity.

5 The positive recurrent case: proof of Theorem 2.1

In this section, we focus on the case n(`) < ∞, which corresponds to the positive recurrent
case, i.e. Assumption 3. In this case, we have that τt ≈ t as t → ∞ and thus we should
expect ξt to behave as St, as we shall see. We recall that the Laplace exponent Φ is expressed
as Φ(q) = mq + n(1 − e−q`). Therefore, if n(`) < ∞, we have Φ(q) ∼ (m + n(`))q as q → 0
which shows that E[τ1] = m + n(`) = m1 < ∞. Then by the strong law of large numbers for
subordinators, it holds that a.s.

lim
t→∞

1

t
τt = m1 . (5.1)

Our main goal is to prove Theorem 2.4 under Assumption 3. We procede in three steps: we deal
with the contribution of the unfinished excursion (this will show that Ie can be neglected); we
study the behavior of κ(0, q, 0) as q ↓ 0; we conclude the proof by combining the above with
Corollary 4.7 and Proposition (4.8).

5.1 Estimate of the last excursion

Let us first estimate Ie as q ↓ 0. It turns out that in the positive recurrent case, it converges in
law.

Lemma 5.1. If n(`) <∞, then Ie converges in law as q → 0 to some random variable I0 which
is a.s. finite and such that P(I0 ≤ 0) > 0.

Proof. Let F : R→ R+ be a bounded continuous function. Using Proposition 4.2, we have

E[F (Ie)] =
q

Φ(q)

(
mF (0) + n

(∫ `

0
e−qtF

(∫ t

0
f(εr)dr

)
dt

))
.

Again, Φ(q) ∼ m1q as q → 0, and we get by the dominated convergence theorem that

E[F (Ie)] −→
mF (0) + n

( ∫ `
0 F
( ∫ t

0 f(εr)dr
)

dt
)

m1
as q → 0,

which shows the result. Since 0 is recurrent for (Xt)t≥0, for n-almost every excursions ε, ε has
a finite lifetime `, which shows that I0 is a.s. finite. By Assumption 2’, n charges the set of
negative excursions so that we necessarily have P(I0 ≤ 0) > 0.
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5.2 Asymptotic behavior of the Laplace exponent

Let us now study the asymptotic behavior of κ(0, q, 0) as q ↓ 0. Since by Corollary 4.7 we
have that P(ξge < z) = κ(0, q, 0)Vq(z) with Vq(z) ↑ V(z) as q ↓ 0, the behavior of κ(0, q, 0)
characterizes the behavior of P(ξge < z).

Theorem 5.2. Assume that n(`) < ∞ and let e be an exponential variable with parameter q,
independent of (Xt)t≥0. Then the following assertions are equivalent for any ρ ∈ (0, 1):
(i) limt→∞

1
t

∫ t
0 P(Zs ≥ 0)ds = ρ;

(ii) limt→∞
1
t

∫ t
0 P(ζs ≥ 0)ds = ρ;

(iii) The function q 7→ κ(0, q, 0) is regularly varying as q ↓ 0, with index ρ.

Proof. Step 1: We show that (i) is equivalent to (iii). By Proposition 4.4, we have for any q > 0,

log κ(0, q, 0) = log c+

∫ ∞
0

E
[
(e−t − e−qτt)1{Zt≥0}

]
t

dt

= log c+ ρ

∫ ∞
0

e−t − e−Φ(q)t

t
dt+

∫ ∞
0

E
[
(e−t − e−qτt)(1{Zt≥0} − ρ)

]
t

dt

= log c+ ρ log Φ(q) +

∫ ∞
0

E
[
(e−t − e−qτt)(1{Zt≥0} − ρ)

]
t

dt,

where we used Frullani’s identity in the third equality. Let us define the function ς for q > 0 as

ς(q) = exp

(∫ ∞
0

E
[
(e−t − e−qτt)(1{Zt≥0} − ρ)

]
t

dt

)
. (5.2)

Since Φ(q) ∼ m1q as q → 0, it is clear that q 7→ κ(0, q, 0) is regularly varying as q → 0 with
index ρ if and only if ς is slowly varying at 0. We have for λ > 0 and q > 0

log ς(λq)− log ς(q) =

∫ ∞
0

E
[
(e−qτt − e−λqτt)(1{Zt≥0} − ρ)

]
t

dt

=

∫ ∞
0

E
[
(e−qτt/q − e−λqτt/q)(1{Zt/q≥0} − ρ)

]
t

dt = I + II ,

(5.3)

where we have set

I :=

∫ ∞
0

e−m1t − e−m1λt

t

(
P(Zt/q ≥ 0)− ρ

)
dt ,

II :=

∫ ∞
0

1

t
E
[
(e−qτt/q − e−m1t + e−m1λt − e−λqτt/q)(1{Zt/q≥0} − ρ)

]
dt .

We first show that the term II always converges to 0 under the assumption n(`) < ∞.
Let us set F (t, q) = F1(t, q) + F2(t, q) where F1(t, q) = E[(e−qτt/q − e−m1t)(1{Zt/q≥0} − ρ)] and
F2(t, q) = E[(e−m1λt−e−λqτt/q)(1{Zt/q≥0}−ρ)]. By (5.1), we have that for any t ≥ 0, qτt/q → m1t
a.s. as q → 0. Therefore by the dominated convergence theorem, we have for any t ≥ 0,
F (t, q) → 0 as q → 0, and it only remains to dominate F (t, q) to get that II =

∫∞
0

1
tF (t, q)dt

goes to zero as q ↓ 0. We only show that we can dominate F1; the same domination can be done
on F2. We write

|F1(t, q)| ≤ 2E
[
|e−qτt/q − e−m1t|

]
≤ 2E

[
|e−qτt/q − e−m1t|2

]1/2
≤ 2

(
e−2tΦ(2q)/2q − 2e−(m1+Φ(q)/q)t + e−2m1t

)1/2
.

We set b+ = supq∈(0,1) Φ(q)/q and b− = infq∈(0,1) Φ(q)/q which are two finite and strictly positive
real numbers. Then it is clear that for any q ∈ (0, 1

2), for any t > 0,

1

t
|F1(t, q)| ≤ 2

t

(
e−2tb− − 2e−(m1+b+)t + e−2m1t

)1/2
.
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The term on the right-hand side is integrable: indeed, for t ∈ [0, 1] it is bounded by a constant
times t−1/2, whereas for t > 1 it is bounded by 2(e−2tb− + e−2m1t)1/2. We can conclude by the
dominated convergence theorem that II =

∫∞
0

1
tF (t, q)dt goes to zero as q ↓ 0.

At this point, we know that (iii) holds if and only if for any λ > 0, the term I goes to 0 as q ↓ 0.
We now use well-known results about Lévy processes. The usual Laplace exponent of the ladder
time process of (Zt)t≥0 is q 7→ κ(q, 0, 0) and it is well-known, see for instance [4, Prop. VI.18
and its proof] that (i) holds if and only if q 7→ κ(q, 0, 0) is regularly varying at 0 with index ρ.
Recalling Proposition 4.4, we have for any q > 0,

log κ(q, 0, 0) = log c+

∫ ∞
0

e−t − e−qt

t
P(Zt ≥ 0)dt

= log c+ ρ log q +

∫ ∞
0

e−t − e−qt

t
(P(Zt ≥ 0)− ρ) dt.

We therefore obtain that (i) holds if and only if, for any λ > 0

log κ(λq, 0, 0)− log κ(q, 0, 0)− ρ log λ =

∫ ∞
0

e−qλt − e−qt

t
(P(Zt ≥ 0)− ρ) dt −→ 0

as q ↓ 0. But this is clearly equivalent to having the term I going to 0 as q ↓ 0, for any λ > 0.
This concludes the proof that (i) holds if and only if (iii) holds.

Step 2: Next, we show that (i) holds if and only if we have (ii’) limt→∞
1
t

∫ t
0 P(ζgs ≥ 0)ds = ρ.

Let e = e(q) be an independent exponential random variable of parameter q > 0 and e′ = e(m1q)
be an independent exponential random variable of parameter m1q > 0. We have

P(ζge ≥ 0) = q

∫ ∞
0

e−qtP(ζgt ≥ 0)dt and P(Ze′ ≥ 0) = m1q

∫ ∞
0

e−m1qtP(Zt ≥ 0)dt.

Then by the Tauberian theorem, see [8, Thm. 1.7.1], we have that limq↓0 P(Ze′ ≥ 0) = ρ if
and only if (i) holds, and limq↓0 P(ζge ≥ 0) = ρ if and only if limt→∞

1
t

∫ t
0 P(ζgs ≥ 0)ds = ρ.

Therefore, to conclude, it only remains to show that limq→0 |P(ζge ≥ 0)− P(Ze′ ≥ 0)| = 0.
Applying Proposition 4.2-(4.2) with the functional F1 = 1{ζgt≥0}, we get

P(ζge ≥ 0) = Φ(q)

∫ ∞
0

E
[
e−qτt1{Zt≥0}

]
dt.

Then we obtain that |P(ζge ≥ 0)− P(Ze′ ≥ 0)| is bounded by∣∣∣∣ ∫ ∞
0

E
[
(Φ(q)e−qτt −m1qe

−m1qt)1{Zt≥0}
]

dt

∣∣∣∣
≤ |Φ(q)−m1q|

∫ ∞
0

E
[
e−qτt1{Zt≥0}

]
dt+ m1

∫ ∞
0

E
[
|qe−qτt − qe−qt|1{Zt≥0}

]
dt

≤ |Φ(q)−m1q|
1

Φ(q)
+ m1

∫ ∞
0

E
[
|e−qτt/q − e−m1t|

]
dt.

By assumption, we have limq→0 Φ(q)/q = m1, so the first term goes to 0. By the law of large
numbers (5.1) and dominated convergence, we have that for any t ≥ 0, E[|e−qτt/q − e−m1t|]
converges to 0 as q ↓ 0. We conclude again by dominated convergence that the second term goes
to 0, since E[|e−qτt/q − e−m1t|] ≤ E[e−qτt/q ] + e−m1t = e−tΦ(q)/q + e−m1t ≤ e−b−t + e−m1t.

Step 3: Finally, we show that (ii) is equivalent to (ii’) limt→∞
1
t

∫ t
0 P(ζgs ≥ 0)ds = ρ. Again, by

the Tauberian theorem, (ii) holds if and only if limq↓0 P(ζe ≥ 0) = ρ and (ii’) holds if and only if
limq→0 P(ζge ≥ 0) = ρ (with e = e(q) an independent exponential random variable of parameter
q > 0). Therefore it is enough to show that limq→0 |P(ζge ≥ 0) − P(ζe ≥ 0)| = 0 in the case
n(`) <∞. To prove this, we write

P(ζge ≥ 0)− P(ζe ≥ 0) = P(ζge ≥ 0, ζe < 0)− P(ζge < 0, ζe ≥ 0).
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We will only show that limq→0 P(ζge ≥ 0, ζe < 0) = 0 as the proof for the other term is similar.
By Lemma 5.1 above, the term Ie = ζe − ζge converges in law as q → 0 to some real random
variable I0. We let A > 0 and we decompose the probability as

P(ζge ≥ 0, ζe < 0) = P(ζge ≥ 0, ζge + Ie < 0, Ie < −A) + P(ζge ≥ 0, ζge + Ie < 0, Ie ≥ −A),

which yields the following inequality:

P(ζge ≥ 0, ζe < 0) ≤ P(Ie < −A) + P(ζge ∈ [0, A]).

By Proposition 4.2, we have

P(ζge ∈ [0, A]) = Φ(q)

∫ ∞
0

E
[
e−qτt1{Zt∈[0,A]}

]
dt =

Φ(q)

q

∫ ∞
0

E
[
e−qτt/q1{Zt/q∈[0,A]}

]
dt.

For every A > 0, we have limt→∞ P(Zt ∈ [0, A]) = 0, see e.g. Sato [41, Ch. 9 Lem. 48.3]. Since
limq→0 Φ(q)/q = m1 and E[e−qτt/q1{Zt/q∈[0,A]}] ≤ E[e−qτt/q ] = e−tΦ(q)/q ≤ e−b−t, it follows from
the dominated convergence theorem that limq→0 P(ζge ∈ [0, A)) = 0. We deduce that

lim sup
q→0

P(ζge ≥ 0, ζe < 0) ≤ lim sup
q→0

P(Ie < −A) ≤ P(I0 ≤ A).

Since I0 is a.s. finite, the result follows by letting A→∞.

5.3 Conclusion of the proof of Theorem 2.1 under Assumption 3

We are finally able to prove our main theorem in the positive recurrent case.

Proof. We assume that n(`) <∞, and will first show that, by setting c0 = lim infq→0 P(∆e ≤ 0),
we have c0 ∈ (0, 1] and for any z > 0,

c0V(z) ≤ lim inf
q→0

P(ξe < z)

κ(0, q, 0)
≤ lim sup

q→0

P(ξe < z)

κ(0, q, 0)
≤ V(z). (5.4)

Then we will see that if q 7→ P(ξe < z) is regularly varying at 0 with index ρ ∈ (0, 1), or if
t−1
∫ t

0 P(ζs ≥ 0)ds→ ρ as t→∞, then necessarily c0 = 1. Using (4.10), we deduce the following
inequalies

P(ξge < z)P(∆e ≤ 0) ≤ P(ξe < z) ≤ P(ξge < z).

By Corollary 4.7, we have P(ξge < z) = κ(0, q, 0)Vq(z) for any z > 0, and since Vq(z) → V(z),
(5.4) holds if we can show that P(∆e ≤ 0) converges to some positive constant as q → 0.

Remember that Ie and ζge − ξge are independent, that ∆e = Ie + ζge − ξge , and that by
Lemma 5.1, Ie converges in law as q → 0. We will show that, either ζge − ξge converges to −∞
as q → 0 in probability, or ζge − ξge converges in law to some (finite) random variable as q → 0.
By Proposition 4.2, we have for any µ > 0,

E
[
e−µ(ξge−ζge )

]
= Φ(q)

∫ ∞
0

E
[
e−qτt−µ(St−Zt)

]
dt =

Φ(q)

q

∫ ∞
0

E
[
e−qτt/q−µ(St/q−Zt/q)

]
dt.

Recall that Φ(q)/q → m1 as q → 0 and that qτt/q → m1t as q → 0. Duality entails that for
every t ≥ 0, St − Zt is equal in law to Ŝt where Ŝt = sups∈[0,t] Ẑs and Ẑt = −Zt, see [4, Ch. VI
Prop. 3]. Since (Ŝt)t≥0 is increasing, Ŝt → Ŝ∞ as t→∞. By the 0-1 law, P(lim inft→∞ Zt =∞)
is equal to 0 or 1, two cases are to be considered:

• If lim inft→∞ Zt = ∞ a.s., then Ŝ∞ = ∞ a.s. and thus, St − Zt converges in probability
to ∞ as t → ∞. Since E[e−qτt/q−µ(St/q−Zt/q)] ≤ E[e−qτt/q ] = e−tΦ(q)/q, we can apply the
dominated convergence theorem which shows that ξge − ζge converges in probability to ∞
as q → 0. It comes that P(∆e ≤ 0)→ 1 as q → 0.
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• If lim inft→∞ Zt < ∞ a.s., then Ŝ∞ < ∞ a.s. and thus St − Zt converges in law to Ŝ∞
as t → ∞. By Slutsky’s lemma, for any t ≥ 0, (qτt/q, St/q − Zt/q) converges in law to
(m1t, Ŝ∞) and we can again apply the dominated convergence theorem, which shows that
ξge−ζge converges in law to some non-negative finite random variable that we name ξ0−ζ0.
Then we have P(∆e ≤ 0) → P(ζ0 − ξ0 + I0 ≤ 0) where ζ0 − ξ0 and I0 are indepedent. By
Lemma 5.1, P(I0 ≤ 0) > 0 which shows that P(ζ0 − ξ0 + I0 ≤ 0) > 0.

We showed that in any case (5.4) holds. Let us now assume first that t−1
∫ t

0 P(ζs ≥ 0)ds → ρ

as t → ∞ for some ρ ∈ (0, 1). Then by Theorem 5.2, it also holds that t−1
∫ t

0 P(Zs ≥ 0)ds → ρ
as t → ∞, which implies that lim inft→∞ Zt = ∞ a.s., see for instance [4, Theorem VI.12], and
therefore the constant c0 in (5.4) is equal to 1. We then have P(ξe < z) ∼ κ(0, q, 0)V(z) which
shows by Theorem 5.2 that q 7→ P(ξe < z) is regularly varying with index ρ.

Let us now assume that q 7→ P(ξe < z) is regularly varying at 0 with index ρ ∈ (0, 1). Then
by (5.4), for any δ > 0, qρ+δ/κ(0, q, 0)→ 0 as q → 0. Now remember from Proposition 4.4 that

κ(0, q, 0) = c exp

(∫ ∞
0

E[(e−t − e−qτt)1{Zt≥0}]

t
dt

)
and

κ̄(0, q, 0) = exp

(∫ ∞
0

E[(e−t − e−qτt)1{Zt<0}]

t
dt

)
.

We see by Frullani’s identity that κ(0, q, 0)κ̄(0, q, 0) = cΦ(q) and since Φ(q) ∼ m1q as q → 0
it comes that κ̄(0, q, 0) → 0 as q → 0. Recall that by Corollary 4.6, for any µ > 0, we have
E[e−µ(ξge−ζge )] = κ̄(0, q, 0)/κ̄(0, q, µ), and since κ̄(0, q, µ) → κ̄(0, 0, µ) > 0 as q → 0, we see that
E[e−µ(ξge−ζge )]→ 0 as q → 0 which shows that, in this case ξge − ζge converges in probability to
∞. From the previous analysis, we see that we are necessarily in the case lim inft→∞ Zt = ∞
a.s. and therefore the constant c0 from (5.4) is equal to 1 so that P(ξe < z) ∼ κ(0, q, 0)V(z) as
q → 0. This shows that q 7→ κ(0, q, 0) is also regularly varying at 0 with index ρ and thus, by
Theorem 5.2, t−1

∫ t
0 P(ζs ≥ 0)ds→ ρ as t→∞.

6 The null recurrent case: proof of Theorem 2.4

In this section, we assume that 0 is null recurrent, i.e. that n(`) =∞ and suppose that Assump-
tion 4 holds: in a nutshell,(

b(h)τt/h, a(h)Zt/h
)
t≥0
−→

(
τ0
t , Z

0
t

)
t≥0

as h→ 0,

with (τ0
t , Z

0
t )t≥0 a bivariate Lévy process, (τ0

t )t≥0 being a β-stable subordinator and (Z0
t )t≥0 an

α-stable process. Assumption 4 also entails that a(b−1(h)) I1/h converges in law as q → 0 to
some (possibly degenerate) random variable I.

Remark 6.1. Let us stress that since (b(h)τt/h)t≥0 converges in law to (τ0
t )t≥0 as h → 0, the

Laplace exponent Φ(q) of (τt)t≥0 is regularly varying at 0 with index β. More precisely, Φ(·) is
an asymptotic inverse (up to a constant) of b(·) near 0. Indeed, (b(q)τt/q) converges in law to a
β-stable subordinator, and therefore

−1

t
logE

[
e−b(q)τt/q

]
=

Φ(b(q))

q

q→0−−−→ −1

t
logE

[
e−τ

0
t

]
.

This also implies, see [8, Thm. 1.5.12], that q/b(Φ(q)) converges to some some positive constant
b̄ as q → 0. For simplicity and without loss of generality, we assume in the following that b̄ = 1
Since (b(Φ(q))τt/Φ(q), a(Φ(q))Zt/Φ(q))t≥0 converges in law to (τ0

t , Z
0
t )t≥0 as q → 0, it comes that

(qτt/Φ(q), a(Φ(q))Zt/Φ(q))t≥0 −→ (τ0
t , Z

0
t )t≥0 as q → 0. (6.1)

Below, we use some convergence results for Lévy processes, whose proofs are collected in
Appendix B.
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6.1 Laplace exponent and convergence of scaled ξge − ζge
We start with the following result.

Proposition 6.2. Suppose that Assumption 4 holds. Then the function q 7→ κ(0, q, 0) is regularly
varying as q → 0 with index βρ with ρ := P(Z0

t ≥ 0).

Proof. Recalling Proposition 4.4, we start by writing that

log κ(0, q, 0) = log c+

∫ ∞
0

E
[
(e−t − e−qτt)1{Zt≥0}

]
t

dt

= log c+

∫ ∞
0

e−t/Φ(q) − e−t

t
P(Zt/Φ(q) ≥ 0)dt+

∫ ∞
0

E
[
(e−t − e−qτt/Φ(q))1{a(Φ(q))Zt/Φ(q)≥0}

]
t

dt.

Using the convergence (6.1) and Proposition B.1 in Appendix B, the last term converges as
q → 0. Then, with ρ = P(Z0

t ≥ 0), the second term becomes, by Frullani’s identity

ρ log Φ(q) +

∫ ∞
0

e−t − e−Φ(q)t

t
(P(Zt ≥ 0)− ρ)dt.

As we argued in the proof of Theorem 5.2, the function

q 7→ exp

(∫ ∞
0

e−t − e−Φ(q)t

t
(P(Zt ≥ 0)− ρ)dt

)
is slowly varying as q → 0. Since Φ is regularly varying with index β, it comes that q 7→ κ(0, q, 0)
is regularly varying with index βρ, which establishes the results.

Proposition 6.3. Suppose that Assumption 4 holds and let e be an exponential variable with
parameter q > 0, independent of (Xt)t≥0. Then a(Φ(q))(ξge − ζge) converges in law as q → 0:
more precisely, we have that for any λ > 0

lim
q→0

E
[
e−λa(Φ(q))(ξge−ζge )

]
=
κ̄0(0, 1, 0)

κ̄0(0, 1, λ)
,

where κ̄0 is defined, analogously to κ̄, as

κ̄0(α, β, γ) = exp

(∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr+γx

t
1{x<0}P(τ0

t ∈ dr, Z0
t ∈ dx)dt

)
.

Proof. By Corollary 4.6, we have that the Laplace transform of a(Φ(q))(ξge − ζge) is

E
[
e−λa(Φ(q))(ξge−ζge )

]
=

κ̄(0, q, 0)

κ̄(0, q, λa(Φ(q)))
.

Now, by the definition of κ̄ (in Proposition 4.4), we have

log κ̄(0, q, 0)− log κ̄(0, q, λa(Φ(q))) =

∫ ∞
0

E
[
(e−qτt+λa(Φ(q))Zt − e−qτt)1{Zt<0}

]
t

dt.

Making the change of variables t = u/Φ(q) and splitting the integral in two parts, we get that
the above quantity is equal to∫ ∞

0
t−1E

[
(e−t − e−qτt/Φ(q))1{Zt/Φ(q)<0}

]
dt

−
∫ ∞

0
t−1E

[
(e−t − e−qτt/Φ(q)+λa(Φ(q))Zt/Φ(q))1{Zt/Φ(q)<0}

]
dt.

By (6.1) and Proposition B.1, log κ̄(0, q, 0)− log κ̄(0, q, λa(Φ(q))) is a difference of two converging
terms. More precisely, Proposition B.1 entails that it converges to log κ̄0(0, 1, 0)− log κ̄0(0, 1, λ),
which completes the proof.
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6.2 Conclusion of the proof of Theorem 2.4 under Assumption 4

Finally, we are able to prove our main theorem in the null recurrent case.

Proof. We start by recalling that, from (4.10), for any z > 0 we have

P(ξe < z) = P(ξge < z)P(∆e ≤ 0) + P(ξge + ∆e < z,∆e ∈ (0, z)) .

We also remind that by Proposition 4.8, the random variable Ie, ξge and ξge − ζge are mutually
independent. Since ∆e = Ie + ζge − ξge , it is independent from ξge and we get that

P(ξge < z)P(∆e ≤ 0) ≤ P(ξe < z) ≤ P(ξge < z)P(∆e < z).

By Corollary 4.7, we have P(ξge < z) = κ(0, q, 0)Vq(z) and since κ(0, q, 0) is regularly varying
at 0 with index βρ and Vq(z) increases to V(z), it only remains to control P(∆e ≤ 0) and
P(∆e < z). By Assumption 4, and recalling that Φ(·) is an asymptotic inverse of b(·), we have
that a(Φ(h))I1/h converges in law as h→ 0 to some random variable I. This easily implies that
a(Φ(q))Ie converges in law as q ↓ 0 and thanks to Proposition 6.3 so does a(Φ(q))(ζge − ξge).
Since Ie and ζge − ξge are independent, it gives that a(Φ(q))∆e converges in law as q → 0 to
some random variable, that we denote ∆0. Finally, we end up with

lim
q↓0

P(∆e ≤ 0) = lim
q↓0

P(∆e < z) = P(∆0 ≤ 0) ,

which completes the proof.

6.3 The case of Gaussian fluctuations

In this section, we treat the special case where Assumption 4 is satisfied with α = 2, i.e. when the
limiting process (Z0

t )t≥0 is a Brownian motion. This case is somehow simpler since (τ0
t )t≥0 and

(Z0
t )t≥0 are then necessarily independent (this can be seen directly from the Lévy-Khintchine

formula), and the convergence of (b(h)τt/h)t≥0 and (a(h)Zt/h)t≥0 alone implies the convergence
of the bi-dimensional process, see Lemma B.4. We are going to prove that in that case, we can
somehow weaken Assumption 4 (relaxing the assumption on the convergence of the last part
a(b−1(h)) I1/h).

Recall that for a generic excursion ε, we denote F = F(ε) =
∫ `

0 f(εs)ds, see (4.1).

Assumption 8. There exists some β ∈ (0, 1) such that Φ is regularly varying at 0 with index β,
and n(F) = 0, n(F2) <∞.

We then have the following result.

Theorem 6.4. Suppose that Assumption 8 holds. Then there exists a slowly varying function ς
such that for any z > 0,

P(Tz > t) = V(z)ς(t)t−β/2 as t→∞,

where β is given by Assumption 8.

Proof. We simply check that Assumption 8 implies that Assumption 4 is satisfied. Let us de-
note by ν(dz) = n(F ∈ dz) the Lévy measure of (Zt)t≥0. Then Assumption 8 entails that∫
R\{0} z

2ν(dz) < ∞, which implies that (h1/2Zt/h)t≥0 converges in law towards a Brownian
motion (Z0

t )t≥0 as h→ 0 (this can be easily checked via the characteristic function).
Moreover, if b is an asymptotic inverse of Φ at 0, we have that (b(h)τt/h)t≥0 converges in

law to a β-stable subordinator (τ0
t )t≥0 as h → 0. By Lemma B.4, this shows that the bivariate

process (b(h)τt/h, h
1/2Zt/h)t≥0 converges in law to (τ0

t , Z
0
t )t≥0 as h→ 0.

Finally, we show that Φ(q)1/2Ie converges to 0 in L2 as q → 0. By Proposition 4.2-(4.3),
setting Fu(ε) =

∫ u
0 f(εv)dv for any u ≤ `(ε), we have

E
[
Φ(q)I2

e

]
= q

∫
E

∫ `(ε)

0
e−quFu(ε)2du n(dε) ≤

∫
E
F(ε)2(1− e−q`(ε))n(dε) .
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Indeed Assumptions 1 and 2’ entail that the map u 7→ Fu(ε) is monotonic on [0, `(ε)] and
thus Fu(ε)2 ≤ F(ε)2. Since n(F2) < +∞, we can use dominated convergence to deduce that
limq→0 E[Φ(q)I2

e ] = 0. We can then apply Theorem 2.4 with ρ = P(Z0
t ≥ 0) = 1/2.

7 Application to generalized diffusions

In this section we apply our result to a large class of one-dimensional Markov processes called
generalized diffusions. These processes are defined as a time and space changed Brownian mo-
tion. Originally, it was noted by Itô and McKean [27, 28] that regular diffusions, i.e. regular
strong Markov processes with continuous paths can be represented as a time and space changed
Brownian motion through a scale function s and a speed measure m. In the mean time, Stone [45]
also observed that continuous-in-time birth and death processes could be represented this way.
As we shall see, this construction leads to a general class of Markov processes. Our main goal is
to provide conditions on the function f , the scale function s and speed measure m that ensure
that Assumption 4 holds. Let us now recall the notation of Section 2.3.

Let m : R → R be a non-decreasing right-continuous function such that m(0) = 0, and
s : R → R a continuous increasing function such that s(0) = 0 and s(R) = R. We assume
moreover that m is not constant and will also denote by m the Radon measure associated to m,
that is m((a, b]) = m(b) − m(a) for all a < b. Recall that ms is the image of m by s, i.e. the
Stieltjes measure associated to the non-decreasing function m ◦ s−1. We consider a Brownian
motion (Bt)t≥0 on some filtered probability space (Ω,F , (Ft)t≥0,P) with (Lxt )t≥0,x∈R the usual
family of its local times and we introduce

Ams

t =

∫
R
Lxtm

s(dx) .

The process (Ams

t )t≥0 is a non-decreasing continuous additive functional of the Brownian motion
(Bt)t≥0. For every x ∈ R we have Lx∞ =∞ a.s., and since the support of the measure ms is not
empty we see by Fatou’s lemma that Ams

∞ =∞ a.s. Now we introduce (ρt)t≥0 the right-continuous
inverse of (Ams

t )t≥0 and we set
Xt = s−1(Bρt).

As the change of time through a continuous non-decreasing additive functional of a strong Markov
process preserves the strong Markovianity, see Sharpe [42, Ch. VIII Thm. 65.9], and since s is
bijective, it holds that (Xt)t≥0 is a strong Markov process with respect to the filtration (Fρt)t≥0.
Let us denote by supp(ms) the support of the measure ms. It is rather classical, see again
Sharpe [42, Ch. VIII Thm. 65.9] or Revuz-Yor [39, Ch. X Prop. 2.17], that (Xt)t≥0 is valued
in s−1(supp(ms)) = supp(m). From now on, we will always assume that 0 ∈ supp(ms) so that,
since s(0) = 0, (Xt)t≥0 spends time in 0. Since 0 is recurrent for the Brownian motion, it is also
recurrent for (Xt)t≥0. We have the following proposition, which shows that the process (Xt)t≥0

satisfies the hypothesis of this article and that its local time at the level 0 can be expressed with
the local time of the Brownian motion. The proof is postponed to Appendix C.1.

Proposition 7.1. The following assertions hold.
(i) The family (L

s(x)
ρt )t≥0,x∈R defines a family of local times of (Xt)t≥0 in the sense that a.s., for

any non-negative Borel functions h, for any t ≥ 0, the following occupation times formula
holds: ∫ t

0
h(Xs)ds =

∫
R
h(x)Ls(x)

ρt m(dx).

(ii) The point 0 is regular for (Xt)t≥0.
(iii) The process (L0

ρt)t≥0 is a proper local time for (Xt)t≥0 at the level 0 in the sense that it is
a continuous additive functional whose support almost surely coincides with the closure of
the zero set of (Xt)t≥0.
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(iv) Let (τt)t≥0 be the right-continuous inverse of (L0
ρt)t≥0 and (τBt )t≥0 be the right continuous

inverse of (L0
t )t≥0, then we have

τt =

∫
R
Lx
τBt

ms(dx) = Ams

τBt
.

Moreover, it also holds that for any t ≥ 0, ρτt = τBt .

In this framework, the Lévy process Zt =
∫ τt

0 f(Xs)ds can be expressed, thanks to items (i)
and (iv) of Proposition 7.1, as

Zt =

∫
R
Lx
τBt

mf (dx),

where we have set mf (dx) := f ◦ s−1(x)ms(dx). Note that mf is a signed measure (recall that by
Assumption 1, the function f preserves the sign). We suppose in addition that f ◦ s−1 is locally
integrable with respect to ms so that mf is also a Radon measure. We will also denote by mf

the associated function, i.e. mf (x) =
∫ x

0 f ◦ s
−1(u)ms(du), which is non-decreasing on R+ and

non-increasing on R−. Then it holds that (Zt)t≥0 is a Lévy process with finite variations, with
zero drift (since f(0) = 0). The aim of this section is to show Propositions 2.5 and 2.6

7.1 Excursions of (Xt)t≥0 using those of (Bt)t≥0

Let us first describe the excursions away from 0 of (Xt)t≥0 in terms of the excursions of the
Brownian motion. Let us denote by D the usual space of cadlad functions from R+ to R, and
for ε ∈ D, let us introduce

`(ε) = inf{t > 0, εt = 0}.

Then the set of excursions E is the set of functions ε ∈ D such that 0 < `(ε) < ∞, for every
t ≥ `(ε), εt = 0, and for every 0 < t < `(ε), εt 6= 0. This space is endowed with the usual
Skorokhod’s topology and the associated Borel σ-algebra.

We now introduce the excursion processes of (Bt)t≥0 and (Xt)t≥0, denoted by (eBt )t≥0 and
(eXt )t≥0, which take values in E ∪ {Υ}, where Υ is an isolated cemetery point, and are given by

eBt =

{
(BτBt−+s)s∈[0,∆τBt ] if ∆τBt > 0

Υ otherwise
and eXt =

{
(Xτt−+s)s∈[0,∆τt] if ∆τt > 0

Υ otherwise

A famous result, essentially due to Itô [26], states that (eBt )t≥0 and (eXt )t≥0 are Poisson point
processes and we will respectively denote by nB and n their characteristic measure, which are
defined by

nB(Γ) =
1

t
E
[
NB
t,Γ

]
and n(Γ) =

1

t
E
[
NX
t,Γ

]
, (7.1)

for any measurable set Γ, where

NB
t,Γ =

∑
s≤t

1Γ(eBs ) and NX
t,Γ =

∑
s≤t

1Γ(eXs ).

Our first aim is to describe the measure n in terms of nB; we will see n as a push-forward of
nB by some application T () To this end, we first introduce the subset C of E of functions which
are continuous. It is clear that every function in C has constant sign, and that nB(E \ C) = 0.
We have the following lemma.

Lemma 7.2. Under nB, almost every path posseses a family of local times (Lxt )t≥0,x∈R, in the
sense that for any Borel function g and every t ≥ 0, we have∫ t

0
g(εs)ds =

∫
R
g(x)Lxt dx .

The family (Lxt )t≥0,x∈R is jointly continuous and for any γ ∈ (0, 1/2) the map x 7→ Lxt is Hölder
of order γ uniformly on compact time intervals.
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Proof. Consider some t ≥ 0 such that ∆τBt > 0 and set for any x ∈ R and any s ∈ [0,∆τBt ],
Lxs = Lx

τBt−+s
− Lx

τBt−
. Then (Lxs )s∈[0,∆τBt ],x∈R is the family of local time of eBt . Indeed, for any

Borel function g and s ∈ [0,∆τBt ], we have,∫ s

0
g(eBt (u))du =

∫ s

0
g(BτBt−+u)du =

∫
R
g(x)(Lx

τBt−+s
− Lx

τBt−
)dx.

Since the Brownian local times are jointly continuous and almost surely Hölder of order γ (for
any γ ∈ (0, 1/2)) in the variable x uniformly on compact time intervals, so is (Lxt )t≥0,x∈R. Hence
we showed, almost surely, for any t such ∆τBt > 0, eBt has the property stated in the lemma: by
(7.1), this shows that outside of a negligeable set for nB, every path has the stated property.

We denote by C+ and C− the subsets of C of positive and negative (continuous) excursions.
We introduce the first point of increase and decrease of ms around 0, i.e. the real numbers defined
by

x+ = inf{x > 0, ms(x) > ms(0)} and x− = sup{x < 0, ms(x) < ms(0−)}.

(Note that for standard diffusions we have x+ = x=0, but one may have x− < 0 < x+, for
instance for birth and death chains, see Section 2.5.) Under Assumption 2’ they are finite, i.e.
ms eventually increases and decreases. For a path ε ∈ C, we let M(ε) = sup{|εt|, t ≥ 0} and we
introduce the measurable set

Cx+,x− = (C+ ∩ {M(ε) > x+}) ∪ (C− ∩ {M(ε) > |x−|}) .

For ε ∈ Cx+,x− , we define the time-change

(As
t)0≤t≤` =

(∫
R
Lxtm

s(dx)

)
0≤t≤`

. (7.2)

Observe that As
` > 0 if ε ∈ Cx+,x− (whereas As

` = 0 if ε ∈ C \ Cx+,x−). We denote by
(ρst)0≤t≤A` the right-continuous inverse of (As

t)0≤t≤` and finally define the measurable application
T : Cx+,x− → E such that,

T (ε)t = s−1(ερst ) if t < As
` and T (ε)t = 0 if t ≥ As

`.

A key tool in this section is the following result, which expresses the measure n as the pushforward
measure of nB by T .

Proposition 7.3. For any measurable set Γ, we have n(Γ) = nB(T−1(Γ)).

Let us note that, since T−1(Γ) ⊂ Cx+,x− , the measure n is a finite measure if and only if x+ > 0
and x− < 0, since in this case nB(Cx+,x−) <∞.

Proof. We first emphasize that thanks to Proposition 7.1-(iv), we have a.s., for any t ≥ 0,

∆τt = Ams

τBt
−Ams

τBt−
=

∫
R

(Lx
τBt
− Lx

τBt−
)ms(dx) .

Thus, it should be clear that

∆τt > 0 if and only if ∆τBt > 0 and eBt ∈ Cx+,x− .

Let us now consider some t ≥ 0 such that ∆τt > 0, i.e. some t ≥ 0 such that ∆τBt > 0 and
eBt ∈ Cx+,x− . We set for x ∈ R and s ∈ [0,∆τBt ], Lxs = Lx

τBt−+s
−Lx

τBt−
, the local time of eBt . Then

we introduce the time change (Ats)s∈[0,∆τBt ], defined by

Ats =

∫
R
Lxsm

s(dx) = Ams

τBt−+s
− τt−.
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If (ρts)s∈[0,∆τt] denotes the right-continuous inverse of (Ats)s∈[0,∆τBt ], then for every s ∈ [0,∆τt],
we get the following identity.

ρts = inf{u > 0, Ams

τBt−+u
> τt− + s} = ρτt−+s − τBt−.

Therefore, we conclude that, if t is such that ∆τt > 0, then we have

eXt = (s−1(Bρτt−+s))s∈[0,∆τt] = (s−1(BτBt−+ρts
))s∈[0,∆τt] = T (eBt ).

Therefore, for any measurable set Γ, we have for any t ≥ 0, a.s. NX
t,Γ = NB

t,T−1(Γ), which, by (7.1),
shows the result.

We are now able to express some quantities of interest of (τt, Zt)t≥0 using the Brownian
excursion measure. We first define for any ε ∈ Cx+,x−

(Aft )0≤t≤` =

(∫
R
Lxtm

f (dx)

)
0≤t≤`

. (7.3)

Lemma 7.4. The following assertions hold.
(i) For any λ > 0 and any µ ∈ R,

− logE
[
e−λτ1+iµZ1

]
= nB

(
1− exp

(
−λAs

` + iµAf`

))
.

(ii) Let e = e(q) be an independent exponential random variable of parameter q > 0. Then for
any µ ∈ R,

E
[
eiµIe

]
=

q

Φ(q)

(
m + nB

(∫ `

0
exp(−qAs

t + iµAft )dAs
t

))
,

where we recall that m is the drift coefficient of (τt)t≥0, see Section 4.1.

Proof. Let us start with the first item. By the exponential formula for Poisson point processes,
it is straightforward that for any λ > 0 and any µ ∈ R,

ψ(λ, µ) := − logE
[
e−λτ1+iµZ1

]
= n

(
1− exp

(
− λ`+ iµ

∫ `

0
f(εs)ds

))
.

Applying Proposition 7.3, we get that

ψ(λ, µ) = nB
(
1{ε∈Cx+,x−}

(
1− exp

(
− λAs

` + iµ

∫ As
`

0
f(s−1(ερss))ds

)))
For any ε ∈ Cx+,x− , we have

∫ As
`

0 f(s−1(ερss))ds =
∫ `

0 f(s−1(εu))dAs
u = Af` . Remark that if

ε /∈ Cx+,x− , then As
` = Af` = 0 so that

ψ(λ, µ) = nB
(

1− exp
(
−λAs

` + iµAf`

))
.

We now show the second item. By Proposition 4.2, we have for any µ ∈ R,

E
[
eiµIe

]
=

q

Φ(q)

(
m + n

(∫ `

0
exp

(
− qt+ iµ

∫ t

0
f(εs)ds

)
dt

))
=:

q

Φ(q)
(m +G(µ, q)).

Then, by Proposition 7.3 again, we get

G(µ, q) = nB
(
1{ε∈Cx+,x−}

∫ As
`

0
exp

(
− qt+ iµ

∫ t

0
f(s−1(ερss))ds

)
dt

)
.

Performing the change of variables t = As
u and using the occupation time formula for the Brow-

nian excursion, we get

G(µ, q) = nB
(
1{ε∈Cx+,x−}

∫ `

0
exp(−qAs

t + iµAft )dAs
t

)
.

If ε /∈ Cx+,x− , then As
t = 0 for any t ∈ [0, `] and we can remove 1{ε∈Cx+,x−} from the above

expression, which gives the desired statement.
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7.2 Additive functionals for strings with regular variation

Assumptions 5 and 7 state that ms and mf are regularly varying and we will show that it implies
that (τt, Zt)t≥0 belongs to the domain of attraction of a bivariate stable process. To prove
that, we remark that the jumps of the rescaled process (τht , Z

h
t )t≥0 (with h ↓ 0) are also additive

functionals of the Brownian motion (Bt)t≥0 but involving rescaled measures ms
h and mf

h. We need
technical tools to go from the convergence of (ms

h,m
f
h) to the convergence of the law of those

additive functionals. The goal of this section is to provide those technical tools which are mainly
inspired by a work by Fitzsimmons and Yano [14] and are based on classical result from regular
variation theory [8]. All the proofs of the following results are postponed to Appendix C.2.

Let us now give some convergence results for sequences for additive functionals of Brownian
excursions, in the spirit of [14, Thm. 2.9]; we will apply them to ms and mf (more precisely to
their restrictions to R+ and R−). We consider a string, i.e. a non-decreasing right-continuous
function m on R+ such that m(0) = 0, with regular variation in the sense that there are some
α ∈ (0, 2), and some smooth, locally bounded slowly varying function Λ : R+ → (0,∞), such
that, according to the values of α, we have

• If α < 1, then m(x) ∼ Λ(x)x1/α−1 as x→∞.

• If α = 1, then for any x > 0, (m(x/h)−m(1/h))/Λ(1/h) −→ log x as h→ 0.

• If α ∈ (1, 2), then limx→∞m(x) = m(∞) <∞ and m(∞)−m(x) ∼ Λ(x)x1/α−1 as x→∞.

For such a string m, we define the family of rescaled strings mh, h > 0 as follows:
• If α < 1, then mh(x) = h1/α−1m(x/h)/Λ(1/h).

• If α = 1, then mh(x) = (m(x/h)−m(1/h))/Λ(1/h).

• If α ∈ (1, 2), then mh(x) = h1/α−1(m(x/h)−m(∞))/Λ(1/h).

Note that in all cases, we have mh(dx) = h1/α−1

Λ(1/h)m(d(x/h)). Moreover, it is easily checked that

• If α ∈ (0, 1), then for any x > 0, mh(x) −→ x1/α−1 as h→ 0.

• If α = 1, then for any x > 0, mh(x) −→ log x as h→ 0.

• If α ∈ (1, 2), then for any x > 0, mh(x) −→ −x1/α−1 as h→ 0.
The following lemma shows that the regular variations of m implies the convergence for additive
functionals with respect to the rescaled strings mh (as h→ 0). This will reveal to be a key result
in the proof of Proposition 2.6 and is close from results in [14].

Lemma 7.5. Let m be such a string with regular variation and g : [0,∞) → R some compactly
supported continuous function such that g(0) = 0 and which is γ-Hölder at 0 for any γ < 1/2.
Then

lim
h↓0

∫
R+

g(x)mh(dx) = cα

∫
R+

g(x)x1/α−2dx,

where cα = |1/α− 1| if α 6= 1 and cα = 1 for α = 1.

Remark 7.6. Thanks to Lemma 7.2, the previous lemma applies to the family of local times of
the Brownian excursion, i.e. x 7→ Lxt . For t ∈ [0, `], we have nB+-a.e,

lim
h↓0

∫
R+

Lxtmh(dx) = cα

∫
R+

Lxt x
1/α−2dx.

Note also that since t 7→
∫
R+

Lxtmh(dx) is non-decreasing and the limiting function t 7→
∫
R+

Lxt x
1/α−2dx

is continuous, the convergence holds in uniform norm on compact set.

We will use the following technical lemma to go from the convergence of additive functionals
for an excursion to the convergence in measure (it is a truncation and domination lemma).

Lemma 7.7. Define Aδ := {ε ∈ C, sups∈[0,`] |εs| ≤ δ} then for 0 < δ < 1 :
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(i) If α ∈ (0, 1) then lim sup
h↓0

nB+

[( ∫
R+

Lx`mh(dx)
)
1Aδ

]
≤ 2δ

1
α
−1, which goes to 0 as δ ↓ 0.

(ii) If α ∈ [1, 2) then

lim
δ↓0

nB+

[
sup

h∈(0,1)

(∫
R+

Lx`mh(dx)
)2

1Aδ

]
= 0.

(iii) If α ∈ (1, 2) then

nB+

[
sup

h∈(0,1)

(∫
R+

Lx`mh(dx)
)
1Ac

δ

]
< +∞.

(iv) If α = 1 then

nB+

[
sup

h∈(0,1)

(∫ 1

0
Lx`mh(dx)

)
1Ac

δ

]
< +∞.

Although these results are stated for functionals of positive Brownian excursions, they obvi-
ously hold for functionals of negative excursions as the measure nB is invariant by the application
ε 7→ −ε. In the following, we apply these results to the strings ms and mf . Indeed, since we
assumed that ms(0) = 0 and mf (0) = 0, we can first apply the results to ms and mf restricted
to R+, denoted ms

+ and mf
+. Then we can also apply them to ms

− and mf
− defined on R− as

ms
− = ms −ms(0−), mf

− = mf −mf (0−) on (−∞, 0) and ms
−(0) = 0, mf

−(0) = 0.

7.3 Proof of Proposition 2.6

We finally prove here Proposition 2.6. We let the reader recall Assumptions 5 and 7, which are
assumed throughout this proof (they tell that ms

± and mf
± are strings with regular variation).

Let us also introduce the following notation: for a, b, x ∈ R, we set sgna,b(x) = a1{x>0}+b1{x<0}.
The function sgn will denote the usual sign function, i.e. sgn(x) = sgn1,−1(x). Then, for ε ∈ C,
let us denote:

Aβ` (ε) = cβ

∫ `

0
sgnm+,m−(εs)|εs|1/β−2ds, Aα` (ε) = cα

∫ `

0
sgnf+,−f−(εs)|εs|1/α−2ds ,

where cα is as in Lemma 7.5. In the case α = 1, f+ = f− = 1 so A1
` (ε) =

∫ `
0

ds
εs
.

We proceed in two steps: first, we prove that the rescaled Lévy process (τht , Z
h
t )t≥0 converges

as h ↓ 0; then we prove the convergence of the other term a(b−1(q))Ie as q ↓ 0.

Step 1: Convergence of (τht , Z
h
t ). Let us set b(h) = h1/β/Λs(1/h) and a(h) = h1/α/Λf (1/h).

We show that (τht , Z
h
t )t≥0 := (b(h)τt/h, a(h)Zt/h)t≥0 converges in distribution to (τ0

t , Z
0
t )t≥0,

where (τ0
t , Z

0
t )t≥0 is a Lévy process, without drift (except in the case α = 1 where the drift is

some constant c̃) and without Brownian component, whose Lévy measure π0(dr, dz) is defined
as

π0(dr, dz) = nB
(
Aβ` (ε) ∈ dr,Aα` (ε) ∈ dz

)
.

To this end, we will show that the following convergence holds for every λ > 0 and µ ∈ R:

lim
h↓0

E
[
e−λτ

h
t +iµZht

]
= E

[
e−λτ

o
t +iµZot

]
. (7.4)

Let us set for any λ, h > 0, and any µ ∈ R, ψh(λ, µ) = − logE[e−λτ
h
1 +iµZh1 ]. Then we get by

Lemma 7.4-(i) that

ψh(λ, µ) =
1

h
nB
(

1− exp

(
−λb(h)

∫
R
Lx`m

s(dx) + iµa(h)

∫
R
Lx`m

f (dx)

))
.

We will now use the scaling property of the Brownian excursion measure: for every h > 0, we
have nB = h nB ◦λ−1

h , where λh : E → E is defined by λh(ε) = (h−1εth2)t≥0. Now if (Lxt )x∈R,t∈[0,`]
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denotes the family of local times of ε, then (h−1Lhxth2)x∈R,t∈[0,`/h2] is the family of local times of
λh(ε). Then we get

ψh(λ, µ) = nB
(

1− exp

(
−λ
∫
R
Lx`m

s
h(dx) + iµ

∫
R
Lx`m

f
h(dx)

))
,

where the measures ms
h and mf

h are defined as follows:
• For every x ∈ R, ms

h(x) = h1/β−1ms(x/h)/Λs(1/h) (recall β ∈ (0, 1)).
• According to the values of α, we have:

(i) If α ∈ (0, 1), for every x ∈ R, mf
h(x) = h1/α−1mf (x/h)/Λf (1/h)

(ii) If α = 1, for every x ≥ 0, mf
h(x) = (mf (x/h) − mf (1/h))/Λf (1/h) and for every x < 0,

mf
h(x) = (mf (x/h)−mf (−1/h))/Λf (1/h).

(iii) If α ∈ (1, 2), then for every x ∈ R, mf
h(x) = h1/α−1(mf (x/h)−mf (∞))/Λf (1/h).

Before going further, we introduce the following notation, analogous to (7.2)-(7.3)

As,h
` (ε) =

∫
R
Lx`m

s
h(dx), Af,h` (ε) =

∫
R
Lx`m

f
h(dx), (7.5)

so that ψh(λ, µ) = nB
(
ϕ(As,h

` , Af,h` )
)
with ϕ(x, y) = 1− e−λx+iµy.

Then, thanks to Assumptions 5 and 7 we can apply Lemma 7.5: we have for nB-almost every
excursion ε ∈ C,

lim
h↓0

As,h
` (ε) = Aβ` (ε) and lim

h↓0
Af,h` (ε) = Aα(ε). (7.6)

It remains to prove that we can exchange the limits inside ψh(λ, µ). Recall that we set, for δ > 0,
Aδ = {ε ∈ C,M(|ε|) ≤ δ} and that nB(Ac

δ) < +∞.

Case α ∈ (0, 1). We need to prove that limh↓0 ψh(λ, µ) = ψ0(λ, µ) := nB[ϕ(Aβ` , A
α
` )], where ψ0

is the characteristic exponent of the limit process (τ0
t , Z

0
t )t≥0. We have

|ψh(λ, µ)− ψ0(λ, µ)| ≤ nB
[∣∣ϕ(As,h

` , Af,h` )− ϕ(Aβ` , A
α
` )
∣∣1Ac

δ

]
+ nB

[
|ϕ(As,h

` , Af,h` )|1Aδ

]
+ nB

[
|ϕ(Aβ` , A

α
` )|1Aδ

]
.

Since ϕ is bounded and nB(Aδ) < +∞, by (7.6) and the dominated convergence theorem, it
comes

lim sup
h→0

nB
[∣∣ϕ(As,h

` , Af,h` )− ϕ(Aβ` , A
α
` )
∣∣1Ac

δ

]
= 0.

Since there is some Cλ,µ > 0 such that |ϕ(x, y)| ≤ Cλ,µ(x+ |y|) for all x ≥ 0, y ∈ R, from item (i)
of Lemma 7.7 (decomposing for positive and negative excursions), we get that

lim sup
h→0

nB
[
|ϕ(As,h

` , Af,h` )|1Aδ

]
−→ 0 as δ ↓ 0.

By Fatou’s lemma, we also get that nB
[
|ϕ(Aβ` , A

α
` )|1Aδ

]
converges to 0 as δ ↓ 0. We now quickly

explain the value of the constant ρ = P(Z0
t ≥ 0) in Proposition 2.6. One can easily see that a

representation of the limiting α-stable process (Z0
t )t≥0 is

Z0
t =

∫ τBt

0
sgnf+,−f−(Bs)|Bs|1/α−2ds

where we recall that (Bt)t≥0 is a Brownian motion and (τBt )t≥0 is its inverse local time at 0. The
characteristic function of (Z0

t )t≥0 is computed in [7, Lemma 11] and we can deduce the value of
ρ using a formula due to Zolotarev [51, §2.6].

Case α ∈ (1, 2). Recall that there exists a positive constant mf (∞) < ∞ such that mf (x) →
mf (∞) as x → ±∞. It follows that mf (1) = 0 and by Lemma 7.8 below (whose proof is
postponed to Appendix C.1), we have that n

( ∫ `
0 f(εs)ds

)
= 0, which in turn implies nB(Af` ) = 0.

Obviously, we also have nB(Af,h` ) = 0 for any h > 0.
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Lemma 7.8. Let g be a positive Borel function such that mf
+(g) < ∞ and |mf

−(g)| < ∞. Then
we have mf (g) = n

( ∫ `
0 ((g ◦ s)× f)(εs)ds

)
.

Let us introduce ϕ̄(x, y) = 1 − e−λx+iµy − iµχ(y) where χ(y) = y on [−1, 1] and is continuous
with compact support and odd. Thus

ψh(λ, µ) = nB
[
ϕ̄(As,h

` , Af,h` )
]

+ iµ nB
[
χ(Af,h` )

]
.

Since ϕ̄ is bounded and since there exists a constant Cλ,µ > 0 such that |ϕ̄(x, y)| ≤ Cλ,µ(x+ y2)
for any x ≥ 0, y ∈ R, we obtain by points (i)-(ii) of Lemma 7.7 and decomposing as previously
on Aδ and Ac

δ that
lim
h↓0

nB
[
ϕ̄(As,h

` , Af,h` )
]

= nB
[
ϕ̄(Aβ` , A

α
` )
]
.

It remains to check that nB[χ(Af,h` )] converges as h ↓ 0. Recall that nB(Af,h` ) = 0, so that
nB[χ(Af,h` )] = −nB[Af,h` − χ(Af,h` )]. Note that there exists C > 0 such that |x − χ(x)| ≤ Cx2,
by item (ii) of Lemma 7.7, it comes that

lim sup
h↓0

∣∣∣nB[(Af,h` − χ(Af,h` )
)
1Aδ

]∣∣∣ −→ 0 as δ ↓ 0.

Moreover, for any δ > 0, by item (iii) of Lemma 7.7 and since |x− χ(x)| ≤ C|x|, we get by the
dominated convergence theorem that for any δ > 0,

lim
h↓0

nB
[(
Af,h` − χ(Af,h` )

)
1Ac

δ

]
= nB

[(
Aα` − χ(Aα` )

)
1Ac

δ

]
.

We conclude that that

lim
h↓0

nB
[
Af,h` − χ(Af,h` )

]
= nB

[
Aα` − χ(Aα` )

]
,

so that nB[χ(Af,h` )] converges to nB[χ(Aα` )] as h ↓ 0. Again, let us quickly explain the value of
ρ. In the case α ∈ (1, 2), the limiting process has the following representation

Z0
t =

∫
R
sgnf+,−f−(x)|x|1/α−2(Lx

τBt
− t)dx

where we recall that (Lxt )t≥0,x∈R denotes the family of local times of (Bt)t≥0. Again, the charac-
teristic function of (Z0

t )t≥0 is computed in [7, Lemma 12] which is sufficient to deduce the value
of ρ.

Case α = 1. Using the same notation as in the previous case and with the same reason-
ing, we also have that nB[ϕ̄(As,h

` , Af,h` )] converges to nB[ϕ̄(Aβ` , A
α
` )] when h goes to 0. It re-

mains to prove that the extra assumption limh↓0
1

Λf (1/h)(mf (1/h)−mf (−1/h)) = c implies that

nB[χ(Af,h` )] converges. Note that the limit is not nB [χ(Aα` )] which is infinite when α = 1. Writ-
ing that mf (1/h) − mf (−1/h) =

∫
R 1{x∈(−1/h,1/h]}m

f (dx) and using Lemma 7.8 with g(x) =
1{x∈(−1/h,1/h]}, we get

mf (1/h)−mf (−1/h) = n

(∫ `

0
((g ◦ s)× f)(εs)ds

)
.

Then, using Proposition 7.3 and the occupation time formula for the Brownian excursion, we
easily get that

1

Λf (1/h)

(
mf (1/h)−mf (−1/h)

)
= nB

[
Ãf,h`

]
where Ãf,h` :=

∫
R Lx`1{x∈(−1,1]}m

f
h(dx). Note that as in (7.6), thanks to Lemma 7.5 (and As-

sumption 7) we have for nB-almost every excursion ε ∈ C

lim
h↓0

Ãf,h` = Ãα` := cα

∫
(−1,1]

Lx` sgnf+,f−(x)x1/α−2dx .
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(Recall f+ = f− in the case α = 1). Remark that we have Ãf,h` = Af,h` for every ε ∈ A1: we can
then decompose

nB[χ(Af,h` )] = nB[χ
(
Ãf,h`

)
1A1 ] + nB[χ

(
Af,h`

)
1Ac

1
]

= nB
[(
χ
(
Ãf,h`

)
− Ãf,h`

)
1A1

]
+ nB

[
Ãf,h`

]
− nB

[
Ãf,h` 1Ac

1

]
+ nB

[
χ(Af,h` )1Ac

1

]
.

The second term converges (to c) by assumption. It remains to check that the other three
terms converge. Regarding the first term, using item (ii) in Lemma 7.7, and the fact that
|χ(x)−x| ≤ Cx2 for some constant C > 0, we get that nB[suph∈(0,1)(χ(Ãf,h` )− Ãf,h` )1A1 ] < +∞.
By the dominated convergence theorem, it comes that

lim
h↓0

nB
[(
χ
(
Ãf,h`

)
− Ãf,h`

)
1A1

]
= nB

[(
χ
(
Ãα`
)
− Ãα`

)
1A1

]
.

We obtain the convergence of the third term applying point (iv) in Lemma 7.7 (and dominated
convergence). As a conclusion, we have

lim
h↓0

nB[χ(Af,h` )] = nB
[(
χ
(
Ãα`
)
− Ãα`

)
1A1

]
− nB

[
Ãα` 1Ac

1

]
+ nB

[
χ(Aα` )1Ac

1

]
+ c.

Now we point out that, since χ is odd and f+ = f−, the first three terms in the above limit are
null by symmetry. Hence the limiting process (Z0

t )t≥0 is a Cauchy process drifted by c (whence
the value of ρ from the statement).

Step 2: Convergence of a(b−1(q))Ie. Let us stress that since b(h)τt/h converges in distribu-
tion, b is an asymptotic inverse of Φ (see Remark 6.1); in particular, Φ is regularly varying at 0
with index β ∈ (0, 1).

By Lemma 7.4-(ii), we have that for any µ ∈ R,

E
[
eia(b−1(q))µIe

]
=

q

Φ(q)

(
m+nB

(∫ `

0
exp

(
−qAs

t+ia(b−1(q))µAft
)
dAs

t

))
=:

q

Φ(q)
(m+G(µ, q)),

where we recall that m is the drift coefficient of (τt)t≥0 and As
t , A

f
t are defined in (7.2) and (7.3)

respectively. Since Φ is regularly varying with index β ∈ (0, 1) we have limq↓0 m/Φ(q) = 0.
Therefore, it remains to show that qG(µ, q)/Φ(q) converges as q ↓ 0, or equivalently that

qG(µ, q)/b−1(q) converges. Using the scaling property of the Brownian excursion measure, i.e.
nB = h nB ◦ λ−1

h , with h = b−1(q), we get

q

b−1(q)
G(µ, q) = nB

(∫ `

0
exp

(
−As,q

t + iµAf,qt

)
dAs,q

t

)
, (7.7)

where, similarly as in (7.2)-(7.3), we have set

As,q
t =

∫
R
Lxtm

s
b−1(q)(dx), Af,qt =

∫
R
Lxtm

f
b−1(q)

(dx),

and the measures ms
h and mf

h are the measures defined in Step 1, see above (7.2). By Lemma 7.5
(and Assumptions 5 and 7), we have that for nB-almost every excursion ε ∈ C, for any t ∈ [0, `],
limq↓0A

s,q
t = Aβt and limq↓0A

f,q
t = Aαt .

Let us show that for nB-almost every excursion,

lim
q↓0

∫ `

0
exp

(
−As,q

t + iµAf,qt

)
dAs,q

t =

∫ `

0
exp

(
−Aβt + iµAαt

)
dAβt . (7.8)

First, the finite measures dAs,q on ([0, `],B([0, `])) converge weakly to the finite measure dAβ as
q → 0. Since t 7→ exp(−cAβt + iµAαt ) is continuous and bounded, we deduce that

lim
q↓0

∫ `

0
exp

(
−Aβt + iµAαt

)
dAs,q

t =

∫ `

0
exp

(
−Aβt + iµAαt

)
dAβt .
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Next, we bound∣∣∣ ∫ `

0

(
exp

(
−As,q

t + iµAf,qt

)
− exp

(
−Aβt + iµAαt

))
dAs,q

t

∣∣∣
≤ As,q

` sup
t∈[0,`]

∣∣∣ exp
(
−As,q

t + iµAf,qt

)
− exp

(
−Aβt + iµAαt

)∣∣∣.
By Remark 7.6, the convergence of As,q

t and Af,qt is uniform on [0, `], i.e. supt∈[0,`] |A
s,q
t −A

β
t |+

|Af,qt − Aαt | vanishes as q ↓ 0. Since (x, y) 7→ exp(−x + iy) is Lipschitz, it is clear the above
quantities converges to 0 as q ↓ 0, which proves (7.8).

Finally, we bound the integrand in (7.7) to apply dominated convergence. We have∣∣∣ ∫ `

0
exp

(
−As,q

t + iµAf,qt
)
dAs,q

t

∣∣∣ ≤ ∫ `

0
exp

(
−As,q

t

)
dAs,q

t

= 1− exp
(
−As,q

`

)
≤ 1 ∧As,q

` .

(7.9)

We conclude as before, by introducing some arbitrary small δ > 0 and by splitting the inte-
gral (7.7) into two parts, on the sets Aδ and Ac

δ. Using the bound (7.9), we obtain thanks to
item (i) in Lemma 7.7 (recall β ∈ (0, 1)) that

lim sup
q→0

nB
[(∫ `

0
exp

(
−As,q

t + iµAf,qt

)
dAs,q

t

)
1Aδ

]
−→ 0 as δ ↓ 0 .

Moreover, the bound (7.9) dominates uniformly in q the integrand and we conclude using the
dominated convergence theorem (recall that nB is finite on Ac

δ) that

lim
q↓0

nB
[(∫ `

0
exp

(
−As,q

t + iµAf,qt

)
dAs,q

t

)
1Ac

δ

]
= nB

[(∫ `

0
exp

(
−Aβt + iµAαt

)
dAβt

)
1Ac

δ

]
.

From this, we get that

lim
q↓0

nB
[ ∫ `

0
exp

(
−As,q

t + iµAf,qt

)
dAs,q

t

]
= nB

[ ∫ `

0
exp

(
− cAβt + iµAαt

)
dAβt

]
,

which completes the proof of Step 2.

7.4 Proof of Proposition 2.5

In this section, we prove Proposition 2.5. We let the reader recall Assumptions 5 and 6 (which
corresponds to the case α = 2). Our goal is to show that Assumption 8 holds, i.e. that Φ is
regularly varying at 0 with index β ∈ (0, 1), that n(F) = 0 and that n(F2) < ∞. First, as in
the proof of Proposition 2.6, we can show that, by setting b(h) = h1/β/Λs(1/h), the rescaled
process (b(h)τt/h)t≥0 converges as h→ 0 toward a β-stable subordinator. This entails that Φ is
an asymptotic inverse of b (see Remark 6.1) and in particular that it is regularly varying with
index β.

Next, we apply Lemma 7.8 with g = 1. This tells us that mf (1) = n(
∫ `

0 f(εs)ds) = n(F).
Since mf (1) = limx→∞(mf (x)− mf (−x)) = 0, it comes that n(F) = 0. It remains to show that
n(F2) <∞. Recalling that the Lévy measure of (Zt)t≥0 is n(F ∈ dx), this is equivalent to having
E[Z2

t ] <∞ for any t ≥ 0, see for instance Sato [41, Thm. 25.3]. We will show that the condition
mf ∈ L2(dx) implies the latter one (it is actually equivalent). To do so, let us first define the
function g : R→ R as

g(x) =

∫ x

0
s′(v)

∫ ∞
v

f(u)m(du)dv.

Making two changes of variables, it holds that

g(s−1(x)) =

∫ x

0
h(v)dv, where h(v) =

∫ ∞
v

f ◦ s−1(u)ms(du) = mf (∞)−mf (v).
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Since mf in non-decreasing on R+ and non-increasing on R−, g ◦s−1 is a difference of two convex
function and we can apply the Itô-Tanaka formula, see [39, Ch. VI Thm. 1.5], which tells us
that

g(s−1(Bt)) =

∫ t

0
h(Bs)dBs −

1

2

∫
R
f(s−1(x))Lxtm

s(dx) .

Substituting ρt in the preceding equation, and using the occupation time formula from item (i)
of Proposition 7.1, we see that (with a change of variable y = s−1(x))

g(Xt) =

∫ ρt

0
h(Bs)dBs −

1

2

∫ t

0
f(Xs)ds.

We now substitute τt in the preceding equation, and using that Xτt = 0 so g(Xτt) = 0 and
ρτt = τBt (see Proposition 7.1-(iv)), we get that

Zt =

∫ τt

0
f(Xs)ds = 2

∫ τBt

0
h(Bs)dBs.

Let us set for any fixed t ≥ 0, (M t
u)u≥0 = (

∫ u∧τBt
0 h(Bs)dBs)u≥0 which is a (centered) local

martingale. Its quadratic variation is such that, for any u ≥ 0,

E
[
〈M t〉u

]
= E

[ ∫
R
Lx
u∧τBt

h(x)2dx

]
≤
∫
R
E
[
Lx
τBt

]
[h(x)]2dx = t

∫
R
h(x)2dx,

where in the last equality, we used that by Ray-Knight’s theorem, E[Lx
τBt

] = t for any x ∈ R. Since
h ∈ L2(dx), (M t

u)u≥0 is a martingale bounded in L2(P), i.e. supu≥0 E[(M t
u)2] <∞. Therefore, it

converges in L2(P), which entails that

E
[(∫ τBt

0
h(Bs)dBs

)2]
= E

[ ∫ τBt

0
h(Bs)

2ds

]
= t

∫
R
h(x)2dx.

We have shown that for any t ≥ 0, E[Z2
t ] = 4t

∫
R h(x)2dx < +∞, which completes the proof.

8 Hitting time of zero

In this section, we will assume for simplicity that the process (Xt)t≥0 is a regular diffusion valued
in an open interval I = (a, b) with a ∈ (−∞, 0) ∪ {−∞} and b ∈ (0,∞) ∪ {∞}. We will consider
the process (ζt, Xt)t≥0 as a strong Markov process. For a pair (z, x) ∈ R× I, we will denote by
P(z,x) the law of (ζt, Xt)t≥0 when started at (z, x) i.e. the law of (z +

∫ t
0 f(Xs)ds,Xt)t≥0 under

Px, where Px denotes the law of (Xt)t≥0 started at x.

The aim of this section is to describe the asymptotic behavior of P(z,x)(T0 > t) as t → ∞
when (z, x) 6= (0, 0). We will naturally place ourselves under Assumption 3 or 4. As a rather
classical application, we will identify a harmonic function for the killed process, which will in
turn enable us to construct the additive functional conditionned to stay negative through Doob’s
h-transform.

First, we recall that a regular diffusion is a continuous strong Markov process such that, if
set ηx = inf{t > 0, Xt = x}, then for any (x, y) ∈ I2, Px(ηy < ∞) > 0. It is well-know that
regular diffusions are space and time changed Brownian motion. First, there exists a continuous
and increasing function s : I→ R such that (s(Xt))t≥0 is a local martingale, see Kallenberg [30,
Chapter 23, Theorem 23.7]. We will assume that s is such that s(I) = R and will denote by s−1

its inverse, defined on R and valued in I. Let (Wt)t≥0 be a Brownian on some probability space
and denote by (Lxt )t≥0,x∈R its family of local times. Then there exists an increasing function
ms : R→ R such that, if we set

At =

∫
R
Lxtm

s(dx) and ρt = inf{s ≥ 0, As > t},
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then for any x ∈ I, the probability measure Px coincides with the law of (s−1(Wρt))t≥0 with
(Wt)t≥0 started at s(x). We refer to Kallenberg [30, Chapter 23, Theorem 23.9] for more details.
We will first show the following lemma. Let us also define

I∗+ := I ∩ (0,∞), and I∗− = I ∩ (−∞, 0).

Lemma 8.1. Recall that we denote by F(ε) =
∫ `

0 f(εs)ds for some excursion ε ∈ E of (Xt)t≥0.
The two following assertions hold.
(i) For any x ∈ I∗+, we have

n(M > x,F < 0) = 1/(2|s(x)|) and n(M > x,F > 0) = 1/(2|s(x)|),

where M = M(ε) = sups≥0 |εs|.
(ii) For any x ∈ I∗+ (respectively any x ∈ I∗−), the law of (Xgηx+t)t∈[0,dηx−gηx ] under P is exactly

n(·|M > x, F > 0) (respectively n(·|M > x, F < 0)).

Proof. Remember first that, since excursions have constant sign, F(ε) > 0 if and only if ε is a
positive excursion. By Proposition 7.3 and since At is increasing it comes that for any x ∈ I∗+, we
have n(M > x,F > 0) = n+

B(M > s(x)) (respectively n(M > x,F < 0) = n−B(M > s(x))), where
n+
B is the Brownian excursion measure restricted to the set of positive excursions (respectively

n−B is the Brownian excursion measure restricted to the set of negative excursions). The first
result follows immediately since n+

B(M > x) = n−B(M > x) = 1/(2x) for any x > 0.

Regarding the second point, let us denote for x ∈ I∗+, U+
x = {ε ∈ E , M(ε) > x, F(ε) > 0}.

Recall that (et)t≥0 denote the excursion process and set TU+
x

= inf{t > 0, et ∈ U+
x }. Clearly,

we have eT
U+
x

= (Xgηx+t)t∈[0,dηx−gηx ] and since n(U+
x ) <∞ by the first point, the result follows

from [39, Chapter XII Lemma 1.13] which tells us that for any measurable set Γ, we have

n(Γ ∩ U+
x ) = P(eT

U+
x
∈ Γ)n(U+

x ).

The same proof holds for x ∈ I∗−.

Let us consider the set H := [(−∞, 0)× I]∪ [{0} × I∗−]. We will only consider starting points
(z, x) ∈ H so that P(z,x)(T0 > 0) = 1 and the process (ζt∧T0)t≥0 is negative under P(z,x). We
recall that V denotes the renewal function and that for any x ≥ 0, V(x) =

∫∞
0 P(Ht ≤ x)dt.

Finally, we set η0 = inf{t > 0, Xt = 0}, the first hitting time of zero of (Xt)t≥0, and we consider
the positive function h : H→ R+ ∪ {∞} defined for every (z, x) ∈ H as

h(z, x) = E(z,x)

[
V(−ζη0)1{ζη0<0}

]
.

Proposition 8.2. For any (z, x) ∈ H, h(z, x) <∞.

This result is not obvious at first sight. However since ζη0 is a piece a integrated excursion, its
law is directly linked with the Lévy measure of (Zt)t≥0, and so is the function V. As we shall
see, this link is given by the équations amicales of Vigon.

Proof. Let (z, x) ∈ H and remember that

h(z, x) = Ex
[
V
(
− z −

∫ η0

0
f(Xs)ds

)
1{z+

∫ η0
0 f(Xs)ds<0}

]
.

First case: z < 0 and x ≥ 0. If x = 0, then η0 = 0 a.s. and h(z, x) = V(−z). If x > 0, then∫ η0

0 f(Xs)ds > 0 a.s. and since V is non-decrasing, h(z, x) ≤ V(−z).

Second case: z ≤ 0 and x < 0. Then in this case
∫ η0

0 f(Xs)ds < 0 a.s. By the strong Markov
property, and since (Xt)t≥0 is continuous, the law of

∫ η0

0 f(Xs)ds under Px is equal to the law
of
∫ dηx
ηx

f(Xs)ds under P0. But since
∫ dηx
ηx

f(Xs)ds ≥
∫ dηx
gηx

f(Xs)ds and by Lemma 8.1-(ii), the
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law of
∫ dηx
gηx

f(Xs)ds under P0 is equal to the law of F(ε) under n(·|M > x, F < 0) we get the
following bound:

h(z, x) ≤
n
(
V(−z − F)1{M>x}1{F<0}

)
n(M > x, F < 0)

.

Since n(M > x, F < 0) <∞, it remains to show that n(V(−z−F)1{M>x}1{F<0}) <∞. We split
this quantity in two parts:

n
(
V(−z − F)1{M>x}1{F<0}

)
= n

(
V(−z − F)1{M>x}1{−1≤F<0}

)
+ n

(
V(−z − F)1{M>x}1{F<−1}

)
.

The first term on the right-hand-side is smaller than V(−z + 1)n(M > x) <∞ (since V is non-
decreasing). Regarding the second term, we first recall that V is subadditive, see for instance [4,
Chapter III], i.e. for any x, y ≥ 0, V(x+ y) ≤ V(x) + V(y), so that we can write

n
(
V(−z − F)1{M>x}1{F<−1}

)
≤ V(−z + 1/2)n(M > x) + n

(
V(−1/2− F)1{F<−1}

)
.

We finally show that n(V(−1/2 − F)1{F<−1}) < ∞. Recall now that the Lévy measure ν of
(Zt)t≥0 is ν(du) = n(F ∈ du) so that

n
(
V(−1/2− F)1{F<−1}

)
=

∫
(−∞,−1)

V(−1/2− u)ν(du)

=

∫
R

∫
R+

1{u<−1}1{y≤−1/2−u}V(dy)ν(du),

where V(dy) stands for the Stieltjes measure associated to the non-increasing function V. We
then have the following bound

n
(
V(−1/2− F)1{F<−1}

)
≤
∫
R

∫
R+

1{y+u≤−1/2}ν(du)V(dy) = (ν ∗ V)((−∞,−1/2]),

where ν ∗V is the convolution of the measures ν and V. The équations amicales of Vigon, see for
instance [46, 47], states that the measure ν ∗ V coincides on (−∞, 0) with the Lévy measure of
the dual ladder height process (−Ĥt)t≥0. Therefore (ν ∗ V)((−∞,−1/2]) <∞, which completes
the proof.

We will now show the following technical result, which describes the asymptotic behavior
of the Laplace transform P(z,x)(T0 > t) and recall that e = e(q) is an independent exponential
random variable of parameter q.

Proposition 8.3. Grant Assumption 3 or 4. There exists a constant c0 > 0 such that for any
(z, x) ∈ H, we have

P(z,x)(T0 > e) ∼ c0h(z, x)κ(0, q, 0) as q → 0.

Moreover, there exists a constant M > 0 such that for any (z, x) ∈ H, for any q ∈ (0, 1),

P(z,x)(T0 > e) ≤Mκ(0, q, 0)(|s(x)|+ h(z, x)).

This proposition, combined with the Tauberian theorem, the monotone density theorem,
Theorem 5.2 and Proposition 6.1 leads to the following theorem.

Theorem 8.4. Grant Assumption 3 or 4. Then there exists a slowly varying function Λ such
that for any (z, x) ∈ H,

P(z,x)(T0 > t) ∼ h(z, x)Λ(t)t−ρ as t→∞,

where ρ ∈ (0, 1) is either given by Assumption 3, or ρ = βP(Z0
t ≥ 0) if Assumption 4 is in force.
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Proof of Proposition 8.3. Step 1: We first focus on the quantity Px(η0 > e) where x ∈ I. We will
first show that there exists a constant C > 0 such that for any q ∈ (0, 1) and any x ∈ I,

Px(η0 > e) ≤ Cκ(0, q, 0)|s(x)|. (8.1)

Let x ∈ I∗+ and remember that ηx = inf{t > 0, Xt = x}, and that by the strong Markov property
the law of η0 under Px is equal to the law of dηx − ηx under P0. Therefore we get

Px(η0 > e) ≤ P0(dηx − gηx > e) = q

∫ ∞
0

e−qtP0(dηx − gηx > t)dt.

By Lemma 8.1-(ii), the law of dηx − gηx under P0 is the law of ` under n(·|M > x,F > 0) and by
Lemma 8.1-(i), n(M > x,F > 0) = 1/(2|s(x)|) so that

Px(η0 > e) ≤ |s(x)|
2

n(1− e−q`) (8.2)

This bound also holds for x ∈ I∗− by Lemma 8.1 again, and for x = 0 since Px(η > e) = 0.
Remember now that n(1− e−q`) = Φ(q)−mq and that under Assumption 3 or 4, Φ is regularly
varying at 0 with index β ∈ (0, 1] (β = 1 under Assumption 3 and β ∈ (0, 1) under Assumption
4). By Theorem 5.2 and Proposition 6.1, q 7→ κ(0, q, 0) is regularly varying at 0 with some index
ρ ∈ (0, β). It is clear that n(1− e−q`)/κ(0, q, 0)→ 0 as q → 0, which shows that (8.1) holds and
that for any x ∈ I,

Px(η0 > e)

κ(0, q, 0)
→ 0 as q → 0. (8.3)

This completes the first step.

Step 2: We now focus on the quantity P(z,x)(T0 − η0 > e) for (z, x) ∈ H. We first remark that
P(z,x)-almost surely, T0 > η0 if and only if ζη0 < 0. First, if x < 0, then P(z,x)-almost surely,
(ζt)t≥0 is decreasing on [0, η0] so that P(z,x)(ζη0 < 0) = P(z,x)(T0 > η0) = 1. Next, if x ≥ 0, then
P(z,x)-almost surely, (ζt)t≥0 is non-increasing on [0, η0] and thus, we see that if ζη0 ≥ 0, then
T0 ≤ η0 whereas if ζη0 < 0, then T0 > η0.

We define the processes (ζ̄t, X̄t)t≥0 = (ζt+η0 − ζη0 , Xt+η0)t≥0 and ξ̄t = sups∈[0,t] ζ̄s. By the
strong Markov property again, (ζ̄t, X̄t)t≥0 and ζη0 are independent under P(z,x). Moreover the
law of (ζ̄t, X̄t)t≥0 under P(z,x) is equal to the of (ζt, Xt)t≥0 under P(0,0) = P. We see that
P(z,x)-almost surely, T0 − η0 > e if and only if ξe < −ζη0 and ζη0 < 0. By independence, we get

P(z,x)(T0 − η0 > e) =

∫
(−∞,0)

P(ξe < −u)P(z,x)(ζη0 ∈ du). (8.4)

We will first show that for any q ∈ (0, 1), for any (z, x) ∈ E, we have

P(z,x)(T0 − η0 > e) ≤ h(z, x)κ(0, q, 0). (8.5)

Recall from (4.11) that ξe = ξge + max(∆e, 0) and that ξge and ∆e are independent. Since
moreover P(ξge < −u) = κ(0, q, 0)Vq(−u) ≤ κ(0, q, 0)V(−u) we get the following bound:

P(ξe < −u) ≤ P(ξge < −u)P(∆e < −u) ≤ κ(0, q, 0)V(−u),

which, combined with (8.4), leads to (8.5). We will now show that there exists a constant c0 > 0
such that for any (z, x) ∈ E,

P(z,x)(T0 − η0 > e) ∼ c0h(z, x)κ(0, q, 0) as q → 0. (8.6)

It is shown in the proofs of Theorem 2.4 that P(ξe < −u) ∼ c0V(−u)κ(0, q, 0) as q → 0, where
c0 = limq→0 P(∆e ≤ 0). Since P(ξe < −u) ≤ κ(0, q, 0)V(−u), it is clear that we can apply the
dominated convergence theorem in (8.4) to deduce that (8.6) holds. This completes the second
step.
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Step 3: We conclude. First, we have by (8.6) that for any (z, x) ∈ H,

c0h(z, x) = lim inf
q→0

P(z,x)(T0 − η0 > e)

κ(0, q, 0)
≤ lim inf

q→0

P(z,x)(T0 > e)

κ(0, q, 0)
.

Let δ ∈ (0, 1) and write

P(z,x)(T0 > e) =P(z,x)(T0 > e, T0 − η0 > δe) + P(z,x)(T0 > e, T0 − η0 ≤ δe)
≤ P(z,x)(T0 − η0 > δe) + Px(η0 > (1− δ)e).

By (8.3), and since q 7→ κ(0, q, 0) is regularly varying at 0 with index ρ ∈ (0, 1), the second term
divided by κ(0, q, 0) vanishes as q → 0. Since δe is an exponential random variable of parameter
q/δ, we have by (8.6) that

P(z,x)(T0 − η0 > δe) ∼ c0δ
−ρh(z, x)κ(0, q, 0) as q → 0.

Therefore, we get that

lim sup
q→0

P(z,x)(T0 > e)

κ(0, q, 0)
≤ c0δ

−ρh(z, x).

Letting δ → 1 shows the first part of the proposition. Regarding the second part, it comes by
(8.1) that there exists a constant C > 0 such that for any q ∈ (0, 1) and any (z, x) ∈ H, we
have Px(η0 > (1 − δ)e) ≤ M |s(x)|κ(0, q, 0). Then, by (8.5), we see that for q ∈ (0, 1) and any
(z, x) ∈ H, we have

P(z,x)(T0 − η0 > δe) ≤ h(z, x)κ(0, q/δ, 0) ≤ h(z, x)κ(0, q, 0)× sup
q∈(0,1)

κ(0, δ/q, 0)

κ(0, q, 0)
.

This finishes the proof.

From this proposition, we are able to show that the function h is harmonic and thus, we are
able to define the additive functional conditionned to stay negative.

Corollary 8.5. Grant Assumption 3 or 4 and assume that for any x ∈ I and any t ≥ 0,
Ex[|s(Xt)|] < ∞. Then the function h is harmonic for the killed process (ζt∧T0 , Xt∧T0)t≥0, i.e.
for any (z, x) ∈ H and any t ≥ 0, we have

E(z,x)

[
h(ζt, Xt)1{T0>t}

]
= h(z, x).

We emphasize that the assumption Ex[|s(Xt)|] < ∞ for any x ∈ I and any t ≥ 0 is satisfied
by a large class of processes (as for example Brownian motion or Ornstein-Uhlenbeck processes).
However one can easily find a recurrent process for which it is not satisfied.

Proof. Step 1: We first show that for any (z, x) ∈ H, E(z,x)[h(ζt, Xt)1{T0>t}] ≤ h(z, x) < ∞.
This is a direct application of Fatou’s Lemma, Proposition 8.3 and the Markov property. Let
t ≥ 0 and note that as long as T0 > t, (ζt, Xt) ∈ H. We have

E(z,x)

[
h(ζt, Xt)1{T0>t}

]
=E(z,x)

[
lim inf
q→0

P(ζt,Xt)(T0 > e)

c0κ(0, q, 0)
1{T0>t}

]
≤ lim inf

q→0
E(z,x)

[
P(ζt,Xt)(T0 > e)

c0κ(0, q, 0)
1{T0>t}

]
≤ lim inf

q→0

P(z,x)(T0 > e+ t)

c0κ(0, q, 0)
.

For any (z, x) ∈ H and for any t ≥ 0, we have

P(z,x)(T0 > e+ t) = q

∫ ∞
0

e−qsP(z,x)(T0 > s+ t)ds = E(z,x)

[
(1− e−q(T0−t))1{T0>t}

]
.
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Since P(z,x)(T0 > e) = E(z,x)[1− e−qT0 ], we get that

P(z,x)(T0 > e)−P(z,x)(T0 > e+ t) =E(z,x)

[
(1− e−qT0)1{T0≤t}

]
+ E(z,x)

[
e−qT0(eqt − 1)1{T0>t}

]
≤ qt+ eqt − 1.

At this point we conclude that for any t ≥ 0 and for any (z, x) ∈ H, P(z,x)(T0 > e + t) ∼
c0h(z, x)κ(0, q, 0) as q → 0 and thus

E(z,x)

[
h(ζt, Xt)1{T0>t}

]
≤ h(z, x).

Step 2: We now use the dominated convergence theorem. Indeed, we have

E(z,x)

[
h(ζt, Xt)1{T0>t}

]
= E(z,x)

[
lim
q→0

P(ζt,Xt)(T0 > e)

c0κ(0, q, 0)
1{T0>t}

]
,

and by Proposition 8.3, there exists a constant M > 0 such that for any t ≥ 0 and any q ∈ (0, 1),

P(ζt,Xt)(T0 > e)

c0κ(0, q, 0)
1{T0>t} ≤M (|s(Xt)|+ h(ζt, Xt))1{T0>t}.

By assumption Ex[s(Xt)] < ∞ and by the first step, E(z,x)[h(ζt, Xt)1{T0>t}] < ∞ so that we
have by the strong Markov property and by the computations from the first step,

E(z,x)

[
h(ζt, Xt)1{T0>t}

]
= lim

q→0

P(z,x)(T0 > e+ t)

c0κ(0, q, 0)
= h(z, x).

This completes the proof.

Let (Ft)t≥0 be the filtration generated by (Xt)t≥0. For (z, x) ∈ H, we introduce a new
probability measure Q(z,x) such that for every t ≥ 0, for every A ∈ Ft,

Q(z,x)(A) =
1

h(z, x)
E(z,x)

[
h(ζt, Xt)1A∩{T0>t}

]
.

The preceding proposition ensures that this measure is indeed a probability measure. It is in fact
the law of (ζt, Xt)t≥0 where (ζt)t≥0 is conditioned to remain negative. Using similar arguments as
in the previous proof, we could easily show the following result, which justifies the terminology.

Proposition 8.6. For any (z, x) ∈ H, for any t ≥ 0 and any A ∈ Ft, we have

Q(z,x)(A) = lim
q→0

P(z,x)(A|T0 > e),

A Wiener–Hopf factorization

In this section, we derive the Wiener-Hopf factorization from Subsection 4.3, i.e. Theorem 4.3.
We consider, in all generality, a bivariate Lévy process (τt, Zt)t≥0 with respect to some filtration
(Ft)t≥0, where (τt)t≥0 is a subordinator. This section is very close to [4, Ch. VI] and follows
the same approach. However, our result requires some new arguments and we chose to establish
properly Theorem 4.3.

A.1 Preliminaries

Let us recall briefly the notation introduced in Section 4.3. Let St = sup[0,t] Zt the running
supremum of Zt and consider the reflected process (Rt)t≥0 = (St − Zt)t≥0, which is a strong
Markov process (see [4, Prop. VI.1]) and posesses a local time (LRt )t≥0 at 0. We denote by
(σt)t≥0 its right-continuous inverse, and we define (σt, θt, Ht)t≥0 := (σt, τσt , Sσt)t≥0.

Lemma A.1. The two following assertions hold.
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(i) If 0 is recurrent for the reflected process, then (σt, θt, Ht)t≥0 is a trivariate subordinator.
(ii) If 0 is transient for the reflected process, then there exists some q > 0 such that LR∞ has

an exponential distribution with parameter q. Moreover, the process (σt, θt, Ht)0≤t<LR∞ is a
trivariate subordinator killed at rate q.

Proof. The proof is essentially the same as in Kyprianou [31, Ch. VI Thm 6.9] and we will show
the two items at once. Let t ≥ 0, we first place ourselves on the event {t < LR∞} = {σt <∞} so
that σt is a finite stopping time.

The strong Markov property tells us that the process (τ̃s, Z̃s)s≥0 = (τσt+s−τσt , Zσt+s−Zσt)s≥0

is a Lévy process independent of Fσt . Then it is clear that the corresponding local time (L̃s)s≥0

is such that for any s ≥ 0, L̃s = LRσt+s − t so that its right-continuous inverse (σ̃s)s≥0 is
σ̃s = σt+s − σt. Moreover, since Sσt = Zσt , it comes that for any s ≥ 0

S̃s = sup
u∈[0,s]

Z̃u = sup
u∈[0,s]

(Zσt+u − Zσt) = Sσt+s − Sσt .

This shows that, on the event {t < LR∞}, the shifted process

(σ̃s, θ̃s, H̃s)s≥0 = (σ̃s, τ̃σ̃s , S̃σ̃s)s≥0 = (σt+s − σt, θt+s − θt, Ht+s −Ht)s≥0

is independent of Fσt and has the same law as (σs, θs, Hs)s≥0. Finally, we see that for any s, t ≥ 0
and any α, β, γ ≥ 0,

E
[
e−ασt+s−βθt+s−γHt+s1{t+s<LR∞}

]
= E

[
e−ασt−βθt−γHt1{t<LR∞}E

[
e−ασ̃s−βθ̃s−γH̃s1{s<L̃∞}|Fσt

]]
= E

[
e−ασt−βθt−γHt1{t<LR∞}

]
E
[
e−ασs−βθs−γHs1{s<LR∞}

]
.

We classicaly deduce from this, and the right-continuity of (σt, θt, Ht)s≥0, that for any t ≥ 0 and
any α, β, γ ≥ 0, we have

E
[
e−ασt−βθt−γHt1{t<LR∞}

]
= e−κ(α,β,γ)t,

where
κ(α, β, γ) = − logE

[
e−ασ1−βθ1−γH11{1<LR∞}

]
≥ 0.

We also see that for any t ≥ 0, P(LR∞ > t) = e−κ(0,0,0)t so that LR∞ is exponentially distributed
with parameter κ(0, 0, 0) ≥ 0 (if κ(0, 0, 0) = 0, then LR∞ =∞ a.s.). It is a well-known fact that 0
is recurrent for the reflected process if and only if LR∞ =∞ a.s., which completes the proof.

Using the convention e−∞ = 0, we have for any t ≥ 0 and any α, β, γ ≥ 0 such that
α+ β + γ > 0,

E
[
e−ασt−βθt−γHt

]
= e−κ(α,β,γ)t,

From now on, we will assume for simplicity that 0 is recurrent for the reflected process but
the proof carries through if it is not the case, with minor adaptations. Recall now that we have
defined Gt = sup{s < t, Zs = Ss} the last return to 0 before t of (Rt)t≥0. Let us state the
following lemma, of which we omit the proof since it is no different from the proof of [4, Ch. VI
Lem. 6].

Lemma A.2. Let e = e(q) be an exponential random variable of parameter q, independent of
(τt, Zt)t≥0.
(i) If 0 is irregular for the reflected process (Rt)t≥0, then the processes (τt, Zt)t∈[0,Ge] and

(τGe+t − τGe , Zt+Ge − ZGe)t∈[0,e−Ge) are independent.
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(ii) If 0 is regular for the reflected process (Rt)t≥0, then the processes (τt, Zt)t∈[0,Ge) and (τGe+t−
τGe−, Zt+Ge − ZGe−)t∈[0,e−Ge) are independent.

Recalling Remark 4.5, we also introduce the same objects for the dual process (Ẑt)t≥0 =
(−Zt)t≥0. If we set (Ŝt)t≥0 = (sup[0,t] Ẑt)t≥0, then the dual reflected process (R̂t)t≥0 = (Ŝt −
Ẑt)t≥0 also posesses a local time at 0 denoted by (LtR̂)t≥0, with inverse (σ̂t)t≥0. Lemma A.1
also holds and so the process (σ̂t, θ̂t, Ĥt)t≥0 = (σ̂t, τσ̂t , Ŝσ̂t)t≥0 is a trivariate subordinator with
Laplace exponent that we denote by κ̂.

A.2 Laplace transform of (G, τG, S)

An crucial step in the proof of Theorem 4.3 is the following result, where we recall that κ is the
Laplace exponent of (σt, θt, Ht)t≥0, defined in (4.4).

Proposition A.3. Let e = e(q) be an exponential random variable of parameter q, independent
of (τt, Zt)t≥0.
(A) If 0 is irregular for the reflected process (Rt)t≥0, then

E
[
e−αGe−βτGe−γSe

]
=

κ(q, 0, 0)

κ(α+ q, β, γ)
.

(B) If 0 is regular for the reflected process, then the same result holds with τGe replaced by τGe−.

We split the proof into two parts: we first treat the case where 0 is irregular for the reflected
process and then we treat the case where 0 is regular (which is more involved and needs some
preliminary estimates).

Remark A.4. We mention the following classification, see for instance Bertoin [5]: if (Zt)t≥0

has infinite variations, then 0 is regular for (Rt)t≥0. If it has finite variation, then denote by d
its drift coefficient. If d > 0 then 0 is regular for (Rt)t≥0 whereas if d < 0, it is irregular. In the
remaining case d = 0, let us set Z+

t =
∑

s≤t ∆Zs1{∆Zs>0} and Z−t = −
∑

s≤t ∆Zs1{∆Zs<0} so
that Zt = Z+

t − Z
−
t . Then 0 is irregular for (Rt)t≥0 if and only if limt→0 Z

+
t /Z

−
t = 0 a.s.

Case (A): assume 0 is irregular for the reflected process

Proof of Proposition A.3 in case (A). We assume here that 0 is irregular for the reflected process.
Therefore, the zero set of (Rt)t≥0 is discrete (without accumulation points) and we can define for
any n ≥ 0, Tn+1 = inf{t > Tn, Rt = 0} with T0 = 0. Then the sequence (Tn)n≥0 is an increasing
random walk. Moreover, for any n ≥ 0 and any t ∈ [Tn, Tn+1), Gt = Tn and St = STn .

Note that the the ladder time process (σt)t≥0 is a compound Poisson process and its Lévy
measure is proportional to the law of T1, where T1 = inf{t > 0, Rt = 0}. This forces the
trivariate subordinator (σt, θt, Ht)t≥0 to be a trivariate compound Poisson process with Lévy
measure proportional to the law of (T1, τT1 , ST1). For any non-negative α, β, γ, we have

E
[
e−αGe−βτGe−γSe

]
= E

[
q

∫ ∞
0

e−qt−αGt−βτGt−γStdt

]
=
∑
n≥0

E
[
e−(α+q)Tn−βτTn−γSTn

∫ Tn+1−Tn

0
qe−qtdt

]
.

By the strong Markov property, (τt+Tn − τTn , Rt+Tn)t∈[0,Tn+1−Tn] is independent of FTn and is
equal in law to (τt, Rt)t∈[0,T1]. Therefore, we get

E
[
e−αGe−βτGe−γSe

]
= E

[
1− e−qT1

]∑
n≥0

E
[
e−(α+q)Tn−βτTn−γSTn

]
.
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By the strong Markov property, the sequence (Tn, τTn , STn)n≥0 is a random walk and thus, we
get

E
[
e−αGe−βτGe−γSe

]
=

E
[
1− e−qT1

]
E
[
1− e−(α+q)T1−βτT1

−γST1

] =
κ(q, 0, 0)

κ(α+ q, β, γ)
,

where we recall that κ is the Laplace exponent of (σt, θt, Ht)t≥0.

Case (B): assume 0 is regular for the reflected process. Before proving Proposition A.3
in the regular case, we first recall and show a few resuts when 0 is regular.

Lemma A.5. If 0 is regular for the reflected process (Rt)t≥0, then a.s. we have Se = SGe− =
ZGe−. Moreover, if (Zt)t≥0 is not a compound Poisson process and 0 is also regular for the dual
reflected process (R̂t)t≥0, we have ZGe− = ZGe and τGe− = τGe.

Proof. It is proved properly in [4, Ch. VI Thm. 5-(i)] that if 0 is regular, then Se = SGe− = ZGe−,
so we refer the reader to it. It is also proved there that (Zt)t≥0 cannot make a positive jump at
time Ge, i.e. that ZGe− ≥ ZGe .

We now turn to the second part of the lemma: we assume now that (Zt)t≥0 is not a compound
Poisson process. Let us define the process (Z̃t)t≥0 = (Z(e−t)− − Ze)t∈[0,e], which, by duality, is
equal in law to (−Zt)t∈[0,e]. Since (Zt)t≥0 is not a compound Poisson process, [4, Proposition 4
Chapter VI] implies that the supremum is reached at a unique time. This ensures that, in the
obvious notations, we have G̃e = e − Ge and S̃e = Se − Ze. Now if 0 is regular for the dual
reflected process, we have Z̃G̃e− ≥ Z̃G̃e , i.e. ZGe ≥ ZGe− which shows that ZGe− = ZGe .

Finally, we show that if Ge is a point of continuity of (Zt)t≥0, then it is also a point of
continuity of (τt)t≥0. We denote by Π the Lévy measure of (τt, Zt)t≥0, and m ≥ 0 the drift
coefficient of (τt)t≥0. Now remark that the Lévy measure Πτ of (τt)t≥0 can be decomposed into
two parts:

Πτ (dr) =

∫
z∈R

Π(dr, dz) =

∫
z∈R∗

Π(dr, dz) +

∫
z=0

Π(dr, dz) .

In other words, we can decompose the subordinator (τt)t≥0 as

τt = mt+
∑
s<t

∆τs1{|∆Zs|>0} +
∑
s<t

∆τs1{|∆Zs|=0} = mt+ τ∗t + τ0
t ,

which is then a sum of a drift and two independent indenpendent subordinator (since they do
not jump at the same time). We see first that if t is a jumping time of (τ∗s )s≥0, then it is also
a jumping time of (Zs)s≥0 so that any point of continuity of (Zs)s≥0 is a point of continuity
of (τ∗s )s≥0. Next, we see that (τ0

t )t≥0 and (Zt)t≥0 are independent since they do not jump at
the same time and since Ge is a functional of (Zt)t≥0, it is also independent from (τ0

t )t≥0 and
therefore it can not be a point of discontinuity of (τ0

t )t≥0. This completes the proof.

When 0 is regular for (Rt)t≥0, the ladder time process (σt)t≥0 is a strictly increasing subor-
dinator. For the local time (LRt )t≥0 of the reflected process at the level 0, we have that there
exists some mR ≥ 0 such that a.s., for any t ≥ 0,

mRL
R
t =

∫ t

0
1{Rs=0}ds and σt = mRt+

∑
s≤t

∆σs.

Then, it is well-known that the excursion process (eRt )t≥0 defined by

eRt =

{
(Rσt−+s)s∈[0,∆σt] if ∆σt > 0,

Υ otherwise,

is a Poisson point process valued in the excursion space E0 (with the notation introduced in
Section 4.1). We will denote by nR its characteristic measure. Finally, since (σt)t≥0 is strictly
increasing if 0 is regular, we have almost surely for every t ≥ 0, θt− = τ(σt−)− and Ht− = S(σt−)−.
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Proof of Proposition A.3 in case (B). The idea of the proof is similar to that in case (A), al-
though it is a little bit more tedious. Using that Se = SGe−, and summing over all excursions
of (Rt)t≥0, indexed by their left end-point g and their right end-point d (using the same decom-
position and similar notation as in the proof of Proposition 4.2), we have for any non-negative
α, β, γ

E
[
e−αGe−βτGe−−γSe

]
= E

[∫ ∞
0

qe−qt−αGt−βτGt−−γSGt−dt

]
= E

[ ∫ ∞
0

qe−(α+q)t−βτt−−γSt−1{Rt=0}dt

]
+ E

[ ∑
g∈GR

e−(α+q)g−βτg−−γSg−
(

1− e−q(d−g)
)]
.

Since for every t ≥ 0, almost surely t is not a discontinuity of (τt)t≥0 and (St)t≥0, the first term
on the right-hand-side is equal to

E
[∫ ∞

0
qe−(α+q)t−βτt−−γSt−1{Rt=0}dt

]
= qmRE

[∫ ∞
0

e−(α+q)t−βτt−γStdLRt

]
= qmR

∫ ∞
0

E
[
e−(α+q)σt−βθt−γHt

]
dt =

qmR

κ(α+ q, β, γ)
,

where we have also used that (σt)t≥0 is the right-continuous inverse of (LRt )t≥0 for the second
identity. For the second term, we use the Master formula for Poisson point processes which tells
us that

E
[ ∑
g∈GR

e−(α+q)g−βτg−−γSg−(1− e−q(d−g)
)]

= nR(1− e−q`)E
[∫ ∞

0
e−(α+q)σt−−βτσt−−−γSσt−−dt

]
.

Then, using that almost surely for every t ≥ 0, θt− = τ(σt−)− and Ht− = S(σt−)−, and that for
every t ≥ 0, almost surely, t is not a discontinuity of (σt, θt, Ht)t≥0, this is equal to

nR(1− e−q`)

∫ ∞
0

E
[
e−(α+q)σt−βθt−γHt

]
dt =

nR(1− e−q`)

κ(α+ q, β, γ)
.

Since κ(q, 0, 0) is the Laplace exponent of (σt)t≥0, it follows from the exponential formula for
Poisson point processes that κ(q, 0, 0) = qmR + nR(1− e−q`), which gives the desired result.

A.3 Proof of Theorem 4.3 and Proposition 4.4

We are finally ready to give the proof of Theorem 4.3. Afterwards, we deduce Proposition 4.4
from it.

Proof of Theorem 4.3. The independence of the two triplets follows from Lemma A.2 and that
Se = ZGe− in the regular case and Se = ZGe in the irregular case (recall Lemma A.5). We now
turn to proving items (ii)-(iii): we first deal with the case where (Zt)t≥0 is not a compound
Poisson process, and then we treat the case of a compound Poisson process by approximation.
The main idea is to prove that the law of (Ge, τGe , Se) and (e −Ge, τe − τGe , Se − Ze) (resp. of
(Ge, τGe−, Se) and (e − Ge, τe − τGe−, Se − Ze) in the irregular case) are infinitely divisible; we
then deduce their Lévy measure.

Step 1: We show that the law of (Ge, τGe , Se), resp. of (Ge, τGe−, Se), is infinitely divisible if 0 is
irregular, resp. regular, for the reflected process (Rt)t≥0. We only prove it in the irregular case
as the proofs are identical.

For any positive q, α, β, γ, the Lévy-Khintchine formula tells us that

κ(α+ q, β, γ)− κ(q, 0, 0) =

∫
[0,∞)3

(1− e−αt−βr−γx)e−qtΠ(dt,dr, dx),
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where Π is the Lévy measure of (σt, θt, Ht)t≥0. By Proposition A.3, we have

E
[
e−αGe−βτGe−γSe

]
=

κ(q, 0, 0)

κ(q, 0, 0) + (κ(α+ q, β, γ)− κ(q, 0, 0))
,

and we therefore see that the law of (Ge, τGe , Se) is equal to the law of a pure jump Lévy process
with Lévy measure e−qtΠ(dt,dr, dx), evaluated at an independent exponential time of parameter
κ(q, 0, 0). Therefore, it is infinitely divisible and it has no drift part and no Brownian part, so it
is characterized by its Lévy measure.

Step 2: We assume that (Zt)t≥0 is not a compound Poisson process, and we show that the
law of (e − Ge, τe − τGe , Se − Ze), resp. of (e − Ge, τe − τGe−, Se − Ze), is infinitely divisible
if 0 is irregular, resp. regular for the reflected process (Rt)t≥0. Note that the corresponding
distributions are again characterized by their Lévy measure.

Let us define the process (τ̃t, Z̃t)t≥0 = (τe − τ(e−t)−, Z(e−t)− − Ze)t∈[0,e], which, by duality, is
equal in law to (τt,−Zt)t∈[0,e]. Since (Zt)t≥0 is not a compound Poisson process its supremum is
reached at a unique time so we have G̃e = e−Ge and S̃e = Se − Ze, with the obvious notation.
Moreover, we have τ̃G̃e = τe − τGe− and τ̃G̃e− = τe − τGe .

If 0 is irregular for (Rt)t≥0, then it is necessarily regular for (R̂t)t≥0, see Remark A.4 and we
can apply Step 1 with (G̃e, τ̃G̃e−, S̃e). If 0 is regular for (Rt)t≥0 and irregular for (R̂t)t≥0, then
we can apply Step 1 with (G̃e, τ̃G̃e , S̃e). Finally, if 0 is regular for both sides, then τGe = τGe−
by Lemma A.5 and we can again apply the first step.

Step 3: We are now able to conclude the proof of items (ii) and (iii) when (Zt)t≥0 is not a
compound Poisson process. Again, we only show it in the irregular case. It is well-known that
(e, τe, Ze) is infinitely divisible, see [4, Ch. VI Lem. 7], and that its Lévy measure is given by

µ(dt,dr, dx) = t−1e−qtP(τt ∈ dr, Zt ∈ dx)dt.

Let us denote the Lévy measures of (Ge, τGe , Se) and (e −Ge, τe − τGe , Ze − Se) by µ+ and µ−
and recall that by Steps 1 and 2 that they characterize their distributions. Now, observe that

(e, τe, Ze) = (Ge, τGe , Se) + (e−Ge, τe − τGe , Ze − Se) ,

with the triplets being independent. It follows that µ = µ+ + µ−. Since (Zt)t≥0 is not a
coumpound Poisson process, we have P(Zt = 0) = 0 for every t ≥ 0, and since µ+ is supported
on [0,+∞)3 and µ− on [0,+∞)2 × (−∞, 0], we get

µ+(dt,dr, dx) = t−1e−qtP(τt ∈ dr, Zt ∈ dx)dt, (t > 0, r > 0, x > 0)

µ−(dt,dr, dx) = t−1e−qtP(τt ∈ dr, Zt ∈ dx)dt, (t > 0, r > 0, x < 0) ,

which finishes this step.

Step 4: We now extend the proof of items (ii) and (iii) when (Zt)t≥0 is a compound Poisson
process. Note that in this case, 0 is regular for both sides. We proceed by approximation and
consider (Zεt )t≥0 = (Zt + εt)t≥0 which is a Lévy process but not a compound Poisson process. It
is easy to see that 0 is regular for (Rεt )t≥0 but is irregular for (R̂εt )t≥0, with the obvious notation.

Let us now show that a.s. Gεe → Ge, Sεe → Se and τGεe− → τGe− as ε → 0. This is obvious
on the event {Ge = e}, since we have Gεe = Ge and Sεe = Se + εe. Now, on the event {Ge < e},
since (Zt)t≥0 is a compound Poisson process, we have Zt < ZGe− = Se for any t ∈ [Ge, e]. Let
De = supt∈[Ge,e] Zt < Se and set ε0 = (Se − De)/e: we see that for any t ∈ [Ge, e] and any
ε ∈ (0, ε0),

Zεt = Zt + εt < Se < ZεGe−.

Therefore, for any ε ∈ (0, ε0), we have Gεe = Ge, which implies again that a.s. Gεe → Ge, Sεe → Se
and τGεe− → τGe− as ε→ 0.
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Finally, as ε→ 0, the measures

1{x>0}P(τt ∈ dr, Zεt ∈ dx) and 1{x<0}P(τt ∈ dr, Zεt ∈ dx)

respectively converge to

1{x≥0}P(τt ∈ dr, Zt ∈ dx) and 1{x<0}P(τt ∈ dr, Zt ∈ dx) .

Then the result follows by approximation.

Proof of Proposition 4.4. Paraphrasing Corollary VI.10 p 165 in [4]: for α′ > 1, the formula

κ(α′, β, γ) = c exp

(∫ ∞
0

∫
[0,∞)×R

e−t − e−α
′t−βr−γx

t
1{x≥0}P(τt ∈ dr, Zt ∈ dx)dt

)
follows from Theorem 4.3 and Proposition A.3 applied with q = 1 (and α′ = α+q). The identity
is extended by analyticity.

Recall also the definition

κ̄(α, β, γ) = exp

(∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr+γx

t
1{x<0}P(τt ∈ dr, Zt ∈ dx)dt

)
.

Then, if 0 is irregular for (Rt)t≥0, we have for any positive α, β, γ, α̂, β̂, γ̂, we have

E
[
e−αGe−βτGe−γSe−α̂(e−Ge)−β̂(τe−τGe )−γ̂(Ze−Se)

]
=

κ(q, 0, 0)

κ(α+ q, β, γ)

κ̄(q, 0, 0)

κ̄(α̂+ q, β̂γ̂)
. (A.1)

If 0 is regular for (Rt)t≥0, then the same identity holds with τGe replaced by τGe− and τe − τGe
replaced by τe − τGe−. This formula yields (4.6).

Moreover, the duality entails that, if (Zt)t≥0 is not a compound Poisson process, there exists
a constant ĉ > 0 such that κ̂(α, β, γ) = ĉκ̄(α, β, γ).

B Convergence of Lévy processes

In this section, we give some results on converging sequences of Lévy processes.

B.1 Convergence of processes and convergence of Laplace exponents

We consider a family of Lévy processes {(τht , Zht )t≥0, h > 0} with (τht )t≥0 a subordinator (for
every h > 0), which converges in law for the Skorokhod topology as h→ 0, to some Lévy process
(τ0
t , Z

0
t )t≥0, with (τ0

t )t≥0 also a subordinator and (Z0
t )t≥0 not a compound Poisson process. Note

that, according to Jacod-Shiryaev [29, Thm. 2.9 p 396], (τht , Z
h
t )t≥0 converges in law for the

Skorokhod topology if and only if (τh1 , Z
h
1 ) converges in law to (τ0

1 , Z
0
1 ) as h → 0. For non-

negative α, β, γ such that α+ β + γ > 0, we introduce the quantities

φh(α, β, γ) =

∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr−γx

t
1{x≥0}P(τht ∈ dr, Zht ∈ dx)dt

and

φ̄h(α, β, γ) =

∫ ∞
0

∫
[0,∞)×R

e−t − e−αt−βr+γx

t
1{x<0}P(τht ∈ dr, Zht ∈ dx)dt.

We will denote by φ0(α, β, γ) and φ̄0(α, β, γ) the corresponding quantities for (τ0
t , Z

0
t )t≥0. As we

should expect, we have the following result.

Proposition B.1. Let (τht , Z
h
t )t≥0 and (τ0

t , Z
0
t )t≥0 be as above. Then we have for any non-

negative α, β, γ such that α+ β > 0,

lim
h→0

φh(α, β, γ) = φ0(α, β, γ) and lim
h→0

φ̄h(α, β, γ) = φ̄0(α, β, γ) .
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Proof. We will only show the convergence of φh as the proof for φ̄h is similar. We only stress
that since P(Z0

t = 0) = 0, by dominated convergence we have

lim
h→0

E
[
(e−t − e−αt−βτ

h
t −γZht )1{Zht ≥0}

]
= E

[
(e−t − e−αt−βτ

0
t −γZ0

t )1{Zt≥0}

]
.

Now since
φh(α, β, γ) =

∫ ∞
0

1

t
E
[
(e−t − e−αt−βτ

h
t −γZht )1{Zht ≥0}

]
dt,

it only remains to dominate the integrand. We first dominate for t ∈ (0, 1). We have∣∣∣E [(e−t − e−αt−βτ
h
t −γZht )1{Zht ≥0}

]∣∣∣ ≤1− e−t + E
[
(1− e−αt−βτ

h
t −γZht )1{Zht ≥0}

]
≤1− e−t + E

[
(βτht + γ|Zht |) ∧ 1

]
.

Then by Lemma B.3 below (applied to the sequence of bivariate Lévy process (τht , Z
h
t ) valued

in R2), there exists a constant Cβ,γ > 0 such that for any h ∈ (0, 1) and for any t ∈ (0, 1),
E[(βτht + γ|Zht |) ∧ 1] ≤ Cβ,γ

√
t. Thus we get for any h ∈ (0, 1) and any t ∈ (0, 1),

t−1
∣∣∣E [(e−t − e−αt−βτ

h
t −γZht )1{Zht ≥0}

]∣∣∣ ≤ 1 +
Cβ,γ√
t
,

which is integrable on (0, 1). Next, we dominate on [1,∞). We have∣∣∣E [(e−t − e−αt−βτ
h
t −γZht )1{Zht ≥0}

]∣∣∣ ≤ e−t + E
[
e−αt−βτ

h
t −γZht 1{Zht ≥0}

]
.

If α > 0, then we can dominate by e−t + e−αt which, divided by t, is integrable on [1,∞). If
α = 0, then β > 0 and we have∣∣∣E [(e−t − e−αt−βτ

h
t −γZht )1{Zht ≥0}

]∣∣∣ ≤ e−t + e−Φh(β)t,

where Φh is the Laplace exponent of (τht )t≥0. Since the latter converges in law to (τt)t≥0, we
get that limh→0 Φh(β) = Φ0(β) > 0 as h → 0 where Φ0 is the Laplace exponent of (τ0

t )t≥0.
Therefore, there exists a constant cβ > 0 such that for any h ∈ (0, 1), Φh(β) ≥ cβ . Finally, we
see that for any h ∈ (0, 1), for any t ≥ 1, we have∣∣∣E [(e−t − e−αt−βτ

h
t −γZht )1{Zht ≥0}

]∣∣∣ ≤ e−t + e−cβt,

which, divided by t, is integrable on [1,∞). This completes the proof.

Proposition B.2. Let (τht , Z
h
t )t≥0 and (τ0

t , Z
0
t )t≥0 be as above and assume that 0 is recurrent for

the reflected limiting process (R0
t )t≥0 Then we also have for any γ > 0, φh(0, 0, γ) −→ φ0(0, 0, γ)

as h→ 0.

Here, we cannot use the dominated convergence theorem as it is not clear how to dominate
E[e−γZ

h
t 1{Zht ≥0}]. We will instead use an argument of tightness combined with the continuity of

the Laplace transform.

Proof. For every h > 0, let (σht , θ
h
t , H

h
t )t≥0 be the trivariate subordinator associated with

(τht , Z
h
t )t≥0, as in Appendix A. Since the local time of the reflected process (Rht )t≥0 is defined up

to a constant, we can normalize it so that for any non-negative α, β, γ, we have

κh(α, β, γ) = exp(φh(α, β, γ)),

where κh is the Laplace exponent of (σht , θ
h
t , H

h
t )t≥0. In other words, we can choose the constant

ch in Proposition 4.4 to be equal to 1. Similarly, we consider (σ0
t , θ

0
t , H

0
t )t≥0 the trivariate
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subordinator associated with (τ0
t , Z

0
t )t≥0, whose Laplace exponent κ0 is such that for any non-

negative α, β, γ, we have κ0(α, β, γ) = exp(φ0(α, β, γ)). Then by Proposition B.1, κh(α, β, γ)
converges to κ0(α, β, γ) for any non-negative α, β, γ such that α+ β > 0. In particular, we have
for any γ > 0,

lim
h→0

E
[
e−γ(σh1 +Hh

1 )
]

= lim
h→0

e−κh(γ,0,γ) = e−κ0(γ,0,γ) = E
[
e−γ(σ0

1+H0
1 )
]
,

which implies that σh1 + Hh
1 converges in law to σ0

1 + H0
1 as h → 0. Since 0 is recurrent for

(R0
t )t≥0, the random variables σ0

1 and H0
1 are a.s. finite. This implies that the family of random

variables (σh1 +Hh
1 )h∈(0,1) is tight in R+, which in turn implies that the family ((σh1 , H

h
1 ))h∈(0,1)

is tight in R2
+. Let ((σhk1 , Hhk

1 ))k∈N be a subsequence which converges in law towards some finite
random variables (σ̄, H̄). Using Proposition B.1 again, we see that for any α > 0 and any γ ≥ 0,
we have

E
[
e−ασ̄−γH̄

]
= E

[
e−ασ

0
1−γH0

1

]
.

Since H̄ and H0
1 are finite, the above equality also holds for α = 0 and γ > 0 by the monotone

convergence theorem, which shows that the law of (σ̄, H̄) is uniquely determined and therefore
(σh1 , H

h
1 ) converges in law as h → 0 to (σ0

1, H
0
1 ). Hence Hh

1 converges in law to H0
1 , which

completes the proof, since this implies that κh(0, 0, γ) converges to κ0(0, 0, γ) for any γ > 0.

B.2 Technical lemmas

Lemma B.3. Let (Znt )t≥0, n ≥ 1 be a sequence of Lévy processes on Rd which converges in law
to a Lévy process (Zt)t≥0. Then there exists a constant C > 0 such that for any n ≥ 1, for any
t ≥ 0, we have

E[|Znt | ∧ 1] ≤ C
√
t.

Proof. We classically decompose the sequence of Levy processes as a sum of a Brownian motion,
a compound Poisson process, a pure jump martingale and a drift: Znt = cnB

n
t +Cnt +Mn

t + bnt,
where bn ∈ Rd, cn is a d×d matrix. Let us denote by νn the Levy measure of Xn, then the Levy
measure of Cn is 1{|x|≥1}νn(dx) and Mn has Levy measure 1{|x|<1}νn(dx). For any n ≥ 1, for
any t ≥ 0, we have

E[|Znt |2 ∧ 1] ≤ 4
(
E[|cnBn

t |2] + E[|Mn
t |2] + E[|Cnt |2 ∧ 1] + t2|bn|2 ∧ 1

)
.

By the maximum inequality for compensated sums, we have

E
[
|Mn

t |2
]
≤ E

[
sup
[0,t]
|Mn

s |2
]
≤ t
∫
{|x|<1}\{0}

|x|2νn(dx).

We introduce the truncation function χ : Rd → Rd which is a bounded continuous function such
that χ(x) = x if |x| ≤ 1. Setting c̃n := c∗ncn +

∫
χ(x)⊗ χ(x)νn(dx), which is a d× d symmetric

nonnegative matrix, we get by the above inequalities E[|cnBn
t |2] + E[|Mn

t |2] ≤ Tr(c̃n)t.

Let us now introduce the smooth function ϕ : Rd → R+ such that ϕ(x) = |x|2 if |x| ≤ 1 and
ϕ(x) = 2 if |x| ≥ 2 and 1 ≤ ϕ(x) ≤ 2 if |x| ∈ [1, 2]. By Itô formula, we have

E[|Cnt |2 ∧ 1] ≤ E[ϕ(Cnt )] =

∫ t

0

∫
|x|>1

E[ϕ(Cns + x)− ϕ(Cns )]νn(dx) ≤ 2t

∫
|x|>1

νn(dx).

By Theorem 2.9 p 396 in [29], since (Znt )t≥0 converges in law to (Zt)t≥0:

bn → b, c̃n → c̃ and

∫
g(x)νn(dx)→

∫
g(x)ν(dx),

for all continuous bounded function g : Rd → R such that g is equal to 0 in a neighborhood of
0. Thus, setting C1 = supn Tr(c̃n), C2 = 2 supn

∫
|x|>1 νn(dx), C3 = (supn |bn|2)1/2, C4 = C3 ∨ 1

and C = 4(C1 + C2 + C4), which are finite quantities, we get for any n ≥ 1, for any t ≥ 0,

E[|Znt |2 ∧ 1] ≤ Ct.
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Indeed, we have (t2|bn|2) ∧ 1 ≤ (t2C2
3 ) ∧ 1 ≤ C4t. The result follows from Cauchy-Schwartz

inequality.

Lemma B.4. Let (τnt , Z
n
t )t≥0 be a sequence of Lévy processes taking values in R+×R. Suppose

that the sequence of subordinators (τnt )t≥0 converges in law to (τt)t≥0 and (Znt )t≥0 converges to
a Brownian motion (Zt)t≥0. Then (τnt , Z

n
t )t≥0 converges in law to (τt, Zt)t≥0 where (τt)t≥0 and

(Zt)t≥0 are independent.

Proof. Denote by πn(dr, dx) the Lévy measure of (τnt , Z
n
t )t≥0 and define by χ(r, x) = (1∧r,−1∨

(x ∧ 1)) a truncation function on R+ × R. It is continuous, bounded and equals (r, x) on a
neighborhood of 0 in R+ × R. Then for all α > 0, β ∈ R,

E[e−ατ
n
t +iβZnt ] = exp

(
tψn(α, β)

)
where

ψn(α, β) = −αbn + iβb̂n −
σ2
n

2
β2 +

∫
R+×R

e−αr+iβx − 1− (−α, iβ) · χ(r, x) πn(dr, dx).

We denoted by (bn, b̂n) ∈ R+ × R the drift coefficient (which depends on the choice of the
truncation function) and σ2

n the Brownian coefficient of (Znt )t≥0. Then making α = 0 and β = 0
in the expression we deduce that the characteristics of (τnt )t≥0 and (Znt )t≥0 are respectively
(bn, νn) and (b̂n, σ

2
n, µn), where νn and µn are defined as

νn(dr) :=

∫
R
πn(dr, dx), µn(dx) :=

∫
R+

πn(dr, dx).

By Theorem VII.2.9 p 396 [29], the convergence in law of (τnt )t≥0 and (Znt )t≥0 implies that bn,
b̂n,
∫
R 1∧r2νn(dr) and σ2

n+
∫
R 1∧x2µn(dx) converges and that for all g : R+ → R and ĝ : R→ R

continuous bounded which are 0 around 0∫
R+

g(r)νn(dr) −→
n→+∞

∫
R+

g(r)ν(dr), and

∫
R+

ĝ(x)µn(dx) −→
n→+∞

0.

Here we denote by ν(dr) the Lévy measure of the limit process (τt)t≥0. It follows that for all
δ > 0,

∫
R 1|x|≥δµn(dx) goes to 0 and which implies that∫

R+×R
1|x|≥δ πn(dr, dx) −→

n→+∞
0. (B.1)

By Theorem VII.2.9 p 396 [29] again, the convergence of (τnt , Z
n
t )t≥0 will follow if we can show

that (i) ∫
R+×R

(1 ∧ r)(−1 ∨ (x ∧ 1))πn(dr, dx)

converges as n→∞, and that (ii) for all continuous function g : R+×R→ R+ which is constant
outside a compact set and is 0 around 0,

∫
g(r, x)πn(dr, dx) converges.

Regarding item (i), we set f(r, x) := (1∧ r)(−1∨ (x∧ 1)) and fix δ > 0. By (B.1), and since
f is bounded,

∫
|x|>δ |f(r, x)|πn(dr, dx) vanishes as n→∞. It follows that

lim sup
n→∞

∣∣∣∣ ∫
R+×R

f(r, x)πn(dr, dx)

∣∣∣∣ ≤ lim sup
n→∞

∫
|x|≤δ

|f(r, x)|πn(dr, dx) ≤ δ lim sup
n→∞

∫
1 ∧ r νn(dr).

Now, remark that bn −
∫
R 1 ∧ rνn(dr) is the drift coefficient of the subordinator (τnt )t≥0 and

therefore, it must be positive. Since bn converges, it follows that

0 ≤ lim sup
n→∞

∫
R

1 ∧ rνn(dr) ≤ lim sup
n→∞

bn <∞.
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Making δ to 0 shows that
∫
R+×R f(r, x)πn(dr, dx) converges to 0.

For item (ii), we consider a function g : R+ × R→ R+ which is constant outside a compact
set and is 0 around 0, say on K := {r ≤ 1, |x| ≤ 1}. It is uniformly continuous and for all ε > 0
there is some 1 > δ > 0 such that |x| ≤ δ implies |g(r, x)− g(r, 0)| ≤ ε. Using (B.1) again, and
using that

∫
R+
g(r, 0)νn(dr) =

∫
R+×R g(r, 0)µn(dr, dx)

lim sup
n→∞

∣∣∣∣ ∫
R+×R

g(r, x)πn(dr, dx)−
∫
R+

g(r, 0)νn(dr)

∣∣∣∣ ≤ lim sup
n→∞

∫
|x|≤δ

|g(r, x)− g(r, 0)|πn(dr, dx)

= lim sup
n→∞

∫
Kc∩{|x|≤δ}

|g(r, x)− g(r, 0)|πn(dr, dx) ≤ εlim sup
n→∞

νn(R+ \ [0, 1]).

Since lim supn→∞ νn(R+ \ [0, 1]) < +∞ and since
∫
R+
g(r, 0)νn(dr) converges to

∫
g(r, 0)ν(dr),

we conclude that ∫
g(r, x)πn(dr, dx) −→

n→+∞

∫
g(r, 0)ν(dr).

To summarize we get that (τnt , Z
n
t )t≥0 converges in law and the limiting characteristic Laplace-

Fourier exponent is

ψ(α, β) = −αb+ iβb̂− σ2

2
β2 +

∫
R+

(
e−αr − 1 + α1 ∧ r

)
ν(dr),

where b := limn bn, b̂ := limn b̂n and σ2 := limn σ
2
n +

∫
1 ∧ x2µn(dx). This is the characteristic

exponent of (τt, Zt)t≥0 where τt and Zt are independent.

C Technical results on generalized one-dimensional diffusions

In this appendix, we prove some technical results from Section 7. We do not recall here the
notation here, so we refer the reader to the introduction of Section 7.

C.1 Local times and the occupation time formula

The goal of this section is to prove Proposition 7.1 and Lemma 7.8. We do not recall the
statements and refer the reader to Section 7.

Proof of Proposition 7.1. Item (i). Let t ≥ 0 and h be a Borel function. Using a change of
variables, we have ∫ t

0
h(Xs)ds =

∫ t

0
h(s−1(Bρs))ds =

∫ ρt

0
h(s−1(Bs))dA

ms

s .

By Corollary 2.13 in [39, Ch. X], it holds that for any u ≥ 0,∫ u

0
h(s−1(Bs))dA

ms

s =

∫
R
h(s−1(x))Lxum

s(dx),

and the first item follows by substituting ρt in the preceding equation and performing a the
change of variables y = s−1(x).

Item (ii). Let us now show that 0 is regular for (Xt)t≥0. More precisely, we will show that the
time t = 0 is an accumulation point of ZX = {t ≥ 0, Xt = 0} = {t ≥ 0, Bρt = 0}. First we
remark that for every (Ft)t≥0-stopping time T such that BT = 0, we have Ams

T+ε − Ams

T > 0 for
every ε > 0. Indeed, the family (LxT+t − LxT )t≥0,x∈R is the family of local times of the Brownian
motion (BT+t)t≥0. Therefore, L0

T+ε − L0
T > 0 for every ε > 0 and by the continuity of the

Brownian local times in the space variable, LxT+ε − LxT > 0 in a neighbourhood of 0. Finally,
since 0 ∈ supp(ms), we get

Ams

T+ε −Ams

T =

∫
R

(LxT+ε − LxT )ms(dx) > 0
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for every ε > 0. Hence, for such a stopping time T , we have ρAms
T

= inf{s > 0, Ams

s > Ams

T } = T .
Let us define for any t ≥ 0, dt = inf{s > t, Bs = 0} the first zero of (Bu)u≥0 after time t,
which is an (Ft)t≥0-stopping time. Consider a decreasing sequence (tn)n∈N which converges to
0 as n → ∞. Then for any n ∈ N, dtn is a stopping time such that Bdtn = 0 and therefore
ρAms

dtn

= dtn . Let us set (un)n∈N = (Ams

dtn
)n∈N, then it is clear that it is a non-increasing sequence

of points in ZX . Since dtn → 0 as n→∞ and since (Ams

t )t≥0 is continuous, it comes that un → 0
as n→∞ which shows that 0 is an accumulation point of ZX .

Item (iii). We show item (ii) and start by showing that (L0
ρt)t≥0 is continuous. Let ΣL be

the complement of the open set
⋃
s≥0]τBs−, τ

B
s [ where (τBt )t≥0 is the right-continuous inverse of

(L0
t )t≥0. The set ΣL a.s. coincides with the set ZB = {t ≥ 0, Bt = 0}. Let ΣA be the complement

of
⋃
s≥0]ρs−, ρs[. It is shown in [39, Ch. X Proposition 2.17] that ΣA a.s. coincides with the set

ΓA = {t ≥ 0, Bt ∈ supp(ms)} and with the support of the measure dAms

t . Since 0 ∈ supp(ms),
it comes that ΓL ⊂ ΓA a.s. and therefore, we have⋃

s≥0

]ρs−, ρs[⊂
⋃
s≥0

]τBs−, τ
B
s [.

Since
⋃
s≥0]τBs−, τ

B
s [ also coincides with the flat sections of (L0

t )t≥0 we get that for any t ≥ 0 such
that ρt− < ρt, then L0

ρt− = L0
ρt which shows that (L0

ρt)t≥0 is continuous. The fact that (L0
t )t≥0

remains an additive functional after time-change is rather classical. It follows from the fact that
(ρt)t≥0 is itself the inverse of a continuous additive functional, and (L0

t )t≥0 is a strong additive
functional. We refer to Revuz-Yor [39, Ch. X, Propositions 1.2 and 1.3] for more details.

Let us show that the support of the measure dL0
ρt = µ(dt) is included in the closure of ZX .

We introduce the measure ν(dt) which is the pushforward measure of µ by (ρt)t≥0. It is the
Stieltjes measure associated to the non-decreasing process (L0

ρ
Ams
t

)t≥0. Let t ≥ 0 be fixed, then

if At+ε > At for every ε > 0, we have L0
ρ
Ams
t

= L0
t . On the other hand, if t is such that there

exists ε > 0 such that Ams

t = Ams

t+ε, then Ams

t is a jumping time of (ρs)s≥0 and since (L0
s)s≥0 is

constant on [ρu−, ρu] for every u such that ∆ρu > 0, we get L0
t = L0

ρ
Ams
t

. In the end, we see that

ν is the Stieltjes measure associated to (L0
t ) and, applying the change of variables, we get∫ t

0
1{Xs 6=0}dL

0
ρs =

∫
[0,t]

1{Bρs 6=0}µ(ds) =

∫
ρ([0,t])

1{Bs 6=0}ν(ds) ≤
∫ ρt

0
1{Bs 6=0}dL

0
s = 0.

This shows that the support of the measure µ is included in the closure of ZX .
We now show the converse and we will assume that 0 is an instantaneous point for (Xt)t≥0,

as the proof is easier when 0 is a holding point. In this case, the closure of Zx is a perfect set with
empty interior. For any t ≥ 0, we denote by dXt = inf{s > t, Xt = 0} the first zero of (Xs)s≥0

after t. Then for any t ≥ 0, Bρ
dXt

= 0 and since ρdXt is an (Ft)-stopping time, L0
ρdt+ε

> L0
ρdt

for every ε > 0. Since (Ams

t )t≥0 is continuous, (ρt)t≥0 is increasing and therefore L0
ρdt+ε

> L0
ρdt

for any ε > 0. This shows that almost surely, for any t ∈ Q+, dt belongs to the support of µ.
Consider now some t in the closure of Zx and some ε > 0. Then since ZX has empty interior,
there exists r ∈ Q∩ [t− ε, t) such that r /∈ ZX and dr ≤ t. Hence t is a limit of points belonging
to the support of µ, which is a closed set, and therefore t belongs to this set.

Item (iv). We now consider (τt)t≥0 the right-continuous inverse of (L0
ρt)t≥0. Let us show that for

any t ≥ 0, τt = Ams

τBt
. The continuous non-decreasing process (Ams

t )t≥0 is also the right-continuous
inverse of (ρt)t≥0 so that we have for any t > 0,

Ams

τBt
= inf{s > 0, ρs > τBt } = inf{s > 0, L0

ρs > t} = τt.

For any t ≥ 0, τBt is a stopping time such that BτBt = 0 and thus, by the argument from the
second step, we have ρAms

τBt

= ρτt = τBt .
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Proof of Lemma 7.8. We introduce the Lévy process Zgt =
∫ τt

0 ((g◦s)×f)(Xs)ds. It is clear that,
by assumption and by the occupation time formula from item (i) of Proposition 7.1, this process
is well defined. Let us denote by νg(dz) = n

( ∫ `
0 ((g ◦ s) × f

)
(εs)ds ∈ dz) the Lévy measure of

(Zt)t≥0. On one hand, we have

E [Zt] = t

∫
R
zνg(dz) = tn

(∫ `

0
((g ◦ s)× f)(εs)ds

)
.

On the other hand, it holds by items (i) and (iv) of Proposition 7.1 that

E [Zt] = E
[∫

R
Lxρτtg(x)mf (dx)

]
=

∫
R
E
[
Lx
τBt

]
g(x)mf (dx).

By Ray-Knight’s theorem, see [39, Chp. XI, Thm. 2.3], for any fixed t ≥ 0, the processes (Lx
τBt

)x≥0

and (Lx
τBt

)x≤0 are two independent squared Bessel processes of dimensions 0 starting at t and
therefore E[Lx

τBt
] = t for any x ∈ R, which completes the proof.

C.2 Convergence of strings under the Brownian excursion measure

The goal of this section is to prove the technical Lemmas 7.5 and 7.7 about strings with regular
variation. Again, we do not recall the notation nor the statements of the results; we refer the
reader to Section 7.2. In particular m is a string of regular variation with regular variation of
index α ∈ (0, 2) and mh denote its rescaled version.

Let us start with a technical lemma in the case α ∈ [1, 2), which is an almost direct application
of Potter’s bound [8, Thm. 1.5.6].

Lemma C.1. Let m be a string with regular variation of index α ∈ [1, 2). Then for any η > 0,
there exists a constant C > 0, such that for any x > 0 and any h ∈ (0, 1),

|mh(x)| ≤ Cx1/α−1−η ∨ x1/α−1+η. (C.1)

Proof of Lemma C.1. When α = 1, this is a direct application of [8, Thm. 3.8.6]. When α ∈
(1, 2), we have that there is a constant Cα such that

m(∞)−m(y) ≤ CαΛ(y)y1/α−1 for any y > 0,

using also that 1/α − 1 < 0 so the upper bound diverges as x ↓ 0. It then simply remains
to show that Λ(x/h)

Λ(1/h) ≤ Cx−η ∨ xη for any x > 0, which is exactly the content of Potter’s
bound [8, Thm. 1.5.6].

Proof of Lemma 7.5. When α ∈ (0, 1) there is nothing to prove since x1/α−1 = cα
∫ x

0 y
1/α−2dy is

the cumulant to the Radon measure x1/α−2dx on R+ and x 7→ g(x) is continuous with compact
support. When α ∈ [1, 2), then for any δ ∈ (0, 1), then we have

lim
δ↓0

∫ ∞
δ

Lxtmh(dx) = cα

∫ ∞
δ

Lxt x
1/α−2dx.

Again, this is a direct consequence of the fact that the measure mh restricted to (δ,∞) converges
weakly to the measure x1/α−2dx restricted to (δ,∞), and that x 7→ Lxt is continuous with compact
support.

Now consider some γ ∈ (0, 1/2) such that 1/α − 1 + γ > 0, which is possible since α < 2.
Since x 7→ g(x) is Hölder of order γ, and g(0) = 0, there exists a constant D > 0 such for any
x ∈ (0, δ), g(x) ≤ Dxγ . Therefore we have

cα

∫ δ

0
g(x)x1/α−2dx ≤ D′δ1/α−1+γ ,
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for some constant D′ > 0. Now pick some η ∈ (0, 1/α − 1 + γ), so by (C.1) there exists C > 0
such that |mh(x)| ≤ Cx1/α−1−η for any x ∈ (0, δ]. Therefore we have∫ δ

0
g(x)mh(dx) ≤ D

∫ δ

0
xγmh(dx) ≤ δγ |mh(δ)|+ γ

∫ δ

0
xγ−1|mh(x)|dx ≤ C δ1/α−1+γ−η,

for some constant C > 0, the second inequality being obtained by integration by parts. Therefore,
we have just proved that for all δ ∈ (0, 1), we have

lim sup
h→0

∣∣∣∣∫
R+

g(x)mh(dx)− cα
∫
R+

g(x)x1/α−2dx

∣∣∣∣ ≤ D′δ1/α−1+γ + Cδ1/α−1+γ−η.

Letting δ ↓ 0 proves the result.

Proof of Lemma 7.7. Before we start with the proof of teh four items, let us recall William’s
decomposition of the excursion measure, see [39, Chp. XII, Thm. 4.5]. Take (Ut)t≥0 and (Ũt)t≥0

two independent 3-dimensional Bessel processes starting from 0, defined on some probability
space. For any c > 0, let Tc and T̃c be their respective first hitting of c. We define the process
(Qct)t≥0 by

Qct =


Ut if 0 ≤ t ≤ Tc
c− Ũt−Tc if Tc ≤ t ≤ Tc + T̃c
0 if t ≥ T̃c.

Then, the law of a positive excursion conditioned to M(ε) = c is equal to the law of (Qct)t≥0,
and for any measurable set Γ, we have

nB+(Γ) =
1

2

∫ ∞
0

P
(
(Qyt )t≥0 ∈ Γ

)
y−2dy. (C.2)

Then, denoting by Lxt (X) the local time in x at time t of a process (Xs)s≥0, we have

Lx
Ty+T̃y

(
Qy
)

= LxTy(U) + Lx
T̃y

(Ũ) ≤ Lx∞(U) + Lx∞(Ũ) =: Rx. (C.3)

Recalling the variant of the second Ray-Knight’s theorem, see [50, RK2.a)], (Lx∞(U))x≥0 and
(Lx∞(Ũ))x≥0 are two independant 2-dimensional squared Bessel process started at 0 and so
(Ru)u≥0 is a square Bessel process of dimension 4 started at 0.

Item (i). Consider the first point and take α ∈ (0, 1), then combining (C.2) and (C.3) we have

nB+

[(∫
R+

Lx`mh(dx)
)
1Aδ

]
=

1

2

∫ δ

0
E
[∫ y

0
Lu
Ty+T̃y

(Qy)mh(du)

]
y−2dy

≤ 1

2

∫ δ

0
E
[∫ y

0
Rumh(du)

]
y−2dy, .

Since E[Ru] = 4u, this is bounded by

2

∫ δ

0

[∫ y

0
u mh(du)

]
y−2dy = 2

∫ δ

0
u

∫ +∞

u

dy

y2
mh(du) = 2

∫ δ

0
mh(du) = 2mh(δ).

The first point of the Lemma follows since lim
h→0

mh(δ) = δ1/α−1 and α ∈ (0, 1).

Item (ii). Take α ∈ [1, 2) and consider ϕ = x2 so that

nB+

[
sup
h∈(0,1]

(∫
R+

Lx`mh(dx)
)2

1Aδ

]
≤ 1

2

∫ δ

0
E
[

sup
h∈(0,1]

(∫ y

0
Rumh(du)

)2
]
y−2dy.

58



Fix η > 0 (how small depends on α). Since (Ru)u≥0 is a sum of independent square of Brownian
process, by Kolmogorov’s regularity criterion (see [39, Thm. 2.1]), we have that Ru ≤ Cηu

1−η

for all u ∈ [0, 1], where Cη > 0 is a square integrable positive random variable. So for δ ∈ (0, 1],

nB+

[
sup
h∈(0,1]

(∫
R+

Lx`mh(dx)
)2

1Aδ

]
≤ 1

2
E[C2

η ]

∫ δ

0
sup
h∈(0,1]

(∫ y

0
u1−ηmh(du)

)2
y−2dy. (C.4)

Moreover, since
∫ y

0 u
1−η mh(du) = y1−ηmh(y)− (1− η)

∫ y
0 u
−ηmh(u)du, we have(∫ y

0
u1−ηmh(du)

)2
≤ 4
(
y2−2ηmh(y)2 +

(∫ y

0
u−η|mh(u)|du

)2)
.

Take 0 < 2η < 1/α− 1/2 (which is possible since α < 2), by Lemma C.1 we get that |mh(u)| ≤
cηu

1/α−1−η uniformly in h ∈ (0, 1) and u ∈ (0, 1], for some constant cη. Since 1/α− 1− 2η > −1
there is a constant ĉη > 0 such that

sup
h∈(0,1]

(∫ y

0
u1−ηmh(du)

)2
≤ ĉηy2/α−4η, ∀y ∈ [0, 1].

Hence for η > 0 small enough, the left-hand side of (C.4) is bounded by a constant (that depends
on η) times δ2/α−−1−4η, which goes to 0 as δ ↓ 0.

Item (iii). We proceed in the same vein. Similarly as above, we have

nB+

[
sup

h∈(0,1)

(∫ +∞

0
Lx`mh(dx)

)
1Ac

δ

]
≤ 1

2

∫ ∞
δ

E
[

sup
h∈(0,1)

(∫ y

0
Rumh(du)

)]
y−2dy .

Fix η > 0. By time-inversion, (R̃u)u≥0 := (u2R1/u)u≥0 has the same law at (Ru)u≥0, hence
Kolmogorov’s regularity theorem applied both to (R̃u)u≤1 and (Ru)u≤1 gives that

Ru ≤ Cη (u1−η ∨ u1+η), ∀u ≥ 0 ,

with Cη some integrable random variable. Thus we have,

nB+

[
sup
h∈(0,1]

(∫ +∞

0
Lx`mh(dx)

)
1Ac

δ

]
≤ 1

2
E[Cη]

∫ +∞

δ
sup
h∈(0,1]

(∫ y

0
u1−η ∨ u1+ηmh(du)

)
y−2dy

Then we write for all y ≥ δ,∫ y

0
u1−η ∨ u1+ηmh(du) =

∫ y∧1

0
u1−ηmh(du) +

∫ y∨1

1
u1+ηmh(du).

If η is small enough so that 2η < 1 − 1/α and 2η < 1/α, which is possible since α ∈ (1, 2), it
follows from Lemma C.1 that |mh(y)| ≤ Cy1/α−1−η ∨ y1/α−1+η. Then, recalling that mh(0) = 0,
we see that ∫ y∧1

0
u1−ηmh(du) ≤ (y ∧ 1)1−ηmh(y ∧ 1) ≤ C(y ∧ 1)1/α−2η ≤ C.

Similarly we have∫ y∨1

1
u1+ηmh(du) ≤ (y ∨ 1)1+η(mh(y ∨ 1)−mh(1)) ≤ C(y ∨ 1)1/α+2η .

In the end, we have for any y ≥ δ the bound
∫ y

0 u
1−η ∨ u1+ηmh(du) ≤ C +C(y ∨ 1)1/α+2η which

is integrable with respect to the measure y−2dy on [δ,∞) since 2−1/α−2η > 1. This concludes
the proof item (iii).

Item (iv). This point is similar. We write similarly as above

nB+

[
sup

h∈(0,1)

(∫ 1

0
Lx`mh(dx)

)
1Ac

δ

]
=

1

2

∫ ∞
δ

E
[

sup
h∈(0,1)

∫ 1∧y

0
Rumh(du)

]
y−2dy

≤ 1

2
E[Cη]

∫ +∞

δ
sup
h∈(0,1]

(∫ y∧1

0
u1−ηmh(du)

)
y−2dy ,

which is finite as in the case of the previous item.

59



Acknowledgements

We warmly thank Nicolas Fournier and Thomas Duquesne for fruitful discussions and remarks.

References
[1] K. S. Alexander. Excursions and local limit theorems for Bessel-like random walks. Electron. J.

Probab., 16:no. 1, 1–44, 2011.

[2] F. Aurzada and T. Simon. Persistence probabilities and exponents. In Lévy matters V, pages
183–224. Springer, 2015.

[3] Q. Berger and L. Béthencourt. An application of Sparre Andersen’s fluctuation theorem for ex-
changeable and sign-invariant random variables. in preparation, 2023.

[4] J. Bertoin. Lévy processes, volume 121. Cambridge university press Cambridge, 1996.

[5] J. Bertoin. Regularity of the half-line for Lévy processes. Bull. Sci. Math., 121(5):345–354, 1997.

[6] J. Bertoin and R. A. Doney. Spitzer’s condition for random walks and lévy processes. In Annales de
l’Institut Henri Poincare (B) Probability and Statistics, volume 33, pages 167–178. Elsevier, 1997.

[7] L. Béthencourt. Stable limit theorems for additive functionals of one-dimensional diffusion processes.
To appear in Ann. Inst. H. Poincaré. Probab. Stat., 2021.

[8] N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular variation, volume 27 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1989.

[9] F. Caravenna. A local limit theorem for random walks conditioned to stay positive. Probab. Theory
Relat. Fields, 133(4):508–530, 2005.

[10] P. Cattiaux, E. Nasreddine, and M. Puel. Diffusion limit for kinetic Fokker-Planck equation with
heavy tails equilibria: the critical case. Kinet. Relat. Models, 12(4):727–748, 2019.

[11] A. Dembo, J. Ding, and F. Gao. Persistence of iterated partial sums. Annales de l’IHP Probabilités
et Statistique, 49(3):873–884, 2013.

[12] D. Denisov and V. Wachtel. Exit times for integrated random walks. Annales de l’IHP Probabilités
et statistiques, 51(1):167–193, 2015.

[13] R. A. Doney. Fluctuation Theory for Lévy Processes: Ecole D’Eté de Probabilités de Saint-Flour
XXXV-2005. Springer, 2007.

[14] P. J. Fitzsimmons and K. Yano. Time change approach to generalized excursion measures, and its
application to limit theorems. Journal of Theoretical Probability, 21(1):246–265, 2008.

[15] N. Fournier and C. Tardif. One Dimensional Critical Kinetic Fokker-Planck Equations, Bessel and
Stable Processes. Comm. Math. Phys., 381(1):143–173, 2021.

[16] R. K. Getoor. Excursions of a Markov process. Ann. Probab., 7(2):244–266, 1979.

[17] M. Goldman. On the first passage of the integrated wiener process. The Annals of Mathematical
Statistics, pages 2150–2155, 1971.

[18] I. Grama, R. Lauvergnat, and E. Le Page. Limit theorems for Markov walks conditioned to stay
positive under a spectral gap assumption. Ann. Probab., 46(4):1807–1877, 2018.

[19] I. Grama, R. Lauvergnat, and E. Le Page. Conditioned local limit theorems for random walks defined
on finite Markov chains. Probab. Theory Related Fields, 176(1-2):669–735, 2020.

[20] P. Greenwood and J. Pitman. Fluctuation identities for lévy processes and splitting at the maximum.
Advances in Applied Probability, 12(4):893–902, 1980.

[21] P. Groeneboom, G. Jongbloed, and J. A. Wellner. Integrated brownian motion, conditioned to be
positive. The Annals of Probability, 27(3):1283–1303, 1999.

[22] Y. Isozaki. Asymptotic estimates for the distribution of additive functionals of brownian motion by
the Wiener–Hopf factorization method. Journal of Mathematics of Kyoto University, 36(1):211–227,
1996.

[23] Y. Isozaki and S. Kotani. Asymptotic estimates for the first hitting time of fluctuating additive
functionals of brownian motion. Séminaire de Probabilités XXXIV, pages 374–387, 2000.

60



[24] Y. Isozaki and S. Watanabe. An asymptotic formula for the kolmogorov diffusion and a refinement
of sinai’s estimates for the integral of brownian motion. Proceedings of the Japan Academy, Series
A, Mathematical Sciences, 70(9):271–276, 1994.

[25] Itô. Poisson point processes and their application to Markov processes. Springer, 2015.

[26] K. Itô. Poisson point processes attached to markov processes. In Proceedings of the Sixth Berke-
ley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), volume 3, pages 225–239, 1972.

[27] K. Itô, P. Henry Jr, et al. Diffusion processes and their sample paths: Reprint of the 1974 edition.
Springer Science & Business Media, 1996.

[28] K. Itô and H. McKean Jr. Brownian motions on a half line. Illinois journal of mathematics,
7(2):181–231, 1963.

[29] J. Jacod and A. Shiryaev. Limit theorems for stochastic processes, volume 288. Springer Science &
Business Media, 2013.

[30] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York).
Springer-Verlag, New York, second edition, 2002.

[31] A. Kyprianou. Fluctuations of Lévy processes with applications: Introductory Lectures. Springer
Science & Business Media, 2014.

[32] A. Lachal. Sur le premier instant de passage de l’intégrale du mouvement brownien. Annales de
l’IHP Probabilités et statistiques, 27(3):385–405, 1991.

[33] G. Lebeau and M. Puel. Diffusion approximation for Fokker Planck with heavy tail equilibria: a
spectral method in dimension 1. Comm. Math. Phys., 366(2):709–735, 2019.

[34] P. McGill. Hitting law asymptotics for a fluctuating brownian functional. Osaka Journal of Mathe-
matics, 45(2):423–444, 2008.

[35] E. Nasreddine and M. Puel. Diffusion limit of Fokker-Planck equation with heavy tail equilibria.
ESAIM Math. Model. Numer. Anal., 49(1):1–17, 2015.

[36] C. Profeta. Some limiting laws associated with the integrated brownian motion. ESAIM: Probability
and Statistics, 19:148–171, 2015.

[37] C. Profeta. Persistence and exit times for some additive functionals of skew Bessel processes. Journal
of Theoretical Probability, 34(1):363–390, 2021.

[38] C. Profeta and T. Simon. Persistence of integrated stable processes. Probability Theory and Related
Fields, 162(3):463–485, 2015.

[39] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of Grundlehren
der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, third edition, 1999.

[40] P. Salminen, P. Vallois, and M. Yor. On the excursion theory for linear diffusions. Japanese Journal
of Mathematics, 2(1):97–127, 2007.

[41] K. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2013. Translated from the 1990
Japanese original, Revised edition of the 1999 English translation.

[42] M. Sharpe. General theory of Markov processes. Academic press, 1988.

[43] T. Simon. The lower tail problem for homogeneous functionals of stable processes with no negative
jumps. ALEA Lat. Am. J. Probab. Math. Stat., (3):165–179, 2007.

[44] Y. G. Sinai. Distribution of some functionals of the integral of a random walk. Teoreticheskaya i
Matematicheskaya Fizika, 90(3):323–353, 1992.

[45] C. Stone. Limit theorems for random walks, birth and death processes, and diffusion processes.
Illinois Journal of Mathematics, 7(4):638–660, 1963.

[46] V. Vigon. Simplifiez vos Lévy en titillant la factorisation de Wierner-Hopf. PhD thesis, INSA de
Rouen, 2002.

[47] V. Vigon. Votre Lévy rampe-t-il? Journal of the London Mathematical Society, 65(1):243–256, 2002.

61



[48] V. Vysotsky. On the probability that integrated random walks stay positive. Stochastic Processes
and their Applications, 120(7):1178–1193, 2010.

[49] V. Vysotsky. Positivity of integrated random walks. 50(1):195–213, 2014.

[50] M. Yor. Some aspects of Brownian motion. Part I. Lectures in Mathematics ETH Zürich. Birkhäuser
Verlag, Basel, 1992. Some special functionals.

[51] V. Zolotarev. One-dimensional stable distributions, volume 65. American Mathematical Soc., 1986.

Q. Berger, Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation,
75005 Paris, France and DMA, École Normale Supérieure, Université PSL, 75005 Paris, France.

E-mail address: quentin.berger@sorbonne-universite.fr

L. Béthencourt, Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation,
75005 Paris, France.

E-mail address: loic.bethencourt@sorbonne-universite.fr

C. Tardif Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation, 75005
Paris, France.

E-mail address: camille.tardif@sorbonne-universite.fr

62


	1 Introduction
	1.1 Persistence problems for additive functionals
	1.2 Overview of the literature and main contribution

	2 Main results
	2.1 Main assumptions and notation of the article
	2.2 Main results I: persistence probabilities
	2.3 Main results II: application to one-dimensional generalized diffusions
	2.4 Main results III: starting with a non-zero velocity
	2.5 A series of examples

	3 Ideas of the proof and further comments
	3.1 Ideas of the proof: path decomposition of trajectories
	3.2 Comparison with the literature
	3.3 Related problems and open questions
	3.4 Overview of the rest of the paper

	4 Path decomposition and Wiener–Hopf factorization
	4.1 Preliminaries on excursion theory
	4.2 Decomposing paths around the last excursion
	4.3 Wiener–Hopf factorization
	4.4 Consequences of the Wiener–Hopf factorization

	5 The positive recurrent case: proof of Theorem 2.1
	5.1 Estimate of the last excursion
	5.2 Asymptotic behavior of the Laplace exponent
	5.3 Conclusion of the proof of Theorem 2.1 under Assumption 3

	6 The null recurrent case: proof of Theorem 2.4
	6.1 Laplace exponent and convergence of scaled ge-ge
	6.2 Conclusion of the proof of Theorem 2.4 under Assumption 4
	6.3 The case of Gaussian fluctuations

	7 Application to generalized diffusions
	7.1 Excursions of (Xt)t0 using those of (Bt)t0
	7.2 Additive functionals for strings with regular variation
	7.3 Proof of Proposition 2.6
	7.4 Proof of Proposition 2.5

	8 Hitting time of zero
	A Wiener–Hopf factorization
	A.1 Preliminaries
	A.2 Laplace transform of (G, G , S)
	A.3 Proof of Theorem 4.3 and Proposition 4.4

	B Convergence of Lévy processes
	B.1 Convergence of processes and convergence of Laplace exponents
	B.2 Technical lemmas

	C Technical results on generalized one-dimensional diffusions
	C.1 Local times and the occupation time formula
	C.2 Convergence of strings under the Brownian excursion measure


