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Abstract 

We report on propagating spin-wave spectroscopy measurements carried out on coplanar nano-antenna 

devices made from a Si/SiO2/Ru(5nm)/Co(20)/Pt(5nm) film. The measurements were analyzed in detail 

by employing newly developed theoretical modeling and de-embedding procedures. The magnetic 

parameters of the film were determined by complementary Brillouin light scattering and ferromagnetic 

resonance measurements. The propagating spin wave signals could be accounted for quantitatively for 

the range of externally applied magnetic fields investigated in this study: 130-1500 Oe. 

1. Introduction 

The field of magnonics, which focuses on the study of standing and propagating spin waves, is of 

considerable research interest for potential microwave signal processing devices [1], sensing 

applications [2,3], traveling-spin-wave based logic [4], applications in quantum computing and 

information [5–7], as well as for neuromorphic reservoir computing using traveling spin waves [8]. 

Of these, traveling spin waves have additionally been useful for the characterization of magnetic 

materials. It has been suggested that measuring the spin-wave dispersion of ferromagnetic thin films 

allows for the direct extraction of the interface Dzyaloshinskii-Moriya interaction (iDMI) [9–16]. A 

well-known approach to probing traveling spin waves in a ferromagnetic film is through a spin wave 

delay line structure (spin-wave device) which employs two nano-scale antennas to excite and detect the 

spin waves [17–19]. In the first paper of this joint paper submission [20] we developed a self-consistent 

theoretical model for the excitation and reception of magnetostatic surface waves in thin strips of 

conductive ferromagnetic material by a pair of coplanar nano-antennas, and the model is implemented 

numerically.  

The aim of this second experimental part was: 

To investigate the typical level of losses in transmission and reflection and transmission and reflection 

bands of a microscopic spin wave device, employing a basic (i.e. not meander-like) coplanar line 

(CPL) antennas. 

Additionally we wanted to compare the theory from part I with experimental measurements. However, 

to do this we first needed to understand how to de-embed the raw experimental data, in order to be able 

to carry out comparison of the experiment with the theory. Once the de-embedding of the experimental 

data had been completed, we wished to investigate whether the experimentally measured frequency 

dependences of the scattering parameters could be accurately fit with the theory developed in part I and 

whether we could use those fits in order to extract magnetic parameters of the ferromagnetic films. 
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Furthermore, we wished to understand whether one could use the fits in order to extract values of device 

parameters that are difficult to model theoretically. For instance, losses in the feeding lines, level of off-

band inductive coupling of the device input port to the output one and identify physical reasons for the 

coupling. 

To perform the experimental measurements, a //Ru(5)/Co(20)/Pt(5) (where numbers in parenthesis are 

in nanometers) thin film sample was deposited onto a thermally oxidized intrinsic silicon substrate, and 

a ferromagnetic strip as well as a pair of coplanar nano-antennas was fabricated by lithographic 

techniques. The transmission characteristics of the spin-wave device were characterized using a vector 

network analyzer (VNA) and were compared to the numerically simulated transmission characteristics 

of the theoretical model. Due to the large parameter space of the spin-wave device parameters, Brillouin 

light scattering (BLS) and ferromagnetic resonance (FMR) measurements were employed in order to 

ease the determination of the device parameters.  

2. Fabrication 

The //Ru(5)/Co(20)/Pt(5) (where numbers in parenthesis are in nanometers) trilayer film was deposited 

on Si/SiO2 substrates via DC magnetron sputtering using Ar as the sputtering gas at a base pressure of 

2 × 10−7mbar. By means of laser beam lithography and ion beam etching the continuous film was 

patterned into a strip geometry with a strip width of 20 μm (z-direction Figure 1(a)) and a strip length 

of 80 μm (x-direction Figure 1(a)). On top of the strip we deposited ~80 nm of SiO2 as a dielectric spacer 

layer. Next, a set of Ti(10)/Au(60) contact pads were deposited by means of electron beam evaporation 

and a laser beam lithography and lift-off process was employed to pattern the pads. Each set of pads 

(one for the excitation antenna and one for the receiving antenna) consisted of one central ‘signal’ pad 

and two outer ‘ground’ pads. These pads acted as an intermediate connector allowing for a connection 

between external circuit (via a set of microwave probes) and the CPL antennas themselves. Lastly a set 

of Ti(10)/Al(90) (CPL) antennas was fabricated on top of the strip using electron beam lithography, 

lift-off, and electron beam evaporation deposition. The antennas were fabricated in the Damon-Eshbach 

geometry and an example of one of the devices is displayed in Figure 1. Notice that the individual strips 

of the antennas start by overlapping with the gold contact pads and then narrow down to the CPL 

antenna sitting above the ferromagnetic strip. For the sample we fabricated a set of CPL antennas using 

the fabrication approach above. The following is the nominal antenna geometry: wg = 324 nm, w = 648 

nm, and Δg = 334 nm, where wg is the width of one of the ground conductors, w is the width of the signal 

conductor, and 𝛥g is the signal-ground conductor separation. Note that during the electron exposure of 

the photoresist in the lithographic process it is common for the electrons to scatter inside the photoresist 

resulting in a larger exposed area than what is nominally defined via the lithographic mask. As a result, 

the fabricated features tend to be larger than the nominal features. We estimated the true conductor 

widths from a scanning electron microscopy (SEM) image, shown in Figure 1(e), which corresponds to 

a device which had the same nominal geometry as the device investigated in this study. During the 

simulations we employed the measured antenna geometries, as we expected these to be closer to the 

true antenna geometry of the physical devices.  
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Figure 1: (a) Tri-layer sample stack geometry. (b) Example of the amplitude and phase of the 

transmission characteristic (S21, S12) measured with the vector network analyzer. (c) Gold contact pads 

and feeding lines. (d) Feeding lines and spin-wave antennas on ferromagnetic strip. (e) SEM image of 

the spin-wave antennas. 

3. Experimental Setup 

3.1.  FMR 

 

Initial characterization of the sample was conducted with ferromagnetic resonance (FMR) spectroscopy. 

These measurements were conducted on parts of the original continuous film which had been cut off 

from the main sample prior to the nano-fabrication. For the FMR, the sample was placed onto a 

microstrip line which was installed between the poles of an electromagnet. A microwave generator, 

connected to the input port of the microstrip line, was used to drive the magnetization precession in the 

Co layer of the tri-layer stack. The output port of the stripline was connected to a microwave diode, in 

order to rectify the microwave signal, and fed to a lock-in amplifier. A signal generator, producing a 

220 Hz sine wave, was referenced to the lock-in amplifier and was used to drive a small modulation 

coil, which produced an AC magnetic field of ~10 Oe parallel with the external field of the large 

electromagnet. The driving microwave frequency was set constant and the externally applied magnetic 

field was swept over the FMR resonance, a measurement mode known as field-resolved FMR.  
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The in-plane (IP) FMR geometry was employed in order to supplement the Brillouin light scattering 

(BLS) measurements discussed in the next section. In the case of FMR, we are sensitive to the 

fundamental spin-wave mode with a wavenumber of 0. The BLS measurements on the other hand are 

sensitive to higher wavenumbers and thus together with the IP FMR one can create a better 

understanding of the spin-wave dispersion relation. This is discussed in the BLS results section. 

Additionally, in-plane angle resolved FMR was used to extract any in-plane anisotropy which may be 

present in the continuous film. 

  

We also used both out-of-plane (OOP) and IP FMR as a means of extracting the magnetic losses in the 

system. From the FMR half-width at half maximum (HWHM), which is a magnetic field linewidth, we 

were able to obtain an estimate of the magnetic losses in the system by plotting the HWHM versus the 

microwave driving frequency (f) and fitting the data with a linear function, 

 
𝐻𝑊𝐻𝑀(𝑓) = 𝑠 ⋅ 𝑓 +

Δ𝐻0

2
 , 

(1) 

where 𝑠 =
2𝜋𝛼𝐺

𝛾
 is the slope, 𝛼G is the Gilbert damping constant, 𝛾 is the gyromagnetic ratio, and ∆𝐻0/2  

is the inhomogeneous linewidth broadening. Note, the theoretical model includes the magnetic losses 

as an additional imaginary component to the magnetic field and thus we only need to include the 

HWHM. To this end, we do not need to extract 𝛼𝐺 and can simply use the fitting function parameters 

of Eq.(1) to model the magnetic losses in the system. 

 

The OOP FMR configuration was also used as a first approximation of the effective magnetization 

(4𝜋𝑀𝑒𝑓𝑓) and the gyromagnetic ratio (𝛾). These may be extracted by performing field resolved FMR 

measurements at various driving frequencies, 𝑓, and fitting the resultant 𝑓 vs 𝐻𝑟𝑒𝑠 curve with the well 

known out-of-plane Kittel equation [21], 

 𝑓 =
𝛾

2𝜋
(𝐻𝑟𝑒𝑠 − 4𝜋𝑀𝑒𝑓𝑓). 

(2) 

 

 

3.2.  BLS 

Brillouin light scattering (BLS) was employed to probe the spin-wave frequencies for spin-waves 

propagating in opposite directions. The BLS process can be expressed as a scattering of photons and 

magnons (quanta of a spin wave). There are two cases of interest, the creation of a magnon known as 

the Stokes process, and the annihilation of a magnon, known as the anti-Stokes process. During the BLS 

spectroscopy process, a laser light with wavelength 𝜆 is focused onto the sample surface at some 

incident angle 𝜃 from the sample normal. The incident photons scatter inelastically from magnons in 

the system and the backscattered photons are detected by a photo-detector. In this backscattering 

geometry, the laser wavelength and incident angle determine the wavenumber of the magnons present 

in the inelastic scattering process, 

 
𝑘 = 2 (

2𝜋

𝜆
) sin(𝜃). 

(3) 

 

In order to determine the wavelength and ultimately the frequency of the magnons (spin waves), a 

tandem Fabry-Pérot interferometer (TFPI) is employed. Through use of the interferometer, the 

frequency difference between the incident photons and backscattered photons can be measured, and 

when the backscattered photons result from a scattering with a magnon, this frequency difference is 

equivalent to the frequency of the respective magnon. In the case of the Stokes process, the creation of 

the magnon requires energy which is supplied by the incident photon resulting in the backscattered 
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photon having a lower frequency than the incident photon, and thus the Stokes peak sits on the left hand 

side of the BLS spectrum. The reverse is true for the anti-Stokes process where the annihilation of the 

magnon results in a transfer of energy from the magnon to the photon, and hence the backscattered 

photon has a larger frequency than the incident photon. Because of this, it is possible to measure the 

frequency of both the forward (+k) and backward (-k) propagating spin waves in the system with a 

single BLS measurement. 

In this work a laser with a wavelength of 532 nm was used at three different incident angles, 𝜃 =

20°, 40°, 60°, corresponding to wavenumbers of, 𝑘 = 8.08 𝜇m−1, 15.18 𝜇m−1, 20.46 𝜇m−1, 

respectively. By measuring the frequency of spin waves for different wavenumbers, it is possible to 

recreate the dispersion relation of the spin waves.  

3.3.  PSWS 

In order to excite and detect spin waves in the ferromagnetic strips via the CPL spin-wave antennas a 

2-port vector network analyzer (VNA) was employed. Each port of the VNA was connected, via 50 

Ohm microwave transmission cables, to a three-pronged microwave probe (picoprobe), which was 

attached to a translation stage. The central pin of the transmission cables was connected to the central 

probe of the picoprobe and the shield of the transmission cable was connected to the two out ‘ground’ 

probes of the picoprobe. The picoprobes could then be carefully lowered to make contact with the gold 

pads on the sample surface, which in turn are connected to the small CPL antennas on top of the 

ferromagnetic strip, as discussed in the fabrication section. The sample itself was sitting between the 

poles of an electromagnet such that the externally applied magnetic field was applied perpendicular to 

the ferromagnetic strip and parallel with the CPL antennas, to conform to the Damon-Eshbach geometry 

in which magnetostatic surface waves (MSSWs) are excited. The VNA is sensitive to both the amplitude 

and phase of the transmitted signal, in both directions, and the reflected signal of the entire system 

attached to its two ports. From those measurements, the scattering S-parameters of the system are 

automatically extracted by the instrument. Here, “the system” refers to everything connected between 

the two ports on the front panel of the VNA. In order to narrow the sensitivity of the VNA to the devices 

on the sample itself, a standard calibration, using the 85052D 3.5mm SMA calibration kit, was 

performed to remove the contributions of the feeding microwave transmission lines. The contribution 

of the feeding lines and CPL antennas remain present in the measurements as a coplanar-line based 

calibration standard would be required to remove these extra contributions, which we did not have 

access to.  

During the measurement process, the externally applied magnetic field is set to a constant value and the 

frequency generated by the VNA is swept. The amplitude and phase of the S-parameters (S21, S12, S11, 

and S22) are measured by the VNA as a function of frequency. In order to ascertain the contribution of 

the spin wave to the S-parameters, a background measurement must be taken at a magnetic field strength 

where, for the chosen range of the frequency sweep, there is no excitation of spin waves. This 

background signal must then be removed from the signal obtained when probing the spin waves by a 

process known as de-embedding. The de-embedding process is explained in the Appendices. Two 

processes of de-embedding were explored in order to isolate the spin-wave signal from the contributions 

of the feeding lines. The first process isolates the spin-wave signal from the contributions of the feeding 

lines themselves, however, there remains an undetermined scaling factor. The factor was found to be a 

rather weak function of frequency; and thus, the shape of the frequency dependencies of the S-

parameters is preserved. This process is simple and requires less auxiliary measurements. The second 

process requires an extra reference sample for completion of the process, however, it does not leave any 

undetermined scaling factor.  

For the sample, the S-parameters were measured as a function of frequency for several magnetic field 

values. 
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4. Results 

4.1.  FMR 

Due to the large parameter space of the sample devices, we initially characterized the sample with FMR 

in order to gain some information on the magnetic properties of the sample. In Figure 2, we show the 

FMR results. From Figure 2(a), we extracted the effective saturation magnetization, 4πMeff = 15043 G 

and the gyromagnetic ratio, 
𝛾

2𝜋
 = 2.87 MHz/Oe. The extracted effective magnetization and gyromagnetic 

ratio from IP FMR results, seen in Figure 2(b), are significantly different from those extracted from 

OOP FMR and we believe this to be an artifact of the IP geometry. Since the IP Kittel equation is non-

linear it is more difficult to fit, and requires more measurements to be taken at higher frequencies in 

order to obtain accurate results  [22]. We also investigated IP FMR in order to check the magnetic losses 

of the sample in the geometry for which the PSWS were performed. We find that the magnetic losses 

are higher in the IP FMR configuration by ~1.5 times, and since this is the same configuration as for 

MSSWs we chose to use the magnetic losses extracted from the IP FMR measurements. From the IP 

FMR HWHM we extracted, 𝛼𝐺 = 0.016 and 
Δ𝐻0

2
= 3.98 Oe. In addition, we performed in-plane angle 

resolved FMR measurements from which we found that the sample contained a bulk in-plane easy axis 

anisotropy with an effective field strength of 𝐻𝑢𝑏~40 Oe. The FMR measurements were complimented 

with magnetometry measurements from which the saturation magnetization was found to be, 4𝜋𝑀𝑠 =

17000 G. 
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Figure 2: (a) Microwave driving frequency vs. out-of-plane (OOP) FMR resonance field. (b) 

Microwave driving frequency vs. in-plane (IP) FMR resonance field. (c) OOP (black circles) and IP 

(red triangles) half-width at half-maximum (HWHM) of the FMR peak vs. microwave driving frequency. 

Red line are linear fits to the experimental data. 

4.2.  BLS 

BLS measurements were performed on the samples in order to experimentally determine the dispersion 

relation of the samples. Figure 3 shows the BLS stokes and anti-stokes peaks for the 

//Ru(5)/Co(20)/Pt(5) sample at an angle of 20 degrees from the sample normal. At this angle, one is 
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sensitive to spin-waves with a wavenumber of 8.1 rad/𝜇m. Two additional angles of 40 and 60 degrees, 

sensitive to spin-waves with wavenumbers of 15.2 and 20.5 rad/𝜇m respectively were also considered 

and these BLS spectra were obtained for an externally applied, in-plane magnetic field of 3000 Oe. 

Another BLS spectrum was obtained at 500 Oe and an angle of 20 degrees. To determine the peak 

positions of the BLS peaks, the BLS spectra were first smoothed and the local maximum of the 

smoothed data was determined. Based on the known resolution of the employed BLS setup, an 

uncertainty of ~500 MHz was associated with the position of the spin wave peaks. This uncertainty 

stems in part from the spectral recording (i.e. the spectrum is broken up into 550 equal bins) and from 

the finesse of the interferometer. The frequency non-reciprocity of the Stokes and anti-Stokes peaks 

was found to be non-zero, but smaller than the combined uncertainty of two peaks, for all angles of 

investigation. As a result, it will be assumed that the DMI interaction is zero, and that any surface PMA 

contributions at the two interfaces, Ru/Co and Co/Pt, are identical, that is we have a fully magnetically 

symmetric trilayer stack. 

 

Figure 3: Black-solid line: BLS spectra obtained for an incident laser light at 20 degrees from the 

sample normal and an externally, in-plane applied magnetic field of 3000 Oe. Red-solid line: 5 point 

fast Fourier transform smooth of the raw BLS data. 

From the Stokes peaks of BLS spectra obtained at 500 Oe we extracted the frequency of the fundamental 

mode (FM) as well as the frequency of the 1st standing spin-wave mode (1st SSWM). These are shown 

by the data points in Figure 4(a). In a similar manner, the frequencies of the FM at 3000 Oe could be 

determined and is plotted in Figure 4(b). The experimentally determined frequencies of the FM and 1st 

SSWM were fitted with a secondary numerical model (note this numerical model only models the 

dispersion relation and is not the main model developed in [20]) in order to determine the saturation 

magnetization 4𝜋Ms, the gyromagnetic ratio 𝛾, the exchange constant A, and the surface anisotropy 

constants Ku1 and Ku2 at the Ru/Co and Co/Pt interfaces respectively. The k=0 point in Figure 4(b) was 

obtained from the in-plane FMR measurements. In order to obtain the resonance frequency of FMR 

mode at an externally applied field of 3000 Oe we exploited the fact that on a small frequency range 
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the f vs Hres relationship is almost linear (here Hres is the magnetic field at resonance). Thus, by 

measuring field resolved FMR for 5 frequencies around the desired frequency, f(Hres=3000), and fitting 

the resultant f vs Hres data with a straight line we were able to interpolate the frequency of the 

fundamental mode at 3000 Oe, f(H=3000).  

 

Figure 4: (a) Fundamental mode (FM) and 1st standing-spin-wave mode (1st SSWM) obtained from BLS 

spectra at an externally applied field of 500 Oe. Black-square: BLS FM frequency; red-triangle: BLS 

1st SSWM frequency. (b) FM at 3000 Oe. Black squares: BLS FM frequency; red circle: k=0 determined 

from in-plane FMR measurements. For both panels we have, black solid-lines: numerical fits for 𝐾𝑢1 =
𝐾𝑢2 = 0 𝑚𝐽/𝑚2; red dashed-lines: numerical fits for 𝐾𝑢1 = 𝐾𝑢2 = 0.27 𝑚𝐽/𝑚2; blue dotted lined: 

numerical fits for 𝐾𝑢1 = 𝐾𝑢2 = 0.9 𝑚𝐽/𝑚2. 

Using 4πMs=17000 G, as deduced from SQUID measurements, the material parameters from FMR we 

find the parameters which result in the fits in Figure 4 are as follows, 
𝛾

2𝜋
=2.87 MHz/Oe and A=1.78×10-
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11 J/m. We also included the 40 Oe of bulk in-plane uniaxial anisotropy in the fits to the dispersion. 

However, since the orientation of this anisotropy is not known with respect to the applied external field 

of the BLS measurements, the angle between the two contributions acted as an additional free 

parameter. We find that the best agreement, for the case of no surface PMA, arises when the in-plane 

anisotropy is applied at 45° to the external magnetic field. This case is equivalent to having no in-plane 

anisotropy at all. We also checked several values of surface PMA strength at the two interfaces and find 

that the best agreement between the BLS data and the numerical dispersion arises when there is no PMA 

present at either interface, i.e. 𝐾𝑢1 = 𝐾𝑢2 = 0 mJ/m2. If one considers the two interfaces to have the 

same PMA strength and uses a value of 𝐾𝑢1 = 𝐾𝑢2 = 0.9 mJ/m2, as found in the literature [23], then 

one obtains the dispersion relation given by the blue-dotted line in Figure 4. This dispersion is 

significantly downshifted from the BLS data, suggesting this PMA is much stronger than what is present 

in the sample. The largest value of surface anisotropy that can be associated to each interface, whilst 

remaining within the uncertainties of the BLS data points, is 𝐾𝑢1 = 𝐾𝑢2 = 0.27 mJ/m2, shown by the 

red-dashed lines in Figure 4. From the OOP FMR measurements however, one would expect a 

significant surface PMA contribution resulting in the large difference between 4𝜋𝑀𝑒𝑓𝑓 = 15043 G and 

4𝜋𝑀𝑠 = 17000 G. This effective PMA field would be around 𝐻𝑢~2000 Oe resulting in 𝐾𝑢1 = 𝐾𝑢2 =

1.35 mJ/m2 which would result in an even lower frequency shifted dispersion than that of the blue 

dotted curve in Figure 4. It may be the case that there is a fourth order magnetic anisotropy present in 

the sample. This anisotropy may affect the effective magnetization differently for the in-plane and out-

of-plane magnetized sample. For Co/Pt interfaces a small fourth order magnetic anisotropy contribution 

has been suggested in the literature  [24] and we may speculate that the Co/Ru interface also has a fourth 

order anisotropy. The Co/Ru interface is not well understood and thus it may well be the case that a 

fourth order magnetic anisotropy present at this interface is sufficiently large such that it may explain 

the discrepancy of the effective magnetization extracted from OOP FMR and the BLS data. As a result, 

we opted to disregard the value of 4𝜋𝑀𝑒𝑓𝑓 extracted from OOP FMR and utilized instead just the 4𝜋𝑀𝑠 

extracted from magnetometry and the surface PMA values which resulted in the best fits of the BLS 

data, namely 𝐾𝑢1 = 𝐾𝑢2 = 0 mJ/m2. These parameters were used in the developed theoretical model 

in order to fit the transmission S-parameters of the experimental data.  

4.3.  S21 and S12 

The optimal magnetic, electrical, and geometric parameters of the investigated device are displayed in 

Table 1.  

Table 1: Optimal magnetic, electric, and geometric parameters of the device investigated.  

w (nm) 810 d1 (nm) 5 𝜺𝒔 3.8 

wg (nm) 450 d2 (nm) 5 𝝆𝑨𝒍 (10-8 Ω m) 2.65 

Δg (nm) 180 ds (nm) 130 𝑲𝒖𝟏(𝐦𝐉/𝐦𝟐) 0 

ls (μm) 20 4Ms (G) 17000 𝑲𝒖𝟐(𝐦𝐉/𝐦𝟐) 0 

ld (μm) 2.464 γ (MHz/Oe) 2.87 𝑫𝟏(𝐩𝐉/𝐦) 0 

𝜶𝑮 0.016 H (Oe) 612 𝑫𝟐(𝐩𝐉/𝐦) 0 

𝚫𝑯𝟎

𝟐
 (Oe) 7.97 𝝈 (107 S/m) 1.7 𝑯𝒖𝒃 (𝐎𝐞) 40 

A (10-11 J/m) 1.78 𝝈𝟏 (107 S/m)  1.409   
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L (nm) 20 𝝈𝟐 (107 S/m) 0.952   

 

 

Figure 5 shows the experimentally determined 𝑆21
′  and 𝑆12

′  parameters overlaid with the theoretically 

simulated 𝑆21
′  and 𝑆12

′  parameters for the //Ru(5)/Co(20)/Pt(5) sample. For the simulation, the optimal 

parameters described in Table 1 were used and an in-plane applied external field of 612 Oe was 

assumed. The 𝑆′-parameters correspond to the raw S-parameters after undergoing the de-embedding 

procedure outlined in Appendices A and B. 

Note that the theory from [20] assumes that the sample is continuous in its plane. In reality, the sample 

represents a strip of finite length in the direction x and finite width in the direction z. This makes the 

internal static magnetic field inside the strip different from the applied one. It must also modify slightly 

the dynamic demagnetizing (dipole) field created by the traveling spin wave. If the strip length were 

much larger than its width, we could base our theory on the Green’s function of the dipole field of a 

guided spin-wave on a strip waveguide [25]. Unfortunately, that Green’s function is two-dimensional, 

and therefore, using it would increase the simulation time by orders of magnitude. Furthermore, it is 

incompatible with our Telegrapher Equations approach. However, it was previously shown [26] that 

the main effect of the strip geometry is that the internal static field is smaller than the applied one, 

provided that the strip width is larger than the spin wave attenuation length.  

Therefore, in order to be able to compare results of our modeling with the experiment, we introduce 

small corrections to the theory. We add the field of a uniformly magnetized rectangular prism to the 

effective field entering the Landau-Lifshits Equation. We do this by employing the effective 

demagnetizing factors for the prism. We calculate them using Eq. (1) in Ref.  [27]. Thus, for the 

ferromagnetic strip with the following dimensions: x = 80 μm, z = 20 μm, and y = 20 nm, we calculate 

the following demagnetizing factors: Nx = 0.0006, Nz = 0.0026, and Ny = 0.9968. 

Note that the Nz factor acts on the static magnetization, and thus decreases the static magnetic field 

entering the linearized Landau-Lifshits equation. Adding it to the theory is a reasonably accurate 

approach. Conversely, the 1Ny factor and the Nx factor act on the dynamic magnetization. Therefore, 

this approach is acceptable for vanishing spin-wave wavenumbers, but loses its accuracy with an 

increase in the spin-wave wavenumber. Furthermore, the dipole field generated by a spin wave, with a 

wavenumber k, scales as kL/2, where L is the thickness of the ferromagnetic layer. This yields an 

“effective demagnetizing factor” for the spin wave for the center of the S21 transmission band 

(k=3.1×106 m1) of 0.031. This is significantly larger than Nx and 1Ny. Thus, the effect of the in-plane 

static demagnetizing factors is negligible for large spin-wave wavenumbers, but provides correction for 

small wavenumbers.  

The ultimate effect of the inclusion of the Nx and 1Ny factors is a slight correction of the curvature of 

the frequency vs. applied field dependence of S21 on the band (which will be shown in Figure 6 later 

on). Furthermore, if the uniaxial magnetocrystalline anisotropy is described with effective 

demagnetizing factors of anisotropy, it is indistinguishable from the shape anisotropy [28]. Therefore, 

a good fit of the curvature can be interpreted either as the effect of shape anisotropy or the presence of 

extra uniaxial anisotropy of the same strength.  

Again, we also needed to include the 40 Oe of bulk in-plane uniaxial anisotropy into the theoretical 

model and opted to apply this effective field in the 𝑥 − direction, namely along the ferromagnetic strip. 

This is a possible scenario, meaning that the patterning of the strip results in the magnetocrystalline 

uniaxial anisotropy axis wanting to align itself with the easy axis of the strip shape anisotropy. 
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Figure 5: (a) Amplitude and (b) Phase of the de-embedded transmission, 𝑆𝑖𝑗
′ ,-parameters of the 

experiment and theoretical simulation at an externally in-plane applied magnetic field of 612 Oe. Black 

solid-line: Experimental 𝑆21
′ . Red dashed-line: Experimental 𝑆12

′ . Blue dotted-line: Simulated 𝑆21
′ . 

Green dash-dotted-line: Simulated 𝑆12
′ . Note, the experimental amplitude curves in panel (a) have been 

scaled by a factor of 35 such that they are at the same magnitude as the simulated curves.  

Both the theoretical and experimental transmission characteristic have been de-embedded following the 

process described in the Appendix A. After de-embedding, both the experimental and simulation curves, 

we find that the experimental amplitude curves are ~ 35 times smaller than the simulated amplitude 

curves. Thus, the experimental curves were scaled up by a factor of 35 times in order to be of similar 

magnitude as the theoretically simulated curves, and are shown in Figure 5(a). We expect this to be a 

result of parasitic direct coupling of the input microwave path to the output one, which is not accounted 

for in the theoretical model and is explained later. From Figure 5(a) we see that the frequency position 

of both the forward (S21) and backward (S12) curves matches very well. The theoretical S21 and S12 peaks 
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in Figure 5(a) have a maximum at 11.925 GHz and 12.045 GHz respectively, which correspond to a 

wavenumber of ~2.8 rad/μm and ~3.0 rad/μm respectively. The experimental S21 and S12 peaks in Figure 

5(a) have a maximum at 12.060 GHz and 12.171 GHz respectively. This suggests that the material 

parameters chosen for the theoretical model are very close to the true parameters of the material as is 

expected from our analysis of the BLS data and dispersion relation. We find that both the simulated 

peaks and the experimental peaks have the same trend of the frequency non-reciprocity, namely that the 

backward (S12) traveling wave peak maximum has a slightly higher frequency than the forward (S21) 

traveling wave one. Although the experimental and theoretical frequency non-reciprocities do not 

coincide perfectly (120 MHz for the simulation and 111 MHz in the experiment), they are very close. 

In our calculation, the Dzyaloshinskii constant for both interfaces is zero, and both surface PMA 

constants at the two interfaces, Ru/Co and Co/Pt, are the same (and vanishing), which should result in 

a perfectly symmetric dispersion relation. Therefore, the frequency difference between the transmission 

maxima of backward and forward waves might be induced by the process of the spin-wave excitation 

and reception by the CPL, as mentioned in [20].  

We have set the iDMI values to zero at both interfaces as we find that the presence of realistic values 

of the DMI constant (<10 pJ/m) at either of the interfaces results in changes of the frequency position 

of the maximum of transmission which are smaller than 200 MHz and thus cannot be accurately 

decoupled from the uncertainty. The same is true for the surface PMA values at the two interfaces. In 

our simulations, we assumed an equal distribution of PMA across the two interfaces as suggested by 

the BLS measurements. However, the literature suggests that the surface PMA value at the Co/Pt 

interface may be larger than the surface PMA value at the Ru/Co interface [29].  

We now turn to the phase profiles of the transmission parameters shown in Figure 5(b). The simulated 

phase profile and experimental phase profile have similar slopes which suggests that the theoretical 

model accurately accounts for the group velocity of the spin-waves in the material. If we ignore any 

contribution to the transmission phase due to the excitation and reception of spin waves by the antennas, 

then we may relate the slope of the phase profile in Figure 5(b) directly to the slope of the dispersion 

relation, also known as the group velocity as seen by Eq. (S18) of the online supplementary materials 

in [20].  

Note, we do not investigate the reflection coefficients in our analysis. This is a result of the de-

embedding process, described in Appendix A, after which one completely removes the reflection 

coefficients on a first-order approximation. 

Next, we compare the results of the theoretical model with the experiment for several different 

externally applied magnetic field strengths. For each magnetic field value, we fit the amplitude of the 

S21 and S12 transmission peaks with an Edgeworth-Cramer peak function and then find the local 

maximum of this fitted function. This local maximum is taken as the nominal frequency of the excited 

spin waves at the corresponding applied magnetic field. This is done for both the experimental peaks 

and the theoretical peaks. The frequency versus applied magnetic field data is plotted in Figure 6. Note, 

that the simulations are calculated at slightly different magnetic fields than the experiment. However, 

the underlying trend is not affected and the comparisons that follow are still valid.  
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Figure 6: The frequency of the (a) |S21| and (b) |S12| peak maximum positions versus the externally in-

plane applied magnetic field. Black squares: theory. Red circles: experiment. Solid lines are linear 

curves connecting individual data points and are included solely as a guide for the eye.  

Figure 6 shows a good agreement between the theoretical simulation and the experimental 

measurements of the transmission peak positions at varying magnetic fields. Thus, although we 

originally only used the experimental data at 612 Oe to determine the sample parameters which best fit 

the experimental |Sij| peaks with our theoretical simulation, we find that the simulation is in good 

agreement at a large range of magnetic fields. There is a small difference between the theory and the 

experiment, which is most pronounced for smaller magnetic fields and also stronger in the S21 than the 

S12 transmission characteristic. We believe this discrepancy arises from our simplified description of 

the effect of the shape anisotropy of the magnetic strip, and it is expected that we will not be able to 

fully recreate the experimental curvature with the numerical model for this reason. Additionally it is 

expected that there may be an uncertainty of ~200 MHz associated with the choice of CPL antenna 

geometry and antenna elevation above the trilayer stack in the numerical simulation.  

As mentioned previously, there is a significant difference in the magnitudes of the amplitudes of the 

transmission parameters between the experiment and the simulation. One explanation for this is an extra 

direct parasitic coupling between the receiving and transmitting antennas which is present in the 

experiment but not accounted for in the theoretical model. From the final result of the de-embedding 

process (Eq. (A26) and Eq. (B1)), we see that the de-embedded signal is not only sensitive to the spin 

wave transmission but also the background direct coupling transmission. Thus, if the direct coupling 

transmission increases, then we may expect a decrease in the total de-embedded signal since the direct 
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inductive coupling contribution enters in the denominator of the factors in front of the matrices on the 

right-hand sides of Eq. (A26) and Eq. (B1). This extra coupling may come from sections of the antennas 

that are not accounted for in the model. In the model, the length of the antenna is assumed to be equal 

precisely to the width of the magnetic strip, and the short ends are assumed not to have any spatial 

extension. In the real sample device, the antenna goes slightly beyond the ferromagnetic strip and the 

short-end pads are noticeably extended. Additionally, there may be contributions from the curved 

feeding lines connecting the antennas to the gold contact pads. The feeding lines are long, therefore we 

expect that the main parasitic coupling actually originates from them.  

In order to understand the amplitude of the spin-wave transmission signal, we developed another de-

embedding procedure in which we characterize the transmission and reflection parameters of the 

feeding lines. To do this, we measured the reflection parameter (S11) from one of the devices for two 

cases. 1) Where the CPL antenna was intact and considered as a load impedance connected at the end 

of the feeding lines as shown in Figure 7(a). 2) Where the CPL antenna strips were each cut at the end 

of the feeding lines as shown in Figure 7(b). The cut was performed with a focused ion beam (FIB). For 

this second case, the transmission line path ends in an open load (𝑍𝐿 = ∞). Note, that the cut was 

performed on a different antenna than the one used to perform the measurements in this paper. However, 

the antenna geometries were identical and thus we expect the resultant S11 of the cut antenna to be a 

good representative of the antenna used in this study. By measuring the S11 for these two cases and 

making an assumption of the characteristic impedance of the output port of the feeding line, it was 

possible to approximate the ABCD matrix of the feeding line. Note, that here the “feeding lines” refer 

to the cascaded network of the picoprobe as well as the Au contact pads and the Al feeding lines which 

connect the Au contact pads to the CPL antenna. The details of this characterization are explained in 

Appendix C.  
 

 

Figure 7: (a) Feeding line loaded with the intact CPL antenna. (b) Feeding line cut at the start of the 

CPL antenna.  

Once the ABCD matrix of the feeding lines is known, then, mathematically, it is straightforward to de-

embed the contributions of the feeding lines from the total measured S-parameters of the entire device 

structure (input feeding lines, spin-wave delay line, and output feeding lines). The mathematical details 

of this de-embedding are described in Appendix D. In Figure 8 the results of the de-embedded 

experimental 𝑆∗-parameters are compared with the 𝑆∗-parameters of the numerical simulation. Note, 
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both sets of 𝑆∗-parameters have been background corrected as discussed in Appendix D. These 

corrected parameters are denoted by 𝑆∗. 
 

 

Figure 8: Comparison between the de-embedded experimental 𝑆∗-parameters and the theoretically 

simulated 𝑆∗-parameters. (a) Amplitude of the reflection 𝑆∗-parameters. (b) Amplitude of the 

transmission 𝑆∗-parameters. (c) Phase of the reflection 𝑆∗-parameters. (d) Phase of the transmission 

𝑆∗-parameters (e) Amplitude of the reflection 𝑆∗-parameters when extracting the 𝑍𝑐
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

 (f) 

Amplitude of the transmission 𝑆∗-parameters when extracting the 𝑍𝑐
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

. Inset: SEM image of 

the curved feeding line 

 

Note that in Figure 8 the simulated S-parameters are also background corrected by simulating the off-

band background at a large field of 10000 Oe and subtracting the resultant S-parameters from the on-

band S-parameters. The process of de-embedding results in a very good qualitative and quantitative 

agreement between the transmission 𝑆∗-parameters of the theory and experiment, seen in Figure 8(b). 

This is evidenced by the very good agreement in shape and position. The amplitude of the de-embedded 

experimental peak and theoretically simulated one are also very similar and differ only by a factor of 

~2.2, which is a significant improvement to the factor of 35 seen for the initial de-embedding procedure. 

The amplitude of the reflection parameters are also in good agreement, as seen in Figure 8(a), with a 

similar difference in magnitudes of ~2. As shown in Appendix C, our de-embedding method relies on 

an assumption for a characteristic impedance of the feeding line port facing the antenna zc
antenna port. In 

this round of de-embedding, we assumed that the port characteristic impedance is the same as the 

characteristic impedance of the CPL of the antenna, given that the FIB cut was across the very beginning 

of the antenna. However, the length of the CPL section with the same geometry on the feeding-line side 

of the cut (i.e. above the cut in Figure 7(b)), is quite small (about 0.5 mm), after which the CPL starts to 

gradually become wider. Both, the 0.5 mm size and the total length of the narrowest parts of the feeding 

lines, where the CPL geometry gradually changes (grey sections of CPL in Figure 1(d) and inset to 

Figure 8(f)), are much smaller than the wavelength of microwaves for the transmission band of our 
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spin-wave devices (about 1 cm, if the Si substrate is taken into account). Therefore, the assumption of 

a well-defined characteristic impedance for the port is perhaps not very well justified.  

Based on this idea, we improved the de-embedding process with one additional step. Given that the 

shapes of the frequency dependencies of both amplitude (|S21|)) and phase of S21 are in good agreement 

between theory and experiment, we now assumed that our theory also delivers the correct |S21|, and that 

the 2.2 times difference between the theoretical and experimental de-imbedded amplitudes is due to an 

incorrect assumption of the value for zc
antenna port. If so, by fitting the de-embedded experimental data to 

the theory, we extracted a value of zc
antenna port that results in the best overlap of the theoretical and 

experimental |S21|. The result of the fit is shown in Figure 8(f). The value of the real and imaginary 

components of the characteristic impedance that we extracted from the fits (zc
antenna port) is shown by the 

blue dotted and green dash-dotted curves in Figure 14 from Appendix C, respectively. This corresponds 

to ~3.75 Ohm/m of ohmic resistance per unit length R and ~7.48 Ohm/m of capacitive inductance per 

unit length Y (Eq. (11) from Appendix C). The latter was calculated for a frequency of 12.1 GHz, which 

corresponds approximately to the maxima of the amplitude of the transmission S-parameters. Y is the 

same as we originally assumed for the port, but R is smaller by 6.6 times. Note that |zc
anenna  port| scales 

as √𝑅, therefore, the correction in zc
antenna port is just 2.6 times. 

In order to understand how these values relate to the geometry of the feeding line, we measured the 

widths of the ground and signal lines and the gaps between them at half the length of the bent part of 

the feeding line. (The inset to Figure 8(f) shows the cross-section, for which we took these 

measurements.) We found that the signal line is wider by 8.5 times than at the cut. The ground lines are 

wider by 6 and 12 times. The gaps increased by 16 and 22 times. Given that, we may expect a 6 to 10 

times decrease in R for this cross-section. We also calculated Y using our theory of capacitance assuming 

a 9-times larger width of the signal and ground lines (the mean value of 6 and 12) and the 19-time 

increase in the gap width with respect to the sizes at the cut. We found that Y for the maximum of device 

transmission band is 14 Ohm/m compared to 10 Ohm/m for the CPL geometry at the cut. Because 

zc
antenna port scales as 1/√𝑌, the change in √𝑌of 20% does not significantly affect zc

antenna port.  

This calculation confirms that we are dealing with some effective characteristic impedance of 

magnitude that is similar to what one would expect for a regular (i.e. constant cross-section geometry) 

CPL with the same geometry of cross-section as one for the cross-section shown in the inset to Figure 

8(f). Closer to the antenna, R is larger and farther from it, R is smaller. Thus, “on average” one would 

expect R to be close to one for the cross-section from the inset of Figure 8(f), and, given that √𝑌 does 

not vary much along the bent part of the feeding line, we may expect the effective characteristic 

impedance to be similar to one for a regular CPL with the geometry of the shown cross-section. This 

reasoning is in agreement with the extracted zc
antenna port value. 

Note that this correction also resulted in a much better agreement between the theoretical S11 and the 

de-embedded experimental S11. (Figure 8(e)). This is one more evidence that our theory delivers an 

accurate value of the magnitudes of the S-parameters and that the method of the effective characteristic 

impedance is valid. 

The slopes of the phases of both transmission and reflection are similar as seen in Figure 8 (c) and (d). 

As a result, we claim that our initial de-embedding procedure, shown in Figure 5 and explained in 

Appendix A, acts as a good alternative when the characteristics of the feeding lines are not known 

exactly. Using this original de-embedding procedure outlined in Appendix A, one obtains a good 

agreement in the shapes and frequency positions of the de-embedded experiment and simulated signal. 

The only discrepancy then remains the difference in amplitudes which can be explained as a larger 

background direct coupling in the experiment. This difference in coupling can be extracted by simply 

rescaling the simulated data to overlap with the experiment.  
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Thus, if one is not interested in the value of the magnitude of the spin-wave channel contribution to S21 

and S12, but only in the peaks’ shapes and positions, the method of de-embedding from Appendix A is 

more suitable. Conversely, if extracting the amplitudes of the peaks is necessary, and if the background 

coupling is not smooth over the investigated frequency range, one needs to employ a more 

experimentally involved procedure, such as the destructive method from Appendix D. One then obtains 

a value that is close to the real one if a realistic assumption for the zc
antenna port

 is made. Assuming that it 

is equal to the characteristic impedance of the antenna is already a good approximation, as the error of 

just 2.2 times (6 dB) is not very significant if the goal is to estimate S11 with an accuracy of 5 dB, 

which may often be the case. 

Let us now discuss the effects that the CPL antenna geometry and elevation have on the theoretical 

transmission characteristics. The elevation refers to distance between the CPL antenna and the 

ferromagnetic strip in the y-direction. We find that the effects of the geometry and elevation are non-

negligible, and since it is difficult to determine the exact antenna geometry and elevation of the 

antennas, we attribute an uncertainty of ~200 MHz with the frequency of the maximum of the theoretical 

transmission characteristic.  

As mentioned, the antenna geometry we employed in the theoretical simulation was determined by 

estimating the CPL strip widths from the SEM image in Figure 1(e). This “measured” geometry had 

thicker signal and ground strips, and thinner inter-strip gaps than the “nominal” geometry (given by the 

lithographic mask). In order to check the effects of this discrepancy we also checked the theoretical 

simulation at an applied in-plane magnetic field of 612 Oe for CPL antenna geometries matching the 

“nominal” geometry. The antenna geometry in this case was, w=648 nm, wg=324 nm, Δg=334 nm. 

Figure 9 shows comparisons between the two antenna geometries, where we refer to the geometry given 

by the lithography mask as the “nominal”, and the geometry given by the SEM image as “measured”.  
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Figure 9: (a) Amplitude of the raw transmission parameters. (b) Phase of the transmission parameter 

for the two antenna geometries (nominal and measured). Black-solid line: S21, measured geometry; red 

dashed-line: S12, measured geometry; blue dotted-line: S21, nominal geometry; green dash-dotted-line: 

S12, nominal geometry. 

The main effect of the antenna geometry is on the amplitude of the transmission characteristic as can 

be seen in Figure 9(a). There is a slight change in the frequency of the transmission peaks, which is 

expected since the antenna geometry determines the nominal transmission band of the antenna, that is, 

it defines the nominal wavenumber that the antenna may excite and be receptive to. As a result, changing 

the antenna geometry would result in a different nominal wavenumber and thus one would expect a 

different nominal spin-wave frequency. The change in frequency between the two antenna geometries 

is ~60 MHz for the S21-parameter and ~90 MHz for the S12-parameter. Additionally, there is a difference 

in the amplitude heights which may be a result of the more localized coupling for the thinner “nominal” 

antenna geometry. From the phase profiles in Figure 9(b) we notice little to no difference. This suggests 

that although the individual strips of the antennas differ significantly, the total spin wave propagation 

distance between excitation and reception stays approximately the same and thus leads to the same 

phase accumulation. This may be expected since the center to center distance between the excitation 

and receiving antenna was kept constant at 2.464 μm for both antenna geometries, and furthermore, 

both antenna geometries have almost identical total widths. The total widths correspond to: w+2wg+2Δg 

and are 1.964 and 2.07 um for the “nominal” and “measured” antenna geometries respectively. Thus, 

changing the individual strips and inter-strip gaps of the antenna geometry on the order of 100 nm does 

not have a substantial impact on the shape of the transmission curve and only the frequency and 

amplitude are slightly affected.  

Next, we check how the elevation above the trilayer stack of the CPL antennas affects the theoretical 

transmission characteristics. This is important as one of the main assumptions made in the theoretical 
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model is the presence of infinitely thin CPL antennas, which in the real system is not the case. In the 

real system, the antennas have a finite thickness of ~100 nm. Thus, the height of the antennas in the 

theoretical model is somewhat arbitrary and the model assumes the antennas are sitting at a height which 

corresponds to the halfway point of the real finite thickness antennas. However, it may be more suitable 

to place the infinitely thin antennas directly on top of the dielectric spacer layer (SiO2), at ~y=105 nm, 

with y=0 nm corresponding to the Ru/Co interface. This is justified by the fact that the antenna thickness 

(in the direction y) in our experiment is 1/6 of skin depth for aluminum for our frequency range. This 

implies that the microwave current is distributed almost uniformly through the antenna thickness. 

The lower elevation may be modeled by simply decreasing the thickness of the dielectric spacer layer 

such that it accounts for the nominal dielectric spacer thickness (80 nm) only. Figure 10 shows how the 

simulation with the thinner spacer layer (80 nm) compares to the typical thicker spacer layer (130 nm). 

In addition we also checked the numerical model when the CPL antennas were placed very close to the 

top of the trilayer stack, i.e. we reduced the spacer thickness to just 1 nm. 

 

Figure 10: (a), (b) Amplitude of the de-embedded theoretical S21 and S12 transmission characteristics, 

respectively. Black solid-line: 130nm SiO2; red dashed-line: 80nm SiO2; blue dash-dotted-line: 1nm 

SiO2. (c) phase of the de-embedded theoretical transmission characteristic. Black solid-line: S21, 130nm 

SiO2; red dashed-line: S12, 130nm SiO2; blue dotted-line: S21, 80nm SiO2; green dash-dotted-line: S12, 

80nm SiO2; purple dash-dot-dotted-line: S21, 1nm SiO2; orange short-dashed-line: S12, 1nm SiO2. 

By decreasing the SiO2 spacer layer thickness, and ultimately the elevation of the CPL antennas above 

the trilayer stack, one increases the amplitude of the transmission characteristic of the spin waves. This 

is expected, since coupling of the antenna current to a spin wave with a wavenumber k scales as 

exp(ky), where y is the antenna elevation, and thus the coupling of the CPL antenna to the 

ferromagnetic layer increases as the elevation of the CPL antenna is decreased (see e.g. [20] and Eq. 
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(55) in [30]). Similar to changing the antenna geometry we also see a change in the frequency of the 

maximum of the transmission when changing the SiO2 spacer thickness. In this case we see that 

decreasing the spacer thickness results in an upwards shifting of the frequency. On average for the 

forward and backward propagation directions we find that the frequency shifts upwards by ~120 MHz 

when decreasing the spacer from 130 nm to 80 nm and shifts upwards by ~170 MHz when decreasing 

the spacer thickness from 80 nm to 1 nm.  

Thus, we find that realistic uncertainties of both the antenna geometry and the SiO2 spacer layer 

thickness may result in shifts of the frequency of the maximum of transmission by ~200 MHz. Given 

that the physical CPL antennas on the sample device have non-negligible thicknesses and that the 

thicknesses of the deposited layers may have a cumulative uncertainty of several nanometers associated 

with them, it is difficult to determine at which elevation one should set the antennas to in the theoretical 

model. Additionally, it is difficult to determine the true CPL antenna geometry and we expect that the 

“measured” geometry chosen for the simulations may have an uncertainty of several tens of nanometers 

when compared to the true geometry. Thus, both the uncertainty in antenna elevation as well as in 

antenna geometry may result in non-negligible uncertainties in the frequency of the maximum of 

transmission, which we estimate to ~200 MHz.  

Lastly we check how the resistivity of the Al antennas affect the transmission S-parameter of the 

simulation. We check two values of resistivity, 𝜌 = 2.65 × 10−8 Ωm which is the value for bulk Al, 

and 𝜌 = 4 × 10−8 Ωm as an approximation for the thin sheets of Al. From Figure 11(a) we find that 

the amplitude for 𝜌 = 2.65 × 10−8 Ωm is ~1.2 times larger than for 𝜌 = 4 × 10−8 Ωm. It is expected 

that a higher resistivity of the aluminum will result in larger Ohmic losses and thus an overall lower 

spin wave amplitude. Other than this, there is little difference between the resistivities and the frequency 

position is found to be identical within the uncertainty of the simulation frequency step size. To this end 

we used the bulk value of resistivity for the main simulations of this study.  
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Figure 11: (a) Amplitude and (b) phase of the transmission S-parameters for an Al antenna resistivity 

of 2.65× 10−8 𝛺 m (black solid line and red dashed line) and 4.00× 10−8 𝛺 𝑚 (blue dotted line and 

green dash dotted line). 

5. Conclusion 

We employed the theoretical model developed in [20] to determine magnetic sample parameters of a 

//Ru(5)/Co(20)/Pt(5) sample by comparing the theoretical simulation results with the experimental 

propagating spin-wave spectroscopy measurements carried out by coplanar nano-antenna devices on 

the sample. In order to supplement the determination of the sample parameters additional Brillouin light 

scattering (BLS), ferromagnetic resonance (FMR) and magnetometry measurements were carried out. 

From these measurements and the theoretical simulations we obtained: 4πMs = 17000 G, 𝛾 2𝜋⁄  = 2.87 

MHz/Oe, Aex = 1.78 erg/cm2, and Ku1 = Ku2 = 0 mJ/m2. The frequency of the maximum of transmission 

for the numerical model was within 700 MHz of that for the experiment for a range of externally applied 

magnetic field values from ~130-1500 Oe.  

It was found that the amplitude of the S21 and S12 transmission parameters obtained with the simpler 

method of de-embedding (Appendix A) were ~35 times smaller in the experiment than in the numerical 

simulation and this was attributed to the extra direct parasitic coupling present between the feeding lines 

of the antennas in the experiment. In order to confirm this claim, the feeding lines of the device were 

characterized and were de-embedded from the experimental S-parameters by using a more involved 

method of de-embedding proposed in Appendices C and D. The so de-embedded experimental 𝑆∗ 

parameters had a very good qualitative and quantitative agreement with the theoretical ones, which 

confirms the validity of the theoretical simulation. As a result, we claimed that the simpler de-
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embedding procedure (Appendix A), which does not require characterization of the feeding lines, may 

be employed to accurately compare the shapes and frequency positions of the experiment and 

simulation, and only when a comparison in amplitudes is important does one require a more involved 

de-embedding procedure as outlined in Appendices C and D.  
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Appendix A: De-embedding of the experimental data 

The process of de-embedding the spin-wave signal from the contribution of the feeding pads and probes 

is described below. 

 

First let us consider that the vector network analyzer (VNA) measures the complex scattering 

parameters of the system. The scattering parameters make up an S matrix of the system as follows: 

𝐒𝑡𝑜𝑡 = [
𝑆̇11 𝑆̇12

𝑆̇21 𝑆̇22

],     (A1) 

where Sii refers to the reflection coefficient of port i and Sij corresponds to the transmission coefficient 

from port j to port i, where (i, j) = (1, 2). In order to carry out the de-embedding we must take two 

measurements with the VNA, one which is on the spin-wave band and one which is off the spin-wave 

band. This is achieved by measuring the S-parameters over a given frequency range, once with a static 

external magnetic field applied to the sample such that the spin-wave band is within the frequency range 

measured by the VNA. And a second time, where the static external magnetic field is set large enough 

that the spin-wave band is shifted well outside the frequency band measured by the VNA. Thus we 

obtain two S matrices, 

𝐒𝑡𝑜𝑡 𝑜𝑛 = [
𝑆̇11𝑜𝑛

𝑒𝑥𝑝
𝑆̇12𝑜𝑛

𝑒𝑥𝑝

𝑆̇21𝑜𝑛
𝑒𝑥𝑝

𝑆̇22𝑜𝑛
𝑒𝑥𝑝 ],    (A2) 

𝐒𝑡𝑜𝑡 𝑜𝑓𝑓 = [
𝑆̇11𝑜𝑓𝑓

𝑒𝑥𝑝
𝑆̇12𝑜𝑓𝑓

𝑒𝑥𝑝

𝑆̇21𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇22𝑜𝑓𝑓
𝑒𝑥𝑝 ],    (A3) 

which relate to what is physically measured with the VNA. 

 

Now let us consider the total system probed by the VNA to be three cascaded two-port networks, where 

the first and third network can be considered as the input and output feeding pads respectively, and the 

second two-port network as the spin-wave antennas with the magnetic film, as shown in Figure 11. We 

will consider that the feeding input and output pads are identical and thus have the same S matrix, and 

that they are the same off and on the spin-wave band, 

𝐒(1) 𝑜𝑛 = 𝐒(1) 𝑜𝑓𝑓 = 𝐒(3) 𝑜𝑛 = 𝐒(3) 𝑜𝑓𝑓 = [
0 𝑆̇12𝑝

𝑆̇12𝑝
̅̅ ̅̅ ̅̅ 0

],     (A4) 

where 𝑆̇12𝑝
̅̅ ̅̅ ̅̅  is the complex conjugate of 𝑆̇12𝑝. Here we have assumed that the feeding pads and probes 

have a good impedance match with the external circuit and that all of the power is transmitted through 

the feeding pads and probes.  

The second two-port network will differ on and off the spin-wave band since it contains the contribution 

of the spin-waves. Thus we have, 

𝐒(2) 𝑜𝑛 = [
𝑆̇11𝑜𝑛 𝑆̇12𝑜𝑛

𝑆̇21𝑜𝑛 𝑆̇22𝑜𝑛

],    (A5) 

𝐒(2) 𝑜𝑓𝑓 = [
𝑆̇11𝑜𝑓𝑓 𝑆̇12𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓 𝑆̇22𝑜𝑓𝑓

].    (A6) 
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Figure 12: Schematic of the spin-wave device showing the separation of the three cascaded two-port 

networks by the dashed lines. Note the schematic is not to scale and is purely intended as a guide. 

Now, in order to obtain the total 𝐒𝑡𝑜𝑡 𝑜𝑛 and 𝐒𝑡𝑜𝑡 𝑜𝑓𝑓 matrices from the individual S matrices of the three 

cascaded two-port networks we must first convert the individual S matrices to transmission (T) 

matrices. We refer the reader to Table. VI in [31] for the conversions of S matrices to T matrices. The 

conversions yields, 

𝐓(1,3) = [
𝑆̇12𝑝 0

0
1

𝑆̇12𝑝
̅̅ ̅̅ ̅̅

],     (A7) 

𝐓(2) 𝑜𝑛 = [
𝑆̇12𝑜𝑛 −

𝑆̇11𝑜𝑛𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑛

𝑆̇11𝑜𝑛

𝑆̇21𝑜𝑛

−
𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑛

1

𝑆̇21𝑜𝑛

],    (A8) 

𝐓(2) 𝑜𝑓𝑓 = [
𝑆̇12𝑜𝑓𝑓 −

𝑆̇11𝑜𝑓𝑓𝑆̇22𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓

𝑆̇11𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓

−
𝑆̇22𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓

1

𝑆̇21𝑜𝑓𝑓

].   (A9) 

It is well known that the total T matrix of a cascaded system of two-port networks is equivalent to the 

matrix multiplication of the individual T matrices of the constituent two-port networks [32]. Thus we 

obtain, 

𝐓𝑡𝑜𝑡 𝑜𝑛 = 𝐓(1)𝐓(2) 𝑜𝑛𝐓(3) = [
𝑆̇12𝑝 0

0
1

𝑆̇12𝑝
̅̅ ̅̅ ̅̅

] [
𝑆̇12𝑜𝑛 −

𝑆̇11𝑜𝑛𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑛

𝑆̇11𝑜𝑛

𝑆̇21𝑜𝑛

−
𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑛

1

𝑆̇21𝑜𝑛

] [
𝑆̇12𝑝 0

0
1

𝑆̇12𝑝
̅̅ ̅̅ ̅̅

], (A10) 

𝐓𝑡𝑜𝑡 𝑜𝑓𝑓 = 𝐓(1)𝐓(2) 𝑜𝑓𝑓𝐓(3) = [
𝑆̇12𝑝 0

0
1

𝑆̇12𝑝
̅̅ ̅̅ ̅̅

] [
𝑆̇12𝑜𝑓𝑓 −

𝑆̇11𝑜𝑓𝑓𝑆̇22𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓

𝑆̇11𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓

−
𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑓𝑓

1

𝑆̇21𝑜𝑓𝑓

] [
𝑆̇12𝑝 0

0
1

𝑆̇12𝑝
̅̅ ̅̅ ̅̅

]. (A11) 

Following through with the matrix multiplication and simplifying yields, 
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𝐓𝑡𝑜𝑡 𝑜𝑛 = [

(𝑆̇12𝑝)2(𝑆̇12𝑜𝑛 −
𝑆̇11𝑜𝑛𝑆̇22𝑜𝑛

𝑆̇21𝑜𝑛
)

𝑆̇11𝑜𝑛𝑆̇12𝑝

𝑆̇21𝑜𝑛𝑆̇12𝑝
̅̅ ̅̅ ̅̅

−
𝑆̇22𝑜𝑛𝑆̇12𝑝

𝑆̇21𝑜𝑛𝑆̇12𝑝
̅̅ ̅̅ ̅̅

1

𝑆̇21𝑜𝑛(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ ̅̅ )2

],  (A12) 

𝐓𝑡𝑜𝑡 𝑜𝑓𝑓 = [

(𝑆̇12𝑝)
2(𝑎𝑆̇12𝑜𝑓𝑓 −

𝑆̇11𝑜𝑓𝑓𝑆̇22𝑜𝑓𝑓

𝑆̇21𝑜𝑓𝑓
)

𝑆̇11𝑜𝑓𝑓𝑆̇12𝑝

𝑆̇21𝑜𝑓𝑓𝑆̇12𝑝
̅̅ ̅̅ ̅̅

−
𝑆̇22𝑜𝑓𝑓𝑆̇12𝑝

𝑆̇21𝑜𝑓𝑓𝑆̇12𝑝
̅̅ ̅̅ ̅̅

1

𝑆̇21𝑜𝑓𝑓(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ ̅̅ )2

].         (A13) 

Now that we have obtained the total T matrices from the individual two-port networks, we can revert 

these T matrices back into S matrices using the same Table. VI in [31]. 

Thus, after conversion and simplification, the total S matrices we obtain are as follows, 

𝐒𝑡𝑜𝑡 𝑜𝑛 = [
𝑆̇12𝑝𝑆̇11𝑜𝑛𝑆̇12𝑝

̅̅ ̅̅ ̅̅ 𝑆̇12𝑜𝑛(𝑆̇12𝑝)2

𝑆̇21𝑜𝑛(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ )2 𝑆̇12𝑝𝑆̇22𝑜𝑛𝑆̇12𝑝

̅̅ ̅̅ ̅̅
],    (A14) 

𝐒𝑡𝑜𝑡 𝑜𝑓𝑓 = [
𝑆̇12𝑝𝑆̇11𝑜𝑓𝑓𝑆̇12𝑝

̅̅ ̅̅ ̅̅ 𝑆̇12𝑜𝑓𝑓(𝑆̇12𝑝)
2

𝑆̇21𝑜𝑓𝑓(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ )2 𝑆̇12𝑝𝑆̇22𝑜𝑓𝑓𝑆̇12𝑝

̅̅ ̅̅ ̅̅
],    (A15) 

Before proceeding with the de-embedding process we will consider that the internal two-port network 

described by 𝐒(2) 𝑜𝑛, consists of two effective parallel two-port networks, each with their own S 

matrices. The first corresponds to the spin-wave channel which accounts for the propagation of spin-

waves between the two antennas, whilst the second corresponds to the direct coupling between the two 

antennas. Note that the spin-wave channel exists only on the spin-wave band, whilst the direct coupling 

channel exists both off and on the spin-wave band. The matrices follow, 

𝐒𝑠𝑤 = [
𝑆̇11𝑠𝑤 𝑎𝑆̇12𝑠𝑤

𝑎𝑆̇21𝑠𝑤 𝑆̇22𝑠𝑤

],     (A16) 

𝐒𝑑𝑐 = [
𝑆̇11𝑑𝑐 𝑎𝑆̇12𝑑𝑐

𝑎𝑆̇12𝑑𝑐 𝑆̇11𝑑𝑐

],     (A17) 

where 𝑆̇𝑖𝑖𝑠𝑤 = 1 − 𝑎∆𝑆̇𝑖𝑖𝑠𝑤, 𝑆̇11𝑑𝑐 = 1 − 𝑎∆𝑆̇11𝑑𝑐, and a is a smallness constant since the transmission 

through the spin-wave and direct coupling channels is much smaller than the reflected signal off of 

these channels. Note that the direct coupling channel is fully reciprocal. We will now convert these S 

matrices into admittance (Y) matrices since the total Y matrix of two parallel two-port networks is 

simply the sum of the individual Y matrices. The conversions are carried out following Table. I in [31], 

and yield, 

𝐘𝑠𝑤 = [

[(1−𝑆̇11𝑠𝑤)(1+𝑆̇22𝑠𝑤)+𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤]𝑌𝑐

(1+𝑆̇11𝑠𝑤)(1+𝑆̇22𝑠𝑤)−𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤

−2𝑎𝑆̇12𝑠𝑤𝑌𝑐

(1+𝑆̇11𝑠𝑤)(1+𝑆̇22𝑠𝑤)−𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤

−2𝑎𝑆̇21𝑠𝑤𝑌𝑐

(1+𝑆̇11𝑠𝑤)(1+𝑆̇22𝑠𝑤)−𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤

[(1+𝑎𝑆̇11𝑠𝑤)(1−𝑎𝑆̇22𝑠𝑤)+𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤]𝑌𝑐

(1+𝑆̇11𝑠𝑤)(1+𝑆̇22𝑠𝑤)−𝑎2𝑆̇12𝑠𝑤𝑆̇21𝑠𝑤

], (A18) 

𝐘𝑑𝑐 =

[
 
 
 
 
[𝑎2𝑆̇12𝑑𝑐

2
−𝑆̇11𝑑𝑐

2
+1]𝑌𝑐

(1+𝑆̇11𝑑𝑐)
2−𝑎2𝑆̇12𝑑𝑐

2

−2𝑎𝑆̇12𝑑𝑐𝑌𝑐

(1+𝑆̇11𝑑𝑐)
2−𝑎2𝑆̇12𝑑𝑐

2

−2𝑎𝑆̇12𝑑𝑐𝑌𝑐

(1+𝑆̇11𝑑𝑐)
2−𝑎2𝑆̇12𝑑𝑐

2

[𝑎2𝑆̇12𝑑𝑐
2
−𝑆̇11𝑑𝑐

2
+1]𝑌𝑐

(1+𝑆̇11𝑑𝑐)
2−𝑎2𝑆̇12𝑑𝑐

2 ]
 
 
 
 

,    (A19) 

where 𝑌𝑐 is the characteristic admittance of the feeding pads, which we consider to be 1/50 Siemens. 

Thus the total 𝐘(2) 𝑜𝑛 matrix is simply the sum of Eq. (A18) and Eq. (A19), 𝐘(2) 𝑜𝑛 = 𝐘𝑠𝑤 + 𝐘𝑑𝑐, and 

for the sake of brevity is not shown here. We now revert the total 𝐘(2) 𝑜𝑛 matrix back to the 𝐘(2) 𝑜𝑛 
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matrix, again using Table. I in [31]. Substitution of 𝑆̇𝑖𝑖𝑠𝑤 = 1 − 𝑎∆𝑆̇𝑖𝑖𝑠𝑤 and 𝑆̇11𝑑𝑐 = 1 − 𝑎∆𝑆̇11𝑑𝑐 into 

the resultant 𝐒(2) 𝑜𝑛 matrix and Taylor expanding each element of 𝐒(2) 𝑜𝑛 around a to the first order 

results in,  

𝐒(2) 𝑜𝑛 = [
1 𝑎(𝑆̇12𝑠𝑤 + 𝑆̇12𝑑𝑐)

𝑎(𝑆̇21𝑠𝑤 + 𝑆̇12𝑑𝑐) 1
].   (A20) 

 

Similarly we can obtain the total 𝐒(2) 𝑜𝑓𝑓 matrix from Eq. (A20) by considering that the spin-wave 

channel is totally reflecting in this case, 𝑆̇12𝑠𝑤 = 𝑆̇21𝑠𝑤 = 0, and substitution of this condition into Eq. 

(A20) yields, 

𝐒(2) 𝑜𝑓𝑓 = [
1 𝑎𝑆̇12𝑑𝑐

𝑎𝑆̇12𝑑𝑐 1
].     (A21) 

Let us now substitute the elements of Eqs. (A20-A21) back into Eqs. (A14-A15) to obtain, 

𝐒𝑡𝑜𝑡 𝑜𝑛 = [
𝑆̇12𝑝𝑆̇12𝑝

̅̅ ̅̅ ̅̅ (𝑆̇12𝑝)2𝑎(𝑆̇12𝑠𝑤 + 𝑆̇12𝑑𝑐)

(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ )2𝑎(𝑆̇21𝑠𝑤 + 𝑆̇12𝑑𝑐) 𝑆̇12𝑝𝑆̇12𝑝

̅̅ ̅̅ ̅̅
], (A22) 

𝐒𝑡𝑜𝑡 𝑜𝑓𝑓 = [
𝑆̇12𝑝𝑆̇12𝑝

̅̅ ̅̅ ̅̅ (𝑆̇12𝑝)
2𝑎𝑆̇12𝑑𝑐

(𝑆̇12𝑝
̅̅ ̅̅ ̅̅ )2𝑎𝑆̇12𝑑𝑐 𝑆̇12𝑝𝑆̇12𝑝

̅̅ ̅̅ ̅̅
].    (A23) 

Recall that these total matrices, Eq. (A22-A23), are the same matrices as Eq. (A2-A3) which correspond 

to what is measured by the VNA, and thus we may manipulate the experimental data to perform the de-

embedding. The de-embedding process is carried out in two steps. First we subtract the off spin-wave 

band measurement from the on spin-wave band measurement,  

𝐒𝑑𝑖𝑓𝑓 = 𝐒𝑡𝑜𝑡 𝑜𝑛 − 𝐒𝑡𝑜𝑡 𝑜𝑓𝑓,     (A24) 

and then divide each element of this subtracted matrix by the corresponding element of the off spin-

wave band matrix,  

𝑆̇(𝑖𝑗) 𝑑𝑒−𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 =
𝑆̇(𝑖𝑗) 𝑑𝑖𝑓𝑓

𝑆̇(𝑖𝑗) 𝑡𝑜𝑡 𝑜𝑓𝑓
,     (A25) 

where i, j  {1,2} and correspond to the port indices. The resulting 𝐒𝑑𝑒−𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 matrix yields the 

final result,  

𝐒 𝑑𝑒−𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 =

[
 
 
 
 
𝑆̇11𝑜𝑛

𝑒𝑥𝑝
−𝑆̇11𝑜𝑓𝑓

𝑒𝑥𝑝

𝑆̇11𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇12𝑜𝑛
𝑒𝑥𝑝

−𝑆̇12𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇12𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇21𝑜𝑛
𝑒𝑥𝑝

−𝑆̇21𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇21𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇22𝑜𝑛
𝑒𝑥𝑝

−𝑆̇22𝑜𝑓𝑓
𝑒𝑥𝑝

𝑆̇22𝑜𝑓𝑓
𝑒𝑥𝑝

]
 
 
 
 

=
1

𝑆̇12𝑑𝑐
[

0 𝑆̇12𝑠𝑤

𝑆̇21𝑠𝑤 0
].  (A26) 

Note that the division here refers to a division on an elemental basis and not to the multiplication of the 

inverse matrix. Thus we end with the de-embedded experimental signal on the l.h.s in Eq. (A26) and 

what it physically relates to on the r.h.s of Eq. (A26). 

Firstly we note that after the de-embedding we completely remove the contribution of the feeding pads 

from the experimental signal which is significant since the feeding pads add significant coupling which 

alters the shape of the total signal. Secondly we find that after de-embedding we completely remove the 

reflected spin wave signal from the two ports, to the first order of smallness. Thus, any spin wave signal 
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present in the reflection parameters after de-embedding is of a 2nd order of smallness and thus have been 

ignored.  

Lastly we see that the de-embedded S12 and S21 are the respective S-parameters for the spin wave channel 

weighted by some linear function in frequency, 
1

𝑆̇12𝑑𝑐
. Thus, the de-embedding process yields a very 

good representation of the spin-wave signal in transmission.  

 

Appendix B: Comparing the theoretical model with the de-embedded signal   

Let us now consider the simulated spin-wave signal from the developed theoretical model. We may use 

the same approach for the theoretical signal as was used for the experimental signal in Appendix A. In 

the theoretical model, the presence of the feeding pads and probes is not accounted for and thus in this 

case the S matrices in Eq. (A4) would have transmission parameters equal to 1. However, as the full 

de-embedding process described in Appendix A removes the contributions of the feeding pads and 

probes completely from the signal we will arrive at the same final result for the theoretical signal if we 

perform the same de-embedding process. Thus for the theoretical signal we obtain, 

𝐒𝑑𝑒−𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑
𝑡ℎ𝑒𝑜𝑟𝑦

=

[
 
 
 
 
𝑆̇11𝑜𝑛

𝑡ℎ𝑒𝑜𝑟𝑦
−𝑆̇11𝑜𝑓𝑓

𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇11𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇12𝑜𝑛
𝑡ℎ𝑒𝑜𝑟𝑦

−𝑆̇12𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇12𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇21𝑜𝑛
𝑡ℎ𝑒𝑜𝑟𝑦

−𝑆̇21𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇21𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇22𝑜𝑛
𝑡ℎ𝑒𝑜𝑟𝑦

−𝑆̇22𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

𝑆̇22𝑜𝑓𝑓
𝑡ℎ𝑒𝑜𝑟𝑦

]
 
 
 
 

=
1

𝑆̇12𝑑𝑐
[

0 𝑆̇12𝑠𝑤

𝑆̇21𝑠𝑤 0
].  (B1) 

This promotes a direct comparison between the theoretical de-embedded signal (Eq. (B1)) and the 

experimental de-embedded signal (Eq. (A26)).  

 

Appendix C: Characterization of the feeding lines 

 

In order to characterize the feeding lines of the device, the reflection parameter of the device was 

measured for the case where the feeding lines were terminated with the intact CPL antenna, and a second 

time where the feeding lines were terminated with an open circuit. Note, in the following we consider 

the feeding lines as the picoprobes, Au contact pads, and Al feeding lines connecting the contact pads 

to the CPL antenna. These feeding lines are displayed by 𝐒(1) and 𝐒(2) in Figure 12. In Figure 13 the 

network diagram of the system is shown.  

 

 

Figure 13: Network schematic of the VNA, feeding lines, and the terminating load of the feeding line. 

In one case the load corresponds to the intact CPL antenna, in the second case the load corresponds to 

open air. The feeding lines be considered as a two port network and may be characterized by the ABCD 
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matrix containing the a, b, c, and d parameters. 𝑉𝑖 and 𝐼𝑖 correspond to the voltage and current at port 

𝑖. 

Importantly, the two ports of the feeding lines have different characteristic impedances. The 

characteristic impedance of the picoprobe is 50 Ohm. (We expect the characteristic impedance of the 

Au contact pads to also be 50 Ohm, as the cross-section of these conductors is large enough to ignore 

the effect of ohmic losses.) Conversely, as seen from Figure 7(b), the conductors of feeding CPL line 

at its junction with the antenna are quite narrow and made of Al (region near the FIB cut). Therefore, 

we expect ohmic resistance to dominate over in-series linear inductance in the vicinity of the feeding-

line junction with the antenna and yield a characteristic impedance significantly different from 50 Ohm. 

For this reason we utilize the formalism of ABCD matrices for convenience.  

If we consider the feeding lines as a two port network characterized by its ABCD matrix then we obtain 

the following equation [31], 

 
[
𝑉1

𝐼1
] = [

𝑎 𝑏
𝑐 𝑑

] [
𝑉2

−𝐼2
] 

(4) 

where, 𝑉𝑖, and  𝐼𝑖 are voltages and currents at port i respectively. It must stand 

 𝑉𝑖 = 𝑍𝐿𝐼𝑖 (5) 

where ZL is the load impedance. In addition, the feeding lines are perfectly reciprocal which results in 

an additional requirement namely,  

 𝑎 ⋅ 𝑑 − 𝑏 ⋅ 𝑐 = 1. (6) 

Let us now introduce incident and reflected voltages at all ports: 𝑉𝑖 = 𝑉𝑖
𝑖𝑛𝑐 + 𝑉𝑖

𝑟𝑒𝑓
, 𝐼𝑖 =

𝑉𝑖
𝑖𝑛𝑐−𝑉𝑖

𝑟𝑒𝑓

𝑍𝑐
𝑖 , 

where 𝑉𝑖
𝑖𝑛𝑐, 𝑉𝑖

𝑟𝑒𝑓
, and 𝑍𝑐

𝑖  are the incident voltage, reflected voltage, and characteristic impedance at 

port i, respectively. Let us consider the case of 𝑉1
𝑖𝑛𝑐 = 1𝑉. Thus we get, 𝑉1 = 1 + 𝑆11 and 𝐼1 =

1−𝑆11

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒, where 𝑍𝑐

𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒
 is the characteristic impedance of the picoprobe, which is taken to be 50 Ω. 

Here, 𝑆11 is the reflection parameter from port 1 and can be measured with the VNA.  

This converts Eq.(4) into, 

 

[

1 + 𝑆11

1 − 𝑆11

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒

] = [
𝑎 𝑏
𝑐 𝑑

] [

𝑉2

−
𝑉2

𝑍𝐿

]. 

(7) 

In combination with Eq.(5), this equation has 4 unknowns: a,b,c and 𝑉2. (We assume that d has been 

eliminated using Eq.(6)). If we now take three measurements of S11 for two different values of 𝑍𝐿, we 

will have 6 scalar equations for 6 unknowns – a,b,c and three different values of 𝑉2. (Each matrix 

equation will generate two scalar ones.) Solving these 6 equations will complete the de-embedding 

process in the general case. 

However, one can reduce the number of loads for which S11 has to be measured to two and thus make 

this de-embedding method compatible with our approach of cutting the feeding line. To this end, at port 

i=2 we consider the incident voltage and current as those that are incident on the terminating load. Thus, 

𝑉2
𝑟𝑒𝑓

= 𝑉2
𝑖𝑛𝑐 ⋅ Γ, where Γ is the reflection coefficient from the terminating load, and we can rewrite 

Eq.(4) as, 

 

[

1 + 𝑆11

1 − 𝑆11

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒

] = [
𝑎 𝑏
𝑐 𝑑

] 𝑉2
𝑖𝑛𝑐 [

1 + Γ
1 + Γ

𝑍𝐿

]. 

(8) 
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Note that in the case of lumped load resistance, we must replace the characteristic impedance with the 

load impedance. This pertains to the right-hand side of Eq. (8). 

When the feeding lines are terminated by an open circuit (𝑍𝐿 = ∞) Eq. (8) reduces to,  

 

[

1 + 𝑆11
𝑜𝑝𝑒𝑛

1 − 𝑆11
𝑜𝑝𝑒𝑛

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒

] = [
𝑎 𝑏
𝑐 𝑑

] 𝑉2
𝑖𝑛𝑐 [

2
0
], 

(9) 

and when the feeding lines are terminated by the CPL antenna one obtains,  

 

[

1 + 𝑆11
𝑙𝑜𝑎𝑑

1 − 𝑆11
𝑙𝑜𝑎𝑑

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒

] = [
𝑎 𝑏
𝑐 𝑑

] 𝑉2
𝑖𝑛𝑐 ⋅ (1 + Γantenna) [

1
1

𝑍𝑖𝑛
𝑎𝑛𝑡𝑒𝑛𝑛𝑎

], 

(10) 

where 𝑆11
𝑜𝑝𝑒𝑛

 and 𝑆11
𝑙𝑜𝑎𝑑 are the reflection parameters measured with the VNA, and 𝛤𝑎𝑛𝑡𝑒𝑛𝑛𝑎and 

𝑍𝑖𝑛
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 are the reflection parameter and input impedance of the CPL antenna, respectively.  

In order for 𝑉2
𝑖𝑛𝑐 to be the same in Eqs.(8) and (9) we make an assumption, namely that the feeding 

lines act as a black box consisting of no sharp changes in characteristic impedance and thus act to 

smoothly attenuate the incident signal and smoothly transform the characteristic impedance from  50 

Ohm of the picoprobe to a higher and complex-valued one at the antenna port of the feeding line. Under 

this assumption, which is quite realistic, the attenuation of a signal traveling in the feeding line in the 

forward direction does not depend on the load impedance, and the forward traveling signal will create 

a voltage 𝑉2
𝑖𝑛𝑐 at the output port of the feeding line that will be constant for any choice of load 

impedance. As seen from Figure 7(b) the port represents a coplanar line with the same dimensions as 

the antenna. However, there is one major difference – the CPL is not backed – there is no metallic 

underlayer below it. Because of this peculiarity, it is useful to consider the port as a simple RC 

transmission line where the sheet resistance of the CPL strips is calculated for a resistivity of 2.65 ×

10−8Ohmm, strip widths as shown in Table 1, and strip thicknesses of 100 nm. The linear capacitance 

is obtained from the theoretical simulation using our numerical model [20] and assuming a very large 

distance to the backing metal plate. The capacitance is found to be ~1.96 × 10−10 F/m.  

The characteristic impedance for a particular eigen-mode of a transmission line is given by the eigen-

vector of the matrix of coefficients of the Telegrapher Equations. More precisely, by the ratio of the co-

efficient that has units of linear voltage to the co-efficient that has units of current. As shown in [20], 

in the case of a CPL, the matrix size is 5 x 5. The characteristic impedance is given by the ratio of matrix 

components that represent the eigen-amplitudes of the wave of voltage between the signal line and a 

ground line and of the wave of current in the signal line. The eigen-vector that corresponds to the CPL-

like mode of the transmission line must be selected. (In addition to it, there are also slot-line-like modes 

and a dc-current-like mode.) 

In the RC-transmission line approximation, the linear inductance of the line is neglected, which reduces 

the ratio of the respective components of the eigen-vector to a simple formula for the feeding line port 

facing the spin wave antenna: 

 

𝑍𝑐
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

= √
2𝑅1 + 𝑅2

4𝑌11
, 

(11) 

where R1 is the linear ohmic resistance of the signal line, R2 is the linear ohmic resistance of one of the 

two ground lines of the CPL, and Y11 is the linear capacitive impedance due to capacitance between the 

signal and one of the two ground lines, 𝑌11 = 𝑖𝜔𝐶/2, where 𝜔 is the angular frequency, 𝐶 is the linear 

capacitance, and 𝑖 is the imaginary unit. The latter (Y11) is a purely imaginary-valued quantity.  
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The characteristic impedance is then calculated for a range of frequencies spanning the range measured 

experimentally and simulated theoretically. The calculated characteristic impedance is complex-valued 

and is shown in Figure 14(a) by the black and red curves. We also show the characteristic impedance 

at the antenna port if we assume the theoretical model accurately models the amplitude of the 𝑆-

parameters. In this case we solved the reverse problem of de-embedding (Appendix C) and assumed 

the 𝑍𝑐
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

 is a free parameter and found the characteristic impedance which led to the best 

overlap in |𝑆21| and |𝑆12|. This characteristic impedance is shown by the blue and green curves in 

Figure 14(a). The input impedance of the CPL antenna as obtained from the theoretical simulation is 

shown in Figure 14(b). This input impedance is almost entirely real and the average value of the real 

component is ~12.42 Ohm. If one calculates analytically the resistance of the CPL antenna by using the 

resistivity and the geometry of the antenna strips one obtains a value of ~12.56 Ohm which is consistent 

with the calculated input impedance of the theoretical simulation. This evidences that ohmic losses are 

the dominating contribution to 𝑍𝑖𝑛
𝑎𝑛𝑡𝑒𝑛𝑛𝑎. 

The reflection coefficient of the antenna could then be calculated using the characteristic impedance 

and the input impedance of the antenna as follows,  

 
𝛤𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =

𝑍𝑖𝑛
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 − 𝑍𝑐

𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

𝑍𝑖𝑛
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 𝑍𝑐

𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡 . 
(12) 

The resultant reflection coefficient is shown in Figure 14(c).  

 

Figure 14: (a) The real (black solid line) and imaginary (red dashed line) components of the 

characteristic impedance of the feeding line port facing the CPL antenna. The blue dotted and green 

dash-dotted line correspond to the real and imaginary components, respectively, of the characteristic 
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impedance for the feeding line port facing the CPL antenna which results in the best overlap between 

the de-embedded theoretical and experimental transmission 𝑆∗-parameters.  (b) The real (black solid 

line) and imaginary (red dashed line) components of the input impedance of the CPL antenna. (c) 

Reflection coefficient of the CPL antenna.  

Once the characteristic impedance and reflection coefficient of the CPL antenna are known it is possible 

to solve the system of equations in Eqs. (5), (9), and (12) for the ABCD-parameters of the feeding line, 

resulting in, 

 
𝑎 = −

𝑆11
𝑜𝑝𝑒𝑛

+ 1

2√
−𝑍𝑐

𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡
(𝑆11

𝑙𝑜𝑎𝑑 − 𝑆11
𝑜𝑝𝑒𝑛

)

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒(1 − Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎)

, 

 

(13) 

 

𝑏 =

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒

√
−𝑍𝑐

𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡
(𝑆11

𝑙𝑜𝑎𝑑 − 𝑆11
𝑜𝑝𝑒𝑛

)

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒(1 − Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎)

(2𝑆11
𝑙𝑜𝑎𝑑 − 𝑆11

𝑜𝑝𝑒𝑛
Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎 − 𝑆11

𝑜𝑝𝑒𝑛
− Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 1)

2(𝑆11
𝑙𝑜𝑎𝑑 − 𝑆11

𝑜𝑝𝑒𝑛
)

, 

 

(14) 

 
𝑐 = −

1 − 𝑆11
𝑜𝑝𝑒𝑛

2𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒√

−𝑍𝑐
𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡

(𝑆11
𝑙𝑜𝑎𝑑 − 𝑆11

𝑜𝑝𝑒𝑛
)

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒(1 − Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎)

, 

 

(15) 

 

𝑑 =

√
−𝑍𝑐

𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝑝𝑜𝑟𝑡
(𝑆11

𝑙𝑜𝑎𝑑 − 𝑆11
𝑜𝑝𝑒𝑛

)

𝑍𝑐
𝑝𝑖𝑐𝑜𝑝𝑟𝑜𝑏𝑒(1 − Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎)

(−2𝑆11
𝑙𝑜𝑎𝑑 + 𝑆11

𝑜𝑝𝑒𝑛
Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 𝑆11

𝑜𝑝𝑒𝑛
− Γ𝑎𝑛𝑡𝑒𝑛𝑛𝑎 + 1)

2(𝑆11
𝑙𝑜𝑎𝑑 − 𝑆11

𝑜𝑝𝑒𝑛
)

. 

(16) 

 

  The measured 𝑆11
𝑜𝑝𝑒𝑛

 and 𝑆11
𝑙𝑜𝑎𝑑 parameters are shown in Figure 15.  
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Figure 15:(a) Amplitude and (b) phase of the real and imaginary components of the total measured 

reflection coefficient from the feeding line loaded by the antenna (black solid line) and when the feeding 

line is terminated by the open circuit (i.e. with the FIB cut, red dashed line).  

When the feeding line is terminated in an open circuit, the amplitude of the reflection coefficient is very 

close to one. This is expected as any signal that reaches the open circuit would perfectly reflect from it. 

The reflection coefficient is not perfectly one since there are expected ohmic and some small inductive 

and capacitive losses [33] in the system. In the case where the feeding lines are terminated by the intact 

antenna the amplitude of the reflection coefficient reduces substantially. This is because the CPL 

antenna acts as a load impedance. This large difference in the reflection coefficients then shows that the 

signal is almost fully damped in the CPL antennas and only a small portion returns to the port of the 

VNA. The phase, on the other hand, has almost the same slope for the open and loaded antenna and this 

is expected since the phase velocity of the electromagnetic wave in the feeding lines does not depend 

on the load impedance. 

One can now solve for the ABCD-parameters using Eqs. (13)-(16). Note, that due to the significant 

simulation time, the reflection coefficient of the antenna was simulated at less frequency points than 

the experiment, and also simulated over a smaller frequency range. As a result, we opted to calculate 

the ABCD-parameters of the feeding lines for the frequencies of the simulation rather than the 

experiment. To do this we interpolated the S11-parameters of the cut and loaded experimental 

measurements to the frequency values of the simulation. The resultant ABCD-parameters of the 

calculated feeding lines are displayed in Figure 16. Alternatively, one could instead calculate the ABCD-

parameters of the feeding lines for the frequencies of the experimental measurements by interpolating 

the simulated reflection coefficient to the frequencies of the experiment. However, we find that 

interpolating the experimental measurements down to the simulation frequencies results in a better 

agreement between the de-embedded experimental data and the simulation than interpolating to the 
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experimental frequencies. In Appendix D we show how to de-embed the characteristics of the feeding 

line from the total measured signals using these ABCD-parameters. 

 

 

Figure 16: Amplitude and phase of the (a) a-parameter, (b) b-parameter, (c) c-parameter and (d) d-

parameter for the feeding lines. Black solid line: amplitude. Red dashed line: phase.  

 

Appendix D: De-embedding of the feeding line characteristics 

With the ABCD-parameters of the feeding lines known, it is now possible to de-embed their contribution 

from the total measured signal. Similar to Appendix A , we will consider the input feeding line, spin-

wave delay line, and output feeding line as three cascaded two-port networks. For cascaded networks 

the total ABCD matrix of the entire system is simply the matrix multiplication of the constituent 

networks [31].  

 𝐀𝐁𝐂𝐃𝑡𝑜𝑡 = 𝐀𝐁𝐂𝐃𝑖𝑛 ⋅ 𝐀𝐁𝐂𝐃(2) ⋅ 𝐀𝐁𝐂𝐃𝑜𝑢𝑡 , (17) 

where 𝐀𝐁𝐂𝐃𝑡𝑜𝑡 corresponds to the total measured system, 𝐀𝐁𝐂𝐃𝑖𝑛 corresponds to the input feeding 

lines which have been calculated in Appendix C, 𝐀𝐁𝐂𝐃(2) corresponds to the spin-wave delay line (2nd 

network in Figure 12) which contains contributions from the spin waves and the background direct 

inductive coupling, and 𝐀𝐁𝐂𝐃𝑜𝑢𝑡 corresponds to the output feeding lines. Note, that 𝐀𝐁𝐂𝐃𝑖𝑛 ≠

𝐀𝐁𝐂𝐃𝑜𝑢𝑡, and 𝐀𝐁𝐂𝐃𝑜𝑢𝑡 can be obtained from 𝐀𝐁𝐂𝐃𝑖𝑛 as follows,  

 
𝐀𝐁𝐂𝐃𝑜𝑢𝑡 = [

1 0
0 −1

] ⋅ 𝐀𝐁𝐂𝐃𝑖𝑛
−1 ⋅ [

1 0
0 −1

] =
1

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
[
𝑑𝑖𝑛 𝑏𝑖𝑛

𝑐𝑖𝑛 𝑎𝑖𝑛
]. 

(18) 

Substituting Eq. (18) into Eq. (17) and solving for 𝐀𝐁𝐂𝐃𝑠𝑤 yields,  
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𝐀𝐁𝐂𝐃(2) = [

𝑎(2) 𝑏(2)

𝑐(2) 𝑑(2)
] =

1

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
[
𝑑𝑖𝑛 −𝑏𝑖𝑛

−𝑐𝑖𝑛 𝑎𝑖𝑛
] ⋅ [

𝑎𝑡𝑜𝑡 𝑏𝑡𝑜𝑡

𝑐𝑡𝑜𝑡 𝑑𝑡𝑜𝑡
] ⋅ [

𝑎𝑖𝑛 −𝑏𝑖𝑛

−𝑐𝑖𝑛 𝑑𝑖𝑛
] 

(19) 

 

where,  

 
𝑎(2) =

𝑎𝑖𝑛(𝑎𝑡𝑜𝑡𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑡𝑜𝑡) − 𝑐𝑖𝑛(𝑏𝑡𝑜𝑡𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑑𝑡𝑜𝑡)

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
, 

 

(20) 

 
𝑏(2) =

−𝑏𝑖𝑛(𝑎𝑡𝑜𝑡𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑡𝑜𝑡) + 𝑑𝑖𝑛(𝑏𝑡𝑜𝑡𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑑𝑡𝑜𝑡)

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
, 

 

(21) 

 
𝑐(2) =

−𝑎𝑖𝑛(𝑎𝑡𝑜𝑡𝑐𝑖𝑛 − 𝑎𝑖𝑛𝑐𝑡𝑜𝑡) − 𝑐𝑖𝑛(𝑎𝑖𝑛𝑑𝑡𝑜𝑡 − 𝑏𝑡𝑜𝑡𝑐𝑖𝑛)

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
, 

 

(22) 

 
𝑑(2) =

𝑏𝑖𝑛(𝑎𝑡𝑜𝑡𝑐𝑖𝑛 − 𝑎𝑖𝑛𝑐𝑡𝑜𝑡) + 𝑑𝑖𝑛(𝑎𝑖𝑛𝑑𝑡𝑜𝑡 − 𝑏𝑡𝑜𝑡𝑐𝑖𝑛)

𝑎𝑖𝑛𝑑𝑖𝑛 − 𝑏𝑖𝑛𝑐𝑖𝑛
. 

(23) 

 

Before de-embedding, the experimental data was smoothed to reduce the presence of noise in the signal. 

Then by converting the total smoothed S-parameters, measured by the VNA on the spin-wave band and 

off the spin-wave band, into ABCD-parameters [31] and using the calculated ABCD-parameters of the 

feeding lines it was possible to calculate the ABCD-parameters of the spin-wave delay line. The 

amplitude and phase of these ABCD-parameters is shown in Figure 17 and Figure 18, respectively. At 

~12 GHz, which is where the spin wave transmission is maximized, as seen from Figure 5(a), there is 

a clear difference between the on-band and off-band ABCD-parameters which can be attributed to the 

presence of the spin waves at this frequency. Thus converting the S-parameters to ABCD-parameters 

conserves the spin-wave signal. The ABCD-parameters were then converted back to S-parameters. This 

was done assuming the standard 50 Ohm of the characteristic impedance for the ports to which the spin 

wave antennas are supposed to be connected, in order to comply with the formalism we used in our 

numerical model. The de-embedded off-band S-parameters were then subtracted from the de-embedded 

on-band S-parameters in order to remove the background signal and the resultant S-parameters are 

compared to the theoretically simulated S-parameters in Figure 8. 
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Figure 17:Amplitude of the (a) a-parameter, (b) b-parameter, (c) c-parameter and (d) d-parameter of 

the de-embedded spin-wave delay line. Black solid line: on band signal. Red dashed line: off-band 

signal. 
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Figure 18: Phase of the (a) a-parameter, (b) b-parameter, (c) c-parameter and (d) d-parameter of the 

de-embedded spin-wave delay line. Black solid line: on band signal. Red dashed line: off-band signal. 

  

Note that, in Figure 8the simulated S-parameters are also background corrected by simulating the off-

band background at a large field of 10000 Oe and subtracting the resultant S-parameters from the on-

band S-parameters. The corrected parameters are denoted by 𝑆∗. The process of de-embedding results 

in a good qualitative and quantitative agreement between the transmission 𝑆∗-parameters of the theory 

and experiment, seen in Figure 8(b). This is evidenced by the very good agreement in shape and 

position. The amplitude of the de-embedded experimental peak and theoretically simulated one are also 

very similar and differ only by a factor of ~2.2, which is a significant improvement to the factor of 35 

seen for the initial de-embedding procedure. The amplitude of the reflection parameters are also in good 

agreement, seen in Figure 8(a), with a slight difference in magnitudes of ~2. The slopes of the phases 

of both transmission and reflection are similar as seen in Figure 8(c) and (d). This strongly suggests that 

the theoretical model, underpinning the simulation, correctly models the spin wave propagation 

characteristics. As a result, we claim that the our initial de-embedding procedure, shown in Figure 5 

and explained in Appendix A, acts as a good alternative when the characteristics of the feeding lines 

are not known exactly. Using this original de-embedding procedure outlined in Appendix A one obtains 

a good agreement in the shapes and frequency positions of the de-embedded experiment and simulated 

signal. The only discrepancy then remains the difference in amplitudes which can be explained as a 

larger background direct coupling in the experiment, and this difference in coupling can be extracted 

by simply rescaling the simulated data to overlap with the experiment. 

It is also important to realize that the method of subtraction of the de-embedded off-band 𝑆21
∗  and 𝑆12

∗  

from the respective de-embedded on-band 𝑆∗-parameters (Figure 8(b, d)) naturally emerges from the 

theory presented in Appendix A -  the need to divide  the anti-diagonal terms of the middle matrix of  

Equation (A26) by 𝑆̇21 𝑜𝑓𝑓
𝑒𝑥𝑝

 and  𝑆̇12 𝑜𝑓𝑓
𝑒𝑥𝑝

 arises, because this equation involves non-de-embedded S-

parameters. If the effect of the feeding lines is excluded by the process of de-embedding 𝑆̇12𝑝 from 
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Equation (A22) becomes 1 (as there are no feeding lines anymore) and the anti-diagonal components 

of 𝐒𝑑𝑖𝑓𝑓 (Equation (A24)) reduce just to 𝑆̇21 𝑠𝑤 and 𝑆̇12 𝑠𝑤.   

Conversely, the diagonal elements reduce to zeros. The latter implies that the process of subtraction of 

the de-embedded off-band 𝑆11
∗  and 𝑆22

∗  from the respective on-band values is not well justified 

physically (to the first order or smallness of 𝑆̇21 𝑠𝑤 and 𝑆̇12 𝑠𝑤  ).  
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