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Abstract9

In this article, we study the weak uniqueness and the regularity of the weak solutions of a fluid-structure10

interaction system. More precisely, we consider the motion of a rigid ball in a viscous incompressible fluid and11

we assume that the fluid-rigid body system fills the entire space R3. We prove that the corresponding weak12

solutions that additionally satisfy a classical Prodi-Serrin condition, including a critical one, are unique. We13

also show that the weak solutions are regular under the Prodi-Serrin conditions, with a smallness condition14

in the critical case.15

Key words. Navier-Stokes system, fluid-structure interaction, weak solution16
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1 Introduction18

1.1 Presentation of the model19

We consider a fluid-structure interaction system composed by a rigid body immersed into a viscous incompress-20

ible fluid. We suppose that the rigid body is a homogeneous ball of radius 1 and that the fluid fills the exterior21

of the rigid body in R3. In particular, the structure domain S(t) and the fluid domain F(t) at time t ⩾ 0 are22

given by23

S(t) = B(h(t), 1), F(t) = R3 \ S(t), (1.1)

where B(c, r) is the closed ball of R3 of center a and of radius r.24

The velocity and pressure fields in the fluid are denoted by u = u(t, x) ∈ R3 and p = p(t, x) ∈ R whereas25

the linear and angular velocities of the rigid ball are denoted by ℓ = ℓ(t) ∈ R3 and ω = ω(t) ∈ R3. The system26

of equations governing the motion of this fluid-structure interaction system can be obtained by combining the27

Navier-Stokes system and the Newton laws:28  ∂tu+ (u · ∇)u− µ∆u+∇p = 0 (t > 0, x ∈ F(t)),
div u = 0 (t > 0, x ∈ F(t)),

u(t, x) = ℓ(t) + ω(t)× (x− h(t)) (t > 0, x ∈ ∂S(t)),
(1.2)

29 
mℓ′(t) = −

∫
∂S(t)

T(u, p)ν dγx (t > 0),

Jω′(t) = −
∫
∂S(t)

(x− h(t))× T(u, p)ν dγx (t > 0),
(1.3)
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1

h′ = ℓ (t > 0), (1.4)

u(0, ·) = a in F , h(0) = 0, ℓ(0) = ℓa, ω(0) = ωa. (1.5)

Without loss of generality, we can assume as above that the initial position of the center of the rigid body is
at the origin. To simplify the study, we suppose that the viscosity µ of the fluid and the densities of fluid and
of the structure are positive constants. We can assume that the fluid density is equal to 1 and if we denote by
ρS > 0 the density of the rigid body, its mass and its inertia tensor are given by the standard formula:

m =
4

3
πρS , J =

2m

5
I3.

We have denoted by ν the unit vector field normal to ∂S(t) and directed towards the interior of S(t). Finally,2

the Cauchy stress tensor field in the fluid is given by the constitutive law3

T(u, p) = −pI3 + 2µDu, Du =
1

2
(∇u+∇u⊤),

and where M⊤ denotes the transpose of a matrix M .4

The initial and boundary value problem (1.2)–(1.5) and its generalization in the case of a rigid body of general5

shape has been studied for many years. Let us mention some related works from the literature: existence of6

Leray-Hopf weak solutions ([29, 9, 30]), existence and uniqueness of strong solutions ([31, 11, 8, 3, 12, 17, 23]),7

existence of steady states ([15, 16]), existence of time periodic solutions ([13, 14]), large time behaviour ([4, 10,8

24]), etc.9

Concerning the weak solutions of (1.2)–(1.5), as in the case without structure, it is an open problem to know10

if the weak solutions are unique or smooth. In the case where the fluid–rigid body system fills a bounded cavity11

Ω (instead of the whole space R3), the uniqueness of weak solutions in dimension 2 of space has been obtained12

only recently, see [18, 2]. Note that these uniqueness results are valid up to a contact between rigid bodies or13

between a rigid body and the boundary of Ω, as it is not clear how the solutions can be continued after the14

contact (see [6, 28]). In dimension 3 and for a bounded cavity, the uniqueness and regularity of weak solutions15

under the classical Prodi-Serrin condition was proved in [27] and [26] respectively. However, the critical case of16

Prodi-Serrin condition was not included in these two articles, and in [26] regularly of weak solutions was proved17

under additional assumptions on the rigid velocities besides the Prodi-Serrin condition (see Remark 1.7 and18

Remark 1.9 below).19

Our aim in this article is to prove the uniqueness of weak solutions of the system (1.2)–(1.5), under the Prodi-20

Serrin condition including the critical case (see Theorem 1.4). Note that in the case without structure (that is21

for the standard Navier-Stokes system), the uniqueness of weak solutions under the Prodi-Serrin condition in22

the critical case was obtained by [21] by using a first result of [25]. We are going to follow the same approach23

in our case and one of main arguments consists in showing the existence of mild solutions for initial conditions24

in L2 ∩ L3. We are also going to show the regularity of weak solutions if we assume the Prodi-Serrin condition25

without the critical case (Theorem 1.8). In the critical case, we obtain the regularity property with an additional26

smallness assumption (Theorem 1.10). Note that this condition may be technical since for the incompressible27

Navier-Stokes system (without any structure), the regularity result is also true in the critical case without the28

smallness assumption (see [5]).29

1.2 Statement of the main results30

First, one can perform a change of variables in order to write the above system using the fixed spatial domains31

S := B(0, 1), F := R3 \ S. (1.6)

Setting
v(t, y) := u(t, y + h(t)), q(t, y) := p(t, y + h(t)),
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the system (1.2)–(1.5) can be transformed in the following system1  ∂tv + ((v − ℓ) · ∇)v − µ∆v +∇q = 0 (t > 0, y ∈ F),
div v = 0 (t > 0, y ∈ F),

v(t, y) = ℓ(t) + ω(t)× y (t > 0, y ∈ ∂S),
(1.7)

2 
mℓ′(t) = −

∫
∂S

T(v, q)ν dγy (t > 0),

Jω′(t) = −
∫
∂S

y × T(v, q)ν dγy (t > 0),
(1.8)

3

v(0, ·) = a in F , ℓ(0) = ℓa, ω(0) = ωa, (1.9)
4

h′ = ℓ (t > 0), h(0) = 0. (1.10)

Note that in the above system, the equations for the velocities (1.7)–(1.9) are decoupled from the equation5

(1.10) for the position of the rigid ball. In particular, the uniqueness and the regularity properties can be stated6

only for the system (1.7)–(1.9) and will induce the same properties for the whole system.7

In what follows, we extend the fluid velocity by the rigid velocity in S, that is

v(t, y) := ℓ(t) + ω(t)× y (t > 0, y ∈ S)

and we do the same for the initial velocity a. We recall that (see, for instance, [32, Lemma 1.1] ), Dφ = 0 in S
if and only if there exist ℓφ, ωφ ∈ R3 such that

φ(y) := ℓφ + ωφ × y (y ∈ S).

With this notation, we have in (1.7)–(1.9) ℓ = ℓv and ω = ωv.8

We now introduce several function spaces in order to state our main results. Let G be a domain in R3. For9

any q ∈ [1,∞], and s ⩾ 0, we denote by Lq(G) and W s,q(G) the usual Lebesgue and Sobolev-Slobodeckij spaces.10

We also use the notation Hs(G) = W s,2(G). We also define the following spaces, associated with our problem:11

for any q ∈ [1,∞] and s ⩾ 012

Lq =
{
φ ∈ Lq(R3) | divφ = 0 in R3, D(φ) = 0 in S

}
, (1.11)

13

Hs =
{
φ ∈ Hs(R3) | divφ = 0 in R3, D(φ) = 0 in S

}
, (1.12)

14

Ws,q =
{
φ ∈ W s,q(R3) | divφ = 0 in R3, D(φ) = 0 in S

}
. (1.13)

We define a global density

ρ :=

{
1 in F ,
ρS in S,

and the scalar product in L2(R3)15

⟨f, g⟩L2 :=

∫
R3

ρf · g dy. (1.14)

Note that if f, g ∈ L2, then

⟨f, g⟩L2 =

∫
F
f · g dy +mℓf · ℓg + Jωf · ωg.

The above definitions and notations allow us to define the notion of weak solutions for the system (1.7)–(1.9):16

Definition 1.1. Assume a ∈ L2 and T > 0. We say that v is a weak solution of (1.7)–(1.9) if17

v ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1), (1.15)

and if for any φ ∈ H1(0, T ;H1) such that φ(T, ·) = 0,18

−
∫ T

0

⟨v, ∂tφ⟩L2 dt+

∫∫
(0,T )×R3

2µD(v) : D(φ) dy dτ +

∫∫
(0,T )×F

((v − ℓv) · ∇)v · φdy dτ

= ⟨a, φ(0, ·)⟩L2 . (1.16)
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Remark 1.2. Note that if v satisfies (1.15), then all the terms in (1.16) are well-defined. Indeed, by the Sobolev
embedding H1(F) ↪→ L6(F), we have

v · ∇v ∈ L1(0, T ;L3/2(F)), ℓv · ∇v ∈ L2(0, T ;L2(F)),

whereas φ ∈ H1(0, T ;H1) yields φ ∈ L∞(0, T ;L3(F)) and φ ∈ L2(0, T ;L2(F)). Therefore, in view of Hölder’s1

inequality all the terms in (1.16) are well-defined.2

As mentioned in the introduction, the well-posedness of system (1.7)–(1.9) has been studied by several3

authors (including if the rigid body has a general shape). In particular, we have the following result (see, for4

instance, [30]):5

Theorem 1.3. There exists a weak solution v of (1.7)–(1.9) in the sense of Definition 1.1, and it satisfies the6

following energy inequality7

1

2
∥v(t, ·)∥2L2 + 2µ

∫ t

0

∫
R3

|D(v)|2 dy dτ ⩽
1

2
∥a∥2L2 (t ∈ [0, T ]). (1.17)

Our first main result corresponds to the Prodi-Serrin condition for the uniqueness of weak solutions:8

Theorem 1.4. Let v(1), v(2) be two weak solutions of (1.7)–(1.9) associated with the same initial condition9

a ∈ L2 in the sense of Definition 1.1. Assume v(1) satisfies the energy inequality (1.17) and that v(2) ∈10

Lr(0, T ;Lq(F))3 with11

2

r
+

3

q
= 1, r ∈ [2,∞], q ∈ [3,∞]. (1.18)

Then
v(1) = v(2).

Remark 1.5. Let us remark that Theorem 1.4 holds if we replace (1.18) by the weaker assumption that v(2) ∈12

Lr(0, T ;Lq(F))3 with13

2

r
+

3

q
⩽ 1, r ∈ [2,∞], q ∈ [3,∞]. (1.19)

Indeed, if q > 3 and (1.19) holds, there exists r′ ⩽ r such that
2

r′
+

3

q
= 1 and v(2) ∈ Lr′(0, T ;Lq(F)) so that14

we can apply Theorem 1.4 and deduce the result.15

To prove Theorem 1.4, we are going to consider two cases:16

• the noncritical case : q ∈ (3,∞] (or r ∈ [2,∞));17

• the critical case : r = ∞ and q = 3.18

The proof in the critical case combines arguments of [25] and [21]. In particular, we first show a weaker result:19

we replace the hypothesis v(2) ∈ L∞(0, T ;L3(F))3 by the stronger hypothesis v(2) ∈ C0
R([0, T );L

3(F))3 where20

C0
R denotes the set of right-continuous functions. The corresponding result states as follows:21

Theorem 1.6. Let v(1), v(2) be two weak solutions of (1.7)–(1.9) associated with the same initial condition
a ∈ L2 in the sense of Definition 1.1. Assume v(1) satisfies the energy inequality (1.17) and that

v(2) ∈ C0
R([0, T );L

3(F))3 ∩ L∞(0, T ;L3(F))3.

Then v(1) = v(2).22

Finally, using Theorem 1.6 and the method of [21] we prove Theorem 1.4 in the critical case, see Section 5.23

Remark 1.7. Let us remark that in the case where the fluid-rigid body fills a bounded cavity, the corresponding24

result was obtained in [27] in the noncritical case q ∈ (3,∞).25
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Our second main result corresponds to the regularity of weak solutions under the Prodi-Serrin condition:1

Theorem 1.8. Let v be a weak solution of (1.7)–(1.9) associated with the initial condition a ∈ L2 in the sense2

of Definition 1.1. Assume v ∈ Lr(0, T ;Lq(F))3 with3

2

r
+

3

q
= 1, r ∈ [2,∞), q ∈ (3,∞]. (1.20)

Then
ℓv, ωv ∈ C∞((0, T ];R3), v ∈ C∞((0, T ]×F)3.

Remark 1.9. Let us remark that in the case where the fluid-rigid body fills a bounded cavity, a similar result was4

obtained in [26] in the noncritical case q ∈ (3,∞), and with the additional assumptions that ℓ′v, ω
′
v ∈ L∞(0, T )3.5

In the critical case, i.e. q = 3 and r = ∞, we need a smallness condition:6

Theorem 1.10. There exists ε > 0 such that if v is a weak solution of (1.7)–(1.9) associated with the initial7

condition a ∈ L2 in the sense of Definition 1.1 and if v ∈ L∞(0, T ;L3(F))3 with8

∥v∥L∞(0,T ;L3(F)) ⩽ ε (1.21)

then
ℓv, ωv ∈ C∞((0, T ];R3), v ∈ C∞((0, T ]×F)3.

The outline of this article is as follows: first in the next section, we define the “fluid-structure” operator9

associated with the system (1.7)–(1.9) and its properties. We also give some useful inequalities and define some10

mollifiers. Then in Section 3, we show some important properties of the weak solutions of (1.7)–(1.9). In order11

to prove Theorem 1.4 in the critical case, we need to show the existence of mild solutions for (1.7)–(1.9) if the12

initial condition satisfies a ∈ L2 ∩ L3. This is the aim of Section 4. Section 5 is devoted to the proof of the13

uniqueness of weak solutions, that is to the proof of Theorem 1.4. Finally, in Section 6, we show Theorem 1.814

and Theorem 1.10 for the smoothness of the weak solutions of (1.7)–(1.9).15

Notation 1.11. In the whole paper, we use C as a generic positive constant that does not depend on the other16

terms of the inequality. The value of the constant C may change from one appearance to another. We also use17

the notation X ≲p Y if there exists a constant C > 0 depending only on the parameter p such that we have the18

inequality X ⩽ CY .19

2 Preliminaries20

In this section, we introduce the “fluid-structure” operator associated with the system (1.7)–(1.9), and we21

present some useful properties of this operator. We also recall some basic inequalities and properties of the22

mollifiers.23

2.1 The “fluid-structure” operator.24

We start by the following Helmholtz type decomposition of the space Lq defined in (1.11). From [33], we have25

the following decomposition26

Lq(R3)3 = Lq ⊕ Gq (2.1)

where27

Gq :=
{
φ ∈ Lq(R3)3 | ∃π ∈ L1

loc(F), φ = ∇π in F ,∫
S
ρSφ dy +

∫
∂S

πν dγx = 0,

∫
S
ρSφ× x dx+

∫
∂S

πν × x dγx = 0

}
.
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In the particular case q = 2, note that L2 and G2 are orthogonal for the scalar product in ⟨·, ·⟩L2 (defined by1

(1.14)). Note also that φ ∈ Gq and Dφ = 0 in S if and only if there exists π ∈ L1
loc(F), ∇π ∈ Lq(F)3 such that2

φ = ∇π in F , ℓφ = −m−1

∫
∂S

πν dγx, ωφ = −J−1

∫
∂S

πν × x dγx. (2.2)

We denote by Pq : Lq(R3)3 → Lq the projection onto Lq along Gq. Then, we can define the operator
Aq : D(Aq) → Lq as follows

D(Aq) :=
{
φ ∈ W1,q | φ|F ∈ W 2,q(F)3

}
, Aqφ := PqÃqφ,

where

Ãqφ :=

 µ∆φ (y ∈ F),

−m−1

(∫
∂S

2D(φ)ν dγx

)
− J−1

(∫
∂S

x× 2D(φ)ν dγx

)
× y (y ∈ S).

We also define

F(v) :=
{

−v ⊗ (v − ℓv) in F ,
0 in S,

and using that (v ⊗ (v − ℓv)) ν = 0 on ∂S, we have

divF(v) :=
{

− ((v − ℓv) · ∇) v in F ,
0 in S.

This allows us to write (1.7)–(1.9) in the following abstract way:3

v′ = Aqv + Pq divF(v) (t > 0), v(0) = a. (2.3)

We now recall some properties of the “fluid-structure” operator Aq from [4]. First we have (see [4, Proposition4

7.3])5

Proposition 2.1. Let 1 < q < ∞. Assume that φ ∈ D(Aq) and Aqφ = Pq(F1F ) with F ∈ Wm,q(F)3 for some6

m ∈ N. Then φ|F ∈ Wm+2,q(F)3.7

Second, we have (see [4, Theorem 6.1] or [24, Theorem 4.3])8

Proposition 2.2. Let 1 < p, q < ∞. Then Aq is the infinitesimal generator of a bounded analytic semigroup
on Lq. Moreover, Aq satisfies the maximal Lp-regularity property: for any T > 0 and for any φ ∈ Lp(0, T ;Lq),
there exists a unique solution v ∈ W 1,p(0, T ;Lq) ∩ Lp(0, T ;D(Aq)) of

v′ = Aqv + φ in (0, T ), v(0) = 0.

We also recall the Lq − Lr decay estimates of the “fluid-structure” semigroup obtained in [4, Theorem 7.1]:9

Theorem 2.3. Assume q ∈ (1,∞) and

q ⩽ r < ∞ or r = ∞.

Then10 ∥∥etAqφ
∥∥
Lr ≲q,r t−

3
2 (

1
q−

1
r ) ∥φ∥Lq (t > 0, φ ∈ Lq). (2.4)

Assume 1 < q ⩽ r ⩽ 3. Then11 ∥∥∇etAqφ
∥∥
Lr(F)3

≲q,r t−
3
2 (

1
q−

1
r )−

1
2 ∥φ∥Lq (t > 0, φ ∈ Lq). (2.5)

Finally, we state a useful lemma ([4, Lemma 8.1]) to deal with the estimate of the nonlinear terms:12

Lemma 2.4. Assume
3

2
⩽ q ⩽ r < ∞.

There for any F ∈ Lq(R3)9, F = 0 in S, divF ∈ Lr(R3)3,∥∥etArPr divF
∥∥
Lr ≲q,r Ct−

3
2 (

1
q−

1
r )−

1
2 ∥F∥Lq(F)9 .

6



2.2 Some inequalities and lemmas1

Several of the results below are adapted from arguments of Navier-Stokes system without any rigid body, see2

for instance [21], [25], [7], etc.3

First, we recall that a consequence of the Sobolev-Galiardo-Nirenberg inequality is the following standard4

estimate: for any w ∈ H1(R3) and for any r ∈ [2, 6],5

∥u∥Lr(R3) ≲r ∥∇u∥αr

L2(R3) ∥u∥
1−αr

L2(R3) , where αr := 3

(
1

2
− 1

r

)
∈ [0, 1]. (2.6)

Next, let us show a standard property for the nonlinear terms of our system:6

Lemma 2.5. Assume v ∈ H1 and w ∈ H1(R3)3. Then7 ∫
F
((v − ℓv) · ∇)w · w dy = 0.

In particular, if v ∈ H1 and w(1), w(2) ∈ H1(R3)3, then8 ∫
F
((v − ℓv) · ∇)w(1) · w(2) dy = −

∫
F
((v − ℓv) · ∇)w(2) · w(1) dy.

Proof. Let us consider a sequence (wk)k ⊂ C∞
c (R3)3, wk → w in H1(R3)3. Then an integration by parts and9

the definition (1.12) of H1 imply10 ∫
F
((v − ℓv) · ∇)wk · wk dy = −

∫
F
div(v − ℓv)

|wk|2

2
dy +

∫
∂S

(v − ℓv) · ν
|wk|2

2
dγ = 0.

Now, we can write11 ∫
F
((v − ℓv) · ∇)w · w dy −

∫
F
((v − ℓv) · ∇)wk · wk dy

=

∫
F
((v − ℓv) · ∇)(w − wk) · w dy +

∫
F
((v − ℓv) · ∇)wk · (w − wk) dy

and using (2.6), we have w ∈ L3(F)3 and wk → w in L3(F)3. This proves the lemma.12

We now show some estimates for the nonlinear terms by using the Prodi-Serrin condition:13

Lemma 2.6. Assume w ∈ L2(0, T ;H1(F)3), v ∈ L2(0, T ;H1(F)3)∩L∞(0, T ;L2(F)3) and u ∈ Lr(0, T ;Lq(F))14

with15

2

r
+

3

q
= 1, q ∈ [3,∞], r ∈ [2,∞].

If q ∈ (3,∞),16 ∣∣∣∣∣
∫∫

(0,t)×F
(v · ∇w) · udy ds

∣∣∣∣∣
≲ ∥∇w∥L2(0,t;L2(F)9) ∥∇v∥3/qL2(0,t;L2(F)9)

(∫ t

0

∥v(s, ·)∥2L2(F)3 ∥u(s, ·)∥
r
Lq(F)3 ds

)1/r

. (2.7)

If q = ∞, then17 ∣∣∣∣∣
∫∫

(0,t)×F
(v · ∇w) · udy ds

∣∣∣∣∣ ≲ ∥∇w∥L2(0,t;L2(F)9)

(∫ t

0

∥v(s, ·)∥2L2(F)3 ∥u(s, ·)∥
2
L∞(F)3 ds

)1/2

. (2.8)
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If q = 3, then1 ∣∣∣∣∣
∫∫

(0,t)×F
(v · ∇w) · udy ds

∣∣∣∣∣ ≲ ∥∇w∥L2(0,t;L2(F)9) ∥∇v∥L2(0,t;L2(F)9) ∥u∥L∞(0,t;L3(F)3) . (2.9)

Proof. First we assume q ∈ (3,∞). Using the Sobolev-Galiardo-Nirenberg inequality

∥v∥L6(F)3 ≲ ∥∇v∥L2(F)9 ,

and the Hölder inequality, we deduce that2 ∣∣∣∣∫
F
(v · ∇w) · udy

∣∣∣∣ ≲ ∥∇w∥L2(F)9 ∥u∥Lq(F)3 ∥∇v∥3/qL2(F)9 ∥v∥
1−3/q
L2(F)3 . (2.10)

If q = ∞, that is if u ∈ L2(0, T ;L∞(Ω)3), then3 ∣∣∣∣∫
F
(v · ∇w) · udy

∣∣∣∣ ≲ ∥∇w∥L2(F)9 ∥u∥L∞(F)3 ∥v∥L2(F)3 . (2.11)

If q = 3, that is if u ∈ L∞(0, T ;L3(Ω)3), then4 ∣∣∣∣∫
F
(v · ∇w) · udy

∣∣∣∣ ≲ ∥∇w∥L2(F)9 ∥u∥L3(F)3 ∥∇v∥L2(F)3 . (2.12)

Integrating (2.10), (2.10) and (2.10) in (0, t) and using the Hölder inequality, we obtain (2.7), (2.8) and (2.9).5

In the critical case ((r, q) = (∞, 3)), the above lemma is not sufficient to prove the uniqueness result. We6

need the two following results obtained in [25]:7

Lemma 2.7. Assume f ∈ L1(0, T ), f ⩾ 0 and for any t ∈ (0, T ],
∫ t

0
f(s) ds > 0. Assume (gk)k is sequence in

L∞(0, T ) with gk ⩾ 0, right-continuous at t = 0 and such that for a.e. t ∈ [0, T ], the sequence (gk(t))k is non
increasing and converging to 0. Then

∀ε > 0, ∃N ∈ N, ∀k ⩾ N, ∀t ∈ [0, T ],

∫ t

0

fgk ds ⩽ ε

∫ t

0

f ds.

Lemma 2.8. Assume w ∈ L2(t1, t2;H
1(F)3) and u ∈ L∞(t1, t2;L

3(F)3), u right-continuous at t = t1 in the
norm L3(F). Suppose that

∀t ∈ (t1, t2),

∫ t

t1

∥∇w∥2L2(F)9 ds > 0.

Then for any η > 0, there exists Cη > 0, independent of t, such that8 ∣∣∣∣∣
∫∫

(t1,t)×F
(w · ∇w) · udy ds

∣∣∣∣∣ ⩽ η ∥∇w∥2L2(t1,t;L2(F)9) + Cη ∥w∥2L2(t1,t;L2(F)3) , t1 ⩽ t ⩽ t2. (2.13)

2.3 Definition and properties of the mollifiers9

Let us introduce some standard mollifiers. We consider j ∈ C∞(R), odd, nonnegative, with support in (−1, 1)
and such that

∫
R j(t) dt = 1. Then we set for ε > 0,

jε(t) :=
1

ε
j

(
t

ε

)
.

Then, for T ∈ (0,∞), r ∈ [1,∞), and X a Banach space, we consider the following approximation of w ∈10

Lr(0, T ;X ):11

wε(t, ·) :=
∫ T

0

jε(t− τ)w(τ, ·) dτ. (2.14)

It has the following standard properties12
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Lemma 2.9. Assume T ∈ (0,∞). For any w ∈ Lr(0, T ;X ) with r ∈ [1,∞),

wε ∈ C∞([0, T ];X ), lim
ε→0

∥w − wε∥Lr(0,T ;X ) = 0.

For any w ∈ C0([0, T ];X ),

lim
ε→0

wε(0, ·) =
1

2
w(0, ·), lim

ε→0
wε(T, ·) =

1

2
w(T, ·).

Assume that X is a Hilbert space. Then for any w(1), w(2) ∈ Lr(0, T ;X )∫ T

0

⟨∂tw(1)
ε , w(1)⟩X dt = 0,

∫ T

0

⟨∂tw(1)
ε , w(2)⟩X dt = −

∫ T

0

⟨∂tw(2)
ε , w(1)⟩X dt.

The proof of the above lemma is standard and we skip it.1

3 Properties of the weak solutions2

In this section, we derive some properties of the weak solution to (1.7)–(1.9) (see Definition 1.1). This results3

are in the spirit of Navier-Stokes equation without any rigid body.4

Proposition 3.1. Assume that v is a weak solution of (1.7)–(1.9). Then t 7→ v(t, ·) is continuous in [0, T ] for5

the weak topology of L2(R3)3 and for any 0 ⩽ s < t ⩽ T and for any φ ∈ H1(s, t;H1),6

−
∫ t

s

⟨v, ∂tφ⟩L2 dτ + 2µ

∫∫
(s,t)×R3

D(v) : D(φ) dy dτ +

∫∫
(s,t)×F

((v − ℓv) · ∇)v · φdy dτ

= ⟨v(s, ·), φ(s, ·)⟩L2 − ⟨v(t, ·), φ(t, ·)⟩L2 . (3.1)

Proof. Assume t ∈ [0, T ) and φ ∈ H1(0, t;H1). We consider θ ∈ C1(R; [0, 1]), θ ≡ 1 in (−∞, 1), and θ ≡ 0 in
(2,∞). We set for α > 0 small enough,

θα(τ) := θ

(
τ − t+ α

α

)
and we use in (1.16) the test function θαφ ∈ H1(0, T ;H1) that cancels at t = T for α small enough. Passing to7

the limit as α → 0, we obtain (3.1) for s = 0 and for a.e. t ∈ (0, T ). In particular, if φ ∈ H1 (independent of8

time), this yields9

⟨v(t, ·), φ⟩L2 = ⟨a, φ⟩L2 − 2µ

∫ t

0

∫
R3

D(v) : D(φ) dy dτ −
∫ t

0

∫
F
((v − ℓv) · ∇)v · φdy dτ. (3.2)

This shows the continuity of t 7→ ⟨v(t, ·), φ⟩L2 for any φ ∈ H1, and by density for any φ ∈ L2. Then, we use the10

orthogonal decomposition (2.1) for q = 2 to conclude.11

We now show that under Prodi-Serrin condition (1.18), weak solutions of (1.7)–(1.9) satisfy the energy12

equality instead of the energy inequality (1.17):13

Proposition 3.2. If v is a weak solution of (1.7)–(1.9) such that14

v ∈ L4(0, T ;L4(F)3), (3.3)

then15

1

2
∥v(t, ·)∥2L2 + 2µ

∫∫
(0,t)×R3

|D(v)|2 dy dτ =
1

2
∥a∥2L2 (t ∈ [0, T ]). (3.4)

In particular, if v satisfies the Prodi-Serrin condition (1.18), then it satisfies (3.4).16
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Proof. First, if v satisfies the Prodi-Serrin condition (1.18), then it satisfies (3.3). Indeed, if q ⩾ 4, then we can
combine (1.18) with v ∈ L∞(0, T ;L2(F)3) to deduce

v ∈ L4 q−2
q−3 (0, T ;L4(F)3) ⊂ L4(0, T ;L4(F)3).

If 3 ⩽ q < 4, then we can combine (1.18) with v ∈ L2(0, T ;L6(F)3) to deduce

v ∈ L4 6−q
9−2q (0, T ;L4(F)3) ⊂ L4(0, T ;L4(F)3).

Assume now that v is a weak solution of (1.7)–(1.9) satisfying (3.3). We consider the approximation vε ∈1

H1(0, t;H1) given by (2.14) and we use it as the test function in (3.1) for s = 0. We obtain2

−
∫ t

0

⟨v, ∂tvε⟩L2 dτ + 2µ

∫∫
(0,t)×R3

D(v) : D(vε) dy dτ +

∫∫
(0,t)×F

((v − ℓv) · ∇)v · vε dy dτ

= ⟨a, vε(0, ·)⟩L2 − ⟨v(t, ·), vε(t, ·)⟩L2 . (3.5)

From Lemma 2.5, we have∫∫
(0,t)×F

((v − ℓv) · ∇)v · vε dy dτ = −
∫∫

(0,t)×F
((v − ℓv) · ∇)vε · v dy dτ

and thus3 ∣∣∣∣∣
∫∫

(0,t)×F
((v − ℓv) · ∇)v · v dy dτ −

∫∫
(0,t)×F

((v − ℓv) · ∇)vε · v dy dτ

∣∣∣∣∣
≲

(
∥v∥2L4(0,T ;L4(F)3) + ∥v∥2L∞(0,T ;L2)

)
∥v − vε∥L2(0,t;H1) .

Using Lemma 2.9 and Lemma 2.5, we deduce4

lim
ε→0

∫∫
(0,t)×F

((v − ℓv) · ∇)vε · v dy dτ =

∫∫
(0,t)×F

((v − ℓv) · ∇)v · v dy dτ = 0.

Moreover, Lemma 2.9 and the continuity of v in the weak topology of L2(R3)3 imply5

lim
ε→0

∫∫
(0,t)×R3

D(v) : D(vε) dy dτ =

∫∫
(0,t)×R3

|D(v)|2 dy dτ,

6 ∫ t

0

⟨v, ∂tvε⟩L2 dτ = 0, lim
ε→0

⟨v(t, ·), vε(t, ·)⟩L2 =
1

2
∥v(t, ·)∥2L2 , lim

ε→0
⟨a, vε(0, ·)⟩L2 =

1

2
∥a∥2L2 .

Combining the above relations together with (3.5), we complete the proof of the proposition.7

4 Existence and uniqueness of mild solutions8

In this section, we consider mild solutions for the system (1.7)–(1.9). More precisely, writing (1.7)–(1.9) as (2.3),9

with the help of the fluid-structure operator Aq, the function F and the projection operator Pq introduced in10

Section 2.1, we say that v is a mild solution of (1.7)–(1.9) or of (2.3), if v satisfies the following integral equation11

v(t) = etAa+

∫ t

0

e(t−s)APdivF(v)(s) ds. (4.1)

Here and in what follows, we can drop the indices q for Aq and Pq to simplify the writing. There is a strong12

connection between mild solutions and weak solutions even if these notions are usually not equivalent. Here, we13

consider initial data in L2 ∩ L3 and we prove the local in time existence and uniqueness of mild solutions that14

are also weak solutions in the sense of Definition 1.1. The precise statement is as follows:15
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Theorem 4.1. Let us assume that a ∈ L2 ∩ L3. Then there exist T∗ ∈ (0, T ] and a unique mild solution1

v ∈ C0([0, T∗];L3) of (1.7)–(1.9) on (0, T∗) with2

t1/4v ∈ C0([0, T∗];L6), t1/2v ∈ C0([0, T∗];L∞), t1/2∇v ∈ C0([0, T∗];L
3(F)9), (4.2)

and3

lim
t→0

∥∥∥t1/4v(t)∥∥∥
L6

+
∥∥∥t1/2v(t)∥∥∥

L∞
+
∥∥∥t1/2∇v(t)

∥∥∥
L3(F)9

= 0. (4.3)

Furthermore, v is a weak solution of (1.7)–(1.9) on (0, T∗) and it satisfies the energy equality (3.4) and4

t3/2(1/3−1/q)v ∈ C0([0, T∗];Lq) (q ∈ [3,∞]). (4.4)

In [4, Theorem 8.2], it was already proved that if a ∈ L3, there exist T∗ ∈ (0, T ] and a unique mild solution5

v ∈ C0([0, T∗];L3) of (1.7)–(1.9) on (0, T∗) with (4.2) and (4.3). It is also shown in [4, Theorem 8.2] that this6

solution satisfies (4.4). The proof of the existence of a mild solution is based on the Banach fixed point in the7

Banach space8

CT =
{
v | t1/4v ∈ C0([0, T ];L6), t1/2v ∈ C0([0, T ];L∞), t1/2∇v ∈ C0([0, T ];L3(F)9)

}
, T > 0,

equipped with the norm9

∥v∥CT
:=

∥∥∥t1/4v(t)∥∥∥
L∞(0,T ;L6)

+
∥∥∥t1/2v(t)∥∥∥

L∞(0,T ;L∞)
+

∥∥∥t1/2∇v(t)
∥∥∥
L∞(0,T ;L3(F)9)

. (4.5)

More precisely, let us denote by10

CT,R :=
{
v ∈ CT | ∥v∥CT

⩽ R
}
, (4.6)

the closed ball of radius R > 0, and by N the map defined by11

N v(t) := etAa+

∫ t

0

e(t−s)APdivF(v)(s) ds. (4.7)

Then it is shown in [4] that for R > 0 small enough, there exists TR > 0 such that CTR,R is invariant by N and
that on this ball, N is a strict contraction. It thus has a fixed point that satisfies (4.1). Furthermore, v is the
limit of the sequence

v1 = 0, vn+1 = N vn (n ∈ N),

for which we have vn ∈ CTR,R for all n ∈ N. It is then proved in [4] that12 ∥∥∥t3/2(1/3−1/q)vn

∥∥∥
L∞(0,TR;Lq)

≲q R (q ∈ [3,∞]). (4.8)

We are now in a position to prove Theorem 4.1:13

Proof of Theorem 4.1. First we can show that by taking R > 0 possibly smaller, we have14

v ∈ C0([0, TR];L2), t1/2∇v ∈ C0([0, TR];L
2(F)9). (4.9)

Using (4.7), (4.8), Theorem 2.3 and Lemma 2.4, we find for t ∈ [0, TR]15

∥vn+1(t)∥L2 = ∥N vn(t)∥L2 ≲ ∥a∥L2 +
∥∥∥t1/2vn∥∥∥

L∞(0,TR;L∞)
∥vn∥L∞(0,TR;L2)

∫ t

0

(t− s)−1/2s−1/2 ds

≲ ∥a∥L2 +R ∥vn∥L∞(0,TR;L2) ,

and16
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∥∥∥t1/2∇vn+1(t)
∥∥∥
L2(F)9

≲ ∥a∥L2 + t1/2 ∥ℓvn∥L∞(0,TR)

∥∥∥t1/2∇vn

∥∥∥
L∞(0,TR;L2(F)9)

∫ t

0

(t− s)−1/2s−1/2 ds

+ t1/2
∥∥∥t1/8vn∥∥∥

L∞(0,TR;L4)

∥∥∥t1/2∇vn

∥∥∥
L∞(0,TR;L2(F)9)

∫ t

0

(t− s)−7/8s−1/8s−1/2 ds

≲ ∥a∥L2 +R
∥∥∥t1/2∇vn

∥∥∥
L∞(0,TR;L2(F)9)

.

Thus taking R small enough, the sequences (vn)n and
(
t1/2∇vn

)
n
are bounded in L∞(0, TR;L2(F)) and

L∞(0, TR;L
2(F)9) respectively. Passing to the limit, we deduce

v ∈ L∞(0, TR;L2) and t1/2∇v ∈ L∞(0, TR;L
2(F)9).

The arguments to deduce the continuity in time of v and ∇v from the above relations are classical, see, for1

instance [20] or [1, p.118]. We take T∗ = TR from now on.2

We deduce from (4.2) and (4.9) that

tP divF(v) ∈ L2(0, T∗;L2),

so that ṽ(t) := tv(t) is the strong solution of3

ṽ′ = A2ṽ + tP divF(v) + ṽ (t ∈ (0, T∗)), ṽ(0) = 0.

We thus deduce from Proposition 2.2 that ṽ ∈ L2(0, T∗;D(A2)) ∩H1(0, T∗;L2) and that v ∈ L2(ε, T∗;D(A2)) ∩4

H1(ε, T∗;L2) satisfies5

v′ = A2v + P2 divF(v) (4.10)

in a strong sense in (ε, T∗) for any ε > 0. Multiplying the above equation by v, integrating over the interval6

(ε, t) and using Lemma 2.5, we obtain7

1

2
∥v(t, ·)∥2L2 + 2µ

∫ t

ε

∫
F
|D(v)|2 dy dτ =

1

2
∥v(ε)∥2L2 (0 < ε ⩽ t ⩽ T∗).

Letting ε → 0, in the above identity we obtain the energy equality. From the Korn and the Poincaré inequalities,8

we also deduce that v ∈ L2(0, T∗;H1). Assume φ ∈ H1(0, T∗;H1) with φ(T∗, ·) = 0. Multiplying (4.10) by φ,9

integrating over the interval (ε, t) and integrating by parts, we find10

−
∫ T∗

ε

⟨v, ∂tφ⟩L2 dt+

∫∫
(ε,T∗)×R3

2µD(v) : D(φ) dy dτ +

∫∫
(ε,T∗)×F

((v − ℓv) · ∇)v · φdy dτ

= ⟨v(ε, ·), φ(ε, ·)⟩L2 .

By letting ε → 0, we recover (1.16) and we deduce that v is a weak solution of (1.7)–(1.9).11

5 Uniqueness of weak solutions12

In this section, we show Theorem 1.4 in the non critical case and Theorem 1.6 by proceeding as in [25] and then13

we show Theorem 1.4 in the critical case by following the method of [21].14

Let v
(1)
ε and v

(2)
ε be the mollifiers of v(1) and v(2) respectively. We apply Proposition 3.1 with φ = v

(1)
ε and15

φ = v
(2)
ε . This leads to16

−
∫ t

0

⟨v(1), ∂tv(2)ε ⟩L2 dτ + 2µ

∫∫
(0,t)×R3

D(v(1)) : D(v(2)ε ) dy dτ +

∫∫
(0,t)×F

((v(1) − ℓv(1)) · ∇)v(1) · v(2)ε dy dτ

= ⟨a, v(2)ε (0, ·)⟩L2 − ⟨v(1)(t, ·), v(2)ε (t, ·)⟩L2 , (5.1)
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and1

−
∫ t

0

⟨v(2), ∂tv(1)ε ⟩L2 dτ + 2µ

∫∫
(0,t)×R3

D(v(2)) : D(v(1)ε ) dy dτ +

∫∫
(0,t)×F

((v(2) − ℓv(2)) · ∇)v(2) · v(1)ε dy dτ

= ⟨a, v(1)ε (0, ·)⟩L2 − ⟨v(2)(t, ·), v(1)ε (t, ·)⟩L2 . (5.2)

Then using Lemma 2.9, we have2

−
∫ t

0

⟨v(1), ∂tv(2)ε ⟩L2 ds−
∫ t

0

⟨v(2), ∂tv(1)ε ⟩L2 ds = 0, (5.3)

3

⟨a, v(2)ε (0, ·)⟩L2 − ⟨v(1)(t, ·), v(2)ε (t, ·)⟩L2 → 1

2
⟨a, a⟩L2 − 1

2
⟨v(1)(t, ·), v(2)(t, ·)⟩L2 , (5.4)

4

⟨a, v(1)ε (0, ·)⟩L2 − ⟨v(2)(t, ·), v(1)ε (t, ·)⟩L2 → 1

2
⟨a, a⟩L2 − 1

2
⟨v(1)(t, ·), v(2)(t, ·)⟩L2 . (5.5)

Using these relations, summing (5.1) and (5.2) and passing to the limit ε → 0, we deduce5

⟨v(1)(t, ·), v(2)(t, ·)⟩L2 + 4µ

∫∫
(0,t)×R3

D(v(1)) : D(v(2)) dy dτ

+

∫∫
(0,t)×F

((v(1) − ℓv(1)) · ∇)v(1) · v(2) dy dτ +

∫∫
(0,t)×F

((v(2) − ℓv(2)) · ∇)v(2) · v(1) dy dτ = ⟨a, a⟩L2 , (5.6)

Applying Proposition 3.2 and using that v(1) satisfies the energy inequality (1.17), we can also write

1

2

∥∥∥v(1)(t, ·)∥∥∥2
L2

+ 2µ

∫∫
(0,t)×R3

∣∣∣D(v(1))∣∣∣2 dy dτ ⩽
1

2
∥a∥2L2 (t ∈ [0, T ]),

1

2

∥∥v2(t, ·)∥∥2L2 + 2µ

∫∫
(0,t)×R3

∣∣∣D(v(2))∣∣∣2 dy dτ =
1

2
∥a∥2L2 (t ∈ [0, T ]).

Combining the two above estimates with (5.6), we deduce6

1

2

∥∥∥(v(2) − v(1))(t, ·)
∥∥∥2
L2

+ 2µ

∫∫
(0,t)×R3

∣∣∣D(v(2) − v(1))
∣∣∣2 dy dτ

⩽
∫∫

(0,t)×F
((v(2) − ℓv(2)) · ∇)v(2) · v(1) dy dτ

+

∫∫
(0,t)×F

((v(1) − ℓv(1)) · ∇)v(1) · v(2) dy dτ, (t ∈ [0, T ]). (5.7)

Set
w := v(1) − v(2).

Using Lemma 2.5, we obtain7 ∫
F
((v(2) − ℓv(2)) · ∇)v(2) · v(1) dy +

∫
F
((v(1) − ℓv(1)) · ∇)v(1) · v(2) dy

=

∫
F
((w − ℓw) · ∇)v(1) · v(2) dy =

∫
F
((w − ℓw) · ∇)w · v(2) dy.

Combining this with (5.7), we finally arrive to8

1

2
∥w(t, ·)∥2L2 + 2µ

∫∫
(0,t)×R3

|D(w)|2 dy dτ ⩽
∫∫

(0,t)×F
((w − ℓw) · ∇)w · v(2) dy dτ (t ∈ [0, T ]). (5.8)

We are now in a position to prove the uniqueness results. We start by proving Theorem 1.4 in the non-critical9

case:10
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Proof of Theorem 1.4 in the noncritical case : q > 3. We apply the estimate (2.7) on (5.8) to obtain1

1

2
∥w(t, ·)∥2L2 + 2µ

∫∫
(0,t)×R3

|D(w)|2 dy dτ

≲ ∥∇w∥1+3/q
L2(0,t;L2(F)9)

(∫ t

0

∥w(s, ·)∥2L2(F)3

∥∥∥v(2)(s, ·)∥∥∥r
Lq(F)3

ds

)1/r

+
∥∥∥v(2)∥∥∥

L∞(0,T ;L2)
∥∇w∥L2(0,t;L2(F)9)

(∫ t

0

|ℓw(s)|2 ds

)1/2

.

Therefore by Young’s inequality, for any η > 0 there exists Cη > 0 such that2

1

2
∥w(t, ·)∥2L2 + 2µ

∫∫
(0,t)×R3

|D(w)|2 dy dτ

⩽ η ∥∇w∥2L2(0,t;L2(F)9) + Cη

∫ t

0

∥w(s, ·)∥2L2(F)3

∥∥∥v(2)(s, ·)∥∥∥r
Lq(F)3

ds+ Cη

∥∥∥v(2)∥∥∥2
L∞(0,T ;L2)

∫ t

0

|ℓw(s)|2 ds.

(5.9)

In particular, taking η small enough, we deduce3

∥w(t, ·)∥2L2 ≲
∫ t

0

(∥∥∥v(2)(s, ·)∥∥∥r
Lq(F)3

+
∥∥∥v(2)∥∥∥2

L∞(0,T ;L2)

)
∥w(s, ·)∥2L2 ds (t ∈ [0, T ]), (5.10)

and from the Grönwall lemma, w = 0 in [0, T ].4

Proof of Theorem 1.6. We claim that there is a t0 > 0 such that v(1) = v(2) on [0, t0). Else, for any t ∈ (0, T ],5

w := v(1) − v(2) satisfies6 ∫ t

0

∥∇w(s, ·)∥2L2(F)9 ds > 0. (5.11)

In that case, since v(2) ∈ L∞(0, T ;L3(F)3) and since v(2) right-continuous at t = 0 in the norm of L3, we can7

apply Lemma 2.8 on (5.8): for any η > 0, there exists Cη > 0 such that8

1

2
∥w(t, ·)∥2L2 + 2µ

∫∫
(0,t)×R3

|D(w)|2 dy dτ ⩽ η ∥∇w∥2L2(0,t;L2(F)9)

+ Cη

∫ t

0

∥w(s, ·)∥2L2(F)3 ds+ Cη

∥∥∥v(2)∥∥∥2
L∞(0,T ;L2)

∫ t

0

|ℓw(s)|2 ds (t ∈ [0, T ]). (5.12)

Taking η small enough and using the Grönwall lemma, we conclude that w ≡ 0 which contradicts (5.11).9

In a similar manner, if v(1)(t, ·) = v(2)(t, ·) for t ∈ (0, T ), then there exists t0 > 0 such that v(1) = v(2) on10

[t, t + t0). Using this property and the weak contintuity of v(1) and v(2) (see Proposition 3.1, we deduce the11

result.12

It remains to show the uniqueness in the critical case, and we can obtain it by following the method of [21]13

and by using Theorem 1.6.14

Proof of Theorem 1.4 in the critical case. We show that v(2) ∈ C0
R([0, T );L

3(F))3 so that we can apply Theo-15

rem 1.6 and deduce that v(2) = v(1).16

Assume t ∈ [0, T ) and let (tk) be a sequence in (0, T ) such that tk → t and such that∥∥∥v(2)(tk, ·)∥∥∥
L3(F)3

⩽
∥∥∥v(2)∥∥∥

L∞(0,T ;L3(F)3)
.

14



Then, using Proposition 3.1, we deduce that up to a subsequence,

v(2)(tk, ·) ⇀ v(2)(t, ·) weakly in L2(F)3 ∩ L3(F)3.

In particular, we deduce that v(2)(t, ·) ∈ L2 ∩ L3. From Theorem 4.1, there exist T∗ > 0 and a weak solution1

ṽ(2) ∈ C0([t, T∗];L3) of (1.7)–(1.8) in [t, T∗] with initial condition ṽ(2)(t, ·) = v(2)(t, ·) (instead of (1.9)). Applying2

Proposition 3.2, v(2) satisfies the energy inequality (1.17) and thus from Theorem 1.6, we deduce that ṽ(2) = v(2)3

in [t, T∗]. Consequently, v
(2) ∈ C0([t, T∗];L3) and is right-continuous at t. We deduce v(2) ∈ C0

R([0, T );L
3(F))34

and this concludes the proof of Theorem 1.4 in the critical case.5

6 Regularity of weak solutions6

In this section, we prove Theorem 1.8 and Theorem 1.10. Assume v is a weak solution of (1.7)–(1.9) in the7

sense of Definition 1.1, and satisfies the hypothesis of either Theorem 1.8 or Theorem 1.10:8

v ∈ Lr(0, T ;Lq(F))3 for some q ∈ (3,∞) and
2

r
+

3

q
= 1, (6.1)

or for ε > 09

v ∈ L∞(0, T ;L3(F))3 with ∥v∥L∞(0,T ;L3) ⩽ ε. (6.2)

In order to show the regularity property in Theorem 1.8, we notice that v satisfies (in a weak sense and for10

f = 0) the following linear problem11 

∂tw − µ∆w +∇π + ((v − ℓv) · ∇)w = f (t ∈ (0, T ), y ∈ F),
divw = 0 (t ∈ (0, T ), y ∈ F),

w(t, y) = ℓw(t) + ωw(t)× y (t ∈ (0, T ), y ∈ ∂S),

mℓ′w(t) = −
∫
∂S

T(w, π)ν dγy +mℓf (t ∈ (0, T )),

Jω′
w(t) = −

∫
∂S

y × T(w, π)ν dγy + Jωf (t ∈ (0, T )),

w(0, ·) = a in F , ℓw(0) = ℓa, ωw(0) = ωa.

(6.3)

Let us introduce the bilinear operator12

B(v, w) := −P (((v − ℓv) · ∇)w1F ) , (6.4)

where P is the projection operator defined in Section 2.1. Using the operator A, also introduced in Section 2.1,13

we can write the above system in the following form:14

∂tw = Aw + B(v, w) + Pf in (0, T ), w(0) = a. (6.5)

The proofs of Theorem 1.8 and Theorem 1.10 rely on the regularity of this linear system. Indeed, in what15

follows, we are going to show that v = w a.e. in [0, T )× F , and that w has more regularity than that initially16

assumed on v.17

6.1 Strong solutions for the linear system18

Here, we consider strong solutions of (6.3) or equivalently of (6.5), that is solutions in a space19

X q(0, T ) = Lq(0, T ;D(Aq)) ∩W 1,q(0, T ;Lq),

for some q > 1. In the case q = 2, we recall that

X 2(0, T ) ⊂ C0([0, T ];H1),

15



and we can thus equip X 2(0, T ) with the norm1

∥w∥X 2(0,T ) := ∥w∥L2(0,T ;H2(F)3) + ∥w∥H1(0,T ;L2) + ∥w∥C0([0,T ];H1) .

We can show the following result:2

Proposition 6.1.3

• Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1). Assume also that P2f ∈ L2(0, T ;L2)4

and a ∈ H1. Then there exists a unique strong solution w ∈ X 2(0, T ) of (6.5).5

• There exists ε > 0 such that for any v weak solution of (1.7)–(1.9) satisfying (6.2) and for any P2f ∈6

L2(0, T ;L2), a ∈ H1, there exists a unique strong solution w ∈ X 2(0, T ) of (6.5).7

Proof. We consider for τ ∈ (0, T ] the mapping8

N : L2(0, τ ;L2) → L2(0, τ ;L2), g 7→ B(v, w) + Pf, (6.6)

where w ∈ X 2(0, τ) is the solution (see Proposition 2.2) of9

∂tw = Aw + g in (0, τ), w(0) = a. (6.7)

We have the estimate
∥w∥X 2(0,τ) ≲ ∥g∥L2(0,τ ;L2) + ∥a∥H1 .

We can see that the corresponding constant does not depend on τ by extending g by 0 on (τ,∞).10

We first consider the case when v satisfies (6.1). If q ∈ (3,∞), using interpolation and Sobolev embedding11

yield that for a.e. t ∈ (0, τ),12

∥∇w(t)∥L2q/(q−2)(F)9 ≲ ∥∇w(t)∥H3/q(F)9 ≲ ∥w(t)∥3/qH2(F)3 ∥w(t)∥
1−3/q
H1(F)3 ,

and thus13

∥∇w∥L2r/(r−2)(0,τ ;L2q/(q−2)(F))9 ≲ ∥w∥2/rL∞(0,τ ;H1(F))3 ∥w∥
1−2/r
L2(0,τ ;H2(F))3 ≲ ∥w∥X 2(0,τ) .

From the Hölder inequality, we deduce14

∥B(v, w)∥L2(0,τ ;L2) ≲
(
∥v∥Lr(0,τ ;Lq(F))3 + ∥ℓv∥L2(0,τ ;R3)

)
∥w∥X 2(0,τ) , (6.8)

and thus N is well-defined. If q = ∞, then we have15

∥B(v, w)∥L2(0,τ ;L2) ≲
(
∥v∥L2(0,τ ;L∞(F))3 + ∥ℓv∥L2(0,τ ;R3)

)
∥∇w∥L∞(0,τ ;L2(F))9

≲
(
∥v∥L2(0,τ ;L∞(F))3 + ∥ℓv∥L2(0,τ ;R3)

)
∥w∥X 2(0,τ) . (6.9)

Therefore, in this case also N is well-defined. Moreover, we deduce from the above estimates the existence of a
constant C0 > 0 such that∥∥∥N g(1) −N g(2)

∥∥∥
L2(0,τ ;L2)

⩽ C0

(
∥v∥Lr(0,τ ;Lq(F))3 + ∥ℓv∥L2(0,τ ;R3)

)∥∥∥g(1) − g(2)
∥∥∥
L2(0,τ ;L2)

and there exists τ1 ∈ (0, T ] such that

C0

(
∥v∥Lr(0,τ1;Lq(F))3 + ∥ℓv∥L2(0,τ1;R3)

)
⩽

1

2
.

For such a τ1, N admits a unique fixed point g ∈ L2(0, τ1;L2) and the corresponding solution w of (6.7) is a
strong solution of (6.5) in (0, τ1). By considering an increasing sequence τk > 0, k = 1, . . . , N with τN = T and
such that

C0

(
∥v∥Lr(τk,τk+1;Lq(F))3 + ∥ℓv∥L2(τk,τk+1;R3)

)
⩽

1

2
, (k = 1, . . . , N − 1) ,
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we can extend this solution to a solution of (6.5) in (0, T ).1

It remains to consider the case where v satisfies (6.2). In this case, we take τ = T, and using Sobolev2

embedding, we infer that3

∥B(v, w)∥L2(0,T ;L2) ≲ ∥v∥L∞(0,T ;L3(F))3 ∥∇w∥L2(0,T ;L6(F))9 + ∥ℓv∥L∞(0,T ;R3) ∥∇w∥L2(0,T ;L2(F))9

≲
(
∥v∥L∞(0,T ;L3(F))3 + ∥ℓv∥L∞(0,T ;R3)

)
∥w∥X 2(0,T ) , (6.10)

and thus N is well-defined and there exists a constant C1 > 0 such that∥∥∥N g(1) −N g(2)
∥∥∥
L2(0,T ;L2)

⩽ C1

(
∥v∥L∞(0,T ;L3(F))3 + ∥ℓv∥L∞(0,T ;R3)

)∥∥∥g(1) − g(2)
∥∥∥
L2(0,T ;L2)

.

Therefore, by choosing ε < 1
2C1

in (6.2), we obtain that N admits a unique fixed point g ∈ L2(0, T ;L2) and4

the corresponding solution w of (6.7) is a strong solution of (6.5) in (0, T ). This completes the proof of the5

proposition.6

Let us consider the adjoint system of (6.5):7

−∂tφ = Aφ− B(v, φ) + Pf in (0, T ), φ(T ) = a. (6.11)

We can show the following result with a proof similar to to the proof of Proposition 6.1:8

Proposition 6.2. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given in9

Proposition 6.1. Assume also that P2f ∈ L2(0, T ;L2) and a ∈ H1. Then there exists a unique strong solution10

φ ∈ X 2(0, T ) of (6.11).11

6.2 Weak solutions for the linear system12

Let us introduce two different notions of weak solutions for (6.5):13

Definition 6.3. Assume P2f ∈ L2(0, T ;L2) and a ∈ L2.14

• We say that w ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) is a weak solution of (6.5) if for any φ ∈ H1(0, T ;H1) such15

that φ(T, ·) = 0,16

−
∫ T

0

⟨w, ∂tφ⟩L2 dt+

∫∫
(0,T )×R3

2µD(w) : D(φ) dy dτ +

∫∫
(0,T )×F

((v − ℓv) · ∇)w · φdy dτ

=

∫ T

0

⟨P2f, φ⟩L2 dt+ ⟨a, φ(0, ·)⟩L2 . (6.12)

• We say that w ∈ L2(0, T ;L2) is a very weak solution of (6.5) if for any φ ∈ H1(0, T ;D(A)) such that17

φ(T, ·) = 0,18

−
∫ T

0

⟨w, ∂tφ⟩L2 dt−
∫ T

0

⟨w,Aφ⟩L2 dt−
∫∫

(0,T )×F
((v − ℓv) · ∇)φ · w dy dτ

=

∫ T

0

⟨P2f, φ⟩L2 dt+ ⟨a, φ(0, ·)⟩L2 . (6.13)

From the above definition, one can check that a strong solution of (6.5) is a weak solution of (6.5), and that19

a weak solution of (6.5) is a very weak solution of (6.5).20

Lemma 6.4. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given in21

Proposition 6.1. Then there exists at most one very weak solution of (6.5).22

17



Proof. Let us consider w(1), w(2) ∈ L2(0, T ;L2) two very weak solution of (6.5). Then for any φ ∈ H1(0, T ;D(A))1

such that φ(T, ·) = 0, we have2

−
∫ T

0

⟨w(1) − w(2), ∂tφ⟩L2 dt−
∫ T

0

⟨w(1) − w(2),Aφ⟩L2 dt

−
∫∫

(0,T )×F
((v − ℓv) · ∇)φ ·

(
w(1) − w(2)

)
dy dτ = 0. (6.14)

Then, using Proposition 6.2, there exists a strong solution φ ∈ X 2(0, T ) of

−∂tφ = Aφ− B(v, φ) + w(1) − w(2) in (0, T ), φ(T ) = 0.

We can use the approximations φε ∈ H1(0, T ;D(A)) of φ given by (2.14) as test functions in (6.14). Using3

Lemma 2.9 and (6.8), we can pass to the limit ε → 0 in (6.14) and we deduce w(1) = w(2).4

Remark 6.5. In particular, if v is a weak solution of (1.7)–(1.9) and if v satisfies (6.1) or (6.2) with ε given
in Proposition 6.1, then a very weak solution w of (6.5) with f = 0 and with the same initial condition a ∈ L2

as in (1.9), satisfies
w = v.

We use this property in what follows to deduce properties of v from the same properties for w.5

Proposition 6.6. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given6

in Proposition 6.1. Assume also P2f ∈ L2(0, T ;L2) and a ∈ L2. Then there exists a unique weak solution w of7

(6.5). Moreover w ∈ C0([0, T ];L2).8

Proof. The uniqueness comes from Lemma 6.4. For the existence, we consider a sequence a(k) ∈ H1 such that9

a(k) ∈ H1 and a(k) → a in L2. Then for any k ⩾ 0, there exists a unique strong solution w(k) ∈ X 2(0, T ) of10

(6.5) where a is replaced by a(k). We have in particular the relations11

∂t

(
w(k) − w(k′)

)
= A

(
w(k) − w(k′)

)
+ B

(
v,
(
w(k) − w(k′)

))
in (0, T ),(

w(k) − w(k′)
)
(0) =

(
a(k) − a(k

′)
)
.

(6.15)

Multiplying the above first relation with
(
w(k) − w(k′)

)
and using Lemma 2.5, we deduce that∥∥∥w(k) − w(k′)

∥∥∥
L∞(0,T ;L2)

+
∥∥∥w(k) − w(k′)

∥∥∥
L2(0,T ;H1)

≲
∥∥∥a(k) − a(k

′)
∥∥∥
L2

,

so that
(
w(k)

)
is a Cauchy sequence in C0([0, T ];L2)∩L2(0, T ;H1) and its limit w is a weak solution of (6.5).12

6.3 Regularity of the weak solutions of the linear system13

Lemma 6.7. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given in14

Proposition 6.1. Then tv ∈ X 2(0, T ).15

Proof. Let us set16

w(t, ·) = tv(t, ·) (t ∈ (0, T )). (6.16)

Then we deduce from (1.16) that w is a weak solution of17

∂tw = A2w + B(v, w) + v in (0, T ), w(0) = 0.

Since v ∈ L2(0, T ;L2), we deduce from Proposition 6.1 that the above equation admits a unique strong solution18

in X 2(0, T ). By using, Lemma 6.4, we conclude that w ∈ X 2(0, T ).19

18



Lemma 6.8. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given in1

Proposition 6.1. Then t4v ∈ X 4(0, T ).2

Proof. Let us set3

w(t, ·) = t2v(t, ·) (t ∈ (0, T )). (6.17)

Then we deduce from Lemma 6.7 that w is a strong solution of4

∂tw = Aw + B(tv, tv) + 2tv in (0, T ), w(0) = 0,

with tv ∈ X 2(0, T ).5

On the other hand, from Sobolev embeddings (see, for instance, [22, Lemma 3.3, p.80], [17, Proposition 4.3]),
we have

L2(0, T ;H2(F)) ∩H1(0, T ;L2(F)) ↪→ L10(0, T ;L10(F)) ∩ L10/3(0, T ;W 1,10/3(F)).

We thus deduce that
B(tv, tv) + 2tv ∈ L5/2(0, T ;L5/2)

and applying Proposition 2.2, we obtain w = t2v ∈ X 5/2(0, T ).6

We can now repeat the argument: we set7

w(t, ·) = t4v(t, ·) (t ∈ (0, T )) (6.18)

which is the strong solution of8

∂tw = Aw + B(t2v, t2v) + 4t3v in (0, T ), w(0) = 0,

with t2v ∈ X 5/2(0, T ). From Sobolev embeddings (see, for instance, [22, Lemma 3.3, p.80], [17, Proposition
4.3]), we have

L5/2(0, T ;W 2,5/2(F)) ∩W 1,5/2(0, T ;L5/2(F)) ↪→ Lr(0, T ;Lr(F)) ∩ L5(0, T ;W 1,5(F))

for any r > 5/2. We thus deduce that

B(t2v, t2v) + 4t3v ∈ L4(0, T ;L4)

and applying Proposition 2.2, we obtain w = t4v ∈ X 4(0, T ).9

10

Lemma 6.9. Assume v is a weak solution of (1.7)–(1.9) and that v satisfies (6.1) or (6.2) with ε given in
Proposition 6.1. Then

t16v ∈ H2(0, T ;L2) ∩H1(0, T ;D(A2)) ∩ L2(0, T ;H4(F)3).

Proof. Let us set11

w(t, ·) = t8∂tv(t, ·) (t ∈ (0, T )). (6.19)

Then we deduce from Lemma 6.7 that w is a very weak solution of12

∂tw = Aw + B(v, w) + B(t4∂tv, t4v) + 8t7∂tv in (0, T ), w(0) = 0.

Since t4v ∈ X 4(0, T ) and tv ∈ X 2(0, T ),

B(t4∂tv, t4v) + 8t7∂tv ∈ L2(0, T ;L2).

Combining Proposition 6.1 and Lemma 6.4, we deduce that w = t8∂tv ∈ X 2(0, T ). Note in particular that13

t8v ∈ H1(0, T ;H2(F)3) ↪→ L∞(0, T ;L∞(F)3). (6.20)
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From (1.7), we have1

t8A2v = −t8∂tv − t8B(v, v). (6.21)

Using that t4v ∈ X 4(0, T ) and and tv ∈ X 2(0, T ), we deduce that

t8((v − ℓ) · ∇)v ∈ L2(0, T ;H1(F))3.

Then, using Proposition 2.1, we deduce that t8v ∈ L2(0, T ;H3(F))3. Using this relation and (6.20), we deduce

t16((v − ℓ) · ∇)v ∈ L2(0, T ;H2(F))3,

and repeating the above argument on (6.21) allows us to obtain t16v ∈ L2(0, T ;H4(F))3.2

We are now in a position to prove Theorem 1.8 and Theorem 1.10.3

Proof of Theorem 1.8. We show by induction that for any k ⩾ 2, there exists m ⩾ 1 such that4

tm∂j
t v ∈ L2(0, T ;H2(k−j)(F)3) (0 ⩽ j ⩽ k). (6.22)

We can check that w = t2m+1∂k
t v is a very weak solution of5

∂tw = Aw + B(v, w) + t2m+1
k∑

j=1

(
k

j

)
B(∂j

t v, ∂
k−j
t v) + (2m+ 1)t2mv in (0, T ), w(0) = 0. (6.23)

We deduce from (6.22) that for 1 ⩽ j ⩽ k,

tm+1∂k−j
t v ∈ L2(0, T ;H2j(F)3) ∩H1(0, T ;H2(j−1)(F)3)

and thus,

∇
(
tm+1∂k−j

t v
)
∈ L∞(0, T ;H2j−2(F)9).

For j ⩾ 2, we deduce from a Sobolev embedding that tm+1∂k−j
t ∇v ∈ L∞(0, T ;L∞(F)9) and thus

t2m+1B(∂j
t v, ∂

k−j
t v) ∈ L2(0, T ;L2).

For j = 1, we deduce from a Sobolev embedding that

tm+1∂k−1
t ∇v ∈ L∞(0, T ;L2(F)9), tm∂tv ∈ L2(0, T ;H2k−2(F)3) ↪→ L2(0, T ;L∞(F)3)

since k ⩾ 2. We thus deduce from Proposition 6.1 and Lemma 6.4, applied on (6.23), that w ∈ X 2(0, T ).6

It remains to show that for j = 0, . . . , k − 1, there exists mj ⩾ 1 such that7

tmj∂j
t v ∈ L2(0, T ;H2(k−j+1)(F)3). (6.24)

We have already obtained the above relation for j = k + 1 and j = k, and we proceed by backwards induction.8

Let us assume that (6.24) holds from k + 1 to j with 1 ⩽ j ⩽ k − 1. We can assume that mj ⩾ m+ 1 where m9

is the exponent in (6.22) and we want to show (6.24) for j − 1. From the equation satisfied by v, we deduce10

t2mjA∂j−1
t v = t2mj∂j

t v − t2mj

j−1∑
i=0

(
j − 1

i

)
B(∂i

tv, ∂
j−1−i
t v). (6.25)

Using (6.22), we have

tmj∂i
tv ∈ L2(0, T ;H2(k−j+1)(F)3), tmj∇∂j−1−i

t v ∈ L∞(0, T ;H2(k−j+1)(F)9), (i ∈ {1, . . . , j − 1}),
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and for i = 0,1

tmjv ∈ L∞(0, T ;H2k−1(F)3), tmj∇∂j−1
t v ∈ L2(0, T ;H2k−2j+1(F)9). (6.26)

Thus, using that 2k− 2j+1 ⩾ 3 so that H2k−2j+1(F) is an algebra, we deduce from (6.25) and Proposition 2.1
that

t2mj∂j−1
t v ∈ L2(0, T ;H2k−2j+3(F)3).

Using this, we can improve (6.26) and obtain for j ⩾ 22

t2mjv ∈ L∞(0, T ;H2k−1(F)3), t2mj∇∂j−1
t v ∈ L2(0, T ;H2(k−j+1)(F)9) (6.27)

and for j = 13

t2mjv ∈ L∞(0, T ;H2k(F)3), t2mj∇v ∈ L2(0, T ;H2k(F)9). (6.28)

In both cases, we can use Proposition 2.1 and we find

t4mj∂j−1
t v ∈ L2(0, T ;H2(k−j+2)(F)3)

and this concludes our inductions in k and j. We thus deduce (6.22) and thus that for any j, k ∈ N, there exists
m ⩾ 1 such that

tmv ∈ Hj(0, T ;H2k(F)3)

and this ends the proof of the theorem.4
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