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ABSTRACT
In most of the existing benchmark generators for combinatorial
optimization, one cannot tune variable importance, making the gen-
eration of real-like instances challenging. However, when it comes
to the study of optimization algorithms or new problems there is a
lack of real-like instances. To achieve more real-like instances, a
recently proposed generator, PUBO𝑖 (Polynomial Unconstrained
Binary Optimization with importance), includes parameters that
directly influence variable weights. The parameters of this gener-
ator enable the generation of landscapes with varying properties,
such as ruggedness and neutrality levels, yet their global structure
and the impact on optimization algorithm behavior remain to be
studied. In this work, we use local optima networks to observe the
differences in the landscape’s global structure according to variable
importance. Both the visualization and the metrics highlight how
the landscapes are affected by the variable importance parameters
of PUBO𝑖 , and that landscapes with variable importance resemble
real-like ones previously observed. We also conduct a first per-
formance analysis using two iterated local search algorithms and
observe different behaviors on different PUBO𝑖 instances according
to variable weights distribution.

CCS CONCEPTS
•Mathematics of computing → Graph algorithms; Combina-
torial algorithms; • Theory of computation → Evolutionary
algorithms.
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1 INTRODUCTION
The PUBO𝑖 (Polynomial Unconstrained Binary Optimization with
importance) generator [14] was introduced recently and allows the
generation of pseudo-Boolean optimization problems with config-
urable variable importance. A first analysis highlighted the impact
of benchmark parameters on some structural properties of the
fitness landscapes stemming from these instances, namely their
ruggedness and neutrality. While such characteristics are relevant
and widely considered, they do not provide much insight into the
fitness landscape global structure, which is known to highly impact
the optimization quality of evolutionary algorithms.

In this work, we propose a study of various PUBO𝑖 fitness land-
scapes by (1) considering local optima networks (LONs) to visualize
their global structures and investigate the impact of the benchmark
parameters on LONs metrics, (2) providing the first performance
analysis of optimization algorithms on PUBO𝑖 benchmarks. The
latter uses an iterated local search method with two perturbation
operators and mostly focuses on a parameter of PUBO𝑖 called the
co-appearance factor.

The paper is organized as follows. Section 2 provides relevant
definitions and overviews previous related work. Section 3 presents
the global structure analysis and visualization of PUBO𝑖 fitness land-
scapes. A performance analysis of iterated local search algorithms
is provided in section 3, with a particular focus on the variable im-
portance parameters across PUBO𝑖 instances. Section 5 summarizes
our main findings and points out possible directions forward.

2 BACKGROUND
2.1 PUBO Problems
Quadratic Unconstrained Binary Optimization (QUBO) are well-
known pseudo-Boolean functions in the field of physics [2] that can
be generalized to any order. They are known under several names,
for example, Unconstrained Binary Quadratic Problem (UBQP) [6],
or PUBO for Polynomial Unconstrained Binary optimization [4].
In the following, we refer to such problems as PUBO and discuss
the links with Walsh functions [16].

Walsh functions enable the representation of any evaluation
function as well as the fine-tuning of variables interdependency
(non-zero terms of the polynomial) and the interaction intensity
(|𝑤𝑘 | values). While different generators exist for specific PUBO
problems, none of them is expressed using directly Walsh functions.
The closest to this idea is a python-based generator for the Tile
Planting (TP) problem called Chook, proposed by Perera et al. [12] in
the field of physics. TP problems correspond to PUBO problems, in
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which global optima are known (planting solutions). In most cases
such problems can be expressed using only 2-local interactions
between variables (spins) with a graph.

In TP instances, the graph 𝐺 = (𝑉 , 𝐸) is decomposed into edge-
disjoint and vertex-sharing subgraphs {𝐺𝑙 = (𝑉𝑙 , 𝐸𝑙 )} [5]. To each
subgraph corresponds a function allowing the TP problems to be
expressed as their sum. TP problems use a regular lattice struc-
ture with different variants that enables the decomposition of the
problem graph into subgraphs containing a subset of the unit cells.
In the square lattice variant, the problem graph corresponds to a
toric square matrix, in which unit cells form a checkboard pattern.
Chook defines a portfolio of four sub-function classes, in which a
function class 𝐶 𝑗 has 𝑗 local minima, individually, the higher the
𝑗 the harder to solve the sub-problem. The instance generation
process in Chook assigns a sub-function to each problem subgraph
following a probability distribution, and randomly rotates the pla-
quette in the lattice. The probability distribution related to each
sub-problem influences the problem difficulty, yet the 2 dimension
shape of variable interactions makes solving these instances pos-
sible in a polynomial time [3]. Another limitation is that square
toric lattices give similar weight to each binary variable, leading to
benchmarks that differ from most real-world problems.

2.2 PUBO𝑖 Generator
The generator PUBO𝑖 (Polynomial Unconstrained Binary Optimiza-
tion with importance) was introduced in [14] with the aim to gen-
erate more structured benchmarks as in many real-life problems.
PUBO𝑖 benchmarks use the Chook portfolio of sub-problems and
three parameters that influence variable importance.

As in TP instances, for 𝑛 variables the objective is defined as a
sum of sub-functions: ∀𝑥 ∈ {0, 1}𝑛, 𝑓 (𝑥) = ∑𝑚

𝑖=1 𝑓𝑖 (𝑥), with𝑚 the
number of sub-functions. Each sub-function 𝑓𝑖 is randomly selected
according to probabilities 𝑝 𝑗 of each sub-function class 𝐶 𝑗 from
the portfolio. Each sub-function depends on four variables selected
following a degree of importance.

In PUBO𝑖 variables are split into 𝑘 disjunctive classes of impor-
tance 𝑐𝑖 , each composed of 𝑛𝑖 variables and having a degree of
importance 𝑑𝑖 ∈ IR+. For each class 𝑖 , the degree of importance
𝑑𝑖 determines the probability of its variables to be selected in a
sub-function as follows: 𝑝𝑐𝑖 =

𝑑𝑖∑𝑘
𝑗=1 𝑑 𝑗

.

Another parameter of the generator is 𝛼 the co-appearance factor
of important variables that affect the distribution of important
variables among the benchmark sub-problems. 𝛼 = 1 leads to an
independent co-appearance of variables importance class, while
𝛼 > 1 leads to a higher probability of having the same class variables
in the same sub-function, and 𝛼 < 1 a lower probability of having
the same class variables in the same sub-function.

A PUBO𝑖 is then characterized by 8 parameters: 𝑛 (problem di-
mension),𝑚 (number of sub-functions),𝐶 (portfolio of sub-functions),
𝑝𝑖 (probabilities of sub-function class), 𝑘 (number of variable impor-
tance classes), 𝑛𝑖 (number of variables in each importance class), 𝑑𝑖
(degree of importance of each class), and 𝛼 (co-appearance factor).

2.3 Local Optima Networks
The fitness landscape model [17] initially proposed in the biology
field is nowadays regularly considered in the field of evolutionary
computation to gain insights on the instance structure from the

perspective of neighborhood-based evolutionary algorithms. While
fitness landscapes can be characterized through several properties
and indicators [7, 8, 13] that provide valuable information, many
of them fail to provide sufficient insights on the global structure of
landscapes. A possibility to overcome this issue is to consider local
optima networks (LONs) [10].

This coarse-grained model provides a compressed view of fitness
landscapes allowing the visualization of some of its global charac-
teristics, such as the local optima distribution, and provides a new
set of metrics. LONs are networks in which nodes are local optima,
and edges are transitions among these local optima. Therefore a
given LON depends upon the neighborhood operator for its nodes
and a perturbation operator for its links. In the following, we con-
sider compressed monotonic LONs (CMLONs) [11], a LON variant
in which edges correspond to non-deteriorating transitions only,
and local optima plateaus are grouped in a single node. A plateau
refers to a set of connected local optima with the same fitness value.
This model is coarser than classical LONs and was proposed to
better account for neutrality.

Formally, a CMLON is the directed graph (CL,CE), where the
compressed local optima 𝐶𝐿 are the nodes, and the edges 𝐶𝐸 are
aggregated from the monotonic edge set 𝐸𝑚 . There is a monotonic
edge between two local 𝑙1 and 𝑙2 if one of them can be obtained
after applying a random perturbation to the other one, followed
by local search and if 𝑙1 ≤ 𝑙2. Monotonic edges are weighted with
estimated frequencies of transition. A compressed local optimum
corresponds to a set of nodes with the same fitness value that are
connected connected by monotonic edges.

A monotonic sequence is a path𝑀𝑆 = {𝑐𝑙1, . . . , 𝑐𝑙𝑠 } of connected
nodes (𝑐𝑙𝑖 ∈ 𝐶𝐿). By definition of the edges, 𝑓 (𝑐𝑙𝑖 ) ≤ 𝑓 (𝑐𝑙𝑖−1).
There is a natural end to every monotonic sequence, 𝑐𝑙𝑠 , when no
improving transitions can be found. Then, 𝑐𝑙𝑠 is called a sink as it
does not have outgoing edges. A funnel in the CMLON contains the
aggregation of all monotonic sequences ending at the same sink.

3 GLOBAL LANDSCAPE STRUCTURE
3.1 Experimental Protocol
This section is focused on the global analysis of some PUBO𝑖 land-
scapes through LONs and CMLONsmetrics and visualization. LONs
are sampled and constructed using an iterated local search (ILS)
with a 1-flip neighborhood that alternates a best-improvement hill-
climber with a perturbation phase that randomly changes the value
of 10% of the solution bits. In the following we consider four PUBO𝑖

instances with varying parameters (see table 1). PUBO𝑖 9009 and
PUBO𝑖 9012 have no variable importance, and their difference lies
in the sub-problems repartition. Instances PUBO𝑖 9010 and PUBO𝑖

9011 have two classes of importance and vary in their co-appearance
factor (PUBO𝑖 9011 having the highest one). For each instance, we
produce a LON and a CMLON by aggregating the unique nodes
and edges encountered across 30 independent ILS runs.

3.2 Network Metrics
Table 2 shows metrics for the extracted LON models. For the stan-
dard LON model, we only report the number of nodes, the rest of
the metrics refer to the CMLON model, as our goal is to study the
landscapes’ global structure. The provided metrics are:

• nodes: number of nodes (local optima) in the LON model.
2023-04-19 19:34. Page 2 of 1–4.
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Table 1: Instance parameters of PUBO𝑖 . 𝑛 = 100,𝑚 = 500

Id (𝑑0, 𝑑1) 𝛼 (𝑝1, 𝑝2, 𝑝3, 𝑝4)
9009 (1, 1) 1.0 (0.25, 0.25, 0.25, 0.25)
9010 (1, 4) 1.0 (0.25, 0.25, 0.25, 0.25)
9011 (1, 4) 1.15 (0.25, 0.25, 0.25, 0.25)
9012 (1, 1) 1.0 (0.10, 0.00, 0.00, 0.90)

• comp. nodes: number of compressed nodes.
• sinks: number of sub-optimal sinks.
• bests: number of nodes with the best fitness value.
• best strength: normalized incoming strength of the best nodes,
where strength refers to the aggregated weight of incoming
edges to the best nodes (normalized).

• path to best: average path length, in edges, from source nodes
to best nodes.

Table 2 shows that the compressed monotonic (CMLON) model,
conveys a coarser perspective of the landscapes’ global structure.
For all instances, there are more than one best node and multiple
sinks. We can appreciate a multi-funnel structure where the number
of sub-optimal funnels (sinks) generally outnumbers the number of
optimal funnels (bests). 9011 contains the largest number of nodes
and compressed nodes; it is also the easiest instance to solve as
indicated by the high strength value of the best nodes. The strength
of the best nodes indicates how much they "attract" the search
process: a high strength represents an easy landscape. According
to this metric, the hardest landscape studied is 9009. In terms of
the average path to best solutions, 9011 is the instance requiring
more search steps to hit a best solution, but there are two best large
funnels, indicating that a best solution is reached often.

Table 2: Network metrics for all PUBO𝑖 instances

inst. nodes comp. nodes sinks bests best str. path to best

9009 1169 203 7 2 0.38 6.93
9010 2877 194 3 2 0.57 6.25
9011 5975 297 2 2 0.9 11.18
9012 2047 223 9 4 0.48 7.65

3.3 Network Visualization
CMLONs visualization for each instance is provided in Figure 1.
The CMLONs of the two instances with variable importance display
larger best nodes (in red) and a higher number of global optima.
Their global optima are often part of the same funnel. While large
best nodes are also found in the 9012 CMLON, the high number
of connected components ending up in a sink (in blue) wanes the
likelihood to attain a global optimum. Indeed, the connected com-
ponents are more likely to end in a sink than a global optimum
on the CMLONS of instances without variable importance. For all
instances, the CMLON has a global optimum located in its largest
connected component, meaning that the largest funnels end in a
global optimum. However, 9009 and 9010 also have a connected
component close in size ending up in a sink. The proportion of
sinks 9009 makes a global optimum harder to attain than on 9010.

The various observations highlight that instances without vari-
able importance seem harder to solve considering the attainability
of the global optima. All instances have many global optima, yet on
landscapes without variable importance the multi-funnel structure,

Figure 1: CMLONs sampled with an ILS for 4 PUBO𝑖 in-
stances with the legend provided on the right-hand side.
incoming strength of global optima and ratio of sinks/best nodes
have a negative impact on the attainability of global optima, as
commonly observed in randomly generated academic instances.
The sub-problem distribution has an effect on the attainability and
neutrality levels, 9012 is mainly composed of a single sub-problem
and has more neutrality and a better attainability than 9009.

The higher co-appearance factor seems to be an important pa-
rameter to achieve a global structure similar to that of real-world
landscapes. Indeed, results on 9011 show its correlation with the
size of global optima funnels and the best nodes/total nodes ratio.
This instance also has by far the highest strength, as on CMLONs
of real-world instances of the quadratic assignment problem [9].

4 PERFORMANCE ANALYSIS
4.1 Experimental Protocol
To conduct the performance analysis we consider the Deterministic
Recombination and Iterated Local Search algorithm (DRILS), that
combines a hill climber with both classic perturbation and a parti-
tion crossover [1]. We consider two DRILS variants that use a first
improvement hill-climber and a 1-flip neighborhood, and varies in
the perturbation operator: one uses random perturbation operator
that flips 𝜅% of the decision variables, and the other an operator
based on the variable interaction graph (VIG) proposed in [15].

In the following, we perform a first set of experiments on the four
previously analyzed instances 1, for which we aim to observe the
possible differences in their solving. A second set of experiments
is carried out on a set of larger instances (𝑛 = 500,𝑚 = 5000) to
observe possible differences. For these instances, the sub-problems
distribution remains always the same (25% probability for each)
to focus on the variation of 𝛼 . We consider instances without and
with variable importance ((𝑑0, 𝑑1) = (1, 4)), and with different co-
appearance factor values 𝛼 ∈ {1.00, 1.05, 1.10, 1.15}. We use 20
instances for all possible combinations.

For both DRILS, we use a perturbation strength of 0.1×𝑛. We con-
ducted 30 independent runs per instance and perturbation operator,
with a stopping criterion of 5 seconds. Experiments were carried out
on aMacbookwith anM1 chip and 16Go of RAM. Data, and code are
made available on: https://gitlab.com/verel/pubo-importance-benchmark.

2023-04-19 19:34. Page 3 of 1–4.
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4.2 Experimental analysis
Results on smaller instances are reported in table 3. Success rates
show that instances 9011 and 9012 are always solved for both per-
turbation operators, while 9009 and 9010 are always solved with
the vig perturbation operator. According to this and the duration
required to achieve the best solution, the easiest instance to solve is
9011, followed by 9012. While the latter has no variable importance,
its sub-problem distribution differs from other instances (only two
different sub-problems).

Table 3: DRILS performance on smaller instances with a
stopping criterion of 5s. Values in bold indicate statistical
difference according to aMann-Whitney test (p-value= 0.05),
or a Chi2 test for the success rate.

Id Avg. Fitness Succ. rate Time to best
rnd vig rnd vig rnd vig

9009 -620.67 -622.00 0.833 1.000 2.670 1.673
9010 -481.60 -482.00 0.900 1.000 2.668 1.170
9011 -504.00 -504.00 1.000 1.000 0.005 0.172
9012 -475.00 -475.00 1.000 1.000 1.008 0.675

Figure 2 shows the performance comparison of DRILS according
to the co-appearance parameter 𝛼 of large PUBO𝑖 instances, for the
average best-found fitness, also averaged over the 20 independent
instances for each value of 𝛼 . The only varying PUBO𝑖 parameter
is the spreading of variables over sub-functions. Since PUBO𝑖 are
minimization problems, finding a lower fitness value suggests the
constraints between variables makes it possible to attain solutions
closer to the minimal bound. Consequently, instances with lower
fitness found by DRILS algorithms can be interpreted as being easier
to solve. For all large instances, the VIG perturbation outperforms
the classical random perturbation. Above all, the performances
of both DRILS improve when the co-appearance factor increases.
The gap of performance between the two DRILS slightly wanes
with the co-appearance factor 𝛼 , though there is no change in
relative performance between algorithms with 𝛼 . As suggested by
the previous LON analysis, instances from 𝛼 = 1.0 to 𝛼 = 1.15
seem to be easy to solve for DRILS algorithms. Notice that for the
larger instances, the ratio between 𝑛 and𝑚 is different from the
one of smaller instances, and that the available computation time
budget for the large instances is still limited to 5 seconds. Thus, the
performance analysis could be contrasted with further and deeper
investigations.

−3920

−3900

−3880

1.00 1.05 1.10 1.15
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ge

 fi
tn
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Rnd
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Figure 2: Average fitness (with confidence interval) on 20 in-
stances of DRILS performances on instances with 𝑛 = 500,
and different co-appearance factor 𝛼 .

5 CONCLUSION
In this work, we proposed a study of PUBO𝑖 landscapes, a generator
enabling to tune variable importance. By conducting a local optima
network (LON) analysis, we found major differences in instances
with and without variable importance, especially when the latter
has a high co-appearance factor. PUBO𝑖 instances with variable
importance and a high co-appearance factor seem to be close to
real-world landscapes in terms of global structure and LON metrics.

Thenwe conducted the first-ever performance analysis of PUBO𝑖

landscapes using two DRILS variants. These first experiments show
that for larger instances, the variable importance and co-appearance
factor impact the performance of DRILS.

In future works, one should investigate the effect of various
PUBO𝑖 parameter values on the global structure of landscapes: the
sub-problems distributions, levels of variable importance, and ratio
between the number of variables and terms. Another goal would
be to observe the impact of PUBO𝑖 parameters on the performance
of evolutionary algorithms.
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