
HAL Id: hal-04074997
https://hal.science/hal-04074997

Submitted on 19 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Approaches to determine pesticides in marine bivalves
Thierno Diallo, Julia Leleu, Julien Parinet, Thierry Guérin, Hélène Thomas,

Adélaïde Lerebours

To cite this version:
Thierno Diallo, Julia Leleu, Julien Parinet, Thierry Guérin, Hélène Thomas, et al.. Approaches to
determine pesticides in marine bivalves. Analytical and Bioanalytical Chemistry, 2023, 415 (16),
pp.3093-3110. �10.1007/s00216-023-04709-4�. �hal-04074997�

https://hal.science/hal-04074997
https://hal.archives-ouvertes.fr


1 

 

Approaches to determine pesticides in marine bivalves 1 

 2 

Thierno Diallo
1,2§

, Julia Leleu
1§

, Julien Parinet
1
, Thierry Guérin

3
,              

2
, Adélaïde 3 

Lerebours
2* 

4 

 
5 

 
6 

1 
ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France 7 

2 
                                                           -                         , 8 

2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France. 9 

3 
ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France 10 

 11 

 12 

§
: co-authors 13 

*
: Corresponding author:  14 

Adélaïde Lerebours, phone number: +33 (0)5 46 50 67 83, email address: 15 

adelaide.lerebours@univ-lr.fr 16 

 17 

 18 

 19 

 20 

 21 

 22 

Keywords: pesticide determination, marine bivalves, recent developments, analytical 23 

methods and techniques  24 

mailto:adelaide.lerebours@univ-lr.fr


2 

 

Abstract 25 

Due to agricultural runoff, pesticides end up in aquatic ecosystems and some accumulate in 26 

marine bivalves. As filter feeders, bivalves can accumulate high concentration of chemicals in 27 

their tissue representing a potential risk for the health of human and aquatic ecosystems. So 28 

far, most of the studies dealing with pesticides contamination in marine bivalves, for example, 29 

in the French Atlantic and English Channel coasts, have focused on old generation of 30 

pesticides. Only a few investigated the new emerging pesticides partly due to methodological 31 

challenges. A better understanding of the most sensitive and reliable methods is thus essential 32 

for accurately determining a wide variety of environmentally relevant pesticides in marine 33 

bivalves. The review highlighted the use of more environmentally friendly and efficient 34 

materials such as sorbents and     “Qu  k    y     p  ff        ugg     f ”  x         35 

procedure to extract pesticides from bivalve matrices, as they appeared to be the most 36 

efficient while being the safest. Moreover, this method combined with high-resolution mass 37 

spectrometry (MS) technique offers promising perspectives by highlighting a wide range of 38 

pesticides including those that are not usually sought. Finally, recent developments in the field 39 

of ultrahigh-performance liquid chromatography coupled to MS, such as two-dimensional 40 

chromatography and ion mobility spectrometry will improve the analysis of pesticides in 41 

complex matrices.  42 
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Introduction 43 

The contamination of the aquatic environment by pesticides may have deleterious effects on 44 

species of ecological and economic importance such as mussels and oysters [1–4]. Those 45 

organisms filter large volumes of water (30 to 40 ml/min) [5] and can thus efficiently 46 

bioaccumulate various chemicals including pesticides released by agricultural runoff in their 47 

digestive gland [6–9].  48 

The agricultural production makes intensive use of pesticides which comprises a wide 49 

variety of molecules to protect crops against weeds (herbicides), fungi (fungicides), or insects 50 

(insecticides) [10]. Those pesticides are divided into classes based on their chemical 51 

properties: organochlorines (OCs), organophosphates (OPs), carbamates (Carb), pyrethroids 52 

(Pyr) and neonicotinoids (Neo) [11]. Organochlorines, organophosphates and carbamates are 53 

of the older generations, and pyrethroids and neonicotinoids of the newer [11–13]. Most of 54 

the studies led in marine bivalves from coastal areas of France (Table S1, Text S1) and other 55 

countries [14,15] mainly focused on old generation of pesticides (OCs, OPs and Carb), and 56 

thus, missed the newer generation of pesticides.  57 

OCs are the most frequent pesticides detected in bivalves from the French Atlantic 58 

coast (Table 2), although most of them have been restricted or banned [16]. Indeed, OCs were 59 

detected in bivalves from all sampling sites, highlighting a persistent contamination along the 60 

French Atlantic coast (Figure 1, Table 1) [1,8,17]. However, some of them were detected at 61 

very low concentration and tend to decline over the years. For instance, aldrin concentrations 62 

decreased from 2.71 ng/g dry weight (dw) in the scallops (Mimachlamys varia) in March 63 

2014 [1] to values < LOQ of 1.67 ng/g in oysters (C. gigas) or < LOD of 0.5 ng/g in mussels 64 

(M. edulis) from the Pertuis Charentais littoral area, in February 2019 [18] (Table 2). This 65 

decrease over the years was expected as after being widely used in the 50s–60s, this 66 

insecticide was banned in France, in 1998. 67 



4 

 

The highest level of OC pesticides found in bivalves from the French Atlantic coast 68 

was measured for metolachlor in mussels with concentrations that ranged from 349 to 398 69 

ng/g dw [17]. Those concentrations seemed particularly high since this herbicide of low half-70 

life was prohibited in France in 2003. However, after its prohibition, metolachlor was 71 

replaced by the active enantiomer S-metolachlor, which is actually the molecule measured by 72 

classical analytical approaches (LC or GCMS). More recently, a study found lower 73 

metolachlor concentrations in oysters and mussels from the Pertuis Charentais. They were 74 

below 0.33 (LOQ) or up to 0.38 ng/g wet weight (ww) in Pacific oysters, and varied between 75 

0.5 (LOD) and 1.67 ng/g ww (LOQ) in blue mussels [18] (Table 2). It would have been 76 

interesting to know the concentration levels of metolachlor metabolites: ESA and OXA 77 

metolachlor, to allow a better understanding of the fate of this pesticide in marine biota. 78 

However, studies on the contamination of the marine environment by pesticide metabolites 79 

are rare. Contamination of bivalves by the OC pesticide acetochlor, came second after 80 

metolachlor with higher concentrations found in mussels from Chausey Island coast (125 ng/g 81 

dw) than in mussels from the Seine estuary (53 ng/g dw) [17] or from the Pertuis seas (< LOD 82 

of 0.5 ng/g) [18]. The concentrations of endosulfan beta and metazachlor in mussels from the 83 

Seine estuary were lower and reached 15.2 and 24 ng/g dw respectively [17]. A few years 84 

later, the endosulfan beta and metazachlor concentrations in mussels from the Pertuis seas, 85 

were even lower, < LOD of 1 and 0.5 ng/g ww, respectively [18] (Table 2). Therefore, 86 

bivalves from the Chausey archipelago were more contaminated with OCs pesticides than 87 

those from the Seine estuary and the Pertuis seas. Other OCs, such as lindane (banned in 88 

1998) and DDT (banned in 2010), which are highly persistent pollutants in the environment, 89 

were monitored in previous studies. Lindane concentrations found in mussels and oysters 90 

ranged from 0.2 to 2.2 ng/g dw in the Pertuis seas region [8,18] (Table 2). The concentrations 91 

of 2,4- and 4,4-DDT are now very low, in the range of 0.4 - 0.9 ng/g dw [8,18] in bivalves 92 
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from the Gironde estuary and the Pertuis seas. However, significant accumulation of its 93 

metabolites were found in oysters collected in 2008 in the same region, with concentrations 94 

       g 3.      5.5  g/g  w  f 4 4’-       4’- DDE, respectively [8].  95 

Another class of widely studied pesticides are the OPs such as ethoprophos (31 ng/g) 96 

and tributyl phosphate (14 ng/g) which were quantified in bivalves from the Vendée region 97 

[19] (Table 2). Despite their significant accumulation in marine bivalves and their authorized 98 

status, there is only one recent study available in the literature on those two molecules 99 

regarding the French Atlantic coast. A recent study reported much lower concentrations of 100 

parathion (between 0.56 and 0.69 ng/g) banned in 2001, chlorpyrifos (between 0.79 and 0.93 101 

ng/g) banned in 2020, and chlorfenvinphos (between 1.65 and 2.12 ng/g) banned in 2007, in 102 

the Pacific oysters sampled in the Pertuis Charentais littoral area [18] (Table 2). As banned 103 

molecules found today at very low concentrations, those pesticides represent a minor concern 104 

for marine bivalves and human health.  105 

Interestingly, more recent pesticides such as bifenthrin (48 ng/g), cypermethrin (10.9 106 

ng/g) and deltamethrin (11.2 ng/g) were quantified for the first time in bivalves from the 107 

French Atlantic coast in 2015 by Menet-Nedelec et al. (Table 2) [17]. Other emerging 108 

pesticides such as neonicotinoids could not be identified due to their low concentrations in 109 

marine bivalves from the French Atlantic and English Channel coasts [17]. However, their 110 

toxicity has been evidenced in bivalves exposed under laboratory conditions [20]. Altogether, 111 

those results highlighted the presence of old generation of pesticides in marine biota and 112 

significant concentrations of their metabolites, but data on the new generation of pesticides 113 

such as pyrethroids and neonicotinoids are lacking. Those new molecules deserve to be 114 

monitored further. Indeed, contrary to the old generation of pesticides, most of the new 115 

generation of pesticides are currently authorized. Secondly, by considering only old 116 

pesticides,   u     u                               by                   y           “   k    ” 117 
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of pesticides that includes the new generation of pesticides. Actually, quantifying those 118 

molecules at environmental concentrations remains a methodological and technical challenge. 119 

Therefore, this underlines the need to apply the most efficient procedures to accurately 120 

determine the wide variety of environmentally relevant pesticides that accumulate in marine 121 

bivalves.  122 

The present review firstly compares the latest methods used for tissue preparation and 123 

extraction, and to clean-up samples. Advices to overcome the matrix effect specific to bivalve 124 

tissues are also provided. Finally, the review discusses the most relevant and promising 125 

analytical techniques to use and highlights the good validation procedures to apply.  126 

Methodologies 127 

Sample pretreatment 128 

In most studies, samples were homogenized, freeze-dried or lyophilized and stored at -20°C 129 

before proceeding to the next steps (Table 1). Research focused on whole individuals or 130 

specific tissues such as the digestive gland, a key tissue to assess chemical contaminant in 131 

bivalves [7]. Then, due to low concentrations in bivalves, effective extraction procedures are 132 

used to isolate and concentrate pesticides (Table 1).  133 

Extraction of pesticides from bivalve samples 134 

The Matrix Solid-Phase Dispersion (MSPD) refers to one of the older extraction procedures 135 

that is less used nowadays, with 9.1% of the studies employing it since 2015 (Table 1), 136 

although it is a suitable sample preparation technique for solid and semi-solid biological 137 

samples. Carro et al., (2005) was evaluated MSPD procedure using an asymmetrical 138 

experimental design [21]. The authors tested and validated the optimal condition using 139 

multispecies biological reference material from the International Atomic Energy Agency 140 

(IAEA-406), with adequate precision and accuracy. The validated procedure was applied to 141 

the analysis of several samples of aquaculture feed and marine species. MSPD consists in 142 
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mixing a sample with a solid support (usually a silica-based material), to obtain an 143 

homogeneous mixture [22]. The resulting mixture is placed in a solid-phase extraction (SPE) 144 

column or cartridge, followed by elution with suitable organic solvents (with different elution 145 

powers and polarities) and collection of the analytes by fractionation. The advantages of this 146 

method include the consumption of small amounts of sample and solvents, simple application, 147 

low cost and simultaneous extraction and clean-up in one step [21,22]. However, the MSPD is 148 

fairly labor intensive, requiring the sample to be ground up with the solid matrix and packed 149 

into a column for extraction since automation cannot be done [22]. The Pressurized Liquid 150 

Extraction (PLE), also known as the Accelerated Solvent Extraction (ASE), and the Selective 151 

Pressurized Liquid Extraction (SPLE) were used to extract pesticides in 27.3% of the studies 152 

(Tables 1 and 2) [8,23]. PLE is an instrument-based extraction procedure that extracts 153 

analytes (including POPs, pesticides or pharmaceuticals) from solid and semi-solid 154 

matrices at high temperature (40–200°C) and pressure (500–3000 psi) [24–26]. High 155 

temperatures enhance the solubility of non-thermolabile analytes [27]. The advantages of PLE 156 

are: less solvent used, time per sample reduced and processes fully automated. However, the 157 

disadvantage is the presence of coextracted non-targeted interfering compounds - such as 158 

proteins or lipids and the degradation of thermolabile analytes. Thus, the PLE 159 

technique requires a clean-up before quantification [28]. Selective PLE (SPLE) (or enhanced 160 

PLE, in-cell clean-up, in-situ clean-up) combines the extraction and clean-up 161 

processes [27]. Solid-phase adsorbents can be layered in the PLE cell to avoid interference. 162 

They produce clean extracts which, in most cases, are directly injected in the analytical 163 

system. Thus, no post-extraction clean-up is required. Adsorbents - for in-cell clean-up PLE -164 

 are commonly used to extract non-polar analytes, such as OCs in animal tissues. In this 165 

regard, PLE utilises a layer of fat-removal adsorbents such as Florisil, alumina (basic, acidic 166 

or neutral), silica gel and sulphuric acid-silica gel [29]. Another extraction procedure that has 167 
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gained considerable importance in the recent years because of its "greener" (it uses less 168 

solvent) and more efficient extraction capacity is microwave-assisted extraction (MAE) 169 

[30,31]. This approach simply involves placing the sample with the solvent in specialized 170 

vessels and heating the solvent using microwave energy. MAE has many advantages, such as 171 

reduced extraction time and solvent consumption, as well as the ability to analyse multiple 172 

samples [32].  However, the need for special equipment, the low selectivity and the 173 

unavoidable high temperature reaction are considered as disadvantages of MAE [30]. Since 174 

2003, an alternative extraction procedure, Quick, Easy, Cheap, Effective, Rugged and Safe 175 

(QuEChERS) was introduced by Anastassiades et al., (2003) [33] but the first publication on 176 

the extraction of pesticides from bivalves using the QuEChERS procedure appeared in 2016 177 

[34]. In the QuEChERS procedure, the most commonly used solvent is acetonitrile. The use 178 

of this solvent allows the extraction of a wide polarity (non-polar and medium polar) of 179 

pesticides [24]. Indeed, acetonitrile leads to much less interferences from compounds that can 180 

be co-extracted such as lipophilic compounds, lipids and pigments than other extraction 181 

solvents such as acetone and ethyl acetate [33]. The solid sample is usually ground and 182 

homogenized using an Ultra-Turrax homogenizer [35]. The MgSO4 and NaCl are the original 183 

salts used for liquid-liquid phase separation by binding to water [33]. MgSO4, as well as 184 

Na2SO4, has a good water absorption and allows the release of acetonitrile (the most 185 

commonly used extraction solvent), while NaCl affects the ionic force of the extraction 186 

solvents and, therefore, increases the selectivity of the extraction [24]. To avoid ionization or 187 

degradation of pesticides due to pH changes during extraction, two modifications of the 188 

original QuEChERS procedure were developed: (1) AOAC Method (acetate buffer) [36] and 189 

(2) EN Method 15662 (citrate buffer) [37]. Both methods stabilize the pH at 5–5.5, which 190 

facilitates the extraction of pesticides sensitive to low pH or those with stability problems. 191 

This procedure is currently replacing those traditional time-consuming extractions, requiring 192 
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larger amount of toxic reagents, organic solvents and samples. Because the QuEChERS 193 

method allows a fast, reliable extraction and uses less toxic solvents, it is a better method than 194 

MAE, PLE or MSPD. However, the number of studies using the QuEChERS procedure in 195 

bivalves is still low: 18 against 353 studies investigating other matrices in 2020. In the 196 

principles of green analytical chemistry, other extraction techniques such as magnetic solid 197 

phase extraction (MSPE) and stir bar sorptive extraction (SBSE) should be considered. MSPE 198 

is based on the addition of magnetic nanoparticles such as C18 functionalized to the sample 199 

solution for preconcentration of moderate and non-polar pesticides [38]. In addition to being 200 

environmentally friendly, MSPE is a technique that has the advantage of using a limited 201 

number of steps (limiting cross-contaminations), a small amount of sorbent, as well as the 202 

reuse of sorbent [39]. However, MSPE procedure requires vortex, shaker, magnetic stirrer and 203 

selection of suitable sorbents [39]. In SBSE, a stir bar coated with polydimethylsiloxane 204 

(PDMS) phase is added to a vial containing the sample. SBSE consists of two steps: 205 

extraction and desorption. An aqueous sample is extracted by stirring for a predetermined 206 

time with a PDMS-coated stir-bar. The stir-bar is subsequently removed from the aqueous 207 

sample and the absorbed compounds are then thermally desorbed and analysed by GCMS 208 

[40]. The advantage of the SBSE is its simplicity, robustness, cost effectiveness and 209 

environmental friendliness [39]. However, its important limitation is only commercial 210 

availability of PDMS coating material exists at present. Besides, due to the non-polar 211 

character of PDMS, SBSE technique is mainly applied to extract non-polar and weakly polar 212 

compounds (logarithm of octanol-water partitioning coefficient lower than 3) but failed in the 213 

extraction of strongly polar compounds [41]. In addition, SBSE procedure can only be applied 214 

to medium-high volatility and medium-high thermo-stability analytes if a thermal desorption 215 

has to be employed [42]. 216 
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Clean-up of sample extracts 217 

Bivalves contain lipids (between 2 and 10%) and proteins (between 10 and 18%) that can 218 

affect the analysis of target compounds, especially at low concentrations [35]. Matrix effect is 219 

caused by interactions (via van der Waals, dipolar-dipolar or electrostatic forces) between 220 

pesticides and co-extractives that could suppress or enhance the ionisation of the analytes 221 

[43]. This may result in a higher or lower signal, which affects the accuracy of the 222 

quantitative results. Thus, this matrix effect needs to be reduced to avoid bias in the overall 223 

analysis. To overcome this challenge, several interesting approaches have been used and 224 

deserved attention to minimise the matrix components such as using internal standards, 225 

improving the chromatography separation (reducing coelution with matrix components), 226 

making serial dilution, or performing extensive sample clean-up [44,45], as follows. For 227 

clean-up of sample extracts, the SPE method, previously mentioned for extracting pesticides, 228 

can be used [46]. In SPE method, the sorbents are chosen according to their properties 229 

(affinity, capacity and selectivity) towards the analytes of interest and matrix interferents [46]. 230 

The most popular clean-up strategy to avoid interference involves the SPE with a reverse-231 

phase octadecylsilane (C18) for isolation and preconcentration of nonpolar compounds [47] 232 

whereas silica-SPE retains polar compounds in the sample [8,48,49]. The primary secondary 233 

amine (PSA) is used to remove interferences such as fatty acids, organic acids, pigments, 234 

sugars and metal ions [34,50]. This SPE method offers the best compromise between time, 235 

difficulty and performances. Other clean-up procedures are less frequently used and are more 236 

complicated to set up, such as those using adsorption columns [8,51] and gel permeation 237 

chromatography [48]. The dispersive SPE (dSPE) and cartridge SPE (cSPE) methods can also 238 

be used for the clean-up. They are much more rapid, easy to set up and efficient. dSPE is 239 

based on the dispersion of a sorbent in the liquid samples [44,52]. After centrifugation, the 240 

sorbent separates the analytes from the matrix, eliminating interfering compounds and 241 
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reducing wastewater [53,54]. dSPE provides faster, simpler and more adaptable clean-up than 242 

traditional techniques and has been widely applied [45,47,50,53,55], however the 243 

centrifugation step may lengthen the procedure. Moreover, during sorbent adsorption or 244 

concentration, pesticides might be lost. In the cSPE procedure, the analytes are eluted from 245 

the cartridge and interfering compounds are eluted before the analytes or remained on the 246 

cartridge [54]. Compared to dSPE, the cSPE is time-consuming, adding experimental steps 247 

such as cartridge conditioning, sample loading, interference elution and analyte elution [54]. 248 

Therefore, the dSPE associated to the QuEChERS method appeared to be the most reliable 249 

and efficient, although cSPE is automatable and remains the most used procedure in the 250 

routine laboratory. Indeed, this combination presents the best compromise between cost, time, 251 

and easiness to use, especially if looking after a large set of pesticides potentially present in 252 

marine bivalves. As with the SPE method, the most commonly used dSPE sorbents for extract 253 

clean-up in bivalves are C18 (especially for fat removal) and PSA, often in the presence of 254 

MgSO4. The latter is commonly used as a drying salt for acetonitrile extraction as it 255 

effectively removes residual water before injection into chromatographic systems. The 256 

zirconia based sorbent, Z-Sep is based on zirconium oxide and Z-Sep/C18 is composed of 257 

zirconium oxide and C18. This mixture reduces fat and pigment levels in matrices and it is 258 

recommended for matrices containing more than 18% of lipid [56]. In 2015, Agilent 259 

Technology introduced for the first time Enhanced Matrix Removal of lipids (EMR-lipid). 260 

Unlike other d-SPE sorbents, EMR-lipid is a novel sorbent designed specifically for lipid 261 

removal. The composition of EMR-Lipid is a proprietary secret, and it does not function as a 262 

conventional sorbent, but it dissolves to saturation the sample extract solution, and it selects 263 

compounds according to their size and hydrophobic properties [57]. More recently, novel 264 

materials based on the principle of green chemistry are being used as sorbents. Despite their 265 

effectiveness, these sorbents are not always commercially available, so they have to be 266 
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synthesized in the laboratory. These include molecularly imprinted polymers (MIPs), metal-267 

organic frameworks (MOFs) and carbon-based sorbents. The principle of MIPs is based on 268 

the affinity of a polymer with specific cavities for chosen template molecules. Therefore, 269 

MIPs are highly selective for those target molecules or structural analogs. The target 270 

molecules are recognized via hydrophobic interactions, hydrogen bonding, van der Waals 271 

forces, or electrostatic interactions [58]. The MIPs sorbent was also used for pigment removal 272 

[59]. This sorbent, in combination with PSA, demonstrated their effectiveness in clean-up 273 

bivalve extracts, with matrix effects within the range of ± 20% for 100% of the herbicides 274 

analysed [59]. The MOFs as sorbents are based on three-dimensional structures of 275 

coordination networks consisting of a metal ion bound to organic ligands [60]. The main 276 

advantage of MOFs is their large specific surface area, enormous porosity and the possibility 277 

to easily adjust their pore size and shape from microporous to mesoporous scale, which can 278 

lead to high extraction efficiency [61]. In addition, the high capacity to functionalize the pores 279 

with functional groups such as -NH2, -CO, -CHO, -COOH and -OH, make them good 280 

candidates for adsorption of interferents through hydrophilic or hydrophobic interactions [61]. 281 

However, the main limitations of MOFs is their low selectivity and stability in water [62]. 282 

Moreover, the limited availability of MOF-based adsorbents prevents the widespread 283 

application of MOFs in the analysis and preconcentration of pesticides. The main reason is 284 

that only a few chemical companies (e.g. the German chemical company BASF) have started 285 

to produce MOFs on a commercial scale [63]. Furthermore, not all research laboratories have 286 

the capacity to produce MOFs. Finally, carbon-based materials (e.g., activated carbon, carbon 287 

nanotube and graphene) are used as sorbents due to their large surface area, high porosity and 288 

surface reactivity, and they can be easily functionalized [64,65]. 289 
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Matrix effects and challenge to overcome them  290 

Although matrix effects are not always considered among the performance parameters for 291 

method validation, they must be considered as they can influence the experimental results. 292 

Despite the clean-up of extracts and LC or GC separation step, it is impossible to eliminate all 293 

matrix effects. Matrix effects generally lead to signal suppression in LC-MS/MS applications. 294 

This is the case in the study by Álvarez-Muñoz et al., (2019) where the authors noted ion 295 

suppression after extraction, purification and UHPLC-HRMS analysis of 16, 42 and 51% for 296 

mussels, oysters and cockles, respectively [66]. In this work, matrix matched calibration 297 

together with isotopically labelled internal standards were performed to minimise interference 298 

and to avoid underestimation during quantification of targeted compounds. In contrast to LC-299 

MS/MS, matrix effects in GC-MS/MS mainly result in signal enhancement. Using GC-300 

MS/MS, Yu et al. achieved less than 20% of matrix effects for the 14 herbicides quantified in 301 

mussels, scallops, and cockles after purification of extracts using PSA and MIPs as dSPE 302 

sorbents [59]. In the study performed by Cruzeiro et al., (2016), an average signal suppression 303 

of 89% was obtained for 80% of the studied pesticides [34]. To overcome matrix effects, the 304 

authors evaluated the addition of two analyte protectors such as 3-ethoxy-1,2-propanediol and 305 

D-sorbitol before injection. Both proved to enhance the signal by more than 50% for all the 306 

selected compounds. 307 

Detection and identification techniques 308 

Several analytical techniques enable the determination of contaminants in seafood samples 309 

(Table 1). Liquid (LC) or gas chromatography (GC) separation method with tandem mass 310 

spectrometry (MS/MS) detection are suitable confirmatory techniques for organic residues 311 

and contaminants in foodstuffs [67]. The majority of the studies used GC or LC, coupled with 312 

MS/MS, to determine organic compounds in bivalves (Table 2). GC–ECD (electron capture 313 
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detection) comes second (Table 2) [51,68]. Unlike MS, which is a universal detector, ECD is 314 

a specific detector for halogenated organic molecules such as organochlorine (OC) pesticides 315 

[8,51]. Thus, GC-ECD can only detect halogenated pesticides, whereas MS can detect all 316 

types of pesticides provided they are ionised. In addition, GC allows a greater selectivity and 317 

resolution than LC in determining contaminants in complex matrices, such as farmed fish and 318 

shellfish [46]. Ziarrusta et al., (2015) implemented GC, coupled to triple quadrupole MS 319 

(GC–MS/MS), to determine pesticides in farmed mollusk bivalves representing complex 320 

matrices such as blue mussels, mangrove oysters, radial purse oysters or ark clams [49]. The 321 

study reported lower limits of detection (LODs) and quantification (LOQs) using GC–MS/MS 322 

than GC-MS (49). Other analytical configurations include ultra-high-performance LC 323 

(UHPLC) (Table 1), which use  p          f                      u   1.  μ          324 

stationary phase and short columns [59]. High pressures induce narrow LC peaks (5–10 s) 325 

with shorter analysis [23,50,69]. Compared to the HPLC-based methods, UHPLC uses less 326 

solvent in general. Furthermore, coupled with MS, UHPLC triggers greater throughput and 327 

improves resolution [46]. The UHPLC method separation as well as the previously described 328 

HPLC and GC coupled to triple quadrupole MS operating in multiple reaction monitoring 329 

(MRM) mode have two major advantages: selectivity and sensitivity. However, the use of 330 

triple quadrupole instruments has proven to have some limitations, such as a limited number 331 

of compounds targeted during the analysis [70,71]. For large screening purposes, an 332 

alternative to MS/MS is the application of full scan techniques based on high-resolution mass 333 

spectrometry (HRMS), using Orbitrap MS-based instruments and time-of-flight (ToF) MS 334 

systems [72]. This analytical technique can perform simultaneous target, suspect, and non-335 

target downstream data analyses to increase the number of analytes that can be included in 336 

multi-residue methods. Moreover, it allows retrospective analysis by reprocessing acquired 337 

data (as new knowledge is gained) and the ability to use samples in multiple studies without 338 
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having to reinject them [73]. Despite the advantages described, only two studies have used 339 

HRMS for the determination of pesticides in bivalves. One performed target analysis of 13 340 

pesticides in mussels, oysters, cockles and razor shell [66]. More recently, Diallo et al., 341 

(2022) carried out a simultaneous targeted analysis of 204 pesticides in seven different 342 

commercial bivalve species and a suspect screening analysis on real samples of oysters and 343 

mussels collected in south-west France [35].   w        u     u   g      f   “   -   g  ” 344 

pesticide analysis in bivalve tissues are still scarce despite offering promising perspectives for 345 

detecting a wide range of pesticides in marine bivalves. This is especially relevant to 346 

characterize an environmentally realistic exposure to a cocktail of contaminants. Furthermore, 347 

the performance of HRMS systems, including automatic data processing, has improved 348 

sufficiently to make their implementation in routine analysis a realistic option, particularly 349 

when used in conjunction with conventional GC and LC-MS/MS methods. Moreover, the 350 

sensitivity of recent HRMS systems has now increased. It should be noted that the objective 351 

of HRMS is not to replace conventional methods but to perform a diagnosis for the presence 352 

of unexpected contaminants in the sample, which can then be confirmed by LC-MS/MS. This 353 

could have prevented recent food safety crises such as the presence of fipronil (which was not 354 

expected) in European eggs in summer 2017 [74].  355 

Along with the advent of HRMS, there have been several developments in the field of 356 

UHPLC-MS in recent years. The most important of these are two-dimensional 357 

chromatography (2D-GC or 2D-LC) and ion mobility spectrometry (IMS). The 2D 358 

chromatography use both the comprehensive (GC) and heart cutting (LC) approaches [75,76]. 359 

In the comprehensive approach, the entire effluent from the first column is transferred to the 360 

second one. The heart cutting technique involves selecting a fraction of the co-eluting zone 361 

from the first column in a sample and re-inject it to the second column for separation and 362 

detection in the MS instrument. Compared to 2D-LC, 2D-GC is more frequently used for the 363 
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determination of a wide mixture of pesticides [77–79]. The advantages over conventional 364 

chromatography are increased peak capacity, generation of unique structured chromatograms, 365 

better resolution of thousands of peaks in a chromatographic run and the possibility to reduce 366 

matrix interference [79]. The HRMS technique also offers the possibility of performing non-367 

targeted analyses of various compounds in complex matrices [79]. As an alternative to 2D 368 

chromatography, IMS can be considered for the analysis of very complex mixtures. In IMS, 369 

ions are transported and separated according to their collisions with a neutral drift gas, such as 370 

helium or nitrogen, allowing the separation of ions according to their three-dimensional 371 

structure [80]. By coupling chromatographic separations, ion mobility separations (IMS) and 372 

HRMS, the overall peak capacity of the system is increased and allows for the separation of 373 

compounds (isomeric and isobaric) that would otherwise be detected as a single component in 374 

a system without IMS [81]. One difference between IMS and 2D chromatography is that 375 

when the latter is used, the user can optimize the peak capacity of the method by selecting the 376 

appropriate separation selectivity of the two separation dimensions involved. When IMS is 377 

used, the user loses this flexibility as drift times or derived collision cross section (CCS) are 378 

compound dependent and relative drift times can only be altered to a certain degree by 379 

modifying the drift gas composition. UHPLC coupled with travelling-wave (UHPLC-380 

TWIMS-QTOF-MS) was successfully used by Regueiro et al., (2017), for qualitative 381 

screening of 156 pesticides in salmon feed [82]. The authors found that the use of the CCS as 382 

an additional identification point greatly improved the method selectivity while decreasing the 383 

number of false positive detections (from 42 to only 1). 384 

Method validation 385 

To ensure the reliability of analytical information, a validation protocol must be 386 

followed in every study. This protocol evaluates precision, trueness, specificity, recovery, 387 

LOD and LOQ and sensitivity as established by the European Commission in 2021 388 
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(SANTE/11312/2021) [83]. The precision is actually evaluated through the repeatability and 389 

reproducibility of the analytical response by estimation of the relative standard deviation 390 

   D ≤  0%  f         p k               [83]. The trueness is expressed in terms of bias, 391 

which is the average recovery (70-120%) for each spike level tested. The recovery is 392 

expressed in percentage and represents the proportion of analyte remaining at the point of the 393 

final determination. The specificity is the ability of the detector to provide signals that 394 

effectively identify the analyte [83]. 395 

A satisfactory validation protocol in marine bivalves was applied by Ziarrusta et al., 396 

(2015) using the SANCO/10684/2009 guideline (one of the former SANTE/11312/2021 397 

guideline) [49]. The authors assessed the repeatability by preparing four replicates of mussels 398 

at 50 ng/g and analysing them in the same day. Then, for reproducibility, eight replicates were 399 

analysed during three different days. The RSD values varied from 1% to 17% for 400 

repeatability, and from 4% to 33% for reproducibility. The LOD and LOQ values of several 401 

organophosphorus and organochlorine pesticides ranged from 0.34 to 13 ng/g and 0.83 to 29 402 

ng/g respectively [49]. These values were acceptable and comparable to the values found in 403 

other studies that focused on the MSPD extraction of trace organic pollutants [4,84–86]. To 404 

evaluate the accuracy and precision, Rodrigues et al. used two different concentrations, 3 × 405 

MQL (method quantification limit) and 10 × MQL (European Commission 2002/657/CE) 406 

[23]. Another reliable method to evaluate accuracy and precision was used by Cruzeiro et al., 407 

(2016) who made three different pools of bivalve homogenate and injected them at three 408 

concentrations: LOQ, 2 x LOQ, and 10 x LOQ (SANCO/825/00 rev 8.1) [34].  409 

Recommendations and future perspectives  410 

A large variety of pesticides can bioaccumulate in bivalves potentially affecting their survival 411 

and human health. It is thus essential to refine the methods and techniques used to accurately 412 
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characterize the contamination of bivalves by organic chemicals to sustain a good ecological 413 

status. 414 

Recommendations for sample preparation are the use of QuEChERS using MgSO4 or 415 

Na2SO4 and enhanced by AOAC or EN method, innovative techniques respecting the 416 

principles of green analytical chemistry, such as SBSE and MSPE and the use of new 417 

materials as sorbents. Finally, we recommend dSPE and analytical protectors to reduce matrix 418 

effect.  419 

Recommendations for detecting of a wide range of pesticides and their residues in 420 

bivalves are the use of LC/GC-HRMS and UHPLC-MS followed by 2D-GC, 2D-LC or IMS. 421 

Specifically, HRMS can perform a diagnosis for the presence of unexpected contaminants in 422 

the sample, which can then be confirmed by GC or LC-MS/MS. 423 

Those approaches will allow a more rigorous characterisation of the real cocktail of  424 

contaminants existing in the coastal environment. 425 
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Table 2. Minimum (min), mean, maximum (max), and pesticide concentrations in ng/g dw 438 

(dry weight), quantified in bivalves (collected at least at one location) collected along the 439 

French Atlantic coast. The class of pesticides, the year of sampling and the number of samples 440 

are presented. *ww (wet weight) 441 

Figure 1. Map indicating the location of the sampling sites along the French Atlantic and 442 

English Channel coasts (source: CAPENA). 443 

 444 
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Table 1. 801 

                      

Species Sample Pretreatment 

Sample 

mass 

(g,ww) 

Extraction 

method 
Clean-up Detection 

LODs 

(ng/g) 

LOQs 

(ng/g) 

Recovery 

(%) 
Reference 

 
Peppery furrow shell 

(Scrobicularia 

plana) 

- Homogenized 5 QuEChERS PSA dSPE 
GC-MS/MS 

(IT) in SIM 
0.22-3.4 0.33-10.3 78-119 [34]  

 

Blue mussel (Mytilus 

edulis), Oysters 

(Crassostrea 

rhizophorae and 

Isognomon radiatus), 

Clams (Polymesoda 

solida, Anadara 

tuberculosa and 

Anadara grandis) 

Pool 

Homogenized 

and freeze-

dried 

0.5 MSPD Silica SPE 

GC(EI)-

MS(QqQ) in 

SRM and 

SIM 

0.34-13 0.83-29 55-117 

[49] 

 

    

GC(EI)-

MS/MS(QqQ) 

in SRM and 

SIM 

0.010-2.7 0.017-3.9 64-122  

 

Pacific oyster 

(Crassostrea gigas) 
Pool 

Homogenized 

and freeze-

dried 

0.5 ASE, PLE 

Acidic 

silica gel 

colum 

Quantified: 

GC-ECD 
0.1-0.2 0.3-0.6 72-116 [8,51] 

 

Confirmed: 

GC-MS/MS  

Mediterranean 

Mussel (Mytilus 

galloprovincialis), 

oyster (Crassostrea 

gigas), cockle 

(Cerastoderma 

edule) 

Pool 

Homogenized 

and freeze-

dried 

1.0 QuEChERS C18 dSPE 

UHPLC-

QTOF 

MS/MS 

0.01-0.5 0.02-1.00 96-107 [66] 
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Brown mussel 

(Perna perna), 

Pacific oyster (C. 

gigas) 

- - - -   LC–MS/MS 0.01-0.7 - - [68]  

 
Mussels (M. 

galloprovincialis, M. 

edulis, Mytilus 

chilensis and Perna 

canaliculus), Clams 

(Venerupis 

philippinarum, Tapes 

semidecussatus, 

Meretrix meretrix 

and Meretrix lyrata) 

Pool 

Homogenized 

and stored at -

20°C 

5 
QuEChERS EN 

method 

500mg Z-

Sep 
GC-MS/MS - 5 70-120 [47] 

 

Blue mussel  (M. 

edulis), Salmon 

(Salmo salar) 

- - - QuEChERS 

GPC 

followed by 

silica SPE 

GC-HRMS 11-680 - 90-110 [48]  

 

Blue mussel (M. 

edulis) 

  Lyophilised 0.5 - 1 
1) SPE 

acetonitril 
Florisil GC-MS/MS - 10 - 

[19] 

 

 

- - - 

2) SPE  

dichloromethane/ 

ethyl acetate 

cSPE 
LC-MS/MS - 10 -  

oasis HLB 
 

- - - 

3) SPE 

dichloromethane/ 

ethyl acetate in 

acid environment 

  -   - - 
 

Blue mussel (M. 

edulis), Pacific 

oyster (C. gigas) 

Individual Homogenized 1 - 3 QuEChERS   GC-MS/MS   0.1-0.5 0.33-1.67 [18] 
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Peppery furrow shell 

(S. plana) 
Pool 

Homogenized 

and stored at -

20°C 

0.5 SPLE 

The Oasis
®
 

on-line 

columns 

UPLC-ESI–

MS/MS 
3.7-97 11-290 68-125 [23] 

 

Clams (T. 

decussatus) 
Pool 

Homogenized 

and freeze-

dried 

3 - 5 MAE Florisil GC - - 63-98 [31] 
 

           
 

  802 



32 

 

Table 2. 803 

           

Pesticide Class 
CAS 

Number 
Species 

Concentration  

(ng/g, dw) Sites Reference Year 
Sample 

number 
Min Mean Max 

Acetochlor OC 
34256-82-

1 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
125 

 

Chausey 

archipelago 
[17] 2015 

1 

 
67.4 

 
Bay of Veys 1 

29.7 
 

53.0 Seine estuary 1 

Aldrin OC 309-00-2 

Variegated 

scallops 

(Mimachlamys 

varia) 

  2 .24   Loix en Ré 

[1] 2014 

1 

 
2.71 

 
Les Minimes 1 

<LOD   <LOQ Les Palles 1 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
1.8 

 

Chausey 

archipelago 
[17] 2015 

1 

 
3.3 

 
Bay of Veys 1 

1.2   4.7 Seine estuary 1 

4,4'-DDD OC 2-54-8 

Mediterranean 

mussel (M. 

galloprovincialis) 

  <0.1   
Chausey 

archipelago 
[17] 2015 

1 

 
<0.1 

 
Bay of Veys 1 

0.2   0.3 Seine estuary 1 

Pacific oyster (C. 

gigas) 

1.5 
 

2.3 Bouin 

[8] 2008 

2 

1.9 
 

2.8 Boyard 2 

2.0 
 

3.7 Les Palles 2 

1.0    1.9 Mus du loup 2 

2,4'-DDE OC 3424-82-6 

Mediterranean 

mussel (M. 

galloprovincialis) 

  <1   
Chausey 

archipelago 
[17] 2015 

1 

 
<1 

 
Bay of Veys 1 

<1   2.4 Seine estuary 1 

Pacific oyster (C. 2.2 
 

2.5 Bouin [8] 2008 2 
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gigas) 2.4 
 

5.5 Boyard 2 

1.5 
 

2.4 Les Palles 2 

nd   0.3 Cordouan 2 

4 4′DD  + 

Dieldrin 
- - 

Pacific oyster (C. 

gigas) 

1.2   1.4 Bouin 

[8] 2008 

2 

3.6 
 

3.8 Boyard 2 

2.4 
 

3.7 Les Palles 2 

0.8 
 

0.9 Mus du loup 2 

1.9   3.0 Cordouan 2 

4,4'-DDT   50-29-3 

Mediterranean 

mussel (M. 

galloprovincialis) 

    0.2 
Chausey 

archipelago 
[17] 2015 

1 

 
<0.1 

 
Bay of Veys 1 

2.5   2.9 Seine estuary 1 

Dieldrin OC 60-57-1 

Variegated 

scallops (M. 

varia) 

 
6.4 

 
Loix en Ré 

[1] 2014 

1 

 
12.4 

 
Les Minimes 1 

 
nd 

 
Port-neuf 1 

 
4.2 

 
Les Palles 1 

Mediterranean 

mussel (M. 

galloprovincialis) 

  <1   
Chausey 

archipelago 
[17] 2015 

1 

 
2.7 

 
Bay of Veys 1 

2.1   2.3 Seine estuary 1 

Pacific oyster (C. 

gigas) 

<0.2* 
 

0.27* Le Martray 

[18] 2019 

11 

 
<0.2* 

 
Charente estuary 5 

 
<0.2* 

 
Seudre estuary 5 

alpha-

Endosulfan 
OC 

33213-65-

9 

Mediterranean 

mussel (M. 

galloprovincialis) 

  1.5   
Chausey 

archipelago 
[17] 2015 

1 

 
1.7 

 
Bay of Veys 1 

1.1   1.4 Seine estuary 1 

beta-Endosulfan OC 959-98-8 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
<1 

 

Chausey 

archipelago 
[17] 2015 

1 

 
14 

 
Bay of Veys 1 

  15.2   Seine estuary 1 
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Heptachlor OC 76-44-8 
Pacific oyster (C. 

gigas) 

nd 
 

0.3 Bouin 

[8] 2008 

2 

0.8 
 

1.6 Boyard 2 

0.6 
 

1.9 Les Palles 2 

nd 
 

0.5 Mus du loup 2 

nd 
 

0.7 Cordouan 2 

Heptachlor 

endo-epoxide 
OC 1024-57-3 

Mediterranean 

mussel (M. 

galloprovincialis) 

  4.1   
Chausey 

archipelago 
[17] 2015 

1 

 
1.1 

 
Bay of Veys 1 

1.4   2.3 Seine estuary 1 

Heptachlor exo-

epoxide 
OC 1024-57-3 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
1.0 

 

Chausey 

archipelago 
[17] 2015 

1 

 
2.3 

 
Bay of Veys 1 

1.1   1.2 Seine estuary 1 

Lindane OC 58-89-9 
Pacific oyster (C. 

gigas) 

2.1 
 

2.2 Bouin 

[8] 2008 

2 

0.5 
 

0.6 Boyard 2 

0.4 
 

1.3 Les Palles 2 

nd 
 

0.6 Mus du loup 2 

nd 
 

0.7 Cordouan 2 

alpha-BHC OC 319-84-6 

Pacific oyster (C. 

gigas) 

0.6*   0.62* Le Martray 

[18] 2019 

11 

 
0.62* 

 
Charente estuary 5 

  0.72*   Seudre estuary 5 

Blue mussel (M. 

edulis) 

 
0.26* 

 
Le Martray 

[18] 2019 

5 

 
0.31* 

 
Charente estuary 4 

  0.24*   Sèvre estuary 6 

Metazachlor OC 
67129-08-

2 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
12.3 

 

Chausey 

archipelago 
[17] 2015 

1 

 
10.8 

 
Bay of Veys 1 

11.8 
 

24.0 Seine estuary 1 

Metolachlor OC 
51218-45-

2 

Mediterranean 

mussel (M. 

galloprovincialis) 

  398   
Chausey 

archipelago [17] 2015 
1 

 
151 

 
Bay of Veys 1 
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284   349 Seine estuary 1 

Pacific oyster (C. 

gigas) 

<0.33* 
 

0.38* Le Martray 

[18] 2019 

11 

 
<0.33* 

 
Charente estuary 5 

  <0.33*   Seudre estuary 5 

Phtalimide OC - 
Blue mussel (M. 

edulis) 

  

30 

Banc du Nord 

[19] 
2015-

2017 

8 

  

Bay of 

Bourgneuf 
6 

  
Bay of Aiguillon 12 

trans-Nonachlor OC 5103-73-1 
Pacific oyster             

(C. gigas) 

nd   0.6 Bouin 
[8] 2008 

2 

0.4   0.7 Cordouan 2 

Ethoprophos OP 
13194-48-

4 

Blue mussel               

(M. edulis) 
  31 

Banc du Nord 
[19] 

2015-

2017 

8 

  
Bay of Aiguillon 12 

Chlorfenvinphos OP  470-90-6 
Pacific oyster (C. 

gigas) 

1.65*   1.89* Le Martray 

[18] 2019 

11 

 
1.72* 

 
Charente estuary 5 

  2.12*   Seudre estuary 5 

Chlorpyrifos OP 2921-88-2 
Pacific oyster (C. 

gigas) 

0.79* 
 

0.80* Le Martray 

[18] 2019 

11 

 
0.81* 

 
Charente estuary 5 

 
0.93* 

 
Seudre estuary 5 

Parathion OP 56-38-2 
Pacific oyster (C. 

gigas) 

0.56*   0.69* Le Martray 

[18] 2019 

11 

 
0.63* 

 
Charente estuary 5 

  0.61*   Seudre estuary 5 

Tributyl 

phosphate 
OP 126-73-8 

Blue mussel              

(M. edulis) 
  14 

Bay of 

Bourgneuf [19] 
2015-

2017 

6 

  
Bay of Aiguillon 12 

Bifenthrin Pyr 
82657-04-

3 

Blue mussel (M. 

edulis) 

    
48 

Bay of 

Bourgneuf [19] 
2015-

2017 

6 

    Bay of Aiguillon 12 

Cypermethrin Pyr 
52315-07-

8 

Mediterranean 

mussel (M. 

galloprovincialis) 

    10.9 
Chausey 

archipelago 
[17] 2015 

1 

 
<10 

 
Bay of Veys 1 

  <10   Seine estuary 1 
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Deltamethrin Pyr 
52918-63-

5 

Mediterranean 

mussel (M. 

galloprovincialis) 

 
11.2 

 

Chausey 

archipelago 
[17] 2015 

1 

 
<10 

 
Bay of Veys 1 

<10   13.0 Seine estuary 1 

           
 804 
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Figure 1. 805 

 806 

807 
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Supplementary material. 808 

 809 

Table S1. Physicochemical properties of pesticides found in bivalves from the French Atlantic 810 

and English Channel coasts.  811 

 812 

 813 

 814 

Pesticide Class
 

Statute 

in 

Europe 

Log 

Kow 

KOC 

(L/kg) 

Water 

solubility 

(mg/L) 

Vapor 

pressure 

at 25
o
C 

(mPa) 

DT50 

soil 

(days) 

PNEC 

(mg/L) 
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 815 

 816 

  817 

Acetochlor OC Banned 4.14 208.93 233 
0.22 (20

 

o
C) 

20–

100 
2.6.10

-6
 

Aldrine OC Banned 6.50 49,000 0.027 0.12 9490 - 

DDT OC Banned 6.91 204,000 0.0055 2.1.10
-11

 
 

4–30 
- 

Dieldrin OC Banned 5.40 12,000 0.195 0.78 .10
-3

 
 

>7 
- 

Endosulfan OC Banned 

3.83 

(alpha); 

3.62 

(beta) 

11,500 

(1.06) 
0.32 0.83 50 5.10

-7
 

Heptachlor OC Banned 6.10 24,000 0.18 4.0.10
-4

 250 3.10
-8

 

Lindane OC Banned 
3.72 

 
1,480 7.3 4.5.10

-5
 

 

15 
2.10

-6
 

Metazachlor OC Banned 2.49 - 450 
9.10

-7
 (20

 

o
C) 

0.1–

25.3 
2.10

-6
 

Metolachlor OC Banned 3.13 288.40 488 4.18.10
-4

 11-31 - 

Phtalimide OC  1.15 - 360 1.33.10
-4

  - 

trans-

Nonachlor 
OC Banned 6.20 56,000 8.2e-3 1.26.10

-10
 - - 

Ethoprophos OP Banned 3.59 70.79 750 0.05 3-56 - 

Tributyl 

phosphate 
OP - 4.0 - 280 1.5.10

-7
 - 0.0082 

Bifenthrin Pyr Banned 6.00 236,610 0.001 0.0178 26 1.9.10
-9

 

Cypermethrin Pyr Approved 6.60 
156,250 

(2.19) 
0.009 0.00023 60 - 

Deltamethrin Pyr Approved 6.20 10,240,000 0.0002 1.24.10
-5

 13 1.10
-7

 

Naphtalene PAH Banned 3.30 1.1.10
-5

 31 1.1.10
-5

 - 0.000325 
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Text S1. OCs are synthetic organic compounds containing at least one chlorine atom [87]. 818 

Due to their hydrophobic nature, OCs are persistent, i.g., dichlorodiphenyltrichloroethane 819 

(DDT) with a Log Kow of 6.91 [88] . They tend to accumulate in sediments, bioaccumulate in 820 

human and animal tissue, and biomagnify in food chains. OCs are considered as persistent 821 

organic pollutants (POPs) (DT 50 up to 9490 days) [6,51,89,90]. From 1940 to the 1970s, 822 

they were widely used, before being formally banned [91].  823 

OPs and Carb – second generation insecticides – act similarly. They inhibit the 824 

acetylcholinesterase (AChE) by releasing esters. AChE is an enzyme that catalyzes the 825 

hydrolysis of the neurotransmitter acetylcholine (ACh) [87,92]. Therefore, OPs and Carb are 826 

highly toxic to insects and mammals [87,92] and are as persistent in the environment as OCs 827 

[87]. For instance, ethoprophos has a 81-day half-life of open seawater [93]. OPs and Carb, 828 

including diazinon, parathion-methyl and carbofuran are water-soluble [13]. 829 

Pyr and Neo – third-generation of pesticides – were respectively produced in the 1970/80s 830 

and 1990s [11,13,94]. They have a lower bioaccumulation capacity than OCs [95] . However, 831 

these pesticides are extremely toxic to non-target aquatic invertebrates and fish species [96] . 832 

Pyr are characterized by their low solubility in water and their high organic carbon-water 833 

partition coefficients (KOC) (see Log Kow values and Koc in Table S1) [13]. Finally, Neo are 834 

water-soluble [13].  835 


