
HAL Id: hal-04074958
https://hal.science/hal-04074958v1

Preprint submitted on 19 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A new strong-field type Schwarzschild metric closer to
observation in gravity theory

Espen Gaarder Haug, Spavieri Gianfranco

To cite this version:
Espen Gaarder Haug, Spavieri Gianfranco. A new strong-field type Schwarzschild metric closer to
observation in gravity theory. 2023. �hal-04074958�

https://hal.science/hal-04074958v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A new strong-field type Schwarzschild metric closer to observation in
gravity theory

Espen Gaarder Haug⇤ and Gianfranco Spavieri+
⇤Norwegian University of Life Sciences, Norway

e-mail espenhaug@mac.com and espen.haug@nmbu.no
ORCID https://orcid.org/0000-0001-5712-6091

+Centro de F́ısica Fundamental, Universidad de Los Andes,
Mérida, 5101 Venezuela. E-mail: gspavieri@gmail.com
ORCID https://orcid.org/0000-0003-4561-2599

April 19, 2023

Abstract

The Schwarzschild metric is the most commonly used metric solution that can be derived from Einstein’s field
equation. It is used to predict most gravitational phenomena that can be checked with observation, especially
for weak field phenomena. However, in one of the final steps of deriving the final metric, one relies on Newton’s
theory, which suggests that the standard and well-known Schwarzschild metric is valid for weak fields only.
Unfortunately, few sources make this clear, and the physics community does not seem to be fully aware of it.
As a result, the weak field solution has been used to predict strong gravitational fields as well, for example
predictions about black holes, both large black holes and micro black holes.

We present a new metric that provides the same predictions as the weak field Schwarzschild metric in weak
gravitational fields, but gives significant new predictions in strong gravitational fields in particular for black
holes, but also for wormholes. Observational evidence related to strong fields is more consistent with this new
metric than the weak field approximation metric, which in some cases might have been used improperly to
predict results linked to strong gravitational fields.
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1 The Standard Schwarzschild Metric

Einstein’s [1] field equation is given by:

Rµv �
1

2
Rgµv + ⇤gµv =

8⇡G

c4
Tµv (1)

Based on the assumption of a non-spinning spherical mass with no electrical charge or angular momentum, as
well as setting the cosmological constant to zero, Schwarzschild [2, 3] derived the following metric for spherical polar
coordinates:

c2d⌧2 =
⇣
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R

⌘
dt2 �

⇣
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R

⌘�1
dR2 �R2(d✓2 + sin2 ✓d�2) (2)

where ↵ has to be determined before the metric can be used for any practical purposes. The standard methodology
in the literature to determine the value of the ↵ is to rely on Newton’s [4] theory, in short one has
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This yields the standard well known (textbook) Schwarzschild metric:
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c2d⌧2 =

✓
1� 2GM

c2R

◆
c2dt2 �

✓
1� 2GM

c2R

◆�1
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We note that only a few books on general relativity, such as Hobson, Efstathiou, and Lasenby [5], specifically
mention that this is a weak field limit. Other books, such as Weinberg’s [6], Poisson and Will’s [7], and the major
work by Misner, Thorne, and Wheeler [8], do not point out specifically that the last step in deriving their final
Schwarzschild metric is linked to calibrating it to Newton’s weak field limit and that the solution is therefore likely
valid for weak fields only.

If this is the case, the weak field Schwarzschild metric is not appropriate to make predictions related to strong
gravitational fields, including studies of black holes at the centers of galaxies and quasars. For instance, it has been
used to predict the escape velocity and the Schwarzschild radius in general relativity theory. We argue that such
weak-field metric predictions are likely not valid in strong gravitational fields, which we define as fields where the
escape velocity ve is significant relative to c. We do not contest the existence of black holes, but as we will soon
see, a new strong-field metric solution gives di↵erent and more logical predictions that even seem to be in line with
observations.

To illustrate the weakness of the weak field limit, consider the escape velocity in Newton’s theory, which is
determined by solving the equation for v:

1

2
mv2 �G

Mm

r
= 0 (4)

which gives v =
q

2GM
r . It is evident that this formula cannot be valid when v is close to the speed of light

because the kinetic energy formula used in the derivation, Ek ⇡ 1
2mv2, is only the first term of a Taylor series

expansion from Einstein’s relativistic kinetic energy, Ek = mc2� � mc2. However, it is well known that general
relativity theory predicts the same escape velocity as Newton, as shown in [9]. For years, it has been a mystery
to us why the escape velocity derived from general relativity theory is the same as that derived from Newton’s
theory, where the one derived from Newton theory is clearly valid only when v ⌧ c. We think we have found the
reason: in general relativity theory, the final Schwarzschild metric is mistakenly assumed to be valid in a strong
gravitational field, despite being “calibrated” to Newton for weak field and then used also for strong gravitational
field predictions. We claim that the general relativity escape velocity, which is identical to the one we get from pure
Newton, is actually valid for a weak gravitational field only, because derived from the Schwarzschild metric, which,
in its last step, is calibrated to the weak field Newtonian gravity theory.

So, nothing is wrong with the Schwarzschild metric itself; it is just that one needs to be aware that the last step
used to turn it into a practical and useful formula relies on Newton and that the whole solution therefore likely is
only valid for weak gravitational fields. The issue, therefore, is how to have the last step calibrated in such a way as
to take into account relativistic e↵ects and obtain a Schwarzschild metric solution that holds also for the strongest
gravitational fields. We show and discuss this in the next sections.

2 The new strong field metric

We will here suggest how to get a new strong field type of Schwarzschild metric, but now based on taking into
account strong gravitational field. The Newton limit is given by
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v2e
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(5)

The relativistic limit is given by 1)

1See the appendix for a discussion on validity of inserting the � factor here.
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where in equation (6) the factor gamma appears consistently in the expression of the kinetic energy and the
interaction potential energy (a discussion about the ”relativistic mass” is given in the Appendix). In the limit when
v = vesc ! c and Newton becomes relativistic2 we have the correspondence,
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Then, the Swartzschild component becomes
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where U is a physical quantity related to the gravitation potential in the metric of the Reiser Nordström type
[10, 11]. Our full strong field metric is therefore given by
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For all weak field phenomena, it gives predictions that are virtually identical to those of the standard (weak
field) Schwarzschild metric, with any di↵erences between the two being too small to be observable in weak field
experiments. The first term is identical to the weak field Schwarzschild metric approximation, which is the cor-
nerstone of much of gravitational physics. For large values of R (weak field), the second term is negligible with
respect to the first. Most of the very solid tests of general relativity have been done in the weak field, such as
gravitational time dilation, gravitational red-shift and light deflection. In many weak field experiments, one can set
up experiments where one has direct observations in all parts of the experiment. For example, for gravitational time
dilation, all one needs is basically two atomic clocks at di↵erent altitudes. For gravitational red-shift, one can send
a light beam down from a tower and thereby have full control of observations of the frequency sent out and received,
as first published by Pound and Rebka [12] in 1959. There is no doubt that the weak field Schwarzschild metric
approximation gives very accurate predictions for long series of gravity phenomena observed in a weak gravitational
field.

Observations from a strong gravitational field are much more indirect, as there is no strong gravitational field
on Earth or even in our solar system. We define a strong gravitational field as one where the escape velocity is
significant compared to that of light, which means it’s close to the radius of black holes as well as in very dense stars
such as Neutron stars. In this case, R is small and the second term is no longer negligible and becomes relevant in
the observation of black holes, which are found at the centers of galaxies, including quasars only indirectly. The only
observations we have from these objects are incoming photons. In other words, we have no observable information
about the exact wavelength of these photons when emitted from just outside these black holes. As a result, much of
the interpretation of black holes is done through a mathematical lens, which has been the weak field Schwarzschild
metric. An interesting question is what our strong field solution predicts about strong gravitational fields and how
this compares to observations. This will be the topic of the next sections.

3 The Implications of Our New Strong Field Metric

The new strong field metric has a series of implications and predictions for gravity in strong gravitational fields.
We will discuss some of them here.

2See the appendix for the validity of inserting the Lorentz factor in Newton.
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3.1 Black Holes

The main di↵erence in prediction between the well-known weak field Schwarzschild metric and our strong field metric
is that the radius where the escape velocity is equal to the speed of light is now Rs,2 = GM

c2 instead of Rs = 2GM
c2 .

Additionally, the escape velocity that applies to both weak and strong fields is given by ve =
q

2GM
R � G2M2

c2R2 instead

of the Newton weak field limit ve =
q

2GM
R , in weak gravitational fields the two escape velocity predictions are

indistinguishable. Even if this cannot be measured directly as we would need to hover just outside a black hole,
there is as we will see in the sections below indirect evidence from for example high-z quasars.

3.2 The strong field limit gives a perfect fit between the Planck scale and the Planck
mass micro black hole

In a recent paper [13], we showed that the weak field Schwarzschild metric, which has been used to make predictions
about micro black holes, cannot match more than one or two aspects of the Planck scale with any mass candidate
for a micro black hole. However, when we take into account that the black hole radius is given by Rs,2 = GM

c2 (the
radius where ve = c) in the strong field metric, then a Planck mass micro black hole fits all aspects of the Planck
scale.

We mistakenly claimed that micro black holes in general relativity cannot match the aspects of the Planck scale.
However, if our new strong field metric is consistent with Einstein’s field equation, then this is all fully consistent
with general relativity theory, it is just that one mistakenly has done predictions about strong fields using a weak
field approximation metric. To give a few examples, let us assume the micro black holes to have Planck mass size.
Then the Schwarzschild radius from the weak field metric is

Rs =
2Gmp

c2
= 2lp (8)

One may ask why it is twice the Planck length and not just the Planck length. After all, the Planck length is
considered the smallest meaningful radius or length in quantum gravity (see, for example, [14–16]). Furthermore,

the escape velocity from the Planck length is now greater than the speed of light, with ve =
q

2Gmp

lp
= c

p
2.

However, one could argue that it is meaningless to calculate an escape velocity within the Schwarzschild radius,
and we would agree on that, but what if this is not the correct radius where the escape velocity is c, due to having
calibrated the Schwarzschild metric to Newton. Additionally, the density of the Planck mass micro black hole would
be only 1/8 of the Planck mass density. Why is that? Alternatively, one could assume that the micro black hole
is half the Planck mass, in which case its Schwarzschild radius would be the Planck length. However, the reduced
Compton wavelength of the mass would now be twice the Planck length, and it is often assumed that a particle can
be compressed at most to its reduced Compton wavelength. Moreover, the surface acceleration would be only half
the Planck acceleration. We discuss this topic in much more detail in [13].

The crucial point is that as soon as we switch to the strong Schwarzschild metric, a Planck mass size black hole
fits all aspects of the Planck scale. Its Schwarzschild radius would be the Planck length, the acceleration at the
Schwarzschild radius would be the Planck acceleration, and if the Planck acceleration lasts for the Planck time, one
would reach the speed of light. The density of the black hole would be the Planck density, and so on. The strong
field Schwarzschild metric seems to o↵er much better logic and a perfect match between the Planck mass black hole
and all aspects of the Planck scale. This could be important to better understand the Planck scale and to get to a
quantum gravity theory.

3.3 Wormholes seems forbidden in the strong field limit

In 1916, Flamm [17] hinted at the existence of wormholes. In 1935, Einstein and Rosen [18] were the first to
mathematically predict wormholes using the Schwarzschild metric. They used the standard Schwarzschild metric,
which is described in Section 1 of this paper, and as is often done when working with the Schwarzschild metric,
they set c = 1 and Rs =

2GM
c2 = 2m.

Next, Einstein and Rosen defined a new variable, u2 = R�2m, and replaced R with u2+2m in the Schwarzschild
metric to obtain:
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ds2 =

✓
1� Rs

R

◆
c2dt2 � dR2

1� Rs
R
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They then discussed the special case when u = 0. In this case, the term g1,1 =
�
1� Rs

R

�
c2dt2 = u2

u2+2mdt2

vanishes, while the other terms in the Schwarzschild metric remain well-defined. This was interpreted to mean that
one could move in space without moving in time, essentially providing a passage from one part of the universe to
another through a wormhole.

Wormhole physics has been investigated by a series of physicists [19–35], and it remains a hot topic to this day
despite the lack of observable findings of wormholes.

However, we will claim that the interpretations of wormholes could be incorrect as they are predicted by a weak
field approximation of the Schwarzschild metric, whereas wormholes are related to strong gravitational fields. Also,
for simplicity, in our strong field metric, we set c = 1 and Rs,2 = GM

c2 when ve = c. For notation purposes, we can
set m = GM

c2 . Similar to Einstein and Rosen, we set u2 = R �m. The choice of u is just as in the Einstein-Rosen
solution, such that we end up with the dt2 term vanishing. We can now replace R with R = u2 +m. We end up
with

ds2 =

✓
1� 2GM

Rc2
+

G2M2

R2c4

◆
c2dt2 � dR2

1� 2GM
Rc2 � G2M2

R2c4

�R2(d✓2 + sin2 ✓d�2)

ds2 =

✓
u2

u2 +m

◆2

dt2 � 4(u2 +m)2

u2
du2 � (u2 +m)2(d✓2 + sin2 ✓d�2) (10)

If we now set u = 0, the dt2 term vanishes, as expected, similarly to how it did in the Einstein-Rosen modified
Schwarzschild weak field metric. However, in our strong field metric, the du2 term now becomes infinite, meaning
that it is mathematically undefined or we can say it goes to a singularity. The fact that the du2 term is no longer
mathematically valid should be interpreted as implying that no valid solution for the metric exists when the dt2

element disappears. That is, unlike in the weak field Schwarzschild metric, nothing can move in the strong field
metric without time passing by. In other words, wormholes are not allowed in this metric. This should naturally
be investigated by more researchers, but the conclusion so far is that wormholes do not exist.

3.4 Explaining the lack of time dilation in quasars with the strong field metric

In a groundbreaking study of high-z quasars, Hawkins [36, 37] surprised the scientific community by reporting that
these objects showed no evidence of velocity time dilation, contrary to what had been expected. In the words of
Hawkins:

”There does not appear to be a satisfactory explanation for the absence of a time dilation e↵ect in
quasar power spectra...”

Recently, we have shown in a paper [38] that if we use the strong field metric with Rs,2 = GM
c2 instead of the

weak field metric with Rs = 2GM
c2 , then light can be sent out from much closer to the center of the black hole

than previously assumed, still outside the event horizon that is now only half the distance predicted by the weak
field Schwarzschild geometry. This leads to a stronger gravitational redshift for strong field objects than expected
from the weak field metric, with a larger portion of the redshift being due to gravitational redshift rather than
velocity (Doppler) redshift. As a result, the velocity time dilation is much lower than expected. Once again, the
observations seem to support our new metric.

3.5 The maximum mass of Neutron stars corresponds with observations in the strong
field limit

In a recent paper [39], we have shown that the maximum mass of Neutron stars, when taking into account relativistic
mass, is fully consistent with our new strong field metric. Our metric predicts a maximum mass of Neutron stars to
be 2.147 solar masses, while the largest observed Neutron star is 2.14±0.1M�, as reported by Cromartie et al. [40].
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In contrast, the weak field Schwarzschild metric, using the same logic, predicts a maximum mass of only 0.76M�.
While several di↵erent approaches to predict the maximum Neutron mass in the literature have been suggested,
this again highlights the need for multiple researchers to investigate this further over time. However, we believe
that this is a promising development in favor of the new strong field metric.

4 Conclusion

In this paper, we have presented a new metric solution, valid for weak and strong gravitational field, to the
Schwarzschild solution. We believe that our solution is consistent with the general theory of relativity, although it
is subject to further discussion and investigation over time. Our solution provides more logical predictions, such
as for micro black holes, where the Planck mass black hole now fits all aspects of the Planck scale. This is not
possible to achieve in the weak field Schwarzschild metric. Additionally, our solution predicts that wormholes cannot
exist. The strong field metric also appears to explain the lack of observed velocity time dilations in high-z quasars.
Overall, we believe that our new metric represents an important step forward in understanding the behavior of
strong gravitational fields, and we look forward to future research in this area.
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Appendix: Relativistic e↵ects before taking into account general rela-
tivity

As early as 1981 and 1986, Bagge [41] and Phipps [42] suggested modifying Newtonian mechanics to take into
account special relativistic e↵ects, resulting in a modified equation of the form:

F = G
Mm�

R2
(11)

Where � is the Lorentz factor � = 1/
p
1� v2/c2. That is, since the small mass m moves relative to the large

gravitational mass M , they suggested it should be relativistic. Actually, as mentioned below, the meaning of
the term “relativistic mass” has been evolving through the years and sometimes misinterpreted by some authors.
Nevertheless, Phipps had in the same paper claimed that this relativistic correction alone gave the correct prediction
of Mercury precession. However, it was shortly afterwards shown by Peters [43] that Phipps had made a small error
in his calculation of Mercury precession, and that the Mercury precession with this method still seemed to be o↵
compared to the observed Mercury precession. Phipps [44] agreed on the mistake made in his calculation but still
thought the relativistic adjustment of the Newton formula could be of interest and needed further investigation.
Recently, Corda [45] has shown that if, besides the “relativistic mass”, one also takes into account that the mass of
Mercury is not insignificant relative to that of the Sun, then one gets the correct prediction of Mercury precession.
Haug [46] has looked closer at this problem and has indicated that when one properly takes into account that
both M and m are moving relative to a third observer, the Earth observer, then one could get again the correct
prediction of Mercury precession. We will not conclude on this issue here, but just point out that this is likely not
a fully settled question yet; see also [47, 48].

In general, relativistic modifications to Newton’s theory have been dismissed and not looked at mostly for
another reason. The main reason for so little interest in adding relativistic e↵ects to Newton has been that parts of
the general relativity research community has typically rejected relativistic mass. To understand the pros and cons
of relativistic mass, we should go back and look at the history of the debate on relativistic mass.

Lorentz [49] already in 1899 was the first to introduce the relativistic mass in the form we find it in many
textbooks [50–53] and some papers that we soon will get back to. The Lorentz relativistic mass in today’s notation
is given by m�, where m is the rest mass. In his most famous paper on special relativity theory, Einstein [54]
suggested two types of relativistic mass, namely transverse mass m�2 and longitudinal mass m�3, neither of which
are used in any standard theory today. In 1906, Einstein [55] tried to come up with experiments that could
distinguish between the di↵erent suggested relativistic masses, but with little or no success.

Max Planck [56] in 1906 was the first to introduce the relativistic momentum p = mv�. Tolman and Lewis [57] in
1909, as well as Tolman [58] in 1912, concluded based on conservation of momentum that had been experimentally
observed that it was the Lorentz relativistic mass of the form m� the only one consistent with this. In other
words, they rejected the relativistic mass formulas that had been suggested by Einstein. This was a view soon
held by a series of physicists, for example, Veride [59] and later even by prominent physicists like Pauli [60]. Pauli
concludes, “This leads to a complete confirmation of the relativistic (mass) formula, which can thus be considered
as experimentally verified. It has not been possible up until now to establish this variability for masses other than
that of the electron experimentally, because of the smallness of the e↵ect, even for fast alpha particles..

In his 1965 book titled ‘Einstein’s Theory of Relativity ’, Born [61] describes the relativistic mass of the form
m = m0� and attributes it to Lorentz. Born explains that the Lorentz relativistic mass formula as introduced by
Lorentz was only for an electron, but he argues that the formula is correct for any moving mass. Born concludes
that to have conservation of momentum, the mass is to have di↵erent values according to the system of reference,
according to the velocity of the moving body. Based on conservation of momentum in the case of inelastic collision”,
Max Born concludes that it is impossible to retain the axiom of classical mechanics that mass is a constant quantity
peculiar to each body”. The book [62] was first published in 1920 but was updated in 1962 and 1965.

However, it should also be mentioned that other prominent physicists like Wien [63] mentioned Einstein’s
relativistic mass as late as 1921 without even mentioning the Lorentz relativistic mass.

Einstein did not seem to have been successful with his relativistic mass prediction formulas, despite the enormous
success of the rest of his paper on special relativity theory. We must remember that the Lorentz relativity theory



11

still was somewhat a competitor to Einstein even at this point, even if the two theories strongly overlap. Einstein
was certainly the first to suggest relativistic energy of the form E = mc2�, so he could have arrived at the relativistic
mass simply by dividing by c2, but he had not done this and had instead derived other formulas for relativistic mass.
We will also come back to dividing the relativistic mass by c2, as there are also discussions on pros and cons in
the literature to this day. Whether it was Lorentz who invented the relativistic mass, which now seemed preferable
by most physicists and played a role in Einstein becoming negative towards relativistic mass and abandoning it
altogether, or if it mostly had to do with his work on general relativity theory, will likely be unknown.

In deriving his general relativity theory, Einstein relies on relativistic mass given by Max Planck, but now
incorporates relativistic mass in fourth-momentum, as well as in the stress-energy tensor. In other words, Einstein
does not rely anywhere directly on relativistic mass. Einstein wrote in a letter to Lincoln Barnett, an American
journalist, dated 19 June 1948:

It is not good to introduce the concept of the mass of a moving body for which no clear definition can
be given. It is better to introduce no other mass M = m/

p
1� v2/c2 concept than the “rest mass”, m.

Instead of introducing M , it is better to mention the expression for the momentum and energy of a body
in motion.

This letter has been actively used among physicists who are negative towards relativistic mass, for example, Hecht
[64]. Other prominent experts in general relativity, such as Adler [65] in 1987 and Taylor and Wheeler [66], have
also been negative towards relativistic mass. One of their main arguments against relativistic mass is, in their
own words, ”In reality, increases of energy with velocity originate in the geometric properties of spacetime itself.”
They also claim that relativistic mass “implies the name ”mass” – belonging to the magnitude of a 4-vector – to a
very di↵erent concept, the time component of a 4-vector.” Okun [67] has been a strong opponent of the concept of
relativistic mass in his 1989 paper. Rindler [68, 69], a defender of special and general relativity theory, however,
went out against Okun’s arguments and defended the use of the concept of relativistic mass.

Sadnin [70] defended relativistic mass in a 1991 paper and went through many of the arguments against rel-
ativistic mass put forward by Okun and Taylor and Wheeler. He concluded that their arguments against it are
rather weak and stated, ”Relativistic mass paints a picture of nature that is beautiful in its simplicity. We should
continue to use relativistic mass along with consistent interpretations of Newton’s second law and E = mc2 in intro-
ductory courses. Insisting on its removal as a useful tool from all textbooks, as Okun does, is a form of unnecessary
censorship.

Jammer [71], in his detailed study of mass published in the year 2000, has dedicated a whole chapter to relativistic
mass and the pros and cons arguments that have been presented in the literature. He mentions that this has been
a debate going on for decades and that it is not over and much about preferences. The debate continues to this
day. For example,

Atkin [72] in 2015 defends relativistic mass and states in his conclusion, ”The term mass should mean relativistic
mass rather than the currently popular meaning of rest mass.” However, Sullivan [73] comments on the paper and
refers to the critics of relativistic mass given by Okun, Adler, and Hecht, but also to the defense of relativistic mass
by Sadnin [70]. Sullivan states, ”Of course, there is nothing wrong with introducing relativistic mass, and some
physicists have made a case for its retention [7, 8]; ultimately, it comes down to an individual pedagogical decision.”
Dai and Dai [74], in a recent 2018 paper, rely on relativistic mass when deriving mass-energy equivalence and the
mass-velocity relation without relying on light. They state, ”In relativity, the inertial mass of a moving particle is
not a constant quantity but a function of the particle’s velocity.”

Field [75] in a 2020 paper criticizes several of the arguments made by Okun, Adler, and Wheeler on relativistic
mass. For example, Field points out that ”Okun is erroneously conflating the ’rest mass of a photon’ and the entirely
di↵erent ’mass equivalent of the energy of a photon’.”

Oas [76] in 2008 went through over 600 books and papers in physics and showed that a majority of books and
papers mentioning relativistic mass are positive about it. However, many of these books and papers only touch
upon the topic, so the fact that a large number of physicists (if not the majority) are still positive about relativistic
mass is not a good argument in itself.

Of the recent books that really go into a detailed discussion of relativistic mass, Jammer’s seems to be neutral
on the topic and only concludes that it is a long ongoing debate with many interesting arguments pro and con.
Petkov [77] in his 2009 book ”Relativity and The Nature of Spacetime” criticizes the critics of relativistic mass.
He discusses relativistic mass in quite some detail and concludes, ”So, if we cannot talk about relativistic mass,
by the same argument we should only talk about proper time, which is invariant, and deny the name ’time’ to the
coordinate time.” as he claims that some of the same arguments used against relativistic mass can be used against
relativistic time.”
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Another interesting point is if we even need relativistic mass to incorporate relativistic e↵ects in the Newton
formula. Adler and Bazin [78] in a section of their book derives gravitational red-shift in a weak gravitational
field based on replacing the small mass with E/c2, so in that case we could argue for that one could re-write

F = GMm�
R2 = GME�/c2

R2 when dealing with relativistic e↵ects in Newton theory and that we simply are dealing
only with relativistic energy and not relativistic mass.

All we can conclude is that the physics community does not agree on whether relativistic mass is a valid concept
or not. The debate has been ongoing for decades, and based on a series of recent papers discussing it, it is clear
that the debate is not over. To pretend that the debate is over and come to a conclusion without exploration is
seldom the right way to go. The appropriate approach is to fully explore what incorporating relativistic mass leads
to in terms of predictions.


