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Vagueness, Typicality and
Uncertainty in Class Hierarchies
Didier Dubois, Henri Prade, Jean-Paul Rossazza
Institut de Recherche en Informatique de Toulouse, Université Paul
Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)

The paper presents an object-centered representation, where both a range of allowed values
and a range of typical values can be specified for the attributes describing a class. These
ranges may be fuzzy. Then various kinds of (graded) inclusion relations can be defined
between classes. Inheritance mechanisms are discussed in this framework, as well as other
kinds of reasoning tasks such as classification. The architecture of a software system
implementing these ideas is outlined.

1.  INTRODUCTION

The object-centered representations (O.C.R.) stem from the notion of frames
expressed by Minsky1 and the concept of object defined in Smalltalk2. They model
knowledge as explicit entities named objects (or frames) rather than by means of
relations bearing on entities, as in predicative and relational formalisms. An object
may be an abstract concept (for example the concept "bird") or a real entity (the living
bird named Tweety). So in an O.C.R. the objects have an explicit existence inside the
knowledge base: all the information concerning an object is gathered at the same place
and forms this object. The pieces of information are not scattered in the base as they
are in predicative and relational formalisms. The objects having the same properties
are gathered into classes which are organized into hierarchies. This organization
allows an object to inherit properties from its class (if the object is an instance) or
from its superclasses (if the object is a class) thus simplifying the specification of the
knowledge base. Moreover a system using such an organization can easily access its
knowledge and so explain its reasoning. An O.C.R. may be used in association with
production rules or as one among different representation methods the user can
choose.

From a cognitive point of view an O.C.R. is interesting because the human
being seems to use both the notions of hierarchy and class in his reasoning. By using
such  hierarchies  we  can hope on the one hand that the system will be able to reason 
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in a way closer to the human mind and on the other hand that the knowledge base will
be more understandable and easier to model. But the reasoning process of a human
being is much more complex than the simple use of class hierarchies: a human being
can plausibly answer questions even if he has not all the necessary information for a
sure answer. He can do that because he uses different kinds of reasoning patterns (see
e.g., Collins and Michalski3): generalization, specialization, analogy and default
reasoning, and because he can handle vagueness, uncertainty and typicality.

So, in order to accommodate various forms of plausible reasoning we need an
O.C.R. allowing to cope with typicality, uncertainty and vagueness. Although object-
centered representations and possibility theory can get along quite easily, there have
been only a few attempts to mix them: let us mention Rundensteiner and Bandler4

who rather study fuzzy semantic networks, Vignard5 who introduces fuzzy-valued
attributes in classes, Graham and Jones6,7 who propose a generalization of the notion
of frame allowing for partial inheritance, Granger8 who solves classification
problems, using a class hierarchy with fuzzy thresholds and weighted attributes and
Torasso and Console9 who define a frame-based representation with three kinds
(necessary, sufficient and supplementary) of weighted attributes.

In the approach proposed in this paper, classes are intensionally described in terms
of attributes for which we distinguish between the range of allowed values and the
range of typical values, as explained in the following section. These ranges are
described by fuzzy sets10 in the most general case. The existence of two kinds of
range for each attribute induces four basic types of possible inclusion between two
classes. In section 2 suitable degrees of inclusion are discussed in order to take into
account the possible fuzziness of ranges in the evaluation. Section 3 of the paper
briefly presents the architecture of a system based on such classes, and section 4 deals
with inference issues in this framework.

II.  FUZZY CLASSES OF OBJECTS AND VALUES OF
ATTRIBUTES

A class can theoretically be considered from two different view points: i) an
extensional one where the class is defined by the list of its members; ii) an
intensional one where the class is defined by a set of attributes and their admissible
values (or equivalently in terms of a compound predicate). Practically we can only use
the intensional definition. In the following a class is defined by means of a set of
attributes; each attribute has a domain, a range and a typical range . Only single-
valued attributes are considered in this paper. The domain  of an attribute a is the set
of all the values the attribute may take for all objects; the attribute domain does not
depend on the class. The range and the typical range will allow us to define a class
intensionally and to capture the notion of typicality. When speaking of a class, we
will use the word 'range' for expressing what is usually called an attribute value in a
classical O.C.R. and distinguishing it from a value in a range. 
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A.  The Range and the Typical Range of an Attribute

The range R(a,C) of an attribute a of a class C is the set of allowed values that
members of C can take for the attribute a. The range of an attribute may be fuzzy
because some of its values are regarded as atypical (i.e. less possible or feasible than
other values): then an atypical value of the range will be assigned a membership
degree strictly less than 1. However a nonatypical value will not necessarily be a
somewhat typical value. We want to point out that a class is fuzzy not because of a
lack of information but in order to allow for flexibility and encompass borderline
cases.

The typical range T(a,C) of an attribute a of the class C is the set of more or less
typical values that a member of C can take for a. The typical range can naturally be
represented by a fuzzy set because the notion of typicality is intrinsically gradual.
Moreover, before being somewhat typical a value must be not atypical, that is if we
write Su(T(a,C)) for the support of T(a,C) and Co(R(a,C)) for the core of R(a,C) we
should have

Co(R (a,C)) Su(T(a,C)) (1)

where the support of a fuzzy set is the set of elements whose membership is strictly
positive, and the core is the set of elements whose membership is equal to 1. In
practice, an equality rather than an inclusion will often be assumed since it might be
difficult to imagine a nontypical value (not belonging whatsoever to T(a,C)) that is at
the same time not atypical (belonging to Co(R(a,C))). When a typical range is not
explicitly stated, we will implicitly consider, in order to be coherent with the above
requirement, that the core of the range is the typical range. The typical ranges may of
course be used as (fuzzy) default values11 that apply to an instance of C taken at
random;  they may also be viewed as defining class prototypes12,13.

Let us consider a simple example:

class Birds 
attribute way_of_locomotion

domain {fly, walk, swim,  crawl, …}
range {1/fly, 0.6/walk, 0.2/swim}
typical range {1/fly}

… …

Here, as it has been said, the attribute way_of_locomotion is considered as being
single-valued (in fact we can consider that we are representing the main way of
locomotion of birds). Some values of the range have received a membership degree
(indicated before the '/') different from 1 in order to point out their atypicality (here the
numbers mainly reflect an ordering). In the example the nonatypical value is the
typical value.

When none of the ranges of the attributes of a class is fuzzy, we have an ordinary
class. Clearly we are free to allow or not to allow the ranges or the typical ranges of
attributes to be fuzzy. This a matter of option; in practice it is perhaps not necessary
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to allow both for fuzzy ranges and fuzzy typical ranges.

B.  Subclasses

In classical O.C.R., a subclass C2 is defined from its superclass C1 either by
specialization of its ranges (i.e. the subclass ranges must be included in the
corresponding ranges of C1) or by addition of new attributes. In our representation the
subclasses are going to be defined in a similar way once we have specified what does
'included' mean for fuzzy ranges. However the distinction between range and typical
range induces the existence of four types of inclusion depending if we are comparing
the ranges or the typical ranges of C1 with the ranges or the typical ranges of C2.
Obviously this comparison may be limited to the context corresponding to a
prescribed subpart of the attributes involved in the descriptions of C1 and C2.

1.  Inclusion of Two Fuzzy Ranges

The degree of inclusion N(B | A) of a fuzzy set A into a fuzzy set B can be defined
by the expression14

N(B | A) = Infu{ A(u) * B(u)} (2)

where * denotes a fuzzy implication. We have four main inclusion degrees
examplified by considering the following fuzzy implications: Gödel's, Dienes',
Lukasiewicz' and the reciprocal of Gödel's implication (see the annex for their different
properties). The minimal requirement we demand for the fuzzy ranges A = R(a,C2)
and B = R(a,C1) in order to say that the inclusion of A into B holds to some extent is
the following

Su(R(a,C1)) Su(R(a,C2)) (3)

i.e. there are no values of a which somewhat belong to A (i.e. which are somewhat
allowed in C2) and which do not at all belong to B ('i.e. which are forbidden in C1).
This property is ensured by the degree of inclusion based on Gödel implication (see
the annex). This is why this degree of inclusion, denoted NG in the following,  is
chosen  for  defining  the  inclusions  between  classes.  Note  that 

NG(B | A) = 1 A  B

that is, if B contains A , any object belongs to B at least as much as it belongs to A .
Moreover

NG(B | A) > 0 du, A(u) > 0 and B(u) = 0;

i.e. (3) holds, as expected.
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2.  Inclusion Between Classes

Since a class is defined through the conjunction of its attributes (and of their
ranges), we define the inclusion degree between two classes as a conjunctive
aggregation of the inclusion degrees of their ranges. The attributes are supposed to be
noninteractive15 (i.e. any n-tuple of values on the Cartesian product of the ranges is
(at least somewhat) allowed for an instance of the class). To perform the conjunction
we want to choose two associative conjunctive operations and * verifying

NG(B1 … Bn | A1 x …  x An) = * {NG(Bi | A i) | i <1, n>} (4)

where  stands  for  the  Cartesian  product  and  *  for  the  conjunction  of  the
degrees; * {ai | i I } is the result of combining the ai's by operation * . It can be
proved (see annex) that if the Cartesian product is defined by means of min operation
(in order to be in agreement with the noninteractivity of the attributes15) we should
have * = min in (4), provided that A1, …, An are normalized (i.e. i, ui Ai(ui) =
1), so we can define the inclusion degree NG(C1 | C2) of C2 in C1 with respect to
the ranges as

NG(C1 | C2) = min {NG(R(a,C1) | R(a,C2)) | a is an attribute of C2 } (5)

where min{f(a) | a }denotes the value of the smallest of the f(a)'s when a ranges
in . Here we consider that all the attributes of C2 which are not explicitly
mentioned as attributes of C1 can always be implicitly considered as attributes of C1
with a range equal to their domain (for these ranges Gödel's inclusion degree is equal
to 1) so the minimum in (5) can be taken on the attributes of C1. Note that

NG(C1 | C2) > 0 a, NG(R(a,C1) | R(a,C2)) > 0.

Similarly  we  define  the  three  other  inclusion  degrees  NG(C1 | T(C2)),
NG(T(C1) | C2) and NG(T(C1) | T(C2)) where T(Ci) means that we substitute
T(a,Ci) for R(a,Ci) in (5). It is clear that the following inequalities hold due to (1)

NG(C1 | T(C2))  NG(C1 | C2)  NG(T(C1) | C2) (6)

NG(C1 | T(C2))  NG(T(C1) | T(C2))  NG(T(C1) | C2) (7)

Given a collection of classes described in terms of ranges and typical ranges of
attributes, it is then possible to build a valued-graph expressing the different inclusion
relationships between classes and their degrees. It can be interpreted as a weighted
semantic network. The definitions of the inclusion degrees can be restricted to a
context expressed by selecting a subpart of the attributes involved in the description
of classes. It can be checked that NG satisfies the following transitivity property

NG(C | A)  min(NG(C | B), NG(B | A)). (8)

Thus by transitivity lower bounds of degrees of inclusion can be easily obtained. The
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use of this property in classification processes is emphasized in section 4.2.

C.  The Possible Range and the Credible Range of an Instance

We have called instances, the terminal objects of the hierarchy which are not able
to generate other objects. Like classes, they are described in terms of attributes. The
available knowledge, possibly incomplete about an instance x is represented for an
attribute a by a possible range P(a,x) and a credible range Cred(a,x). P(a,x) is the
(fuzzy) set of all the more or less possible values of the attribute a for the instance x.
Its membership function is viewed as a possibility distribution acting as an elastic
constraint on the value of the attribute a for x. It is supposed to be a sure information
(since given by the operator or by inheritance). Cred(a,x) denotes a range obtained in
an uncertain way (i.e. by a plausible reasoning technique whose validity is not
guaranteed). It will in particular allow for default reasoning. In order to be coherent
with the possible range, the credible range has to satisfy the following relation (which
is weaker than (1)):

Su(P(a,x)) Co(Cred(a,x)) (9)

that is to say each completely credible value is at least a little possible. Unlike a class
range, P(a,x) is a set of mutually exclusive values: the real value of the (single-
valued) attribute a for the instance x is in Su(P(a,x)) but we do not know precisely
where.

Note that (9) is a very weak relation: as we know that no value outside P(a,x) is
allowed, a stronger relation could be Su(P(a,x)) Su(Cred(a,x)). However a plausible
reasoning may produce uncertain credible ranges which would not satisfy this relation
(indeed an uncertain fuzzy value has a membership function which is not zero
anywhere: since nothing is certain, everything remains somewhat possible, may be
with a low degree). Their uncertainty would then have to be restricted to Su(P(a,x)).

The uncertainty of a credible range arises from the fact that it has been produced
as a default range, whereas the uncertainty of a possible range denotes the uncertainty
of the piece of information itself. Thus in the following example

Tweety
Way_of_locomotion: Possible range {1/fly, 0.6/walk, 0.2/swim}

Credible range {1/fly}

the possible range comes from the knowledge that Tweety is a bird, and the credible
range is obtained by default reasoning. If the source of information only asserts that it
is 0.8 certain that Tweety is a bird, the possible range would be {fly, 0.6/walk,
0.2/swim 0.2/crawl, 0.2/…} since any value of the domain remains in this case
possible at the degree 1 – 0.8 = 0.2. Hence the approach distinguishes between
plausible values whose uncertainty is due to default reasoning (the credible ranges) and
plausible values whose uncertainty is due to the lack of reliability of the source that
provides the information (uncertain possible ranges supplied by the user).
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D.  Certainty of Membership of an Object in a Class

When the value P(a,x) of an attribute a for an object x is precisely known (i.e.
corresponds to a singleton of the domain of a, its membership degree to the range
R(a,C) of the class C is given by R(a,C)(P(a,x)); more generally when P(a,x) is
imprecisely or fuzzily known, i.e. P(a,x) is represented by a possibility distribution
which does not restrict a unique possible value, we only have a bracketing of this
degree; see Cayrol et al16 on this point. Therefore we want to be sure that the real
value of the attribute for the considered object is in the range of the class even if the
corresponding instance value is fuzzily known. This leads to use Dienes' inclusion
degree (see the annex) since

N(R(a,C) | P(a,x)) = 1 Co(R(a,C)) Su(P(a,x)) (10)

i.e. we conclude in favor of completely certain (and a full) membership of x to C if
and only if all the more or less possible values of P(a,x) are among the values which
undisputedly belong to the range. The membership degree evaluation of an object x to
a class C is defined as the conjunction of the membership degree evaluations with
respect to ranges defining C. Dienes' inclusion degree can be factorized17 as Gödel's
inclusion degree, provided that each P(a,x) is normalized, i.e.

N(C | x) = min {N(R(a,C) | P(a,x)) | a is an attribute of C } (11)

N(C | x) represents the certainty for x to be in C, in spite of the ill-known description
of x. In the same manner we may want to know the extent to which x is a typical
instance of the class C. It is estimated by min{N(T(a,C) | P(a,x) ) / a is an attribute
of C}. It is also possible to compute credible degrees by using the credible ranges of
x. Finally, it can be checked that we have a transitivity property analogous to (8):

N(C1 | x)  min(N(C2 | x), NG(C1 | C2)). (12)

Note that N(C | x) is generally not a degree of membership (except if x is precisely
described and/or N(C | x) = 1). It is a degree of certainty of membership. Particularly
N(C | x) = 0 does not mean that x does not belong to C, but only that there is total
ignorance about it. In order to conclude that x does not belong to C, we must ensure
that the degree of possibility of membership (C | x) = 1 – N(¬C | x) is zero, where
¬C is the complement of C (defined by taking the complement to 1 of the
membership functions of the ranges). However it is not usual to compute (C | x) in
usual object-centered representations.

E.  Handling Typicality

The way the classes are described, as well as the various kinds of inclusion
relations which can be computed from the descriptions or declared by the user, enables
us to handle typicality. A statement like "typically, students are adults" can  be
understood  as  T(Stu) Adu,  while  a  statement  like  "typically  adults  are
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employees"  may  rather mean  T(Adu) T(Emp), where Stu, Adu and Emp denote
the classes of students, adults and employees respectively, and T(C) is the subclass of
typical elements of class C. These statements are for instance compatible with the
following descriptions

Stu Adu
Age R:  15 Age R:  18

T: [18,25] T: [25,60]
Income R: {scholarship, parents' money, salary} Income R: <any kind>

T: {scholarship, parents' money} T: {salary}

Emp
Age R: [16,65]

T: [20,60]
Income R: {salary}

T: {salary}

Note that the description blocks undesirable transitivity effects since T(Stu) Adu z
T(Adu) T(Emp); thus we cannot deduce that a typical student is an employee.

III.  SKETCH OF THE ORGANIZATION OF THE PROPOSED
OBJECT-CENTERED REPRESENTATION SYSTEM

The heart of the system18 implementing the above-presented approach contains a
knowledge base and a supervisor. The knowledge base is divided into a hierarchical
component and a descriptive component. The hierarchical component can be viewed as
a simplified semantic network, based on weighted "is-a" links (between an instance
and its classe(s)) and "a-kind-of" links (between classes). It allows us to draw quick
inferences when no description is required. The descriptive component provides a
semantic justification to the weighted hierarchy: every hierarchical link has to refer to
an inclusion or membership relation in terms of intensional description. The
existence of two modes of representation within the system recalls but contrasts with
Coupey's proposal in the RS19 system, where a NETL-like20 semantic network is
coupled together with a syntactic declarative description in a variant of Reiter's default
logic21. 

The supervisor monitors the execution of complex requests, possibly by calling
specific procedures of the base manager for reasoning steps, computing inclusion
degrees… It has to determine which requests of the base manager have to be called,
and how they must be called. Further research is needed about it.

Any access to the base requires the base manager. It gathers the different functions
manipulating the knowledge base objects.  These functions may be called by the user
interface for consultation or updating requests, or by the supervisor when the
processing of a complex request requires knowledge about some objects of the base.

The objects description requires particular data structures in order to represent
fuzzy ranges. The symbolic and numerical processor is specially designed to cope
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User interface

Supervisor

Knowledge 
base

Valued hierarchy Intensional description

 Base manager

Numerical and 
symbolic 
processor

Figure 1. General organization of the object-centered representation system

with these structures. Particularly, it can create fuzzy ranges, perform intersection,
compute inclusion degrees between ranges, or evaluate membership degrees of
instances. 

IV.  VARIOUS REASONING MODES

Inheritance and classification are two opposite ways of reasoning: inheritance tries
to deduce the properties of an object according to its position in the hierarchy, whereas
classification tries to locate an object in a hierarchy according to its properties. The
expressive power of our representation offers not only these two ways of reasoning
but also variations thereof. Finally, we present some other kinds of reasoning as well.
In the following, when a class C2 is declared to be a subclass of C1, it implicitly
means that the corresponding degree of inclusion (based on NG) is equal to 1.

A.  Inheritance

Three kinds of inheritance are available: typical inheritance, 'normal' inheritance
and atypical inheritance. Describing C2 as a typical subclass of C1 implies that C2's
possible ranges inherit C1's typical ranges. Describing C2 as a 'normal' subclass of
C1 implies that C2's possible ranges inherit C1's possible ranges and C2's typical
ranges inherit C1's typical ranges. The atypical inheritance is a bit more complex:
describing C2 as an atypical subclass of C1 means that at least one attribute of C2 is
atypical, but not necessarily all of them. So atypical inheritance requires to specify
which attributes are atypical. For each of these attributes, C2's possible range inherits
the intersection of C1's possible range and of the complement of C1's typical range
(the complement ¬F of a fuzzy set F is defined by ¬F = 1 – F as usual). Other
attributes of C2 inherit in a 'normal' way.
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Consider, for example, the "Mammal" class below

Mammal
way_of_birth Range {1/viviparous, 1/oviparous}

Typical range {1/viviparous}
way_of_locomotion Range {0.2/fly, 1/walk, 0.3/jump, 0.5/swim}

Typical range {1/walk}
skeleton Range {1/yes}

Typical range      –
suckle Range {1/yes, 0.5/no}

Typical range {1/yes}

Saying "Dogs are typical mammals" will cause

D o g s
way_of_birth Range {1/viviparous}

Typical range       –
way_of_locomotion Range {1/walk}

Typical range       –
skeleton Range {1/yes}

Typical range       –
suckle Range {1/yes}

Typical range     –

whereas "African mammals are mammals" will cause

African Mammals
way_of_birth Range {1/viviparous, 1/oviparous}

Typical range {1/viviparous}
way_of_locomotion Range {0.2/fly, 1/walk, 0.3/jump, 0.5/swim}

Typical range {1/walk}
skeleton Range {1/yes}

Typical range         –
suckle Range {1/yes, 0.5/no}

Typical range {1/yes}

and "cetaceans are atypical mammal due to way_of_locomotion" will imply

Cetacean
way_of_birth Range {1/viviparous, 1/oviparous}

Typical range {1/viviparous}
way_of_locomotion Range {0.2/fly, 0.3/jump, 0.5/swim}

Typical range        –
skeleton Range {1/yes}

Typical range           –
suckle Range {1/yes, 0.5/no}

Typical range {1/yes}.

10 DUBOIS, PRADE, AND ROSSAZZA



In the last example, the system will renormalize the fuzzy range
"way_of_locomotion". Here the result will be intuitively good but in the case of
atypical inheritance the obtained possible ranges may not be adequate as long as
nothing is said about the kind of atypicality involved in the new subclass. For
instance the atypical inheritance would give strange results for bats in the above
example.We can see that the user must refine this description by specifying the actual
kind of atypicality of the new subclass. The consistency of any such additional
information must obviously be checked.

The locality property of atypical inheritance sometimes applies to typical
inheritance, if the latter is understood as related to a "typical" attribute of a class: in
other words, if C2 is declared to be a typical subclass of C1, it may mean that typical
inheritance applies for the typical attributes of C1 only and normal inheritance for
other attributes. For instance the typical attributes for birds would include the
presence of feathers and the flying capability, but not the colour.

The above three kinds of inheritance can be refined by using only a subset of C1's
attributes. Such a subset may be viewed as the context in which C2 is a subclass of
C1. Mind that an atypical inheritance in a restricted context is different from an
atypical inheritance where the atypical attributes are specified.

The multiple inheritance problem is solved in a simple way: the subclass ranges
inherit the intersection of the ranges of the super-classes, each super-class range being
inherited according to the nature of inheritance. According to the types of inheritance
different conditions must be satisfied for the amount of overlapping of the ranges or
typical ranges of the involved superclasses. For instance if C inherits from C1 and C2
in a normal way, then a, R(a,C1) R(a,C2) must be normalized. Otherwise it
would mean that only atypical elements of C1 or C2 belong to C.  Similarly
T(a,C1) T(a,C2) should not be empty. When C is a typical subclass of both C1
and C2, then T(a,C1) T(a,C2) should be normalized. In case of double atypical
inheritance, however, T(a,C1) T(a,C2) may be empty, and R(a,C1) R(a,C2)
must be not empty, although not necessarily normalized. All these conditions are
coherence requirements whose violation should be notified to the user. Lastly note
that multiple inheritance can be dissymmetric; C can be an a typical subclass of C1
and atypical subclass of C2, which leads to still another kind of coherence condition.

In the same way as we have three kinds of inheritance for a class, we have three
kinds of inheritance for an instance. Describing x as a typical C implies that the
possible ranges of x inherit typical ranges of C. Describing x as a 'normal' C implies
that the possible ranges of x inherit possible ranges of C and that the credible ranges
of x inherit typical ranges of C. We also have the same process of atypical inheritance
with an instance as with a class. Again, the inheritance may be restricted to a context,
again we perform the intersection of the involved ranges in case of multiple
inheritance, and again the consistency of any additional information has to be checked.

When x is simply described as a C, its typical ranges may be viewed as more
precise but more uncertain ranges than x 's possible ranges: that's why they are
inherited as x 's credible ranges. Note that by doing this we perform a kind of default
reasoning.

CLASS HIERARCHIES 11



B.  Classification

Classification consists in best locating a (possibly ill-described) instance or class
in the hierarchy. The natural way is to look for membership or inclusion of the
considered item in the most general classes first, and then to go down along the
branches of the hierarchy as far as possible.

The great advantage of our representation with regard to the classification comes
from the fact that it is useless to carry on the classification process on subclasses of a
class C1 if the classification process has already failed on C1. This is a consequence
of  the  transitivity  relations  (8)  and  (12)  since  given  NG(C1 | C2) > 0  and
NG(C1 | C) = 0 (or N(C1 | x) = 0), (8) and (12) gives

0 = NG(C1 | C)  min(NG(C1 | C2), NG(C2 | C)) 
and 0 = N(C1 | x)  min(NG(C1 | C2), N(C2 | x)) 

which entails NG(C2 | C) = 0 and N(C2 | x) = 0. So, the semantic network
underlying our representation helps the classification process and is useful for fast
(bottom-up) inferences. In a general way, representations allowing such cuts in a
classification process are not able to deal with exceptions, whereas representations
dealing with exceptions have difficulties to perform classification because they have
to examine all the objects of the base. Our formalism deals with both of them.

An object (even if its description is imprecise) may belong to several classes with
various degrees of membership. The results of a classification process is given as a
list of all the somewhat interesting classes.

We are also able to perform a kind of "credible" classification. Its main idea is to
refine the description of the unknown object by using the typical ranges of the classes
for which the classification process succeeds. For example if the process succeeds in
comparing Tweety and Bird, we can continue the classification on Bird's subclasses
taking for granted the fact that Tweety flies.

C.  Other Reasoning Modes

1.  Other Indices

The relations between two objects can be refined by using degrees other than
Dienes and Gödel inclusion indices. We have:

– the possibility degree that an instance x belongs to a class C: (C | x) =
min{ (R(a,C) | P(a,x)) | a is an attribute of C}; where (R(a,C) | P(a,x)) =
supu min( R(a,C)(u), P(a,x)(u));

– the intersection degree of two classes C1 and C2, given by (C1 | C2) =
mina{ (R(a,C1) | R(a,C2))};

– the resemblance between two classes C1 and C2. It can be computed by
symmetric indices of the form
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min{mini=1,n N(R(ai,C1) T | R(ai,C2)), mini=1,n N(R(ai,C2) T | R(ai, C1))}

where N defines a degree of inclusion in the sense of (2) and T is a tolerance (fuzzy)
relation such that A T A . The composition A T being defined in terms of
membership function by A T(u) = supu' min( A(u'), T(u,u')).

2.  Search for a context

Rather than computing indices between two objects, we may prefer to know on
which attributes these objects satisfy a given relation. For example, we can ask "in
which context cetaceans are fish" (the response would be "by their place of living",
"by their shape", …), or in which context Tweety is a typical bird", or "in which
context John looks like Fred"….

3.  Bottom-Up Inheritance

A class C1 can be defined or its description refined by pointing out a prototypical
subclass C2, as suggested by Kayser22, assuming C2 is already present in the system
or intensionally described by the user. Then by pointing out C2 as a typical subclass
of C1, the description of C1 is partially refined from that of C2, namely the attribute
ranges of C2 become the typical ranges of its superclass C1. For instance defining
"birds" by means of "blackbirds" as being typical birds, we may conclude that typical
birds fly if it were not known yet.

E.  CONCLUSION

The proposed approach presents an object-centered representation completely
based on possibility theory. The distinction between class and typical class allows
both to deal with exceptions in inference processes and to perform classification
easily. Moreover we handle three kinds of inheritance (typical, atypical and normal)
for the definition of new objects. Various degrees can also be used to refine our
knowledge about the relationships that objects can satisfy. Our paper has not
considered the estimation of membership grades in the various fuzzy classes. When
domains are infinite and are intervals in the real line, membership grades are often
obtained by interpolation between extreme membership values, as with trapezoidal
fuzzy intervals. When domains are finite and without any a priori order, membership
grades could be derived by means of data analysis methods applied to samples of
objects in a given context. Yager23 also uses possibility theory in nonmonotonic
inheritance systems; however his view of typicality is based on a representation of
possibility-qualification and is close to the spirit of default logics, while our approach
handles classes of typical objects in an explicit manner, as particular subclasses.

The object-centered representation we presented may be used in association with
(fuzzy) production rules expressing relations between attribute values; it may also
include information about cardinalities of classes. This may be of interest for
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22 D. Kayser, “What kind of thing is a concept?,” Computational Intelligence, 4 ,
158–165 (1988).

23 R.R. Yager “Nonmonotonic inheritance systems,” Tech. Report #MII-804, Iona
College, Machine Intelligence Institute, New Rochelle, N.Y., 1988.

APPENDIX

Here we present four different inclusion degrees of the form Infu { A(u) *
C(u)}, and their meaning when they take the values 0 or 1. Co(A)  stands for the

core of a fuzzy set A and Su(A) for its support. The innclusion relationships that
appear in Table 1 are characteristic properties for extreme values of the inclusion
indices. For continuous membership functions and Gödel implication, the condition
Su(A) z Su(C) should be replaced by , A z C where A = {u | A(u)  .

Table A.I. Characteristic properties of 4 indices of inclusion

Dienes

Lukasiewicz

Gödel

Gödel's
reciprocal

N(C | A) > 0

Su(C)    Co(A)

Su(C)    Co(A)

Su(C)    Su(A)

Co(C)    Co(A)

N(C | A) = 1

Co(C)    Su(A)

C    A

C    A

C    A

             

Max(   (u),1-   (u))

Min(1,1-   (u)+   (u))

1 if   (u)   (u)

  (u) if   (u)>   (u)

1 if   (u)   (u)

1-   (u) if   (u)>   (u)

*A C

C A

A C

CA

C A C

A A C

A C

Proof of the decomposability result.

NG(C x D | A x B) = Min(NG(C | A), NG(D | B)) when (s,t) / AxB(s,t) = 1

with AxB(s,t) = min( A(s), B(t)) CxD(s,t) = min( C(s), D(t))

NG(C | A) = infs( A(s) * C(s)),

and   a *  c = {c  if c < a
1  if c  a

Let (s,t) and (s,t) and A – C be defined by

(s,t) = min( A(s), B(t)) * min( C(s), D(t))
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supporting or discounting plausible inferences. These are topics for further research.
Lastly we may contemplate weighting the attributes describing a class, in order to

distinguish between typical and less typical attributes, as done by Torasso and
Console9. 
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(s,t) = min ( A(s) * C(s), B(t) * D(t))
A – C = {s / A(s) > C(s)}

Let us notice that

min(NG(C | A), NG(D | B)) = infs,t{ (s,t)}.

Moreover

1 if (s,t) (A x B) – (C x D)
(s,t) = {

min( C(s), D(t)) if (s,t) (A x B) – (C x D)

(s,t) = 1 if  s A – C,  t B – D

C(s) if  s A – C,  t B – D
{

D(t) if  s A – C,  t B – D
min( C(s), D(t)) if  s A – C,  t B – D

Clearly

(s,t) = (s,t) if  s A – C,  t B – D
or if  s A – C,  t B – D

since A(s) > C(s) and B(t) > D(t) entails min( A(s), B(t)) > min( C(s), D(t))
and similarly changing '>' into ' '.

It is then simple to check that (s,t)  (s,t) in the general case. Indeed

if A(s) > C(s), B(t)  D(t) and min( A(s), B(t)) > min( C(s), D(t))
then C(s)  D(t)   and so (s,t)  = (s,t) = C(s).

The case when A(s)  C(s) and B(t) > D(t) is dealt with similarly.

In other words 

(s,t)  = (s,t) or (s,t)  = 1 (since (A x B) – (C x D) (A – C) x (B – D)).

To  prove  the  result,  it  is  enough  to  check  that  the  minimum  of  is
attained  for  at  least  one value where  = .

The minimum of is attained on (A – C) x (B – D); indeed for instance

infs A–C,t B–D (s,t) = NG(C | A)  inf(s,t) (A–C)x(B–D) (s,t) 

= min(NG(C | A), NG(D | B))

This is true of course if (A – C) x (B – D)  Ø i.e. neither A  C nor B
D hold.  In  that  case  the  decomposability  result  is  obtained  since  = on

(A – C) x (B – D).
If (A – C) x (B – D) = Ø then A  C or B  D. Let us assume A  C
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only. The definition of (s,t) simplifies since it is equal to B(t) * D(t). The
expression of (s,t) boils down to 

1 if min( A(s), B(t))  min( C(s), D(t))
(s, t) = {

D(t) otherwise

indeed min( A(s), B(t)) > min( C(s), D(t)) implies B(t) > D(t) when A(s) 

C(s); moreover we also get

C(s)  min( A(s), B(t)) > min( C(s), D(t)) so that C(s) > D(t).

To get the decomposability result, it is enough to find a minimum (s,t) of with
(s,t) = (s,t).

Let t' such that B(t') * D(t') = inft{ B(t) * D(t)} = D(t'). 

Clearly D(t') < 1 since B  D does not hold, and any (s,t') is a minimum of

. Hence we are left to find (s,t') such that min( A(s), B(t')) > D(t') i.e. (due to

B(t') > D(t')  find s such that A(s) > D(t')).

Now D(t') can take any value smaller than 1. Hence only the normalization of

A ensures that s', A(s') > D(t'). In that case (s',t') = (s',t') = D(t') and the

decomposability holds.
Clearly if  B  D is assumed, we need the normalization of B.

The last case is when B  D and A  C; then = = 1.

The requirement that A and B be normalized, needed for decomposability, is the
extension of a nonemptiness condition in the nonfuzzy case, namely

C x D A x B C A and D B

provided that A  Ø  and  B  Ø  (or A = B = Ø).
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